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Dynamical properties of small polarons
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On the basis of the two-site polaron problem, which we solve by exact diagonalization, we analyze the
spectral properties of polaronic systems in view of discerning localized from itinerant polarons and bound
polaron pairs from an ensemble of single polarons. The corresponding experimental techniques for that concern
photoemission and inverse photoemission spectroscopy. The evolution of the density of states as a function of
concentration of charge carriers and strength of the electron-phonon interaction clearly shows the opening up
of a gap between single-polaronic and bipolaronic states, in analogy to the Hubbard problem for strongly
correlated electron systems. In studying the details of the intricately linked dynamics of the charge carriers and
of the molecular deformations which surround them, we find that in general the dynamical delocalization of the
charge carriers helps to strengthen the phase coherence for itinerant polaronic states, except for the crossover
regime between adiabatic and antiadiabatic small polarons. The crossover between these two regimes is
triggered by two characteristic time scales: the renormalized electron hopping rate and the renormalized
vibrational frequency becoming equal. This crossover regime is then characterized by temporarily alternating
self-localization and delocalization of the charge carriers which is accompanied by phase slips in the charge
and molecular deformation oscillations and ultimately leads to a dephasing between these two dynamical
components of the polaron problem. We visualize these features by a study of the temporal evolution of the
charge redistribution and the change in molecular deformations. The spectral and dynamical properties of
polarons discussed here are beyond the applicability of the standard Lang-Firsov approach to the polaron
problem.@S0163-1829~97!02522-8#
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I. INTRODUCTION

Renewed interest in the physics of small polarons in
last few years has been largely stimulated by the discover
new materials with exceptional properties such as the h
Tc cuprates, the nickelates, and the manganites, showin
ant magnetoresistance. It is believed that small polarons
an essential role in these materials. Recently developed
perimental techniques such as femtosecond optical spec
copy, extended x-ray-absorption fine structure~EXAFS! and
pulsed neutron scattering, ion-channeling experiments,
high-resolution angle-resolved photoemission experime
have been employed to study the properties of polaronic
tems. In spite of considerable theoretical efforts in the l
few years, the underlying physics of the polaron problem
remained largely unresolved.

As concerns the problem of a single polaron in an em
lattice with local coupling of the charge to a set of individu
noninteracting local lattice deformations~the Holstein
model! it is known that self-trapping of a charge carrier o
curs when~i! the gain in localization energy«p outweighs
the gain in kinetic energyD/2, i.e.,g[2«p /D>1,D denot-
ing the bare electron bandwidth and~ii ! the relative defor-
mation of the lattice which surrounds the charge carrier
sentially remains confined to the immediate vicinity of t
charge carrier, i.e., 2a2[«p /v0>1, v0 denoting the bare
local phonon frequency.

A crossover between essentially delocalized quasi
electrons and self-trapped electrons is known from quan
Monte Carlo simulations1 to occur in a regime of paramete
characterized by the two conditions~i! and ~ii ! for small
550163-1829/97/55~22!/14872~14!/$10.00
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polaron formation, i.e., forg;1 anda;1. This crossover
regime ina narrows substantially upon going from the a
tiadiabatic @g[t/v054a2/(zg)!1# to the adiabatic
(g@1) limit with z denoting the coordination number.

The standard theory of small polarons is based on
so-called Lang-Firsov~LF! transformation usually followed
by approximations treating the fully localized polaron sta
as the starting point of the theory and then introducing
hopping of the electrons by perturbative means.2 There is a
widespread~however erroneous! belief that such a scheme i
valid in the extreme strong-coupling antiadiabatic limit, i.
g!1 anda@1. It is not surprising that such a theoretic
treatment is even less able to describe polarons close to
crossover regime, which represents the physically interes
and realistic situations.

As concerns the problem of the many-polaron system
principal difficulty is to take into account the overlap of th
lattice deformations surrounding the charge carriers when
density of polarons becomes important. It is expected t
due to destructive interference of such local deformatio
the whole concept of polarons breaks down and the lat
changes its structure, and as a result the effective elec
lattice coupling becomes strongly reduced.

It is the purpose of this present work to obtain some
sight into the physics of small polarons for realistic values
the relevant parametersg anda and in particular close to the
crossover regime. Since all known materials contain
small polarons consist of highly polarizable small cluste
(Ti31-Ti31 pairs in Ti4O7, V

41-V41 pairs in NaxV2O5),
sometimes embedded in a metallic background@such as the
O(4)22-Cu(1)1-O(4)22 dumbbells in cuprate high-Tc su-
14 872 © 1997 The American Physical Society
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55 14 873DYNAMICAL PROPERTIES OF SMALL POLARONS
perconductors containing chains separating the me
CuO2 layers#, it is not only instructive from a pedagogica
point of view to study small polaron features on the basis
such small units, but such studies may also apply to t
physically relevant situations. On the basis of a two-site
laron system~a system consisting of two adjacent molecu
between which the electrons can hop! we shall illustrate the
highly nonlinear physics going on in such a problem. F
a@1 andg!1 ~the so-called strong-coupling antiadiaba
regime or extreme polaron limit! it will be shown that the
dynamics of the fluctuations of the lattice deformations
driven by the charge fluctuations, while fora!1 andg@1
~the so-called weak-coupling adiabatic regime! the inverse
happens. The crossover regime is characterized by alte
ing localization and delocalization of the charge carriers a
function of time. In general the amplitude and the frequen
of the intrinsic lattice vibrations as well as of the intrins
electron hopping rate are strongly renormalized. Such eff
may turn out to be vital as concerns a mechanism for
damping of polaronic charge carriers, a feature which is
accessible within the usual LF approach.

The paper is organized in the following way: In Sec. II w
shall present the model and its basic physics as well as
method of an exact diagonalization study. In Sec. III
discuss the dependence of the kinetic energy of the elec
on the adiabaticity parameterg and the coupling strengtha
and examine the limitations of the LF approach. Section
will be devoted to the study of the one-particle spectral fu
tion in view of distinguishing localized from itinerant po
larons and to discern tightly bound polaron pairs~bipolarons!
from simple polarons by such methods as photoemiss
spectroscopy. In Sec. V we will study the time evolution
the charge redistribution and of the lattice deformation a
discuss the renormalization of the intrinsic lattice vibration
frequency and of the electron hopping integral in the cou
of the charge transfer process.

