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Mobile intersite bipolarons in the discrete Holstein-Hubbard model
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We have explored the properties of a two-fermion system interacting with the phonon field in the framework
of the one-dimensional discrete Holstein-Hubbard model. The variational method employed here introduces
the correlations between the phonons and the electron wave functions, therefore the composite trial state is not
factorized. As a consequence our approach gives reliable results in the whole space of the parameters. We will
direct our attention to a new class of solutions found in the intermediate range of values of the nonadiabaticity
parametery. These solutions are characterized by anomaloas-Gaussianfluctuations of the position of the
oscillators. An intersite bipolaron with a relatively small effective mass is stable in a wide region of the
parameters due to both exchange and nonadiabaticity eff&€$63-18207)01221-9

I. INTRODUCTION small cluster(four sites for the two particles system, see Ref.
11). Exact solutions for this model have been studied also in
The pairing of electrons or holes in real space plays anhe infinite dimensions limit*
important role in many physical systems. Among these we Moreover variational calculations have been used for in-
note transition-metals oxidéssuperconducting materiafs, vestigation of electron-phonon Hamiltonians in the con-
conjugated polimer3,and alternating-valence compourfds. tinuum limit and have extended the study to the two-particle
More recently, the interest in this field has greatly increase@ase. However the calculations performed by using varia-
due to the possibility that the bipolaron model could give atjonal wave function$*are valid only in a restricted range
key to the understanding of high: superconductors. of the parameters which appear in the used Hamiltonian;
_Many theoretical works just assume the existence of thgpije the usual approximation for the effective action in the
bipolarons and derive the consequences of this assumptiq(ctional approacfl can be criticized in the case of the

for_ the behavior of some physical quantities, Wh'c_h Charac'Coulomb’s repulsion. Furthermore, it has been noticed that
terize the above-mentioned systems. It is worthwhile to men;,

tion, for example, that Alexandrov has suppdsett in cu- the continuum _limit approximation is not - always

8,19 . . .
prate superconductors the presence of a strong Coulom%dequaté' The goodness of this approximation depends

repulsion and a strong electron-phonon coupling could ino" the nature of the coupling and on the relative values of the

duce the stability of intersite bipolarorie.g., a bound state parameters in the Hamiltonians. L ,
in which the relative distance between the two polarons is a !N the present work we apply a variational method, previ-
lattice spacing ously introduced for a one-particle system in the discrete
Some other theoretical works take into consideration thd1olstein modetfy to the bipolaron problem in a discrete ring
problem of the stability of the bound state of an electron paifuled by the Holstein-Hubbard model. The approach gives
by using model Hamiltonians. An interesting solution of thereliable resuits regardless of the values of the paraméters,
Holstein-Hubbard model has been obtained by Aliimthe S0 that we recover the known solutions in their own limits
adiabatic regimePekar approximation In this framework  [the Lee, Low, and PineéLLP) bipolarort® in the weak-
he has been able to show in a certain range of the parameteargupling limit, the Pekar bipolardhin the strong-coupling
of the model the stability of bipolarons bounded by a mag-adiabatic regime, and the small bipolaron in the far diabatic
netic resonance. regimé&“]; and we obtain a reliable solution also when such
Unfortunately in some of the above-mentioned com-approximations are not valid. This can be checked by com-
pounds the realistic values of the parameters are outside thEaring our results with the ones obtained in the case of exact
range of validity of some usually used approximatiéwsak calculations on small clusters.
coupling, adiabaticity, etg. For example in the superconduc-  In the intermediate range of, we have found solutions
tive Bechgaard salts (TMTSEEIO, (TMTTF),PR; the  which characterize the ground-state properties by introduc-
nonadiabaticity parameteris equal to 0.34—0.3%7while in  ing an explicit correlation between the phonons and the elec-
the highT. superconductorg~1 as can be inferred from tron wave function. In our approach the Franck-Condon fac-
the fit of the experimental data by assumingiagleband tor G shows an explicit dependence on sitesand we take
model® For this reason the interest in nonperturbative methinto account the anomaloson-Gaussianfluctuation of the
ods has greatly increasé%:}* Some authors have obtained position of the oscillators. These solutions will be studied by
exact solutions by numerical diagonalization of the Holsteindooking at the competition between the electron-phonon cou-
Hubbard model with orf@!! or two particles! in a very  pling A and the on-site Coulomb repulsidh
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One fundamental problem, which we will treat, is how the -
formation of a bound state depends on these two interactions.| lﬂ(z)): 2 ) Ao’,o”(nln,)cn,a'cn!’o.r
Furthermore, the self-trapping of the solution does not nnsoe
present nonanalytical behavior of the ground-st&§&) en- 1
ergy at the self-trapping transitiofsee also Ref. 19 The ><eXp|\/—N
self-trapping is strictly related to the question of the bipo-
laron mobility; however it must be stressed that a localized 2
state does not mean necessarily an immobile state; but only\gnere fq(n,n")=fq(n)+fy(n’) and apart from the gauge
state which breaks the translational invariance of the mOdebhOicefiq(n):f*(n) these variational variables atmre-

