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On the basis of the two-site polaron problem, which we solve by exact diagonalization, we analyze the
spectral properties of polaronic systems in view of discerning localized from itinerant polarons and bound
polaron pairs from an ensemble of single polarons. The corresponding experimental techniques for that concern
photoemission and inverse photoemission spectroscopy. The evolution of the density of states as a function of
concentration of charge carriers and strength of the electron-phonon interaction clearly shows the opening up
of a gap between single-polaronic and bipolaronic states, in analogy to the Hubbard problem for strongly
correlated electron systems. In studying the details of the intricately linked dynamics of the charge carriers and
of the molecular deformations which surround them, we find that in general the dynamical delocalization of the
charge carriers helps to strengthen the phase coherence for itinerant polaronic states, except for the crossover
regime between adiabatic and antiadiabatic small polarons. The crossover between these two regimes is
triggered by two characteristic time scales: the renormalized electron hopping rate and the renormalized
vibrational frequency becoming equal. This crossover regime is then characterized by temporarily alternating
self-localization and delocalization of the charge carriers which is accompanied by phase slips in the charge
and molecular deformation oscillations and ultimately leads to a dephasing between these two dynamical
components of the polaron problem. We visualize these features by a study of the temporal evolution of the
charge redistribution and the change in molecular deformations. The spectral and dynamical properties of
polarons discussed here are beyond the applicability of the standard Lang-Firsov approach to the polaron
problem.[S0163-182807)02522-§

[. INTRODUCTION polaron formation, i.e., fogy~1 anda~1. This crossover
regime ina narrows substantially upon going from the an-
Renewed interest in the physics of small polarons in thdiadiabatic [y=t/w,=4a?/(zg)<1] to the adiabatic
last few years has been largely stimulated by the discovery dfy=>1) limit with z denoting the coordination number.
new materials with exceptional properties such as the high- The standard theory of small polarons is based on the
T, cuprates, the nickelates, and the manganites, showing gso-called Lang-Firso¥LF) transformation usually followed
ant magnetoresistance. It is believed that small polarons playy approximations treating the fully localized polaron state
an essential role in these materials. Recently developed ers the starting point of the theory and then introducing the
perimental techniques such as femtosecond optical spectrosepping of the electrons by perturbative meargere is a
copy, extended x-ray-absorption fine struct(EXAFS) and  widespreadhowever erroneolselief that such a scheme is
pulsed neutron scattering, ion-channeling experiments, aneglid in the extreme strong-coupling antiadiabatic limit, i.e.,
high-resolution angle-resolved photoemission experimenty<1l anda>1. It is not surprising that such a theoretical
have been employed to study the properties of polaronic sysreatment is even less able to describe polarons close to the
tems. In spite of considerable theoretical efforts in the lastrossover regime, which represents the physically interesting
few years, the underlying physics of the polaron problem hasind realistic situations.
remained largely unresolved. As concerns the problem of the many-polaron system the
As concerns the problem of a single polaron in an emptyprincipal difficulty is to take into account the overlap of the
lattice with local coupling of the charge to a set of individual lattice deformations surrounding the charge carriers when the
noninteracting local lattice deformationgthe Holstein density of polarons becomes important. It is expected that,
mode) it is known that self-trapping of a charge carrier oc- due to destructive interference of such local deformations,
curs when(i) the gain in localization energy, outweighs the whole concept of polarons breaks down and the lattice
the gain in kinetic energip/2, i.e.,g=2¢,/D=1, D denot- ~ changes its structure, and as a result the effective electron
ing the bare electron bandwidth afid) the relative defor- lattice coupling becomes strongly reduced.
mation of the lattice which surrounds the charge carrier es- It is the purpose of this present work to obtain some in-
sentially remains confined to the immediate vicinity of the sight into the physics of small polarons for realistic values of
charge carrier, i.e., &zEsp/w()?l, wy denoting the bare the relevant parametessand« and in particular close to the
local phonon frequency. crossover regime. Since all known materials containing
A crossover between essentially delocalized quasifresmall polarons consist of highly polarizable small clusters
electrons and self-trapped electrons is known from quanturfTi®*-Ti®" pairs in Tiy,O;, V4*-V4* pairs in NgV,0s),
Monte Carlo simulation'sto occur in a regime of parameters sometimes embedded in a metallic backgro{suth as the
characterized by the two conditiori® and (i) for small  O(4)?> -Cu(1)"-O(4)?>~ dumbbells in cuprate higf; su-
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perconductors containing chains separating the metalizheren;,=c/ c;, denotes the density of charge carriers at
CuO, layerd, it is not only instructive from a pedagogical molecular sitei and having spinr. The intramolecular de-
point of view to study small polaron features on the basis oformations are denoted hy, and u,, respectively. We as-
such small units, but such studies may also apply to trugume a simple form of repulsive intramolecular Coulomb
physically relevant situations. On the basis of a two-site poforces of strengtiJ. The above Hamiltonian, Ed1), has
laron systerr(a system consisting of two adjacent moleculesbeen extensively studied by a number of autfidfavho, by
between which the electrons can hape shall illustrate the means of exact diagonalization, have examined various as-
highly nonlinear physics going on in such a problem. Forpects of the polaron problem. Diagonalization of the above
a>1 andy<1 (the so-called strong-coupling antiadiabatic Hamiltonian can be rendered more efficfemthen decom-
regime or extreme polaron limiit will be shown that the posing it into a term containing the symmetric in-phase lat-
dynamics of the fluctuations of the lattice deformations istice vibrations characterized by a wave veaet0 and an-
driven by the charge fluctuations, while far<1 andy>1  tisymmetric out-of-phase vibrations characterized by a wave
(the so-called weak-coupling adiabatic regjntke inverse vector q=. The Hamiltonian then can be separated into

happens. The crossover regime is characterized by alternatvo independent contributiotd=Hy+H., given by
ing localization and delocalization of the charge carriers as a

function of time. In general the amplitude and the frequency
of the intrinsic lattice vibrations as well as of the intrinsic ~ Hx=t2 (1,4 Nz,) —t> (¢],Cp0+C},C1,)
electron hopping rate are strongly renormalized. Such effects 7 7
may turn out to be vital as concerns a mechanism for the M. M
damping of polaronic charge carriers, a feature which is in- —NV22 (Ngy—ng) X+ ?X2+ Engz
accessible within the usual LF approach. 7