II. MODEL

The smallest system on which polaronic features can
studied, as far as the self-trapping, localization-deloc
ization crossover, frequency renormalization, and depha
of the correlated charge-deformation dynamics is concern
is the so-called two-site polaron system. It consists of t
elastically uncoupled adjacent diatomic molecules with
oms having massM and an intrinsic bare frequency of in
tramolecular vibrationsv0. Electrons can hop between tho
two molecules, having a bare hopping ratet. In the Holstein
model for such a system, the strength of the coupling c
stant of the density of charge carriers to the intramolecu
deformations is denoted byl. The model Hamiltonian for
such a system is then given by

H5t(
s

~n1s1n2s!2t(
s

~c1s
† c2s1c2s

† c1s!

2l(
s

~n1su11n2su2!1
M

2
~ u̇1

21u̇2
2!1

M

2
v0
2~u1

21u2
2!

1U~n1↑n1↓1n2↑n2↓!, ~1!
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wherenis5cis
† cis denotes the density of charge carriers

molecular sitei and having spins. The intramolecular de-
formations are denoted byu1 and u2, respectively. We as-
sume a simple form of repulsive intramolecular Coulom
forces of strengthU. The above Hamiltonian, Eq.~1!, has
been extensively studied by a number of authors3–10who, by
means of exact diagonalization, have examined various
pects of the polaron problem. Diagonalization of the abo
Hamiltonian can be rendered more efficient9 when decom-
posing it into a term containing the symmetric in-phase l
tice vibrations characterized by a wave vectorq50 and an-
tisymmetric out-of-phase vibrations characterized by a w
vector q5p. The Hamiltonian then can be separated in
two independent contributionsH5HX1HY , given by

HX5t(
s

~n1s1n2s!2t(
s

~c1s
† c2s1c2s

† c1s!

2l/A2(
s

~n1s2n2s!X1
M

2
Ẋ21

M

2
v0
2X2

1U~n1↑n1↓1n2↑n2↓!, ~2!

HY5
M

2 F Ẏ2
lṅ

A2Mv0
2G 21M

2
v0
2FY2

ln

A2Mv0
2G 22 l2n2

4Mv0
2 ,

~3!

where

X5
u12u2

A2
5

a†1a

A2Mv0 /\
, ~4!

Y5
u11u2

A2
5

b†1b

A2Mv0 /\
1

ln

A2Mv0
2
, ~5!

anda(†) andb(†) denote the annihilation~creation! operators
of the quantized lattice fluctuations with momentumq5p
andq50, respectively. Since inHY the phonons couple only
to the total chargen5( isnis of the system,HY can be di-
agonalized exactly since it represents simply a shifted os
lator, corresponding to the two diatomic molecules of o
system having their equilibrium positions shifted by equ
amountsu05(ln)/2Mv0

2. HX on the contrary contains th
full dynamics of the system and has to be diagonalized
merically in terms of a judiciously chosen set of basis sta
~see Ref. 9! such as

u l X ,l Y&5 (
NX ,NY

`
1

A2
c1,s
† ~a l X ,NX

1 1a l X ,NX
2 !uNX&b l Y ,NY

uNY&

1 (
NX ,NY

`
1

A2
1

A2
c2,s
† ~a l X ,NX

1 2a l X ,NX
2 !

3uNX&b l Y ,NY
uNY& ~6!

for the one-electron two-site problem.uNX,Y& denote the
eigenstates of the oscillator part ofHX,Y for l50. The co-
efficientsb l Y ,NY

are known analytically from the expansio
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14 874 55E. V. L. de MELLO AND J. RANNINGER
of a shifted oscillator state in terms of the excited states
the unshifted one. For l Y50 we have b0,NY

5exp@2(a2/2)#aNY/ANY!. The coefficientsa l X ,l Y
1,2 are deter-

mined by diagonalizing numericallyHX within a truncated
Hilbert space of states with up to 100 phonon states,
0<NX<100. The procedure of separating off in the Ham
tonian a part which can be diagonalized exactly represen
substantial reduction in the numerical work of studying p
larons not only for our two-site model but in general.11

Applying the standard LF approach to this proble
amounts to using a representation in which the molecu
exist in a set of oscillator states: those not containing
electron and being described by the full set of oscilla
states labeled byuF(X)&m anduF(Y)&n , those containing an
electron on one of the two sites and being described
shifted oscillator statesuF(X6X0)&m and uF(Y2Y0)&n ,
those containing two electrons on one of the two sites
being described byuF(X62X0)&m and uF(Y22Y0)&n , and
finally those containing one electron on each site and be
described byuF(X)&m and uF(Y22Y0)&n . The shifts in
equilibrium positions for the two oscillators are given b
X05Y05ln/A2Mv0

2 and the shifted oscillator states are d
fined by

uF~X2X0!&m5
~a†2a!m

Am!
exp~a@a†2a# !uF~X!&0

5
~a†2a!m

Am! (
l

a l

Al !
exp~2a2/2!uF~X!& l .

~7!

In such a representation the HamiltonianHX becomes

HX5t(
s

~n1s1n2s!2t(
s

$c1s
† exp~a@a†2a# !c2s1H.c.%

2«pn2~2«p2U !(
i
ni↑ni↓1\v0~a

†a1 1
2 ! , ~8!

in which the intricate dynamics of the polaron problem
contained in the modified hopping term@the second term in
Eq. ~8!# showing a concomitant transfer of charge and def
mation. The standard LF approach to this problem is the
consider, to within a first approximation, that the deform
tion of the molecules follows instantaneously the motion
the electrons, that is to say, without any emission or abs
tion of phonons during the process which transfers an e
tron from one site to the other. For our two-site polar
model this implies states of the form

uLF&mn
6 5

1

A2
@c1s

† uF~X2X0!&m6c2s
† uF~X1X0!&m]

3uF~Y2Y0!&n , ~9!

which amounts to disentangling the correlated hopping te
in the form
f
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c1s
† exp~a@a†2a# !c2s⇒c1s

† c2s^exp~a@a†2a# !&Hph

5tLF* c1s
† c2s . ~10!

This way one obtains an effective Hamiltonian to start w
and subsequently treats the remainder of the full Hamilton
in a perturbative way corresponding to an expansion in te
of 1/l.12 The average in Eq.~10! is taken over the free-
phonon HamiltonianHph, given by the last term in Eq.~8!
and which leads totLF* 5texp(22a2). For a many-polaron
problem, polaronic states may become unstable with res
to bipolaron formation provided the Coulomb repulsionU is
overcome. This then leads to states of the fo
ci↑
† ci↓

† uF(X62X0)&muF(Y62Y0)&n . Upon eliminating
single-polaron states in the Hamiltonian, Eq.~1!, one
derives13 an effective Hamiltonian describing bipolaron
hopping with a hopping integraltLF** 5t2/(2«p)exp(24a2)
for U50.