In fact, as we will show below, the self-trapping transition stricted We have taken off the spin dependence from the
marks the beginning of amoothtransition from mobile to  ansatz(2), because there are nspin-flip terms in Eq.(1).
immobile bipolaron. We will analyze the solutions in the singlet state; however

One limit of our calculation could be the finite size of the the calculations can be performed analogously for a triplet
System_ However the method permits us to Study very |argétate. From exprESSidﬂ) of our Variation_al state the essen-
systems K~50) by using a standard calculator, while we tial features of our approach can be easily underst@dhe

have verified that the results do not depend on the size of the/leCtive two-electron problem of the wave function is ex-
cluster wherN > 2020 actly treated{b) the phonons variational variablég(n) de-

pend on the electron position, i.e., we have introduced an
explicit correlation between the phonons and electron states
so thatl (?) cannot be factorized in the electron and phonon
contributions;(c) the phonon wave function does not neces-
IIl. THE METHOD sarily correspond to a collection of displaced oscillators with
T ; standard Gaussian fluctuations of the posifisach a case
The model Hamiltonian here employed is can be recovered only ifo(n)— fox explinga], but a dif
ferent state can be obtained for the oscillator with anomalous
non-Gaussian fluctuationgsee Ref. 19, and references

% [fo(n,n")bi—f¥(n,n")bg] 1[0},

~ A therein.
Hun= _J<m2|>_a C:rn,acl,oJFU% ”mT”mPL’}“"% bgby The use of the correlated state, when one deals with the
o polaron problem, has been introduced in the pioneering pa-
1 _ pers on the polaron problefh However, apart from the cited
+—x X €Ml e, (bg+bl ). (1)  discrepancy implied by the use of the continuum limit, the
YN “ricia ’ analytical methods involve some other approximations:

(1) to stop the self-consistent procedure at the first step;
(2) the use of some approximate form for the starting
wave function(a Gaussian forit a sech) form?? or others
Here Ny, ,= chgcm,,,, and the sums on the first term are the initial form becomes relevant if one does not use a full
restricted to the first-neighbor sites!, (¢ ,) createsian- ~ Self-consistent procedure; _ _
nihilates an electron with spin projection in the mth site, (3) the truncation of some series expansion.
bg (by) creategannihilates one phonon for the mode The With our numerical self-consistent approach we have

tegral J, the phonons oscillation frequenay, the on-site i the whole region of the parameters. Furthermore we have
Coulomb repulsior, and the electron-phonon coupling pa- applied the full correlated state approach to the bipolaron
rametery. The lattice spacing, wheg=0, is labeled bya.  problem, taking into account also the Hubbard interaction.
In the following we will consider also the adimensional pa-  The extremum equations for the energy functional
rametersU=U/J, y=fw/J and\ = y?/2% wJ. ) -

Now we will show the main steps of the method. Let us H{fa(@),A(N,N" )} = (2 |H | 1?)
consider the following variational ansatz: are

V(ny,ny)+V(ny,ng) N V(ny)+V(ny)

=3 X A(ny.nge St X A(nbnue-emzﬂﬂ}+ 5 5 |A(NL.Ny)
nz(ny) ng(np)
=EA(Nn;,n,) 3)

and

> A% (ny,ny)(e”19Ma4 e~ 1AM Ay(ny ny)