The paper is organized in the foIIo_wing way: In Sec. Il we +U(NyNny; +NyNy)), 2)
shall present the model and its basic physics as well as our
method of an exact diagonalization study. In Sec. Il we - 5 o
discuss the dependence of the kinetic energy of the electron, _ M|, AN An | AN
on the adiabaticity parameterand the coupling strength Y2 V2M w3 V2Mw?2| 4Mog’
and examine the limitations of the LF approach. Section IV 3)
will be devoted to the study of the one-particle spectral func-
tion in view of distinguishing localized from itinerant po- Where
larons and to discern tightly bound polaron pdbipolarong
from simple polarons by such methods as photoemission X u;—u, a'+a @
spectroscopy. In Sec. V we will study the time evolution of = T
the charge redistribution and of the lattice deformation and V2 2Mao /1
discuss the renormalization of the intrinsic lattice vibrational
frequency and of the electron hopping integral in the course u;t+u, b'+b AN

Y= = + ,
of the charge transfer process. 2 2Mwolh J2M w?

anda™ andb(") denote the annihilatiofcreation operators

of the quantized lattice fluctuations with momentuays 7
The smallest system on which polaronic features can b&ndq=0, respectively. Since illy the phonons couple only

studied, as far as the self-trapping, localization-delocalto the total charge=Z;,n;, of the systemHy can be di-

ization crossover, frequency renormalization, and dephasinggonalized exactly since it represents simply a shifted oscil-

of the correlated charge-deformation dynamics is concernedgtor, corresponding to the two diatomic molecules of our

is the so-called two-site polaron system. It consists of twesystem having their equilibrium positions shifted by equal

elastically uncoupled adjacent diatomic molecules with atamountsu®=(\n)/2M w%. Hy on the contrary contains the

oms having mas$/ and an intrinsic bare frequency of in- full dynamics of the system and has to be diagonalized nu-

tramolecular vibrations,. Electrons can hop between those merically in terms of a judiciously chosen set of basis states

two molecules, having a bare hopping ratén the Holstein  (see Ref. §such as

model for such a system, the strength of the coupling con-

stant of the density of charge carriers to the intramolecular *

deformations is denoted by. The model Hamiltonian for |lx,ly)= > _CI’U(C![;’NX'F a,;,Nx)|NX>B|Y,NY|NY)

such a system is then given by NNy V2

2 M ,
+7wo Y-

2
Y

®)

1. MODEL

oo

11
oot -
+NXZNYEE02,0(Q|X,NX @1y Ny

X|Nx)Bi,, nyINy) (6)

)

— T T
H_tE (nlU+n2(r)_tE (Cl(TCZ(T+02(7Cl(T)
o o

M . .
2 2 2/..2 2
_)‘2 (NyoUs+Naelp) + 5 (Ui Up) + 5 wp(Ui+U2)  for the one-electron two-site probleniNyy) denote the
eigenstates of the oscillator part Hfy y for A=0. The co-
+U(Nyng +nyng ), (1) efficients,B,Y'NY are known analytically from the expansion
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of a shifted_ oscillator state in terms of the excited states of cIUexq a[aT—a])czgchUczg<exq afa’™al))y )
the unshifted one. Forly=0 we have Boy, P
= exi —(a?/2)]a™¥/{Ny!. The coefficientsw,’ | are deter-
mined by diagonalizing numericallidy within a truncated
Hilbert space of states with up to 100 phonon states, i.e., ) . o )
0=<N,=100. The procedure of separating off in the Hamil- This way one obtains an effective Hamiltonian to start with
tonian a part which can be diagona”zed exact|y represents @d Subsequently treats the remainder of the full Hamiltonian
substantial reduction in the numerical work of studying po-in & perturbative way corresponding to an expansion in terms
larons not only for our two-site model but in genetal. of 1/\.** The average in Eq(10) is taken over the free-
Applying the standard LF approach to this problemphonon HamiltoniarH,, given by the last term in Eq8)
amounts to using a representation in which the moleculegnd which leads td}-=texp(-24?). For a many-polaron
exist in a set of oscillator states: those not containing anyproblem, polaronic states may become unstable with respect
electron and being described by the full set of oscillatorto bipolaron formation provided the Coulomb repulsldris
states labeled by® (X)), and|®(Y)),, those containing an overcome. This then leads to states of the form
electron on one of the two sites and being described byﬁcmtb(Xi 2Xo0))ml®(Y£2Y()),. Upon eliminating
shifted oscillator state$®(X=Xg))m and [®(Y—=Yo))n, single-polaron states in the Hamiltonian, E(L), one
those containing two electrons on one of the two sites anderives® an effective Hamiltonian describing bipolaronic
being described byd (X=2Xy)), and|®(Y—2Y,)),, and  hopping with a hopping integraf® =t2/(28p)exp(—4a2)
finally those containing one electron on each site and beinfpr U=0.
described by|® (X)), and |®(Y—2Y,)),. The shifts in
equilibrium positions for the two oscillators are given by

Xo=Yo=An/\2M w? and the shifted oscillator states are de- lIIl. INTERSITE CHARGE TRANSFER
AND MULTIPLE HOPPING PROCESSES

=t¥-cl Cop. (10

fined by

It has remained a question of dispute as how good the LF

(at—a)m approach is and whether in the extreme polaronic limit the
|<I>(X—XO)>m=?exp(a[aT—a])|<I>(X)>O LF approximation, i.e., the substitution described by Eq.
m: (10), becomes exact. If this is not the case, then a perturba-

(af—a)m o tion theory in terms of N cannot be applied to the polaron
=——— > —exp—a?2)|B(X)),. problem. It has for a long time been taken as granted that the

ymt T problem of a single polaron in an infinite lattice of finite

@) dimension is described by polaron band states having a
k-dependent dispersion identical to that of the bare electron
but with a reduced bandwidthz#, where z denotes the
coordination number. There are now indications from exact
diagonalization studies of finite clust&tshat this is not cor-

_ + rect and that thé dependence of the dispersion differs sig-
Hx—t%: (nl"+n2")_t§0: {c1,expafa’~al)cy, +H.ch nificantly from that of the bare electrons. From exact diago-
nalization studies*® of the two-site polaron problem we
know that over a large regime of parametarand y the LF
approximation gives reliable results as far as the energies of
the low-lying excitations are concerned. Nevertheless, there
can be serious discrepancies between the LF approach and
the exact results when considering the eigenstates of the po-
laron problem. Let us illustrate theses discrepancies in such