III. INTERSITE CHARGE TRANSFER
AND MULTIPLE HOPPING PROCESSES

It has remained a question of dispute as how good the
approach is and whether in the extreme polaronic limit
LF approximation, i.e., the substitution described by E
~10!, becomes exact. If this is not the case, then a pertu
tion theory in terms of 1/l cannot be applied to the polaro
problem. It has for a long time been taken as granted that
problem of a single polaron in an infinite lattice of finit
dimension is described by polaron band states havin
k-dependent dispersion identical to that of the bare elec
but with a reduced bandwidth 2zt* , where z denotes the
coordination number. There are now indications from ex
diagonalization studies of finite clusters14 that this is not cor-
rect and that thek dependence of the dispersion differs si
nificantly from that of the bare electrons. From exact diag
nalization studies9,10 of the two-site polaron problem we
know that over a large regime of parametersa andg the LF
approximation gives reliable results as far as the energie
the low-lying excitations are concerned. Nevertheless, th
can be serious discrepancies between the LF approach
the exact results when considering the eigenstates of the
laron problem. Let us illustrate theses discrepancies in s
physical quantities as~i! the kinetic energy of the electrons
~ii ! the occupation number of electrons as a function of wa
vector,~iii ! the wave vector dependence of the spectral fu
tion measurable by angle-resolved photoemission exp
ments,~iv! the importance of renormalization of the phono
frequencies and of the electron hopping integral, and~v! the
retardation between the dynamics of the charge carriers
of the lattice deformation which accompanies them.

Let us start by considering the static correlation functi
teff/2t52Ekin/2t[^c1s

† c2s& which describes the kinetic en
ergy in units of 2t and which in the extreme polaronic L
limit @Eq. ~10!# becomestLF* /t for single-polaron hopping
and tLF*

2/2«pt if it is bipolarons which hop. It is for this rea
son that sometimes this correlation function is associa
with some effective hopping integralteff/2t which also in the
limit a⇒0 is physically meaningful since it tends to th
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55 14 875DYNAMICAL PROPERTIES OF SMALL POLARONS
free-electron value equal to12. Apart from these extreme lim
its, as we shall see below, the interpretation of this corre
tion function in terms of an effective hopping integral has
be modified. Evaluating this correlation function for the tw
site polaron problem by exact diagonalization of the Ham
tonian, Eq.~1!, we notice that, as a function ofa andg, the
exact result forEkin/2t in general strongly deviates from th
extreme polaronic LF limiting behavior. We hence cann
expect that the LF approximation is applicable even in c
junction with perturbative corrections in terms of 1/l.

In Fig. 1~a! we plot teff/2t as a function ofa for different
adiabaticity parametersg. At a first glance we get the im
pression that upon going towards the extreme antiadiab
limit i.e., g→0, and for a fixed value ofa we approach the
extreme polaronic LF behavior. Yet as can be seen from
1~b! and contrary to a well-established belief on this matt
the LF result is approached slower and slower for a fix
g!1 asa gets larger and larger. These discrepancies w
the LF results are not only quantitative but are qualitative
nature as theg dependence ofteff/2t shows. The reason fo
this qualitatively different behavior lies in the LF approa
itself which considers the electrons to be in localized sta
of the form given by Eq.~9! in which practically the entire
charge of the electron and entire deformation of the m
ecules remains restricted to the molecular site
which the electron sits. This leads toteff /t5tLF* /t

FIG. 1. teff/2t52Ekin/2t5^c1s
† c2s& for a single electron as a

function ofa for different adiabaticity parametersg for the two-site
polaron problem~a!. Comparison ofteff /t evaluated by exact diago
nalization and its approximative value given by the LF approach
a function ofg for several values ofa ~b!.
-

-

t
-

tic

g.
r,
d
h
n

s

l-
n

50^F(X2X0)uF(X1X0)&0 at zero temperature which no
ticeably differs from

teff /t50
1^C~X!uC~X!&0

2 , ~11!

where uC(X)&m
6 denote the exact eigenstates which repla

uF(X6X0)&m in the expressions for the LF-approximate
eigenstates given by Eq.~9!. As can be seen from Fig. 2 th
exact eigenfunctionsCm

6(X), corresponding to the exac
eigenstatesuC(X)&m

6 , differ significantly from the LF-
approximated eigenfunctionsFm

6(X) which for the ground
state become

F0
6~X!5SMv0

\p D 1/4exp@2~X6X0!
2~Mv0 /\!#. ~12!

In contrast toF0
6(X) the exact eigenfunctionsC0

6(X) show
a substantial deformation of the molecule adjacent to the
where the electron actually sits. This is borne out in t
smaller of the two peaks ofC0

2(X) for negative values of
j[XAMv0 /\.2X0AMv0 /\. It is the presence of this
second peak which gives rise to a substantial increase in
value of teff /t over the LF-approximatedtLF* /t. As the cou-
pling strength increases the value ofX0 increases roughly
linearly with a. This leads to a separation of the two ma
peaks ofC0

1(X) andC0
2(X), respectively, which results in

an exponentially small overlap of them. On the contrary
overlap of the main peak ofC0

1(X) with the secondary peak
of C0

2(X) is of order unity since the weight of the seconda
peak depends only weakly on the value ofa. Since this
second contribution toteff /t always remains much large
than the first one, we can thus never hope to recuperate
LF result tLF* /t for whatever fixed value ofg,1.

The behavior of the oscillator wave function expresse
dynamical delocalization of the polaronic state which h
been realized a long time ago and for which variational c
culations have given rather satisfactory results for the gro
state ~see, for instance, Ref. 3!. From the above study o
teff/2t and of the oscillator wave functionC0

6(X) it becomes
clear that in general effects of dynamical delocalization
the electron cannot be obtained by perturbative expansion
terms of 1/l around the LF-approximated oscillator wav
function, even in the extreme antiadiabatic limitg!1. Our
findings suggest that it is energetically favorable for the p

s

FIG. 2. The exact oscillator wave functionC0
1(j) with

j5XAMv0 /\ for a single electron in the two-site polaron syste
for different values ofa.
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14 876 55E. V. L. de MELLO AND J. RANNINGER
laron to be partially delocalized and to transfer its charge
multiple hopping processes because it is that which gives
to the monotonically increasing behavior ofteff /t as a func-
tion of g. These multiple hopping processes play, as we s
see in Sec. V, an important role in the correlated-charg
deformation dynamics of the polaron problem.

