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Vibrational density of states and homogeneous linewidth in molecular crystals:
Many-phonon processes in nitrogen
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This paper summarizes, simplifies, and extends some recent developments in the theory of phonon damping
in anharmonic crystals. We propose an approach in which the damping is described in terms of two ingredi-
ents: ~1! a computed or estimated one-phonon density of states, and~2! average anharmonic couplings
between the phonons, fitted to the experimental temperature dependence of the phonon damping. Solid nitro-
gen is chosen as a test case and the coupling coefficients obtained from the fit are correlated to the three-, four-,
and five-phonon couplings computed from a potential model.@S0163-1829~97!08421-X#
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I. INTRODUCTION

The damping of vibrational excitations in pure crystals
due to the anharmonicity of the interaction potential. T
lattice vibrations of an ideal harmonic crystal may be d
scribed in terms of noninteracting phonons. The anharmo
perturbations lead to interactions in which the phonons
change energy and are thus directly responsible for
damping. The many-body treatments1–4 of the phonon inter-
actions indicate that the phonon dampingG is the sum of an
infinite series of contributions~or ‘‘diagrams’’!, each corre-
sponding to a specific phonon scattering process and w
characteristic temperature dependence.

In principle all kinds of processes involving any numb
of phonons need to be considered. A physically import
and readily interpretable subset of processes is that re
sented by the ‘‘double vertex’’ diagrams.5 These are
n-phonon scattering processes in which a source phono
annihilated andn21 target phonons are created and/or a
nihilated, with conservation of the total energy and mom
tum. It is believed that in many cases, e.g., for weakly
harmonic crystals and for isolated phonon modes, th
simple processes are the most probable and give the d
nant contribution to the damping.4–8

Experimentally the dampingG is investigated either in the
time domain by directly measuring the lifetimeG21 of the
phonon excitations, or in the frequency domain by measu
the phonon linewidth 2G. The interpretation of the experi
ments in terms of decay processes is generally based o
temperature dependence of the linewidth. In this approac
small set of decay pathways is used to fit the experime
temperature dependence.9 The main limitation of this phe-
nomenological method is the arbitrariness in the choice
the decay pathway. In fact all combinations of phonons w
the correct total energy contribute to the damping and th
is usually no compelling reason for choosing any particu
set of phonon energies. Furthermore, the method does
allow the decay efficiency~i.e., the anharmonic coupling
coefficients! to be evaluated separately from the number
available decay pathways.
550163-1829/97/55~22!/14855~10!/$10.00
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Recent works5,10 have demonstrated that very high ord
contributions to the series for the phonon damping may
computed starting from the crystal potential and that effici
a priori calculations of the dampings are feasible. These c
culations are based on the separate computation of two
gredients: ~1! the number of available decays pathway
i.e., the many-phonon density of states, and~2! the average
anharmonic couplings between phonons. The method, w
is free of the ambiguities in the phenomenological approa
is, however, dependent on the accuracy of the poten
model and is computationally very involved.

This paper proposes an intermediate strategy between
a priori computation and the phenomenological fit. In th
strategy the many-phonon density of states is computed s
ing from an experimental or computed one-phonon dens
while the coupling coefficients are fitted to the experimen
temperature dependence of the phonon linewidth. The c
pling coefficients obtained from the fit are defined as av
ages of potential derivatives and therefore provide inform
tion on the crystal anharmonicity. If desired, a dire
comparison can be made with the derivatives computed f
a potential model. The computational requirements of sim
hybrid approaches11,12 are very moderate, and actually com
pete with those of the purely phenomenological fit.

