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Mobile intersite bipolarons in the discrete Holstein-Hubbard model

A. La Magna* and R. Pucci
Dipartimento di Fisica, Universita´ di Catania, Istituto Nazionale di Fisica della Materia and Centro Siciliano di Fisica Nucleare e

Struttura della Materia, Corso Italia 57, I-95129 Catania, Italy
~Received 13 January 1997!

We have explored the properties of a two-fermion system interacting with the phonon field in the framework
of the one-dimensional discrete Holstein-Hubbard model. The variational method employed here introduces
the correlations between the phonons and the electron wave functions, therefore the composite trial state is not
factorized. As a consequence our approach gives reliable results in the whole space of the parameters. We will
direct our attention to a new class of solutions found in the intermediate range of values of the nonadiabaticity
parameterg. These solutions are characterized by anomalous~non-Gaussian! fluctuations of the position of the
oscillators. An intersite bipolaron with a relatively small effective mass is stable in a wide region of the
parameters due to both exchange and nonadiabaticity effects.@S0163-1829~97!01221-6#
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I. INTRODUCTION

The pairing of electrons or holes in real space plays
important role in many physical systems. Among these
note transition-metals oxides,1 superconducting materials2

conjugated polimers,3 and alternating-valence compounds4

More recently, the interest in this field has greatly increa
due to the possibility that the bipolaron model could give
key to the understanding of high-Tc superconductors.

5

Many theoretical works just assume the existence of
bipolarons and derive the consequences of this assump
for the behavior of some physical quantities, which char
terize the above-mentioned systems. It is worthwhile to m
tion, for example, that Alexandrov has supposed6 that in cu-
prate superconductors the presence of a strong Coul
repulsion and a strong electron-phonon coupling could
duce the stability of intersite bipolarons~e.g., a bound state
in which the relative distance between the two polarons
lattice spacing!.

Some other theoretical works take into consideration
problem of the stability of the bound state of an electron p
by using model Hamiltonians. An interesting solution of t
Holstein-Hubbard model has been obtained by Aubry7 in the
adiabatic regime~Pekar approximation!. In this framework
he has been able to show in a certain range of the param
of the model the stability of bipolarons bounded by a ma
netic resonance.

Unfortunately in some of the above-mentioned co
pounds the realistic values of the parameters are outside
range of validity of some usually used approximations~weak
coupling, adiabaticity, etc.!. For example in the supercondu
tive Bechgaard salts (TMTSF)2ClO4, (TMTTF)2PF6 the
nonadiabaticity parameterg is equal to 0.34–0.37,8 while in
the high-Tc superconductorsg;1 as can be inferred from
the fit of the experimental data by assuming asingle-band
model.9 For this reason the interest in nonperturbative me
ods has greatly increased.10–14 Some authors have obtaine
exact solutions by numerical diagonalization of the Holste
Hubbard model with one10,11 or two particles11 in a very
550163-1829/97/55~22!/14886~6!/$10.00
n
e

d

e
on
-
-

b
-

a

e
ir

ers
-

-
he

-

-

small cluster~four sites for the two particles system, see R
11!. Exact solutions for this model have been studied also
the infinite dimensions limit.14

Moreover variational calculations have been used for
vestigation of electron-phonon Hamiltonians in the co
tinuum limit and have extended the study to the two-parti
case. However the calculations performed by using va
tional wave functions15,16are valid only in a restricted rang
of the parameters which appear in the used Hamilton
while the usual approximation for the effective action in t
functional approach17 can be criticized in the case of th
Coulomb’s repulsion. Furthermore, it has been noticed t
the continuum limit approximation is not alway
adequate.18,19 The goodness of this approximation depen
on the nature of the coupling and on the relative values of
parameters in the Hamiltonians.

In the present work we apply a variational method, pre
ously introduced for a one-particle system in the discr
Holstein model,19 to the bipolaron problem in a discrete rin
ruled by the Holstein-Hubbard model. The approach giv
reliable results regardless of the values of the paramete19

so that we recover the known solutions in their own lim
@the Lee, Low, and Pines~LLP! bipolaron16 in the weak-
coupling limit, the Pekar bipolaron15 in the strong-coupling
adiabatic regime, and the small bipolaron in the far diaba
regime24#; and we obtain a reliable solution also when su
approximations are not valid. This can be checked by co
paring our results with the ones obtained in the case of e
calculations on small clusters.