As concernsteff /t for the two-electron two-site system w
notice from Fig. 3~a! a behavior similar to that for the one
electron problem. However, as can be seen from Fig. 3~b!, in
contrast to the one-electron problem, for two electrons it v
ies linearly withg which is an indication that it is bipolaron
rather than polarons which hop. Asg increases,teff /t tends
towards a constant equal to12 which is indicative of uncorre-
lated hopping of the two electrons in the system. There
significant difference in the slope of this correlation functi
calculated exactly and of that determined by the LF
proach. Again, for reasonable parameters where small b
larons are stable~such asa51.2 andg;1) we find that the
exactly calculated correlaton function is orders of magnitu
larger than its LF expression for the same parameters.

In concluding this section we want to point out that a
though polarons as well as bipolarons exist over a large
gime of parametersa andg, their description in terms of the
standard LF approach is generally invalid not only in t
physically interesting regime~which lies outside the extrem
strong-coupling antiadiabatic limitg!1), but particularly in
that limit, for which it largely overestimates the degree

FIG. 3. teff /t for two electrons as a function ofa for different
adiabaticity parametersg for the two-site polaron problem~a!.
Comparison ofteff /t evaluated by exact diagonalization with i
approximated value given by the LF approach as a function ofg for
different values ofa ~b!.
y
se

ll
–

r-

a

-
o-

e

e-

f

self-trapping. The failure of calculatingteff/2t qualitatively
correctly within the LF approach was already recognized
Fehskeet al.15 who attributed it to the zero-phonon approx
mation, inherent in the substitution, Eq.~10!. They showed14

that the distribution of the weights of theN-phonon state in
the ground state shifts its maximum to higher values ofN
with increasing values of«p /t52a2g. For a fixed value of
a the maximum of this distribution shifts to higher an
higher values ofN asg decreases, thus rendering the ze
phonon approximation less and less justified. In order to
sualize this behavior we plot this distributionP(n)
5(NX50

N (ua0NX
1 u21ua0NX

2 u2)ub0N2NX
u2 as a function ofN for

a set of values ofa @Fig. 4~a!# and ofg @Fig. 4~b!#. From
Fig. 4~b! we can see from a comparison of the L
approximated distribution with the exact one for a particu
choice ofa51.2 how the LF aproach overestimates the se
trapping, with a maximum inP(N) occurring at a signifi-
cantly higher value ofN than is the case in the exactly ca
culatedP(N).

The findings of this section moreover suggest that
effect of dynamical delocalization of the charge carriers
polaronic systems leads to a strengthening the phase co
ence of polaronic states. If this is so, then we expect that
a given set of parametersa andg, states described by the L

FIG. 4. ~a! The phonon number distributionP(N) for a given
value ofa51.2 and for various values ofg. Notice that asg de-
creases, the distribution function tends to that of localized polaro
practically indistinguishable from that ofg50.01. ~b! The phonon
number distribution for a given value ofg51.6 and for various
values ofa. Notice the in general significant difference between t
LF approximated distribution function and the exact results, illu
trated here fora51.2.
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55 14 877DYNAMICAL PROPERTIES OF SMALL POLARONS
approach become unstable, i.e., have their spatial phase
herence destroyed as the temperature increases, while
exact states will maintain this phase coherence up to m
higher temperatures. The key to this question lies in the w
vector dependence of the one-particle spectral func
which will be discussed in the next section and of the oc
pation numberns(k)5^cks

† cks& of the electronic charge car
riers. Evaluatingns(k) for the two lowest eigenstates withi
the LF approach, that is to say, with respect to the two eig
states given in Eq. ~9! with m5n50, we obtain
ns(k50)15ns(k5p)25 1

2@11exp(2a2)# andns(k5p)2

5ns(k50)15 1
2@12exp(2a2)#, respectively. This inversion

of the occupation numbers between the ground state and
first exited state leads to the result that at low temperatu
~larger than the difference in energy of the two lowest lev
but small compared to the phonon frequenyv0) n(k)5

1
2,

independent of the wave vectork and thus identical to the
result for localized polarons, i.e., fort50. Evaluating
ns(k50,p)6 exactly we see from Fig. 5 that the exact res
differs from that of the LF approach qualitatively wit
ns(k50)6 not only being larger thanns(k5p)6 for the
ground state but also for the first excited state, provid
a.acr(g) with acr(g) increasing monotonically asg de-
creases.acr(g) is determined by that value ofa for which
teff /t in Fig. 1~b! tends to the saturation value12, given by the
free-electron limit, for a given value ofg. It is this fact
which gives the polaron a stronger dynamical coherence
what we would expect on the basis of the LF approach
which shows up in the temperature variation of the effect
polaron hopping integralteff , illustrated in Fig. 6. We notice
that in the weak-coupling regime (a!1), where the elec-
trons behave as quasifree charge carriers,teff decreases with
increasing temperature. This is precisely what we expec
the phase coherence of the electron is destroyed by the
fluctuations. On the contrary, in the polaronic regim
(a>1) we notice an initial small increase ofteff with in-
creasing temperature~corresponding to a decrease in the
netic energy of the electrons!, which suggests that the dy
namical coherence of the polaron increases with increa
temperature. This holds true for temperatures up to so
characteristic temperature, above which this coherenc
definitely destroyed resulting in a decrease ofteff with in-
creasing temperature. This once more strongly contrasts
the result obtained within a LF approach which tre

FIG. 5. The wave vector dependence of the polaron occupa
numberns

pol(k)6 for the two lowest-lying states. For comparison w
also plot the result for the LF-approximated states given in Eq.~9!.
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the polarons in terms of band states and which con
quently leads to the well-known reduction oftLF*
5exp@22a2coth(bv0/2)# with increasing temperature~see
Fig. 6!.