In such a representation the Hamiltonild becomes

—gpn—(zsp—U)Ei‘, nini +hwga’a+ ), (8)

in which the intricate dynamics of the polaron problem is
contained in the modified hopping teffithe second term in
Eq. (8)] showing a concomitant transfer of charge and defor

mation. The standard LF approach to this problem is then t '_hysical quanti'ties a) the kinetic energy of the Qlectrons,
consider, to within a first approximation, that the deforma- ii) the occupation number of electrons as a function of wave

tion of the molecules follows instantaneously the motion ofV€Ctor (i) the wave vector dependence of the spectral func-

the electrons, that is to say, without any emission or absorgio" measurable by angle-resolved photoemission experi-

tion of phonons during the process which transfers an eledN€Nts:(iv) the importance of renormalization of the phonon
tron from one site to the other. For our two-site polaroniTéduencies and of the electron hopping integral, andhe
model this implies states of the form retardation between the dynamics of the charge carriers and

of the lattice deformation which accompanies them.
Let us start by considering the static correlation function
1 te/2t= — Exn/2t=(c] c,,) which describes the kinetic en-
E ergy in units of 2 and which in the extreme polaronic LF
limit [Eq. (10)] becomest{(/t for single-polaron hopping
X|D(Y—=Yo))n, (9 andt}#/2e,t if it is bipolarons which hop. It is for this rea-
son that sometimes this correlation function is associated
which amounts to disentangling the correlated hopping ternwith some effective hopping integral/2t which also in the
in the form limit «=0 is physically meaningful since it tends to the

ILF)mn=—=[cl,|®(X—Xo))m= Cho| D (X+ X0) )]
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. FIG. 2. The exact oscillator wave functio® (&) with
10 &=XMuwg/# for a single electron in the two-site polaron system
(‘\Ig — 0=0.4 J— for different values ofa.
N | T 0=0.8 4 1
& — =12 i =o(®(X—Xg)|®(X+Xg))o at zero temperature which no-
2 g . .
g0 0=1.6 e 1 ticeably differs from
K| — - e=22 / B
| (1electron) S terr/t=¢ (W (X)[W(X))g . (1)
- /
Vi . where| ¥ (X)),, denote the exact eigenstates which replace
'," // 3 |®(X+X%),, in the expressions for the LF-approximated
, T e eigenstates given by E¢P). As can be seen from Fig. 2 the
1010_6 18’-4/ ;6_2 = 16° T exact eigenfunctionsV .(X), corresponding to the exact
®) eigenstates| ¥ (X)),., differ significantly from the LF-

approximated eigenfunctior®,.(X) which for the ground

FIG. 1. teg/2t= — Eyn/2t=(cl_c,,) for a single electron as a State become
function of « for different adiabaticity parametegsfor the two-site M oo | 14
olaron problenta). Comparison of4/t evaluated by exact diago- * _ 0 2
Ealizatioz and ri.f[(s)approxpi)mative vaelftfje given by theyLF approa?ch as ®o (X)_( har ) X~ (X=X)(Mao/h)]. (12
a function ofy for several values oi (b). In contrast tod, (X) the exact eigenfunction® 5 (X) show

a substantial deformation of the molecule adjacent to the one

free-electron value equal o Apart from these extreme lim- where the electron actually sits. This is borne out in the
its, as we shall see below, the interpretation of this correlasmaller of the two peaks oF, (X) for negative values of
tion function in terms of an effective hopping integral has t0 =X \\Mw, /i~ — X,yMwo /4. It is the presence of this
be modified. EVaIUating this correlation function for the two- Second peak Wthh gives rise to a Substantia' increase in the
site polaron problem by exact diagonalization of the Hamil-yajye oft./t over the LF-approximatetf/t. As the cou-
tonian, Eq.(1), we notice that, as a function af andy, the  pling strength increases the value X§ increases roughly
exact result foiE;,/2t in general strongly deviates from the |inearly with . This leads to a separation of the two main
extreme polaronic LF limiting behavior. We hence cannotpeaks of¥§ (X) and ¥, (X), respectively, which results in
expect that the LF approximation is applicable even in conan exponentially small overlap of them. On the contrary the
junction with perturbative corrections in terms of\1/ overlap of the main peak 0]13()() with the secondary peak

In Fig. 1(a) we plotteq/2t as a function ofx for different  of ¥ (X) is of order unity since the weight of the secondary
adiabaticity parameters. At a first glance we get the im- peak depends only weakly on the value @f Since this
pression that upon going towards the extreme antiadiabatiSecond contribution td.s/t always remains much larger
limit i.e., y—0, and for a fixed value of we approach the than the first one, we can thus never hope to recuperate the
extreme polaronic LF behavior. Yet as can be seen from Fig.F resultt}/t for whatever fixed value of<1.
1(b) and contrary to a well-established belief on this matter, The behavior of the oscillator wave function expresses a
the LF result is approached slower and slower for a fixecdlynamical delocalization of the polaronic state which has
vy<1 asa gets larger and larger. These discrepancies wittbeen realized a long time ago and for which variational cal-
the LF results are not only quantitative but are qualitative inculations have given rather satisfactory results for the ground
nature as they dependence df./2t shows. The reason for state(see, for instance, Ref.)3From the above study of
this qualitatively different behavior lies in the LF approach tei/2t and of the oscillator wave functiod 5 (X) it becomes
itself which considers the electrons to be in localized stateslear that in general effects of dynamical delocalization of
of the form given by Eq(9) in which practically the entire the electron cannot be obtained by perturbative expansions in
charge of the electron and entire deformation of the molterms of 1A around the LF-approximated oscillator wave
ecules remains restricted to the molecular site orfunction, even in the extreme antiadiabatic linp1. Our
which the electron sits. This leads taes/t=t{s/t findings suggest that it is energetically favorable for the po-




14 876 E. V. L. de MELLO AND J. RANNINGER 55

0.5 ~= 0.4
\\\\t.\‘ —~
R\ — =01 2,
\ \ —
§ v \\ ‘\ """ 'Y'=05 &
5 \‘ VY ———-y=11
= AR —-=- =15 1
\ ‘\\\\ (2 electrons) 02 f
‘\\ \\ ‘\\
A AN
\\ \ \-
\\ \\\\\\.
0.0 n ST tTET 0.0
0.0 1.0 20 o
(a) (a)
o5 /- 1.0 ; ;
(2els.) e P - — 0=04
-~ | Z — =038
S / LF o — 012
B 7 7’— o=0.4 s 4=1.2 (LF)
= === 0=0.6 ] —==- 0=16
// L ————__(}_:_0_.5 _____ P 0.5
,’l /‘{__—‘;’.___.-_ azll,/ LF ]
/ 7 e -
I/ ,/// P
e o e
T ey CF
,I,/ . e ’_—’
2T
0.0 == : : 0.0
0.0 1.0 20 7 3.0 0 2 4 6 N 8
(b) (b)
FIG. 3. tg/t for two electrons as a function af for different FIG. 4. (a) The phonon number distributioR(N) for a given