In the intermediate range ofg, we have found solutions
which characterize the ground-state properties by introd
ing an explicit correlation between the phonons and the e
tron wave function. In our approach the Franck-Condon f
tor G shows an explicit dependence on sitesn, and we take
into account the anomalous~non-Gaussian! fluctuation of the
position of the oscillators. These solutions will be studied
looking at the competition between the electron-phonon c
pling l and the on-site Coulomb repulsionU.
14 886 © 1997 The American Physical Society
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55 14 887MOBILE INTERSITE BIPOLARONS IN THE DISCRETE . . .
One fundamental problem, which we will treat, is how t
formation of a bound state depends on these two interacti
Furthermore, the self-trapping of the solution does
present nonanalytical behavior of the ground-state~GS! en-
ergy at the self-trapping transition~see also Ref. 19!. The
self-trapping is strictly related to the question of the bip
laron mobility; however it must be stressed that a localiz
state does not mean necessarily an immobile state; but o
state which breaks the translational invariance of the mo
In fact, as we will show below, the self-trapping transitio
marks the beginning of asmoothtransition from mobile to
immobile bipolaron.

One limit of our calculation could be the finite size of th
system. However the method permits us to study very la
systems (N;50) by using a standard calculator, while w
have verified that the results do not depend on the size o
cluster whenN.20.20

II. THE METHOD

The model Hamiltonian here employed is

ĤHH52J (
^m,l &;s

cm,s
† cl ,s1U(

m
n̂m↑n̂m↓1\v(

q
bq
†bq

1
1

AN
x (
m,s;q

eiqmacm,s
† cm,s~bq1b2q

† !. ~1!

Here n̂m,s5cm,s
† cm,s , and the sums on the first term a

restricted to the first-neighbor sites.cm,s
† (cm,s) creates~an-

nihilates! an electron with spin projections in themth site,
bq
† (bq) creates~annihilates! one phonon for theq mode. The
model depends on the following parameters: the hopping
tegral J, the phonons oscillation frequencyv, the on-site
Coulomb repulsionU, and the electron-phonon coupling p
rameterx. The lattice spacing, whenx50, is labeled bya.
In the following we will consider also the adimensional p
rametersŨ5U/J, g5\v/J andl5x2/2\vJ.

Now we will show the main steps of the method. Let
consider the following variational ansatz:
s.
t

-
d
y a
l.

e

he

-

uc~2!&5 (
n,n8;s,s8

As,s8~n,n8!cn,s
† cn8,s8

†

3expH 1

AN (
q

@ f q~n,n8!bq
†2 f q* ~n,n8!bq#J u0&,

~2!

where f q(n,n8)5 f q(n)1 f q(n8) and apart from the gaug
choice f2q(n)5 f q* (n) these variational variables areunre-
stricted. We have taken off the spin dependence from
ansatz~2!, because there are notspin-flip terms in Eq.~1!.
We will analyze the solutions in the singlet state; howev
the calculations can be performed analogously for a trip
state. From expression~2! of our variational state the essen
tial features of our approach can be easily understood:~a! the
effective two-electron problem of the wave function is e
actly treated;~b! the phonons variational variablesf q(n) de-
pend on the electron position, i.e., we have introduced
explicit correlation between the phonons and electron st
so thatuc (2)& cannot be factorized in the electron and phon
contributions;~c! the phonon wave function does not nece
sarily correspond to a collection of displaced oscillators w
standard Gaussian fluctuations of the position@such a case
can be recovered only iff q(n)→ f q3exp$inqa%#, but a dif-
ferent state can be obtained for the oscillator with anomal
non-Gaussian fluctuations~see Ref. 19, and reference
therein!.

The use of the correlated state, when one deals with
polaron problem, has been introduced in the pioneering
pers on the polaron problem.21 However, apart from the cited
discrepancy implied by the use of the continuum limit, t
analytical methods involve some other approximations:

~1! to stop the self-consistent procedure at the first ste
~2! the use of some approximate form for the starti

wave function~a Gaussian form21 a sech(x) form22 or others!
the initial form becomes relevant if one does not use a
self-consistent procedure;

~3! the truncation of some series expansion.
With our numerical self-consistent approach we ha

managed to solve exactly the variational equation there
we will really discuss with confidence the system propert
in the whole region of the parameters. Furthermore we h
applied the full correlated state approach to the bipola
problem, taking into account also the Hubbard interaction

The extremum equations for the energy functional

H$ f n~q!,A~n,n8!%5^c~2!uĤHHuc~2!&

are
2JF (
n3^n1&

A~n2 ,n3!e
2G~n1 ,n3!1 (

n4^n2&
A~n1 ,n4!e

2G~n2 ,n4!G1FV~n1 ,n2!1V~n2 ,n1!