These features are of course quite general and will rem
when, instead of studying the two-site polaron problem, o
deals with the polaron problem in an infinite lattice of fini
dimension. There the LF approach is in fact known to g
rise to results which contradict our findings for the two-s
polaron problem such as the dependence of the occupa
number on the wave vector which, apart from a small step
the Fermi vector, is a flat function throughout the Brillou
zone for zero temperature.16 For any realistic finite tempera
ture, which clearly would be larger than the difference
energy of the two lowest-lying eigenstates of the Ham
tonian, Eq.~1! @i.e., .2texp(22a2)#, the LF approach thus
would lead one to expectns(k) to be equal to

1
2, independent

of k, and not to show the slightest anomaly at the Fer
wave vector. Furthermore, as concerns the temperature v
tion of teff discussed above for the two-site polaron proble
one expects also for an infinite lattice a mobility which i
creases with increasing temperature. The opposite beha
is found in the classical works on that issue and being ba
on the LF 1/l perturbative approach.12,17

An important feature in polaron physics is the crosso
from small polarons in the antiadiabatic strong-coupli
limit to large polarons in the adiabatic strong-coupling lim
This crossover has been studied in great detail and can
seen most clearly ifteff is plotted as a function of
«p /t52a2v0 /t ~Ref. 14! rather than as here as a function
a. It turns out that the crossover is rather abrupt in the ad
batic strong-coupling limit and becomes more spread
when going to the antiadiabatic limit.

In the following two sections we shall discuss finer deta
of polaron dynamics which should show up in the spec
properties and the correlated dynamics of the charge car
and of the molecular deformations which accompany the

IV. ITINERANT VERSUS LOCALIZED POLARONS

One of the key questions in the physics of small polaro
is how to discern itinerant from localized polarons. In pri
ciple the answer to this question should be contained in
one-particle density of states, which can be measured

n FIG. 6. teff /t ~normalized to its zero-temperature value! as a
function of temperature~in units of v0) for fixed g51.1 and for
different values ofa and compared with the LF approach results
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photoemission experiments. Considering this problem wit
the LF approximation, the polarons are described by b
states which are characterized by the total momen
k5k1q, wherek denotes the momentum of the electron a
q that of the deformation which accompanies it. As an illu
trative example for the one-electron two-site polaron pr
lem this implies that the LF ground stateuLF&00

1 [uLF&k50,
given by Eq.~9!, can be written as

uLF&k505
1

A2
@c0

†uF~X!&01cp
† uF~X!&p] uF~Y2Y0!&0 ,

~13!

where

c~0,p!s
† 5

1

A2
~c1s

† 6c2s
† !,

uF~X!&0,p5
1

A2
@ uF~X2X0!&06uF~X1X0!&0]. ~14!

Hence the scattering cross sections

ANs1 ,s2 , . . . ,sN
~2s! ~k,v!

5Im
1

pE dtexp~ ivt!N^cks
† ~t!cks~0!&Nu~t!,

ANs1 ,s2 , . . . ,sN
~1s! ~k,v!

5Im
1

pE dtexp~ ivt!N^cks~t!cks
† ~0!&Nu~t! ~15!

measure the intensity of emitted and absorbed electrons
momentumk and spins in a polaronic state containingN
electrons with spinss1 ,s2 , . . . ,sN in the ground state.

Let us first consider the case of an isolated polaronic c
ter with one and, respectively, two electrons present.
shall from now on consider only the caseU50. The two
cross sections, given in Eq.~15!, are then exactly determine
by

A0,1↑
~1↑,2↑ !~v!5(

l50

`

exp~2a2!
a2l

l !
d~v2«p7 lv0!,

A1↑,2↑↓
~1↓,2↓ !~v!5(

l50

`

exp~2a2!
a2l

l !
d~v23«p7 lv0!, ~16!

which gives the well-known Poisson distribution of the ph
non modes locked together in the construction of the coh
ent Glauber states which define localized polarons. We s
now show that the overall features of these spectral funct
are preserved when considering a system of itinerant
larons. For that purpose let us consider the spectral func
for electron emission from a one-polaron ground state in
two-site polaron problem within the LF approach. We th
obtain
n
d
m

-
-

ith

n-
e

-
r-
all
s
o-
n
e

A1↑
~2↑ !~k50,v!05 (

leven

`

(
l 8

`

exp~22a2!
a2~ l1 l 8!

l ! l 8!

3d„v2«p2~ l1 l 8!v0…,

A1↑
~2↑ !~k5p,v!05(

lodd

`

(
l 8

`

exp~22a2!
a2~ l1 l 8!

l ! l 8!

3d„v2«p2~ l1 l 8!v0…, ~17!

if the system is in the ground stat
and A1↑

(2↑)(k50,v)1@5A1↑
(2↑)(k5p,v)0# and A1↑

(2↑)(k
5p,v)1@5A1↑

(2↑)(k50,v)0# if it is in the first excited state.
This shows that the bulk of the spectrum of itinerant p
larons~i.e., tÞ0) is identical to that of localized ones exce
for the lowest-energy part of the spectrum, i.e., for sm
values ofl . For that part of the spectrum the spectral weig
for k50 in the ground state equals.exp2@2a2#, while it is
identically zero fork5p. The opposite is true for the firs
excited state. These are precisely the features expecte
quasiparticles whose weights for their coherent part
strongly reduced. The exact results of the spectral functi
bare this out and in Fig. 7~a! we presentA1↑

(2↑)(k50,v)0 for
values ofg anda which

FIG. 7. The scattering cross sectionA1↑
(2↑)(k50,v)0 for g51.1

anda52.2 and forkBT50.1v0 ~a!. Comparison of the scattering
cross sectionsA1↑

(2↑)(k50,v)0 andA1↑
(2↑)(k5p,v)0 with each other

as well as with that for localized polarons, i.e.,A1↑
(2↑)(v)0 for

kBT50.1v0 and T50 ~b!. These scattering cross sections ha
been obtained by broadening the set ofd functions by Gaussians o
width Dv50.1v0.
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FIG. 8. The scattering cross sectionA2↑↓
(2↑)(k50,v)0 for photo-

emission from a two-electron two-site system as a function of
creasing electron-phonon couplinga. These scattering cross se
tions have been obtained by broadening the set ofd functions by
Gaussians of widthDv50.1v0.
-
FIG. 9. The scattering cross sectionA1↑

(1↑)(k50,v)0 for inverse
photoemission from a one-electron two-site system as a functio
increasing electron phonon couplinga. The scattering cross sectio
has been obtained by broadening the set ofd functions by Gauss-
ians of widthDv50.1v0.
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FIG. 10. The evolution of the density of statesr1(v) for the
one-electron two-site polaron problem as the electron-phonon
pling a increases and for a fixed adiabaticity parameterg51.1. The
densities of states have been obtained by broadening the setd
functions by Gaussians of widthDv50.1v0.
u-

f

FIG. 11. The evolution of the density of statesr2(v) for the
two-electron two-site polaron problem as the electron-phonon c
pling a increases and for a fixed adiabaticity parameterg51.1. The
densities of states have been obtained by broadening the setd
functions by Gaussians of widthDv50.1v0.
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55 14 881DYNAMICAL PROPERTIES OF SMALL POLARONS
characterize well-defined polaronic states. In order to co
pare A1↑