adiabaticity parametery for the two-site polaron problenta). value ofa=1.2 and for various values of. Notice that asy de-
Comparison ofte;/t evaluated by exact diagonalization with its creases, the distribution function tends to that of localized polarons,
approximated value given by the LF approach as a functionfof practically indistinguishable from that of=0.01.(b) The phonon
different values ofw (b). number distribution for a given value of=1.6 and for various
values ofa. Notice the in general significant difference between the

laron to be partially delocalized and to transfer its charge b;l(r Ztsgr;:;x;r?:;ag 1d i;tribution function and the exact results, illus-
multiple hopping processes because it is that which gives rise o
to the monotonically increasing behavior tRf;/t as a func- . _ . i
tion of y. These muitiple hopping processes play, as we Shaﬁelf-trappln_g._The failure of calculatint/2t qual|tat|v_ely
see in Sec. V, an important role in the correlated—chargeforrecuy W'tﬂ-,'n the LF. approgch was already recognized _by
deformation dynamics of the polaron problem. Feh.skee.t al. whp attrlbutedilt to the zero-phonon approxi-

As concerndq/t for the two-electron two-site system we mation, m_her_ent_m the substlt_utlon, BQO). They showeﬂ“_
notice from Fig. 8a) a behavior similar to that for the one- that the distribution .Of the welghts of tml,Lphonon state in
electron problem. However, as can be seen from Rig), & th_e ground _state shifts its maX|rr12um to hlgher values\of
contrast to the one-electron problem, for two electrons it varWVith increasing values of,/t=2a"y. For a fixed value of
ies linearly withy which is an indication that it is bipolarons @ the maximum of this distribution shifts to higher and
rather than polarons which hop. Asincreasest.q/t tends nigher values oN as y decreases, thus rendering the zero-
towards a constant equal fawhich is indicative of uncorre- Phonon approximation less and less justified. In order to vi-
lated hopping of the two electrons in the system. There is gual&ze th'i bzehavlor e plot zth's distributior(n)
significant difference in the slope of this correlation function :ENX:0(|aONX| +|a0NX| )|ﬁ0N—NX| as a function oN for
calculated exactly and of that determined by the LF ap-a set of values ofx [Fig. 4&] and of y [Fig. 4b)]. From
proach. Again, for reasonable parameters where small bipd=ig. 4(b) we can see from a comparison of the LF-
larons are stablésuch ase=1.2 andy~ 1) we find that the approximated distribution with the exact one for a particular
exactly calculated correlaton function is orders of magnitudechoice ofa=1.2 how the LF aproach overestimates the self-
larger than its LF expression for the same parameters. trapping, with a maximum irP(N) occurring at a signifi-

In concluding this section we want to point out that al- cantly higher value ofN than is the case in the exactly cal-
though polarons as well as bipolarons exist over a large reculatedP(N).
gime of parametera andy, their description in terms of the The findings of this section moreover suggest that the
standard LF approach is generally invalid not only in theeffect of dynamical delocalization of the charge carriers in
physically interesting regimévhich lies outside the extreme polaronic systems leads to a strengthening the phase coher-
strong-coupling antiadiabatic limig<<1), but particularly in  ence of polaronic states. If this is so, then we expect that for
that limit, for which it largely overestimates the degree ofa given set of parametessandy, states described by the LF
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FIG. 5. IThe wave vector dependgnce of the polaron ogcupation FIG. 6. te/t (normalized to its zero-temperature vales a
numbem(?(k)... for the two lowest-lying states. For comparison we function of temperaturdin units of w) for fixed y=1.1 and for
also plot the result for the LF-approximated states given in(8d.  gifferent values ofx and compared with the LF approach results.

) ; e polarons in terms of band states and which conse-
herence destroyed as the temperature increases, while t Eently leads to the well-known reduction of*
LF

exact states will maintain this phase coherence up to much T 52 L :
higher temperatures. The key to this question lies in the wavi igxfs[) 2acoth(Be/2)] with increasing temperaturésee
veqtor erenqence of .the one—partlc!e spectral function These features are of course quite general and will remain
which will be discussed in the next section and of the occu-

i b - (cl  the electronic ch when, instead of studying the two-site polaron problem, one
pation numben, (k) =(Cy,C,) of the electronic charge car- g5’ yith the polaron problem in an infinite lattice of finite
riers. Evaluatingn, (k) for the two lowest eigenstates within - jiwansion. There the LF approach is in fact known to give

the LF approach, that is to say, with respect to the two eigerqe (4 results which contradict our findings for the two-site

states given in Eq.(9) with m=2n=0, we obtain 54100 problem such as the dependence of the occupation
No(k=0), =ng(k=m)_=31+expC-a)] andn,(k=m)_  nymber on the wave vector which, apart from a small step at
=N,(k=0). =3[ 1—exp(-a’)], respectively. This inversion o Fermi vector, is a flat function throughout the Brillouin
of the occupation numbers between the ground state and thene for zero temperatuté For any realistic finite tempera-
first exited state leads to the result that at low temperatureg,ra \which clearly would be larger than the difference in
(larger than the difference in energy of the two lowest Ievelsenergy of the two lowest-lying eigenstates of the Hamil-
but small compared to the phonon frequeny) n(K)=3  tonian, Eq.(1) [i.e., = 2texp(~24?)], the LF approach thus
independent of the wave vectrand thus identical to the |,5uid lead one to expedt,(K) to be equal t&;, independent
result for localized polarons, ie., for=0. Evaluating ¢ k, and not to show the slightest anomaly at the Fermi
ny(k=0,m).. exactly we see from Fig. 5 that the exact result4ye vector. Furthermore, as concerns the temperature varia-
differs from that of the LF approach qualitatively with yion oft . discussed above for the two-site polaron problem
ny(k=0). not only being larger tham,(k=).. for the  5ne expects also for an infinite lattice a mobility which in-
ground state but also for the first excited state, provideqtreases with increasing temperature. The opposite behavior

approach become unstable, i.e., have their spatial phase cg

a>ag(y) with ac(y) increasing monotonically ay de- s found in the classical works on that issue and being based
creasesac(y) is determined by that value af for which 5 the LF 11 perturbative approach:!’
tert/t in Fig. 1(b) tends to the saturation valdegiven by the An important feature in polaron physics is the crossover

free-electron limit, for a given value of. It is this fact  from small polarons in the antiadiabatic strong-coupling
which gives the polaron a stronger dynamical coherence thayit 1o large polarons in the adiabatic strong-coupling limit.
what we would expect on the basis of the LF approach angjs crossover has been studied in great detail and can be
which shows up in the temperature variation of the effectivegee, most clearly ifte is plotted as a function of
polaron hopping integrélky, illustrated in Fig. 6. We notice ¢ /t— 2424/t (Ref. 14 rather than as here as a function of
that in the weak-coupling regimen{<1), where the elec- |t tums out that the crossover is rather abrupt in the adia-
trons behave as quasifree charge carriggsdecreases with  patic strong-coupling limit and becomes more spread out
increasing temperature. This is precisely what we expect ifynen going to the antiadiabatic limit.