2
1
V~n1!1V~n2!

2 GA~n1 ,n2!

5ES
~2!A~n1 ,n2! ~3!

and

f q~n!52
x

2 (
n

(
n1 ,n2

An* ~n1 ,n2!~e
2 iqn1a1e2 iqn2a!AS~n1 ,n2!

En2ES
~2!1\v

3
An~n,n!

AS~n,n!
. ~4!
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14 888 55A. LA MAGNA AND R. PUCCI
Here the symbol(n8^n& indicates the sum over the sitesn8
nearest to the siten andES

(2) is the GS energy variationa
estimate of the two-particle system; while

V~n!5
2

N (
q

\vu f q~n!u212 Re@xeiqnaf q~n!#,

V~n,n1!5
2

N (
q

\v Re@ f q* ~n! f q~n1!#

12 Re@xeiqnaf q~n1!#1Udn,n1,

and

G~n,n8!5
1

2N (
q

u f q~n!2 f q~n8!u2.

The formally explicit expression for thef q(n) variables
~4! has been obtained by using the orthonormal
$An(n1 ,n2)% of theN3N eigenvectors of Eq.~3!.19

We note that in the adiabatic limitf q(n)→ f q so that
G(n,n11)→0, V(n,n1)→V(n) ~Ref. 7! and the electrons
see the phonons field as a renormalized mean-field on23

Do not assume that this approximation, as in our treatm
is equivalent to introducing correlations between the t
particles which are mediated by phonons.

The solutions, always for the discrete case, coincide w
the LLP bipolaron if we consider the translational invarian
In fact, in this case the total momentumQ is a good quantum
number and we can choose the wave function as

An~n1 ,n2!→A~r ,R!n8,Q5
1

AN
A~r !n8e

iQR,

where we have considered the following change of the v
ables:

R5
~n11n2!a

2
; r5~n12n2!a

and we have substituted the eigenvector labeln, with the pair
Q,n8 ~for the ground stateQ50!. In this case expression~4!
will take the following form:

f q~n!→ f q~r !eıqR52x(
n8

(
r 8

An8
* ~r !cos$qr8/2%AS~r 8!

En8q2ES1\v

3
An8~0!eiqr /2

AS~0!
eiqR ~5!

and the variational parameters are analogous to those us
Ref. 16. It is worth noting that the continuum LLP bipolaro
solution of Ref. 16 is obtained by fixing the functional for
A(r ), while in our numerical calculations we have not co
sidered further restrictions for the variational parameters

It is trivial to show that in the far nonadiabatic (g@1)
limit we will obtain two interacting Lang-Firsov’ssmall
polarons.24 In such limit there is not retardation effect@both
the Coulomb repulsion and the phonon-mediated attrac
have range zero, i.e.,V(n,n1)→Vdn,n1# so that model~1!
t

.
t,
o

h
.

i-

in

-

n

maps on an attractive~repulsive! Hubbard model if 4l
.Ũ (4l,Ũ) and the solutions correspond to an on-site b
polaron~free small polarons!.

III. THE INTERSITE BIPOLARON

Our attention will be turned now to the solutions in th
case of the intermediate value of the adiabaticity (g;1),
which cannot be explored by means of the usual approxim
tions and which we will call IA~intermediate adiabaticity!
solutions. We expect to recover different possibilities for th
two-particle solutions~delocalized free state, delocalize
bound state, localized free state, and localized bound st!
by varying the interaction strengths.

First, we will show the goodness of our method by com
paring our~upper bound! variational estimate of the ground-
state energyES

(2) with the exactly calculated oneEex on a
four-site cluster.11 The comparison is reported in Fig. 1
where for consistence our calculation has been perform
also on a four-site cluster and the following parameters a
consideredg50.5 andŨ50. The general agreement of th
two evaluations is manifest but few further comments ha
to be joined.ES

(2) lies belowEex at strong coupling since a
cutoff of the phonon Hilbert space is considered in the exa
calculation. The kinklike behavior of the variational estima
at the self-trapping transition is due to finite scale effects;
appears also in the exact calculation11 but it is exalted by the
variational procedure. The kink practically disappears if w
consider a larger system~see Fig. 1 again!. The calculations
on a very small cluster have an unphysical large slope fol
equal to zero which depends on a reduction of the polaro
effect ~i.e., the increasing of the effective mass! due to the
limited number of allowed phononic modes. More formall
such an issue can be seen from the expression for the Fra
Condon factorG(n11,n) where the sum is only over four
q values.