X ny.n A,(n,n)
fn=-52 —

X .
E,—E@+hw Ag(n,n)

4
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Here the symboE,,,, indicates the sum over the sitas
nearest to the site and EY) is the GS energy variational
estimate of the two-particle system; while

2 .
V(n)= ; fiw|f4(n)|2+2 R xe'I3f ()],

2
v(nny) = % hw RETE(N)fq(ny)]

+2 R xe' " ((n) ]+ Uy 0,

and

1
G(nn)= 55 2 [fg(m = fo(n)|? "
FIG. 1. The comparison between our variational estimate of the
The formally explicit expression for thg,(n) variables ground-state energg? (solid line) and the exactly calculated one
(4 has been obtained by using the orthonormal setdashepon a four-site cluster. Here we also repBff calculated
{A,(ny,n,)} of the NXN eigenvectors of Eq(.3).19 on a large chait30 site$ (points dashesand the estimate obtained
We note that in the adiabatic limit,(n)—f, so that with the LLP discrete delocalized theaofgoints on the same chain.
G(n,n+1)—0, V(n,n;)—V(n) (Ref. 7 and the electrons
see the phonons field as a renormalized mean-field Gnly. maps on an attractivérepulsive Hubbard model if 4
Do not assume that this approximation, as in our treatment>U (4\<U) and the solutions correspond to an on-site bi-
is equivalent to introducing correlations between the twopolaron(free small polarons
particles which are mediated by phonons.
The solutions, always for the discrete case, coincide with
the LLP bipolaron if we consider the translational invariance.
In fact, in this case the total momentupnis a good quantum

Ill. THE INTERSITE BIPOLARON

number and we can choose the wave function as Our attention will be turned now to the solutions in the
case of the intermediate value of the adiabaticify-(1),
1 _ which cannot be explored by means of the usual approxima-
Av(n11n2)—>A(f,R)V',Q=\/—— A(r), €', tions and which we will call IA(intermediate adiabaticity
N solutions. We expect to recover different possibilities for the
where we have considered the following change of the varitwo-particle solutions(delocalized free state, delocalized
ables: bound state, localized free state, and localized bound)state
by varying the interaction strengths.
(nytnya First, we will show the goodness of our method by com-
=— > r=(m—nya paring our(upper bounyivariational estimate of the ground-

_ _ _ . state energyE?) with the exactly calculated onEe, on a
and we have substituted the eigenvector labelith the pair  ¢5,r_site clustet! The comparison is reported in Fig. 1

Q, v’ (for the ground stat®=0). In this case expressid#)  \yhere for consistence our calculation has been performed

will take the following form: also on a four-site cluster and the following parameters are
consideredy=0.5 andU=0. The general agreement of the
E A’:,(r)coqqr’IZ}AS(r’) two evaluations is manifest but few further comments have
(M) To(r) TR — S r’ to be joined.E2) lies belowE,, at strong coupling since a
V, E,q—Estho cutoff of the phonon Hilbert space is considered in the exact
calculation. The kinklike behavior of the variational estimate
A, (0)elar’2 - at the self-trapping transition is due to finite scale effects; it
TAQO) e'd (5)  appears also in the exact calculafibbut it is exalted by the

variational procedure. The kink practically disappears if we
and the variational parameters are analogous to those useddansider a larger syste(see Fig. 1 agajn The calculations
Ref. 16. It is worth noting that the continuum LLP bipolaron on a very small cluster have an unphysical large slopefor
solution of Ref. 16 is obtained by fixing the functional form equal to zero which depends on a reduction of the polaronic
A(r), while in our numerical calculations we have not con-effect (i.e., the increasing of the effective mashie to the
sidered further restrictions for the variational parameters. limited number of allowed phononic modes. More formally
It is trivial to show that in the far nonadiabaticy$1)  such an issue can be seen from the expression for the Franck-
limit we will obtain two interacting Lang-Firsov'small  Condon factorG(n+1,n) where the sum is only over four
polarons?* In such limit there is not retardation effddioth g values.
the Coulomb repulsion and the phonon-mediated attraction The localized 1A ground state, which is stable in a par-
have range zero, i.e\/(n,nl)ﬂvan,nl] so that model1) ticular region of the parametefsee Fig. 2, has an energy
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7 T - eters the two-particle wave functiod(n,n’) picks up for
[n—n ’'|=1, i.e., the composite particle is an intersite bipo-
laron. Such a result can be observed also for a delocalized
solution, but in this case the wave function varies more
slowly with the relative distance.