the phase coherence of the electron is destroyed by thermal |, the following two sections we shall discuss finer details
fluctuations. On the contrary, in the polaronic regimeof polaron dynamics which should show up in the spectral
(e=1) we notice an initial small increase ofy with in-  properties and the correlated dynamics of the charge carriers

creasing temperatur@orresponding to a decrease in the ki- gnq of the molecular deformations which accompany them.
netic energy of the electropswhich suggests that the dy-

namical coherence of the polaron increases with increasing
temperature. This holds true for temperatures up to some
characteristic temperature, above which this coherence is One of the key questions in the physics of small polarons
definitely destroyed resulting in a decreasetgf with in- is how to discern itinerant from localized polarons. In prin-

creasing temperature. This once more strongly contrasts wittiple the answer to this question should be contained in the
the result obtained within a LF approach which treatsone-particle density of states, which can be measured by

IV. ITINERANT VERSUS LOCALIZED POLARONS
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photoemission experiments. Considering this problem within 0.
the LF approximation, the polarons are described by band
states which are characterized by the total momentum

5 :
’§ 0=2.2,v=1.1
o

x=k+q, wherek denotes the momentum of the electron and n (T=0.10,)
g that of the deformation which accompanies it. As an illus- =
trative example for the one-electron two-site polaron prob- :{

lem this implies that the LF ground stalteF) = |LF) o,
given by Eq.(9), can be written as

- 5ic} T - WJU bk
LF) o= e P00} cLI@00) (Y Yoo, iy LUV,

13 -35.0 -25.0 -15.0 0o, -5.0
(13 o
(a)
where
2.00 w \ ‘ ‘
— A"(k=0,0)/A,"(0)
clom =i(cI +ch ), 175 | ---=-- AV (k=m0)/A, " (@)
me ot e ——— A "(k=0,0)/A," (k=r,00) J
150 | — To=0K
1 (0=2.2,y=1.1,T=0.100)
|®(X))o.n="T=[P(X=Xg))o=|P(X+Xp))o]. (14) 1.25 |
2
Hence the scattering cross sections 1.00 ¢
(29) 0.75 : : : I
ANoyoy, oy (K@) -35.0 -25.0 -150 ®®, -50
(b)
1 .
= |m;J drexpli @ 7)n(Cl o 7) Cho(0))nO(7), FIG. 7. The scattering cross sectif;(k=0,w), for y=1.1

and a=2.2 and forkgT=0.1w, (a). Comparison of the scattering
10) cross section&{"(k=0,0), andA3" (k=)o with each other
Aoy .o (k,w) as well as with that for localized polarons, i.&"(w), for
kgT=0.1wy, and T=0 (b). These scattering cross sections have
1 been obtained by broadening the sediinctions by Gaussians of
= Im;f drexp(i o 7)n{Ckel T)CL,(O)),\,G( 7) (15  width Aw=0.1lw,.

measure the intensity of emitted and absorbed electrons with * 2 2(1+1")
momentumk and sping in a polaronic state containinky A (k=0w)o= > > exp(—2a2)|||—,|
electrons with spingry, o5, . . . ,oy in the ground state. feven 1’ T
Let us first consider the case of an isolated polaronic cen- X (w—ep—(1+1") wp),
ter with one and, respectively, two electrons present. We
shall from now on consider only the cate=0. The two o 21417
cross sections, given in E¢L5), are then exactly determined @1 (1 — _ 5. 2%
by Ay (k= W’w)o_%;d; exp—2a )lll—"
% 42 X 6(w—ep—(1+1") ), 17
AT (w)= 2 exp(— ) dw—zpF ),
’ =0 I! if the system is in  the ground state
and AP (k=00),[=AP (k=m,w)e] and AFD(k
a2, ,.a? B =7,0)1[ =A% (k=0,0),] if it is in the first excited state.
At 3] (“’)_IZEO exp(— )y d(w—3epTlw), (16 This shows that the bulk of the spectrum of itinerant po-

larons(i.e.,t #0) is identical to that of localized ones except

which gives the well-known Poisson distribution of the pho-for the lowest-energy part of the spectrum, i.e., for small
non modes locked together in the construction of the cohevalues ofl. For that part of the spectrum the spectral weight
ent Glauber states which define localized polarons. We shafpr k=0 in the ground state equatsexp—[22”], while it is

now show that the overall features of these spectral functionislentically zero fork=#. The opposite is true for the first
are preserved when considering a system of itinerant poexcited state. These are precisely the features expected for
larons. For that purpose let us consider the spectral functiofluasiparticles whose weights for their coherent part are
for electron emission from a one-polaron ground state in thétrongly reduced. The exact results of the spectral functions
two-site polaron problem within the LF approach. We thenbare this out and in Fig.(@ we presenA{;"(k=0,w), for
obtain values ofy and @ which
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FIG. 8. The scattering cross sectig;))(k=0,w), for photo- FIG. 9. The scattering cross sectiéff;'(k=0,), for inverse
emission from a two-electron two-site system as a function of in-photoemission from a one-electron two-site system as a function of
creasing electron-phonon coupling These scattering cross sec- increasing electron phonon coupling The scattering cross section

tions have been obtained by broadening the sef &inctions by  has been obtained by broadening the seb dfinctions by Gauss-
Gaussians of widthh @ =0.1w,. ians of widthA w=0.1w,.
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FIG. 10. The evolution of the density of stateg(w) for the FIG. 11. The evolution of the density of statesg(w) for the
one-electron two-site polaron problem as the electron-phonon couwo-electron two-site polaron problem as the electron-phonon cou-
pling « increases and for a fixed adiabaticity parameterl.1. The  pling « increases and for a fixed adiabaticity parameterl.1. The
densities of states have been obtained by broadening the get ofdensities of states have been obtained by broadening the get of
functions by Gaussians of widthw=0.1w,. functions by Gaussians of widthw =0.1w,.
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characterize well-defined polaronic states. In order to com- It is even, moreover, illustrative to study the one-particle
pare A(12TT)(k:o,w) with A(lZTT)(w) for localized polarons density of states for those situations. In Fig. 10 we plot the
(iLe., t=0) as well as withA(lzT”(k= 7, 0) we do this for density of states per spin for the one-electron two-site system