The localized IA ground state, which is stable in a pa
ticular region of the parameters~see Fig. 2!, has an energy

FIG. 1. The comparison between our variational estimate of t
ground-state energyES

(2) ~solid line! and the exactly calculated one
~dashes! on a four-site cluster. Here we also reportES

(2) calculated
on a large chain~30 sites! ~points dashes! and the estimate obtained
with the LLP discrete delocalized theory~points! on the same chain.
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55 14 889MOBILE INTERSITE BIPOLARONS IN THE DISCRETE . . .
which lies well below the Pekar-Aubry bipolaron energy
the intermediate region of the electron-phonon coupling. I
characterized by an explicit dependence on the site of
Franck-Condon factorG(n11,n) and of the on-site potentia
V(n). Moreover the effective interaction between the p
ticles V(n,n8) is affected by the localization, therefore
does not depend only, as in the LLP bipolaron case, on
relative coordinater . A self-trapped bipolaronic solution i
shown in Fig. 3, for some particular values of the paramet
It is worthwhile to note that for these values of the para

FIG. 2. The ‘‘phase diagram’’ in the plane 4l2Ũ for g50.5.
By increasingl, the lines mark the following transitions: from
delocalized state to a localized state~heavy full line!, from a free
state to a bound state~light full line!, from an intersite bipolaron to
an on-site bipolaron~points!, from (m/m* ).0.1 to (m/m* ),0.1
~dashes!. We have also labeled the different stability zones. In
region DF we have a delocalized free state, in the region D
delocalized bound state, in the region LF a localized free state
the region LB a localized bound state, in the region HS a he
localized state (m/m*,0.1).

FIG. 3. The localized configuration obtained for the followin
set of the parameters:g50.5, Ũ54.0, andl51.0. In the four
insets we show:~a! the square modulus of the particles wave fun
tion uA(n,n8)u2, ~b! the two-body effective potentialV(n,n8), ~c!
the on-site potentialV(n), ~d! the Franck-Condon factorG(n,n
11). All these quantities are drawn as a function of the siten.
s
e

-

e

s.
-

eters the two-particle wave functionA(n,n8) picks up for
uñ2ñ 8u51, i.e., the composite particle is an intersite bip
laron. Such a result can be observed also for a delocal
solution, but in this case the wave function varies mo
slowly with the relative distance.

The stability of an intersite bipolaron is due to the reta
dation of the phonon-mediated interaction for a finite va
of g, which allows the electrons to lower their energies wh
they lie to a suitable distance one from the other. Howe
for the IA bipolaron solutions the relative position of the tw
particles never exceeds one lattice spacing. For this rea
this IA state seems to be similar to the intersite bipolar
hypothesized by Alexandrov.6 Of course the retardation ef
fect causes also the lowering of the critical point for t
formation of a IA bound state with respect to value 4l5Ũ
needed for the formation of a bound state of the type
Lang-Firsov’s small on-site bipolaron. This last effect is e
alted in the adiabatic limit~for such an issue, see also Re
11!, but in such a case we recover an intersite bipolaron o
in a very narrow zone near the 4l5Ũ line.

This complex scenario, in which binding and localizatio
overlap, can be schematized in a phase diagram on the p
4l2Ũ ~see Fig. 2, in which we considerg50.5!. The two
instability lines~heavy full line and light full line in Fig. 2!
mark, respectively, the transition between the delocali
and the localized ground state and between the free and
bound state. The localization transition point can be suita
determined, the intersection point between the ground-s
energies extracted by means of the delocalized LLP bi
laron theory, and the extrapolation of the curve which jo
the points obtained in our numerical calculation~see Fig. 1!.

The two instability lines intersect each other atŨ5Ū
.4 which is a crucial point to define the different regions
stability. ForŨ,Ū and by increasingl we have the follow-
ing sequence of solutions: the free delocalized polar
~DF!, the delocalized bipolaron~DB!, and the localized bi-
polaron ~LB!; while for Ũ.Ū we obtain the following se-
quence whenl increases: the DF solution, the localized fr
polaron~LF! and the LB solution. It is important to note tha
the critical line for the binding of the two particles has not
constant dependence on the ratiol/Ũ and that for strong
coupling it moves far away from the line 4l5Ũ.