The stability of an intersite bipolaron is due to the retar-
dation of the phonon-mediated interaction for a finite value
of y, which allows the electrons to lower their energies when
they lie to a suitable distance one from the other. However
for the IA bipolaron solutions the relative position of the two

2/ . particles never exceeds one lattice spacing. For this reason,
B DF this IA state seems to be similar to the intersite bipolaron
1F . hypothesized by AlexandrdvOf course the retardation ef-
fect causes also the lowering of the critical point for the
0(; 2 "‘ 6 formation of a IA bound state with respect to value<4U
U needed for the formation of a bound state of the type of

Lang-Firsov's small on-site bipolaron. This last effect is ex-
FIG. 2. The “phase diagram” in the p|an@\4rfj for y=0.5. alted in the adiabatic limitfor such an issue, see also Ref.
By increasing\, the lines mark the following transitions: from a 11), but in such a case we recover an intersite bipolaron only
delocalized state to a localized stdteeavy full line, from a free  in a very narrow zone near thev& U line.
state to a bound statéght full line), from an intersite bipolaron to This complex scenario, in which binding and localization

an on-site bipolaroripoints, from (m/m*)>0.1to (Wm*)<0.1  yerjap, can be schematized in a phase diagram on the plane
(dashes We have also labeled the different stability zones. In the4)\_U Fig. 2. i hich ider=0 The t
region DF we have a delocalized free state, in the region DB a (see Fig. 2, in which we consider=0.5. The two

delocalized bound state, in the region LF a localized free state, imstability Iines_(heavy full line _gnd light full line in Fig. 2,
the region LB a localized bound state, in the region HS a heaV)mark' reSpeqt'Vely’ the transition between the delocalized
localized state fi/m* <0.1). and the localized ground state and between the free and the

bound state. The localization transition point can be suitably

T . . . determined, the intersection point between the ground-state
which lies well below the Pekar-Aubry bipolaron energy in energies extracted by means of the delocalized LLP bipo-

the intermediate region of the electron-phonon coupling. It i51 ron theorv. and the extrapolation of the curve which ioins
characterized by an explicit dependence on the site of th . y, ar ) P : ) lnen |
e points obtained in our numerical calculatisee Fig. 1

Franck-Condon facta&(n+ 1,n) and of the on-site potential X o )
The two instability lines intersect each other @t&=U

V(n). Moreover the effective interaction between the par- o X . ; . .
ticles V(n,n") is affected by the localization, therefore it =4 which is a crucial point to define the different regions of

does not depend only, as in the LLP bipolaron case, on thétability. Foru<U and by increasing we have the follow-
relative coordinate. A self-trapped bipolaronic solution is N9 sequence of solutions: the free delocalized polarons
shown in Fig. 3, for some particular values of the parameterPF), the delocalized bipolarofDB), and the localized bi-
It is worthwhile to note that for these values of the param-polaron(LB); while for U>U we obtain the following se-
quence whern increases: the DF solution, the localized free
polaron(LF) and the LB solution. It is important to note that
the critical line for the binding of the two particles has not a
constant dependence on the rakifJ and that for strong
coupling it moves far away from the linend=U.

An important problem concerns the mobility of the local-
ized bipolaron. In order to investigate such a problem we
have determined the ratim/m* between the the free band

0.0 : 95 : massm and the effective magss*, in the case of the local-
—05{ ©) . ‘2‘; ] d) I ized ground state, by means of a method based on the restor-
10+ Spey I ing of the translational invariancé.lIt is usually believed
15 | o1 L that the localization of a polaron is connected with a sharp

.90+ r (discontinuous increase of the effective mass of the self-
—2.01 . . . .
897 trapped quasiparticle. This effect should be even stronger in
2% 5 IR 5 10 the case of the bipolaron.
n n

Actually our calculation shows that the bipolaron mass is
ever greater than twice the polaron mass. However the tran-
sition to a heavy bipolaron state is not so sharp as it is gen-