finite rather than zero temperature since for all intents an@t 210 temperature,
purposes the level splitting between the first two lowest-
energy levels(corresponding to the bandwidtht*2 of the pr(w)= 2 [AFV(K o)+ A (kw)l, (189
coherent polaron motignis extremely small, since under k=0
normal conditions we are dealing with temperatufesuch  as a function of coupling strengta and for a given fixed
that 2* <kgT<wg. Under those circumstances the LF ap-value of adiabaticity parameter=1.1. For small values of
proach yields scattering cross sectidxﬁ“(k,w) which be-  « the density of states is characterized by two peaks centered
come wave vector independent and thus undistinguishabl@round energiess=0 and w=2t, which in essence repre-
from purely localized polarons. The exactly calculated specsents quasifree electrons in the bonding and, respectively,
tral functions become, up to le-dependent scaling factor, antibonding states for this small system. Asncreases these
practically identical withA(w) for the entire frequency re- WO peaks spread and eventually evolve into two well-
gime except for the low-frequency part, where, however, theseparated peaks_. This dgnsny'of.sftates is similar to that of the
spectral weight is extremely smdlsee Fig. T)]. These Hl_Jbbard model in the qnute limiti.e., far away from half
findings suggest that small polarons might never exist ifilling) which shows indications for the presence of an upper
form of coherent Bloch-like states, a feature which is sup2nd @ lower Hubbard band, separated by the Hublard
ported by the dynamics of the polaron motion, which will be "€PUISion energy, but without any clear gap between those
discussed in Sec. V. two bands. Similarly to the Hubbard problem, the two peaks
One of the prime problems in the physics of the many-in the polaron problem are sep_ara';ed by the energy of attrac-
polaron problem is the question of how to discern a systenfion between two polarons, which in case of strong coupling
of essentially noninteracting polarons from one in which[Such as illustrated in Fig.(8) for a=2.2] amounts to
they sense a strong attraction between them and which ult?€p- . o .
mately leads to the formation of tightly bound paitsipo- A similar densny of states per spin is obtained for the
larons. In principle this question can be resolved by photo-tWo-electron two-site system,
electron spectroscopy which measures the one-particle
density of states for polarons. In fact what is required in po(@)= > [A(ZZTE)(k'w)O—i_A(Z:%l)(k!w)o]- (19)
order to discriminate between a many-body ground state k=07

containing essentially unpaired from one containing esseNinich we illustrate in Fig. 11 as a function of coupling

Fcilr);\iz ?iroendspoelgtrr%nsiés bofrheggr?totig'sss's?grgr\ﬁ tlr?\s/glr;le p?}%é_trengtha and for a given fixed value of adiabaticity param-
. P Py. | 9 y yp eter y=1.1. We again see a similar evolution of the density
toemisson we cannot decide about the nature of the many-

body ground state. This can be illustrated on the basis of thggigtfs Zspw?/vlr:]iifizibg{engl\g ;n)e/ (Sjiesptﬁ]rggi(;?]g;ef?gé?ﬁ:z

two-site polaron system containing one and, respectively ase representative for uncoupled polar@the one-electron
two electrons. The scattering cross section looks essentiallC P pied p

similar for the two cases. In Fig. 8 we plot for different two-site problem considered aboveA clear energy gap

X e iven by Z, now appears separating the low- and high-
values of coupling strengtlx the photoemission spectrum ?requen%:ly ppeak stru%[:ures In'?egratilp%(w) up to someg
A% (k=0,0) where an electron is emitted out of a two- '

actron t i | : Thi ‘ has th value w=¢g such that it becomes equal to(®&hich corre-
electron ‘(’g%'s' € polaron system. This Spectrum has the San%‘Jponds to the half-filled band case and to two electrons in our
form asA};"’(k=0,0) [see Fig. Ta)] which corresponds to

GSA] ‘ system we find thateg lies precisely in the middle of the
the situation of an electron emitted out of a one-electrony,, of the density of states. This again is reminiscent of the
two-site system. On the contrary, the inverse photoemissioBroplem of strongly correlated electrons for the half-filled
spectrum can clearly distinguish if the final state correspondgang Hubbard model. These features examined here for the
to a state with essentially uncoupled polarons or polarog_sjte polaron system are expected to hold true generally
pairs. Looking at_ this spectral function for the o_ne-electronfor any interacting many polaron system on a lattice.
two-site system, i.eAf}" (k=0,0), we see from Fig. 9 that,

as we increase the coupling st_rength, a two-pegk StrUCtUr§ ~ORRELATED CHARGE-DEEFORMATION DYNAMICS
emerges. The energy gap which separates this two-peal

structure amounts to £,, which represents precisely the  The polaron problem presents a highly nonlinear dynami-
binding energy between two polarons in the strong-couplingal system in which the charge and deformation fluctuations
limit. The low-energy peak of this spectrum corresponds to are intricately coupled together. This leads to a dynamics of
final state given by a biporaron in its bonding singlet statethe molecular deformations being driven by the dynamics of
having energy=4s,. The high-energy peak arises from a the charge carriers in the strong-coupling antiadiabatic re-
bipolaronic state in its antibonding singlet and, respectivelygime (a>1,y<1). On the contrary it is the dynamics of the
triplet state having an energyZep.18 The difference in molecular deformations which drives the dynamics of the
energy between these two contributions in the spectral funesharge carriers in the weak-coupling adiabatic regime
tion for inverse photoemission is hence just the binding en{@<<1,y>1). In general this leads to a dynamics for the
ergy of a bipolaron and thus can serve as a signature for éharge and of the molecular deformations which is com-
bipolaronic many polaron ground state. posed of a common slow oscillation and fast ones super-
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FIG. 12. (@) xnn and xx(1)/{X?) for a=1.2 andy=0.1 for the one-electron two-site polaron systel). x,, and x,(t)/{X?) for
a=1.2 andty=1.1 for the one-electron two-site polaron syste). x,, and y,(t)/{X2) for a=1.2 andy=1.6 for the one-electron
two-site polaron systentd) xn, and x.(t)/{X?) for «=1.2 andy=2.0 for the one-electron two-site polaron system.