Our approach depends on an approximate, but highly
ficient, algorithm for computing the damping. Success
terms in the perturbation series for the damping desc
scattering processes involving an increasing numbern of
phonons. The main problem in summing the series for
damping is the explosive growth of the computation time
n increases. This growth is due to~1! the number of pro-
cesses, i.e., ‘‘diagrams,’’ to be taken into account;~2! all the
combinations of phonon creation and/or annihilation eve
for each diagram; and~3! the sum on all branches and wav
vectors which must be performed for each phonon involv
If n phonons are involved and the sums are extended tN
branches and wave vectors, then the computation time du
~1!, ~2!, and ~3! grows approximately asn!, 2n and Nn,
respectively, so that the total time grows asn!2nNn. This
‘‘combinatorial explosion’’ is so fast that in practice only th
14 855 © 1997 The American Physical Society
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14 856 55R. G. DELLA VALLE, G. F. SIGNORINI, AND P. PROCACCI
lowest order contribution to the damping can be compu
for realistic models without resorting to drast
approximations.4,6–8

The theme of this work and of Refs. 5, 10, and 13 is
need to eliminate all combinatorial factors from the comp
tation time. The growth in the number of diagrams is evad
altogether by considering only the ‘‘double vertex’’ dia
grams and ignoring all other processes.5 Only a single dia-
gram is thus considered for eachn. This is essentially an
uncontrolled approximation, made to allow the calculation
proceed, and justifieda posteriori by the success of the
method.5 Possible reasons for this success are that the
nored diagrams can be both positive and negative, so
considerable cancellation may occur,6 and that, by containing
several frequency denominators, these diagrams are sm
many circumstances.5 The double vertex diagrams are a
ways positive and contain only a single resonance deno
nator. These are the diagrams which are usually consid
in the phenomenological approach, with the additional c
straint of fixed phonon energies; allowing all combinatio
of energies compatible with the conservation requireme
represents at least an improvement with respect to the
nomenological approach.

The complications due to all the 2n combinations ofn
creation and annihilation operators are effectively elimina
by a reinterpretation of the meaning of the phon
operators.5,10 The annihilation of a phonon with energyv is
described as the creation of an ‘‘antiphonon’’ with negat
energy2v. In practice this means that all the sums
phonons are extended to both positive~phonon! and negative
~antiphonon! energies. All combinations of phonon creatio
and annihilation processes are thus automatically taken
account. With this method, which involves no approxim
tion, only a single term, rather than 2n, needs to be taken into
account for eachn. Obviously, the total number of process
does not change.

This single term has the form of a weighted many-phon
density of states generalized to allow for both positive a
negative phonon energies.5 The direct computation of the
n-phonon density by summing overN phonon modes would
require a time proportional toNn. We find5,13 that, within a
reasonable approximation which essentially correspond
the introduction of an average anharmonic coupling, eac
these densities can be recursively computed from the pr
ous density in a timeindependentof n. Therefore the total
time for computing the damping due to all double vert
processes involving up ton phonons islinear in n.

By avoiding all combinational bottlenecks, this spectac
lar improvement in the algorithmic efficiency makes the c
culation of high order contributions to the phonon damp
possible.5 The original recursive algorithm,5,13although quite
efficient, still had a slow step, namely the sum on phon
branches and wave vectors that was required at each st
the recursion. By transforming the recursion in a very f
repeated convolution with the one-phonon density of sta
and then by neglecting the dependence of then-phonon den-
sities on the wave vector, we have now found a way
eliminate even this remaining slow step.

Besides then-phonon densities, also the anharmonic co
pling coefficients are required for the computation of t
damping. In a previous investigation on solid N2,
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ated the coupling coefficients directly from their definition
averages of potential derivatives. No adjustment to the
served dampings was involved in the calculations, wh
may therefore be regarded as ana priori determination of the
coefficients. In this work we treat the coefficients as adju
able parameters, to be fitted to the experimental tempera
dependence of the dampings. Because of the availabilitya
priori coefficients,5 and of the abundance and quality of th
experimental data on the decay processes,14–18we have cho-
sen crystalline N2 as an ideal benchmark for the comput
tional strategy.