An important problem concerns the mobility of the loca
ized bipolaron. In order to investigate such a problem
have determined the ratiom/m* between the the free ban
massm and the effective massm* , in the case of the local-
ized ground state, by means of a method based on the re
ing of the translational invariance.19 It is usually believed
that the localization of a polaron is connected with a sh
~discontinuous! increase of the effective mass of the se
trapped quasiparticle. This effect should be even stronge
the case of the bipolaron.

Actually our calculation shows that the bipolaron mass
ever greater than twice the polaron mass. However the t
sition to a heavy bipolaron state is not so sharp as it is g
erally believed. This result is reported in Fig. 4, where w
have plotted the binding energyDE5ES

(2)22ES
(1) and the

mass ratiom/m* versusl for Ũ54.0 andg50.5 ~here
ES
(1) denotes the free polaron self-energy!. This picture
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14 890 55A. LA MAGNA AND R. PUCCI
shows a transition from a weakly bound mobile bipolaron
a strongly bound heavy bipolaron. For 0,l,0.86, both
DE andm/m* vary very slowly, while for 0.86,l,1.20,
they vary more rapidly~in such a case,l50.86 is the critical
value for the binding of the two polarons!. It is important to
note that, in this transition zone, the GS is anintersite bipo-
laron and such behavior is favored by a strong Coulo
repulsion and a corresponding strong electron-phonon
pling. The effective mass is never greater than 10m if an
intersite bipolaron is stable, while it suddenly increases w
the GS is an on-site bipolaron~see Fig. 2!.

The presence in the intermediate regime of a large re
of the parameters where we have not a very great valu
m* is an essential feature of our approach, which is a
connected with the presence of the interactionU. For a fixed
value of l by increasingU we increase the region whe
m* is small. We have calculated that, for intermedia
coupling strength (l;1), in the adiabatic regime, regardle
of theU values, one getsm* bigger than 100m.

IV. CONCLUSION

In summary, we have investigated, by means of a suit
variational scheme, a system of two electrons or ho
coupled to the zero range optical phonons, for intermed
values of the nonadiabaticity parameter and in the pres
of an on-site Coulomb interactionU.

FIG. 4. The mass ratiom/m* ~full line! and the binding energy
DE/J ~dashes! versusl for g50.5 andŨ54.0.
to

b
u-

en

on
of
so

-
s

le
es
te
ce

Our method allows us to treat with confidence the wh
range of the parameters of the Holstein-Hubbard model
the reliability of the results can be inferred by looking at t
comparison with the exact results taken out on a small c
ter. Moreover it improves exact calculations since the size
our cluster is large enough to avoid unphysical finite-s
effects.

By means of our approach binding and localization pro
lems can be faced in a single bipolaronic theory, while g
erally binding has been considered separately from local
tion in the framework of weak-coupling delocalized
strong-coupling localized bipolaron theory.16 Such an issue
allows us to draw an accurate phase diagram for the grou
state properties.

The bipolarons are bounded not only by exchan
effects,7 which in our scheme are taken into account throu
the expression of the wave function Eq.~2!, but also by the
two-body correlations which we have explicitly considere
These IA solutions are particularly important in the transiti
zone to a heavy strongly bound bipolaron. This zone is ch
acterized by the stability of a mobile intersite bipolaron,
the interactions are strong enough, which resemble the in
site bipolaron hypothesized by Alexandrov.6

We believe that the present results give support to
bipolaron theory of the superconductivity if we want to app
it to compounds which present an intermediate adiabati
like the Bechgaard salts and the high-Tc superconductors. In
fact this is the first step in order to elaborate a bipolaro
theory of superconductivity which is reliable in the IA re
gime, since binding and mobility of the pairs of polarons a
the initial requirements to explore the possibility that th
composite bosons could manifest condensation. However
extension of our approach to a higher dimensional sys
and the study of the effect of the overlap between ma
bipolarons have to be analyzed to get insight into this
triguing subject.

If we consider the many-particle case, we have to inclu
also the correlation between successively emitted virt
phonons, which we have disregarded in this work. Actua
as Zheng25 and others26 have shown, this effect is importan
in the IA regime, but it crucially depends upon the relati
number of particles with respect to the number of sites.
the case of two particles in a large cluster~i.e., the low-
density limit! this effect is negligible but it will be consid
ered when we will extend our analysis to systems with ar
trary density. Work in this direction is in progress.
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