posed on it. The fast oscillations for the charge dynamicsncreasingly important and their oscillation frequentyde-
have a frequencyt of the order oft, while those for the creases. The opposite behavior is obtained for the molecular

deformation dynamics have a frequeney which is of the  deformation oscillations, whose frequeney of the fast os-
order of . cillatory behavior increases while the corresponding ampli-
In this section we shall study the evolution of those dy-tude diminishes. The system is then no longer described by
namical properties of small polarons when we go from thehe |F approachias we can see from the comparison made
strong-coupling antiadiabatic regime to the strong-couplingor this cas¢ and the charge dynamics is now controlled by
adiabatic one, with a SpeCial emphaSiS on the behavior in thﬁ]u|t|p|e hopp|ng processes with Concomitanﬂy reduced am-
crossover regime. In order to illustrate this behavior wepjitude fluctuations of the molecular deformations. Upon fur-
evaluate the time-dependent correlation functions for thgher increasingy we arrive at a situation where the frequen-
charge redistribution and molecular deformations: cies and amplitudes of those two dynamical variables,
_ characterizing the charge and deformation, become compa-
Xnn(7) ={[N15(7) = N25(7) ][N15(0) —N2,(0) 1), rable to each other, i.e., fort2=w,, and we enter the cross-
Xox( )= (X(7)X(0)). (200  over regime[i.e., for y=1.6, Fig. 1Zc)_]. This regime is
characterized by a temporarily alternating behavior between
In Fig. 12 we plot these correlation functiofisormalized  essentially self-trapped antiadiabatic small polarémsni-
with respect to their=0 value$ as a function of timer in  fest in a substantial reduction of the amplitude fluctuations of
units of w, for different values of they and fixeda. We  the charge dynamigsand a behavior reminiscent of itinerant
notice that the charge dynamics qualitatively tracks globallyadiabatic polarons as seen upon a further increase[oé.,
the behavior expected on the basis of the LF approximation,=2.0, Fig. 12d)]. Such fluctuations in the amplitudes of
in the antiadiabatic limifi.e., for y=0.1, Fig. 12a)] but with  the charge occur over a time scale which is large compared

superposid small amplitude fast charge oscillations with g, ihe inverse hopping rafé and is accompanied by phase
frequencyt which is large compared to the unrenormalizedsips in the fast oscillatory behavior of the charge as well as
electron hopping integral. The dynamics of the molecular the deformation fluctuations.

deformation follows in a coherent fashion that of the charge The evolution of the correlation functions for the charge
and exhibits superposed molecular vibrations with a freand deformation fluctuations of the two-electron two-site
quency wo=w,. As we increasey [i.e., for y=1.1, Fig. problem as a function of the adiabaticity paramegeand
12(b)], the amplitude of the fast charge oscillations becomedgixed coupling constan& follows a similar behavior to that
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FIG. 13. (@ xnn and x,(t)/(X?) for =0.6 andy=0.2 for the two-electron two-site polaron systefn) x,, and y,(t)/(X?) for
a=0.6 andy=0.8 for the two-electron two-site polaron syste). x,, andy,(t)/{X?) for «=0.6 andy=1.3 for the two-electron two-site
polaron system(d) x,n, and x,(t)/(X?) for «=0.6 andy=1.6 for the two-electron two-site polaron system.

of the one-electron two-site problem, as shown in Fig. 13against th&’ hinge on suppositions of the phonon spectra

Again we can identify a crossover between small bipolaronsvhich may not be realistic for real materials.

and essentially uncorrelated two electrons which occurs for We finally should like to point out that no significant

y=1.3 for the particular choice=0.6 changes in the phonon distribution of the displaced oscilla-
This crossover between self-trapped polarons, resped0rs are observed when going through this crossover regime.

tively, bipolarons, and quasifree electrons in the phase spacdehis can be verified from the plot in Fig(t of P(N) for a

of a andy corresponds to the characteristic valueyathere ~ fixéd @=1.2 and upon varying.

the kinetic energy of the eIectrorEKm=—2t<cJ{chsz> ap- In Table | we summarize our findings on the charge-

proaches its maximal value of the free-electron limit,

while the potential energy of the electronsk,y 10 2.2
=—2N\((ny;+ny )uy), tends to its minimum value -
(—1N2)NYo{(n1;+ny,)), obtained in the limity=. This o

can be seen from the behavior B, illustrated in Fig. 1b)

and ofE, depicted in Fig. 14 forwr=1.2 andy=1.6 for the

one-electron two-site problem. The crossover between self-
trapped small polarons and quasifree electrons thus appears S
to be driven by a competition between the kinetic and poten-
tial energy of the electrons, the first one favoring a delocal-
ization of them while the second one inciting them to local-
ize on the molecular sites. In an infinite solid-state system 10°

3
~N
<
&
& |-
X

t

a4

such a scenario would suggest a quantum phase transition 10
between a metal and a polaronic insulator as proposed a long
time ago by Landai? and Froehlictf® For systems with low FIG. 14. Comparison of the electronic kinetic and potential en-

car_ri_er concentrations _such Iocaliz_ed polarons _have beegygy Epo= —2M{(ny;+ny,)u;) as a function ofy for a fixed
verified experimentally in metal halide where optically €x- o=1.2 for the one-electron two-site problem. The crossover regime
cited excitons get localized. There is at present no exact between self-trapped polarons and quasifree electrons occurs when
theorem as to whether pure electron-phonon systems cahe kinetic energy tends to its maximal value while that of the
show such a polaronic insulator. The present exact proofgotential energy tends to its minimal value.
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TABLE . The variation of the renormalized frequency of the deformation oscillatiopsnd of the
renomalized hopping raté as a function of the adiabaticity parameterfor fixed coupling constant
a=1.2. Notice that as we approach the crossover regime, the time scales of these two oscillations become
equal, i.e..t /wy— 1. We also compare the frequenyof the slow polaronic motion with the splitting of the
two lowest eigenvalued E/2t andt. (the electron kinetic energlyNotice that the spectral weigBt of the

lowest-frequency pole of the electron Green'’s function scales fairly well with the renormalization factor for
the polaron bandwidth* /t.

y=tlwg Tt wolwg T/ tes/t AE/2t t*/t Z
0.1 - 1.03 - 1.0x10°* 565102 561x10% 6.11x10°2
0.3 5.66 1.08 1.57 19010 573x10°? 5.66x10°2  7.25x10°2
0.5 3.05 1.14 1.34 2.82100Y 595102 598<10°2  8.59x10°?
1.1 1.56 1.42 1.21 564101 6.98<10°2 6.79x10°2  1.34x10°‘
1.3 1.41 1.52 1.07 6.2010°1  7.63x10°2  6.90x10°%2  1.49x10°!
1.6 1.25 - - 7.1x10' 7.84x10°% 7.85x10°2 1.70x10°‘!
1.7 1.28 - - 7.3%101  7.97x10°% 8.03x10°%2  1.75x10°‘!
2.0 1.19 - - 8.0x10! 826x10°2 8.26x10°2 1.90x10°‘!