; ; erally believed. This result is reported in Fig. 4, where we
insets we show(a) the square modulus of the particles wave func- - _=(2)_ o(1)

tion |A(n,n")|2, (b) the two-body effective potentiaf(n,n’), (c) have plotted the binding energyE=Eg’—2Eg”’ and the
the on-site potentiaV/(n), (d) the Franck-Condon factoB(n,n ~ mass ratiom/m* versus\ for U=4.0 and y=0.5 (here
+1). All these quantities are drawn as a function of the site Egl) denotes the free polaron self-enexgyrhis picture

FIG. 3. The localized configuration obtained for the following
set of the parametersy=0.5, U=4.0, and\=1.0. In the four
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14 . - 7 Our method allows us to treat with confidence the whole
range of the parameters of the Holstein-Hubbard model and

12r . ] the reliability of the results can be inferred by looking at the
1 m/m /o comparison with the exact results taken out on a small clus-

ter. Moreover it improves exact calculations since the size of
our cluster is large enough to avoid unphysical finite-size
effects.

By means of our approach binding and localization prob-
lems can be faced in a single bipolaronic theory, while gen-
erally binding has been considered separately from localiza-
tion in the framework of weak-coupling delocalized or
strong-coupling localized bipolaron thedfySuch an issue
allows us to draw an accurate phase diagram for the ground-

0.2 : ' state properties.

A The bipolarons are bounded not only by exchange
effects’ which in our scheme are taken into account through

FIG. 4. The mass ratio/m* (full line) and the binding energy the expression of the wave function E), but also by the
AE/J (dashepversush for y=0.5 andU=4.0. two-body correlations which we have explicitly considered.

These IA solutions are particularly important in the transition
shows a transition from a weakly bound mobile bipolaron tozone to a heavy strongly bound bipolaron. This zone is char-
a strongly bound heavy bipolaron. For<@<0.86, both acterized by the stability of a mobile intersite bipolaron, if
AE and m/m* vary very slowly, while for 0.86A<1.20, the interactions are strong enough, which resemble the inter-
they vary more rapidlyin such a casey = 0.86 is the critical ~ site bipolaron hypothesized by Alexandrdv.
value for the binding of the two polarondt is important to We believe that the present results give support to the
note that, in this transition zone, the GS isiatersite bipo-  bipolaron theory of the superconductivity if we want to apply
laron and such behavior is favored by a strong Coulombit to compounds which present an intermediate adiabaticity
repulsion and a corresponding strong electron-phonon couike the Bechgaard salts and the higjlhsuperconductors. In
pling. The effective mass is never greater tham1i® an  fact this is the first step in order to elaborate a bipolaronic
intersite bipolaron is stable, while it suddenly increases wheitheory of superconductivity which is reliable in the IA re-
the GS is an on-site bipolaragsee Fig. 2 gime, since binding and mobility of the pairs of polarons are

The presence in the intermediate regime of a large regiothe initial requirements to explore the possibility that this
of the parameters where we have not a very great value gfomposite bosons could manifest condensation. However the
m* is an essential feature of our approach, which is als@xtension of our approach to a higher dimensional system
connected with the presence of the interactionFor a fixed and the study of the effect of the overlap between many
value of A by increasingU we increase the region where bipolarons have to be analyzed to get insight into this in-
m* is small. We have calculated that, for intermediate-triguing subject.
coupling strengthX~ 1), in the adiabatic regime, regardless  If we consider the many-particle case, we have to include
of the U values, one gets"* bigger than 100n. also the correlation between successively emitted virtual
phonons, which we have disregarded in this work. Actually,
as Zheng® and other® have shown, this effect is important
in the 1A regime, but it crucially depends upon the relative

In summary, we have investigated, by means of a suitableumber of particles with respect to the number of sites. In
variational scheme, a system of two electrons or holeshe case of two particles in a large clusiée., the low-
coupled to the zero range optical phonons, for intermediatdensity limi} this effect is negligible but it will be consid-
values of the nonadiabaticity parameter and in the presencered when we will extend our analysis to systems with arbi-

IV. CONCLUSION

of an on-site Coulomb interactiod. trary density. Work in this direction is in progress.
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