(2↑)(k50,v) with A1↑
(2↑)(v) for localized polarons

~i.e., t50) as well as withA1↑
(2↑)(k5p,v) we do this for

finite rather than zero temperature since for all intents
purposes the level splitting between the first two lowe
energy levels~corresponding to the bandwidth 2t* of the
coherent polaron motion! is extremely small, since unde
normal conditions we are dealing with temperaturesT such
that 2t*!kBT!v0. Under those circumstances the LF a
proach yields scattering cross sectionsA1↑

(2↑)(k,v) which be-
come wave vector independent and thus undistinguish
from purely localized polarons. The exactly calculated sp
tral functions become, up to ak-dependent scaling factor
practically identical withA(v) for the entire frequency re
gime except for the low-frequency part, where, however,
spectral weight is extremely small@see Fig. 7~b!#. These
findings suggest that small polarons might never exist
form of coherent Bloch-like states, a feature which is su
ported by the dynamics of the polaron motion, which will
discussed in Sec. V.

One of the prime problems in the physics of the man
polaron problem is the question of how to discern a sys
of essentially noninteracting polarons from one in whi
they sense a strong attraction between them and which
mately leads to the formation of tightly bound pairs~bipo-
larons!. In principle this question can be resolved by pho
electron spectroscopy which measures the one-par
density of states for polarons. In fact what is required
order to discriminate between a many-body ground s
containing essentially unpaired from one containing ess
tially paired polarons is both photoemission and inverse p
toemission spectroscopy. Testing the system with solely p
toemisson we cannot decide about the nature of the m
body ground state. This can be illustrated on the basis of
two-site polaron system containing one and, respectiv
two electrons. The scattering cross section looks essent
similar for the two cases. In Fig. 8 we plot for differe
values of coupling strengtha the photoemission spectrum
A2↑↓
(2↑)(k50,v) where an electron is emitted out of a tw

electron two-site polaron system. This spectrum has the s
form asA1↑

(2↑)(k50,v) @see Fig. 7~a!# which corresponds to
the situation of an electron emitted out of a one-elect
two-site system. On the contrary, the inverse photoemis
spectrum can clearly distinguish if the final state correspo
to a state with essentially uncoupled polarons or pola
pairs. Looking at this spectral function for the one-electr
two-site system, i.e.,A1↑

(1↓)(k50,v), we see from Fig. 9 that
as we increase the coupling strength, a two-peak struc
emerges. The energy gap which separates this two-p
structure amounts to 2«p , which represents precisely th
binding energy between two polarons in the strong-coup
limit. The low-energy peak of this spectrum corresponds t
final state given by a biporaron in its bonding singlet sta
having energy.4«p . The high-energy peak arises from
bipolaronic state in its antibonding singlet and, respective
triplet state having an energy.2«p .

18 The difference in
energy between these two contributions in the spectral fu
tion for inverse photoemission is hence just the binding
ergy of a bipolaron and thus can serve as a signature f
bipolaronic many polaron ground state.
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It is even, moreover, illustrative to study the one-partic
density of states for those situations. In Fig. 10 we plot
density of states per spin for the one-electron two-site sys
at zero temperature,

r1~v!5 (
k50,p

@A1↑
~2↑ !~k,v!01A1↑

~1↑ !~k,v!0#, ~18!

as a function of coupling strengtha and for a given fixed
value of adiabaticity parameterg51.1. For small values of
a the density of states is characterized by two peaks cent
around energiesv.0 andv.2t, which in essence repre
sents quasifree electrons in the bonding and, respectiv
antibonding states for this small system. Asa increases these
two peaks spread and eventually evolve into two we
separated peaks. This density of states is similar to that o
Hubbard model in the dilute limit~i.e., far away from half
filling ! which shows indications for the presence of an up
and a lower Hubbard band, separated by the HubbardU
repulsion energy, but without any clear gap between th
two bands. Similarly to the Hubbard problem, the two pea
in the polaron problem are separated by the energy of att
tion between two polarons, which in case of strong coupl
@such as illustrated in Fig. 9~d! for a52.2# amounts to
2«p .

A similar density of states per spin is obtained for t
two-electron two-site system,

r2~v!5 (
k50,p

@A2↑↓
~2↑ !~k,v!01A2↑↓

~1↑ !~k,v!0#, ~19!

which we illustrate in Fig. 11 as a function of couplin
strengtha and for a given fixed value of adiabaticity param
eterg51.1. We again see a similar evolution of the dens
of states as we increasea but now the separation in energy
equal to 4«p , which can be clearly distinguished from th
case representative for uncoupled polarons~the one-electron
two-site problem considered above!. A clear energy gap
given by 2«p now appears separating the low- and hig
frequency peak structures. Integratingr2(v) up to some
valuev5«F such that it becomes equal to 2~which corre-
sponds to the half-filled band case and to two electrons in
system! we find that«F lies precisely in the middle of the
gap of the density of states. This again is reminiscent of
problem of strongly correlated electrons for the half-fille
band Hubbard model. These features examined here for
two-site polaron system are expected to hold true gener
for any interacting many polaron system on a lattice.

V. CORRELATED CHARGE-DEFORMATION DYNAMICS

The polaron problem presents a highly nonlinear dyna
cal system in which the charge and deformation fluctuati
are intricately coupled together. This leads to a dynamics
the molecular deformations being driven by the dynamics
the charge carriers in the strong-coupling antiadiabatic
gime (a@1,g!1). On the contrary it is the dynamics of th
molecular deformations which drives the dynamics of t
charge carriers in the weak-coupling adiabatic regi
(a!1,g@1). In general this leads to a dynamics for th
charge and of the molecular deformations which is co
posed of a common slow oscillation and fast ones sup
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FIG. 12. ~a! xnn and xxx(t)/^X
2& for a51.2 andg50.1 for the one-electron two-site polaron system.~b! xnn and xxx(t)/^X

2& for
a51.2 andtg51.1 for the one-electron two-site polaron system.~c! xnn and xxx(t)/^X

2& for a51.2 andg51.6 for the one-electron
two-site polaron system.~d! xnn andxxx(t)/^X

2& for a51.2 andg52.0 for the one-electron two-site polaron system.
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posed on it. The fast oscillations for the charge dynam
have a frequencyt̃ of the order oft, while those for the
deformation dynamics have a frequencyṽ0 which is of the
order ofv0.