deformation dynamics of a polaronic system. We compargeminiscent of almost free carriers, which, however, remain
for that purpose the renormalized vibrational frequengy ~ dynamically tied to a given molecule for some appreciable
the renormalized electron hopping integtalthe kinetic en- time. To be more.specn‘lc, for the parthular case |IIustra'§ed
ergy of the electrons.;/t, and the physical charge transfer In F.'g' 120), we find for the period of t.|m<'a when a quasi-

ratet* for different values of the adiabaticity parameter static polaron is stable a charge distribution given by
and for a fixed coupling constant. In the limit of strong {n1,)=0.75 and(n,,;)=0.25. On the other hand, for the

adiabaticity,t* tends to the LF valué’, and follows as a dynamically delocalized polaron we find that the charge dis-

function of y the behavior of E; — E¢)/2 which denotes the tribution fluctuates over a characteristic time giventbye-
difference in energy of the two lowest eigenstates. We als§Veen (N15)=1.0, (np,)=0 andn; ,)=0.5, (n,,)=0.5.
indicate the spectral weight of the lowest-energy contribu- Such te_mporal fluctgatlons were initially hypqthemsed by us
tion to the scattering cross section and notice that for th& 'ong time agt which led to the boson-fermion model for
antiadiabatic limit it scales with*/t. This is an indication ntermediate-coupling electron-phonon systems, which may
that the low-frequency part of the scattering cross sectioffaveé Some reIe\g\nce for our understanding of High-
corresponds to coherent states but with a spectral Weigrﬁuperconductor%“:
which is extremely small. It is presently not clear whether
such weak coherent features, characteristic of itinerant small
polarons, will persist if one treats the polaron problem on a V1. SUMMARY
infinite lattice. Calculations based on infinite dimensfdns
which show such itinerant behavior do neglect totally the The main objective of this work was the study of the
frequency renormalization of the vibrational motion of the intricate dynamics of the polaron problem involving the dy-
atomS’ which we consider as the prime cause for dephasirf@.mical behavior of the Chal’ge carriers and that of the mo-
of the correlated Charge-deformation dynamics and u|tiJeCU|ar deformations which surround them. We find that in
mately believed to be responsible for the destruction of itinthe antiadiabatic regime for small polarons the molecular
erant polaronic states. deformations follow in a coherent fashion the redistribution
The strong Coup"ng between the Charge and the mo|e0Lpf the Charge, while in the adiabatic regime it is the Charge
lar deformations thus manifests itself not 0n|y in a Strongredistribution which follows the molecular deformations. In
renormalization of the molecular vibrational frequeney  the crossover regime between those two limiting cases we
becominga, but also in a strong renormalization of the in- find that the dynamical behavior of the polaronic charge car-

insic hoobing i N lized intoT. A riers alternates between self-trapped polarons and almost-
trinsic hopping Integrak renormalized Intot. AS We g0 fea_carrier behavior. The time scale over which these differ-
from the antiadiabatic limit toward the adiabatic offer

- ent behaviors are realized is typically an order of magnitude
fixed value ofa), we observe a substantial decreasetit  |arger than the intrinsic hopping rate, i.e., of the order
and a concomitant increase Eb These are effects which 10X 27/t. This crossover regime is characterized by strong
should be observable by spectroscopic measurements suchrasormalization of the intrinsic hopping integral as well as of
infrared or Raman scattering for the vibrational modes. the bare phonon frequency, which in this regime become

From inspection of Figs. 12 and 13 we notice the sizableequal. Phase slips in the fast oscillatory components of the
dynamical delocalization of the polaron and bipolaron, recharge and molecular deformation fluctuations are the result
spectively, as we approach the crossover regime. In thef this. Such effects are expected to be essential for a proper
crossover regime itself this delocalization alternates betweedescription of polaron damping, so far having been treated
partly quasistatic delocalization, suggesting almost localizednly within the LF approachk® and which is unable to ac-
yet extended polaron states, and dynamical delocalizatiooount for the effects described here.
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The question of how to distinguish itinerant polarons frommolecular Holstein polaron model permitted us to discuss the
localized ones was studied here on the basis of the ondimitations of the standard LF approach. Our rather unex-
particle spectral function and its temperature dependenc@ected and perhaps widely unrecognized findings are that
We showed that at zero temperature the respective spectrllis approach, which is generally believed to become exact
functions for localized and itinerant polarons differ from in the limit of antiadiabaticity and an electron-phonon cou-
each other only very slightly except for the low-frequency pling going to infinity, actually diverges most from the exact
regime of the spectral function, where they show an in-results precisely in this limit. The reasons for that can be
creased spectral weight for small wave vectors if the poiraced back to the zero-phonon approximation inherent in the
larons are itinerant. As the temperature increases this diffel-F approach, based on the relation Ef0) and which, with
ence disappears and it is, in principle, no longer possible bincreasing coupling strength, is increasingly strongly
spectroscopic means to distiguish between localized and itindolated®®
erant small polarons. This may explain the puzzling results Our analysis of the various spectral functions and the den-
in the photoemission spectra for certain highsupercon- sity of states shows that the major part of the spectrum must
ducting cuprates for which a wave-vector-independent spedie considered as being due to incoherent rather than coherent
tral function was observed in the normal state and consepolaron dynamics, the latter having vanishingly small spec-
quently was interpretated as indications for localized chargéral weight of order expt2a?). This result confirms our ear-
carriers?’ The question of a polaronic insulator versus a po-ier findings on the many polaron problem for infinite
laronic metal has been touched upon here only from théattice$® and examinations of the single-polaron problem in
point of view of the single-particle properties. The polaroninfinite dimensiong3
problem, however, presents a problem of electrons in a sys-
tem with impurity centers with dynamically varying energies
and thus contains features similar to those of the Anderson
localization. The relevant quantity to be studied hence is the We are indebted to S. Ciuchi, H. Fehske, and J. M. Robin
conductivity. So far a few attempts in this direction havefor many valuable discussions and to J.M.R. for making
been made on the basis of exact diagonalization studies iavailable to us certain of his independently derived results on
finite system& attempting to determine whether there is orthe evaluation of the spectral functions. E.V.L.M. acknowl-
is not a finite Drude component in the optical conductivity. edges support from the Brazilian council for national Re-

Finally, our exact diagonalization studies on the two-sitesearch(CNPg.
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