In this section we shall study the evolution of those d
namical properties of small polarons when we go from
strong-coupling antiadiabatic regime to the strong-coupl
adiabatic one, with a special emphasis on the behavior in
crossover regime. In order to illustrate this behavior
evaluate the time-dependent correlation functions for
charge redistribution and molecular deformations:

xnn~t!5^@n1s~t!2n2s~t!#@n1s~0!2n2s~0!#&,

xxx~t!5^X~t!X~0!&. ~20!

In Fig. 12 we plot these correlation functions~normalized
with respect to theirt50 values! as a function of timet in
units of v0 for different values of theg and fixeda. We
notice that the charge dynamics qualitatively tracks globa
the behavior expected on the basis of the LF approxima
in the antiadiabatic limit@i.e., forg50.1, Fig. 12~a!# but with
superposed small amplitude fast charge oscillations wit
frequency t̃ which is large compared to the unrenormaliz
electron hopping integralt. The dynamics of the molecula
deformation follows in a coherent fashion that of the cha
and exhibits superposed molecular vibrations with a f
quency ṽ0.v0. As we increaseg @i.e., for g51.1, Fig.
12~b!#, the amplitude of the fast charge oscillations becom
s
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he
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s

increasingly important and their oscillation frequencyt̃ de-
creases. The opposite behavior is obtained for the molec

deformation oscillations, whose frequencyṽ0 of the fast os-
cillatory behavior increases while the corresponding am
tude diminishes. The system is then no longer described
the LF approach~as we can see from the comparison ma
for this case! and the charge dynamics is now controlled
multiple hopping processes with concomitantly reduced a
plitude fluctuations of the molecular deformations. Upon fu
ther increasingg we arrive at a situation where the freque
cies and amplitudes of those two dynamical variabl
characterizing the charge and deformation, become com
rable to each other, i.e., for 2t̃ .ṽ0, and we enter the cross
over regime@i.e., for g51.6, Fig. 12~c!#. This regime is
characterized by a temporarily alternating behavior betw
essentially self-trapped antiadiabatic small polarons~mani-
fest in a substantial reduction of the amplitude fluctuations
the charge dynamics! and a behavior reminiscent of itineran
adiabatic polarons as seen upon a further increase ofg @i.e.,
g52.0, Fig. 12~d!#. Such fluctuations in the amplitudes o
the charge occur over a time scale which is large compa
to the inverse hopping ratet̃ and is accompanied by phas
slips in the fast oscillatory behavior of the charge as well
the deformation fluctuations.

The evolution of the correlation functions for the char
and deformation fluctuations of the two-electron two-s
problem as a function of the adiabaticity parameterg and
fixed coupling constanta follows a similar behavior to tha
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FIG. 13. ~a! xnn and xxx(t)/^X
2& for a50.6 andg50.2 for the two-electron two-site polaron system.~b! xnn and xxx(t)/^X

2& for
a50.6 andg50.8 for the two-electron two-site polaron system.~c! xnn andxxx(t)/^X

2& for a50.6 andg51.3 for the two-electron two-site
polaron system.~d! xnn andxxx(t)/^X

2& for a50.6 andg51.6 for the two-electron two-site polaron system.
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of the one-electron two-site problem, as shown in Fig.
Again we can identify a crossover between small bipolar
and essentially uncorrelated two electrons which occurs
g.1.3 for the particular choicea50.6

This crossover between self-trapped polarons, resp
tively, bipolarons, and quasifree electrons in the phase sp
of a andg corresponds to the characteristic value ofg where
the kinetic energy of the electronsEkin522t^c1,↑

† c2,↑& ap-
proaches its maximal value of the free-electron lim
while the potential energy of the electrons,Epot

522l^(n1,↑1n1,↓)u1&, tends to its minimum value
~21/A2)lY0^(n1,↑1n1,↓)&, obtained in the limitg⇒`. This
can be seen from the behavior ofEkin illustrated in Fig. 1~b!
and ofEpot depicted in Fig. 14 fora51.2 andg.1.6 for the
one-electron two-site problem. The crossover between s
trapped small polarons and quasifree electrons thus app
to be driven by a competition between the kinetic and pot
tial energy of the electrons, the first one favoring a deloc
ization of them while the second one inciting them to loc
ize on the molecular sites. In an infinite solid-state syst
such a scenario would suggest a quantum phase trans
between a metal and a polaronic insulator as proposed a
time ago by Landau20 and Froehlich.20 For systems with low
carrier concentrations such localized polarons have b
verified experimentally in metal halide where optically e
cited excitons get localized.21 There is at present no exa
theorem as to whether pure electron-phonon systems
show such a polaronic insulator. The present exact pro
.
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against that22 hinge on suppositions of the phonon spec
which may not be realistic for real materials.

We finally should like to point out that no significan
changes in the phonon distribution of the displaced osci
tors are observed when going through this crossover reg
This can be verified from the plot in Fig. 4~b! of P(N) for a
fixed a51.2 and upon varyingg.

In Table I we summarize our findings on the charg

FIG. 14. Comparison of the electronic kinetic and potential e
ergy Epot522l^(n1,↑1n1,↓)u1& as a function ofg for a fixed
a51.2 for the one-electron two-site problem. The crossover reg
between self-trapped polarons and quasifree electrons occurs
the kinetic energy tends to its maximal value while that of t
potential energy tends to its minimal value.
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TABLE I. The variation of the renormalized frequency of the deformation oscillationsṽ0 and of the

renomalized hopping ratet̃ as a function of the adiabaticity parameterg for fixed coupling constant
a51.2. Notice that as we approach the crossover regime, the time scales of these two oscillations

equal, i.e.,t̃ /ṽ0→1. We also compare the frequencyt* of the slow polaronic motion with the splitting of th
two lowest eigenvaluesDE/2t and teff ~the electron kinetic energy!. Notice that the spectral weightZ of the
lowest-frequency pole of the electron Green’s function scales fairly well with the renormalization fact
the polaron bandwidtht* /t.

g5t/v0 t̃ /t ṽ0 /v0 t̃ /ṽ0
teff /t DE/2t t* /t Z

0.1 - 1.03 - 1.0031021 5.6531022 5.6131022 6.1131022

0.3 5.66 1.08 1.57 1.9031021 5.7331022 5.6631022 7.2531022

0.5 3.05 1.14 1.34 2.8231021 5.9531022 5.9831022 8.5931022

1.1 1.56 1.42 1.21 5.6431021 6.9831022 6.7931022 1.3431021

1.3 1.41 1.52 1.07 6.2031021 7.6331022 6.9031022 1.4931021

1.6 1.25 - - 7.1231021 7.8431022 7.8531022 1.7031021

1.7 1.28 - - 7.3831021 7.9731022 8.0331022 1.7531021

2.0 1.19 - - 8.0031021 8.2631022 8.2631022 1.9031021
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deformation dynamics of a polaronic system. We comp
for that purpose the renormalized vibrational frequencyṽ0,
the renormalized electron hopping integralt̃ , the kinetic en-
ergy of the electronsteff /t, and the physical charge transf
rate t* for different values of the adiabaticity parameterg
and for a fixed coupling constanta. In the limit of strong
adiabaticity,t* tends to the LF valuetLF* and follows as a
function ofg the behavior of (E12E0)/2 which denotes the
difference in energy of the two lowest eigenstates. We a
indicate the spectral weightZ of the lowest-energy contribu
tion to the scattering cross section and notice that for
antiadiabatic limit it scales witht* /t. This is an indication
that the low-frequency part of the scattering cross sec
corresponds to coherent states but with a spectral we
which is extremely small. It is presently not clear wheth
such weak coherent features, characteristic of itinerant s
polarons, will persist if one treats the polaron problem o
infinite lattice. Calculations based on infinite dimension23

which show such itinerant behavior do neglect totally t
frequency renormalization of the vibrational motion of t
atoms, which we consider as the prime cause for depha
of the correlated charge-deformation dynamics and u
mately believed to be responsible for the destruction of i
erant polaronic states.

The strong coupling between the charge and the mole
lar deformations thus manifests itself not only in a stro
renormalization of the molecular vibrational frequencyv0

becomingṽ0 but also in a strong renormalization of the i
trinsic hopping integralt renormalized into t̃ . As we go
from the antiadiabatic limit toward the adiabatic one~for
fixed value ofa), we observe a substantial decrease int̃ /t
and a concomitant increase inṽ0. These are effects which
should be observable by spectroscopic measurements su
infrared or Raman scattering for the vibrational modes.

From inspection of Figs. 12 and 13 we notice the siza
dynamical delocalization of the polaron and bipolaron,
spectively, as we approach the crossover regime. In
crossover regime itself this delocalization alternates betw
partly quasistatic delocalization, suggesting almost locali
yet extended polaron states, and dynamical delocaliza
e
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reminiscent of almost free carriers, which, however, rem
dynamically tied to a given molecule for some apprecia
time. To be more specific, for the particular case illustra
in Fig. 12~c!, we find for the period of time when a quas
static polaron is stable a charge distribution given
^n1,s&.0.75 and^n2,s&.0.25. On the other hand, for th
dynamically delocalized polaron we find that the charge d
tribution fluctuates over a characteristic time given byt̃ be-
tween ^n1,s&.1.0, ^n2,s&.0 and̂n1,s&.0.5, ^n2,s&.0.5.
Such temporal fluctuations were initially hypothezised by
a long time ago19 which led to the boson-fermion model fo
intermediate-coupling electron-phonon systems, which m
have some relevance for our understanding of highTc
superconductors.24,25

VI. SUMMARY

The main objective of this work was the study of th
intricate dynamics of the polaron problem involving the d
namical behavior of the charge carriers and that of the m
lecular deformations which surround them. We find that
the antiadiabatic regime for small polarons the molecu
deformations follow in a coherent fashion the redistributi
of the charge, while in the adiabatic regime it is the cha
redistribution which follows the molecular deformations.
the crossover regime between those two limiting cases
find that the dynamical behavior of the polaronic charge c
riers alternates between self-trapped polarons and alm
free-carrier behavior. The time scale over which these diff
ent behaviors are realized is typically an order of magnitu
larger than the intrinsic hopping rate, i.e., of the ord
1032p/t. This crossover regime is characterized by stro
renormalization of the intrinsic hopping integral as well as
the bare phonon frequency, which in this regime beco
equal. Phase slips in the fast oscillatory components of
charge and molecular deformation fluctuations are the re
of this. Such effects are expected to be essential for a pro
description of polaron damping, so far having been trea
only within the LF approach,26 and which is unable to ac
count for the effects described here.
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55 14 885DYNAMICAL PROPERTIES OF SMALL POLARONS
The question of how to distinguish itinerant polarons fro
localized ones was studied here on the basis of the o
particle spectral function and its temperature depende
We showed that at zero temperature the respective spe
functions for localized and itinerant polarons differ fro
each other only very slightly except for the low-frequen
regime of the spectral function, where they show an
creased spectral weight for small wave vectors if the
larons are itinerant. As the temperature increases this di
ence disappears and it is, in principle, no longer possible
spectroscopic means to distiguish between localized and
erant small polarons. This may explain the puzzling res
in the photoemission spectra for certain high-Tc supercon-
ducting cuprates for which a wave-vector-independent sp
tral function was observed in the normal state and con
quently was interpretated as indications for localized cha
carriers.27 The question of a polaronic insulator versus a p
laronic metal has been touched upon here only from
point of view of the single-particle properties. The polar
problem, however, presents a problem of electrons in a
tem with impurity centers with dynamically varying energi
and thus contains features similar to those of the Ander
localization. The relevant quantity to be studied hence is
conductivity. So far a few attempts in this direction ha
been made on the basis of exact diagonalization studie
finite systems28 attempting to determine whether there is
is not a finite Drude component in the optical conductivit

Finally, our exact diagonalization studies on the two-s
e

B

e-
ce.
tral

y
-
o-
er-
by
in-
lts

c-
e-
ge
-
e
n
s-
s
on
he
e
in
r
.
e

molecular Holstein polaron model permitted us to discuss
limitations of the standard LF approach. Our rather un
pected and perhaps widely unrecognized findings are
this approach, which is generally believed to become ex
in the limit of antiadiabaticity and an electron-phonon co
pling going to infinity, actually diverges most from the exa
results precisely in this limit. The reasons for that can
traced back to the zero-phonon approximation inherent in
LF approach, based on the relation Eq.~10! and which, with
increasing coupling strength, is increasingly strong
violated.15

Our analysis of the various spectral functions and the d
sity of states shows that the major part of the spectrum m
be considered as being due to incoherent rather than coh
polaron dynamics, the latter having vanishingly small sp
tral weight of order exp(22a2). This result confirms our ear
lier findings on the many polaron problem for infinit
lattices29 and examinations of the single-polaron problem
infinite dimensions.23
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