The paper is organized as follows. Section II describes
construction of the algorithm for then-phonon densities and
all the approximations involved. This section, which is rath
formal, may be skipped by a reader only interested in
algorithm itself. A completely self-contained description
the algorithm is given in Sec. III, where a detailed discuss
of the fitting procedure is also presented. The method is
plied to the phonons of the N2 crystal in Sec. IV. The results
are presented in Sec. V and discussed in Sec. VI.

II. THEORY

A. Many-phonon densities of states

The developments described in this paper are made
sible by a recursive algorithm for computing many-phon
densities with a ‘‘factorized’’ weight.13 The n-phonon den-
sity of statesGn(v,k) is defined as the number of state
available for the decay of an elementary excitation with f
quency v and wave vectork into a set of n phonons
1,2,...,n, with conservation of energy and momentum:

Gn~v,k!5 (
k1•••kn

g~v1!•••g~vn!d@v2~v11•••1vn!#

3d@k2~k11•••1kn!#, ~2.1!

where a sum on all phonon branches is implicit in the su
on the wave vectorsk i , v i stands forv(k i), d(x) is the
Dirac delta, and the weightsg(v i) are functions ofv i ~e.g.,
Bose occupation numbers!. In d~k! we implicitly allow for
the periodicity of the reciprocal lattice.19 In situations where
the momentum is not conserved, as in incoherent neu
scattering experiments, the appropriate density is the redu
density of states

Gn~v!5 (
k1•••kn

g~v1!•••g~vn!d@v2~v11•••1vn!#.

~2.2!

For molecular crystals,5,13 the n-phonon densitiesGn(v,k)
have been found to become essentially independent ofk as
n increases. ThereforeGn(v) may be used as a
k-independent approximation toGn(v,k) for high n. For
CO2 ~Ref. 13! and N2 ~Ref. 5! the approximation appear
already usable for the two-phonon densityG2.

Due to the presence of nested sums, the time require
compute the n-phonon densitiesGn(v,k) and Gn(v)
through Eqs.~2.1! and ~2.2! grows exponentially withn,
quickly exceeding any reasonable limit. Fortunately, it
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55 14 857VIBRATIONAL DENSITY OF STATES AND . . .
possible to computeGn(v) in time linear inn by noticing13

that Eq.~2.2! implies a recurrence relation betweenGn and
Gn21:

Gn~v!5(
kn

g~vn! (
k1•••kn21

g~v1!•••g~vn21!

3d@~v2vn!2~v11•••1vn21!#

5(
kn

g~vn!G
n21~v2vn!. ~2.3!

Here we have changed the order of the sums and recogn
that the coefficient ofg(vn) is actuallyG

n21(v2vn). With
the same method one may easily obtain the analogous re
rence relation forGn(v,k):

Gn~v,k!5(
kn

g~vn!G
n21~v2vn ,k2kn!. ~2.4!

Equations~2.3! and ~2.4! offer an efficient way of com-
puting allGn up to any desired order. In practice the on
phonon densityG1 is computed first by direct sum throug
Eq. ~2.2! or ~2.1!, then the densitiesG2,G3,G4, are com-
puted one after the other through the recurrence relation,
~2.3! or ~2.4!. Each additional density in the sequence
quires a constant increment of computer time, so that
total time required up to ordern is linear inn. Please note
that this result only holds with a factorized weight functio
g(v1)•••g(vn). We are convinced that the computing tim
for densities with nonfactorizable weights is intrinsically e
ponential inn. The problem is not solvable in a time whic
grows as a power ofn ~i.e., it isNP hard20!.

Besides their usefulness in the practical computation
Gn, Eqs.~2.3! and~2.4! also indicate that all the informatio
in Gn is already contained in the one-phonon densityG1. In
fact, by inserting ad integral closure, i.e.,Gn21(v2vn)
5*dVGn21(v2V)d(V2vn), in the right-hand side of
Eq. ~2.3! and then exchanging integral and sum, we can r
resentGn as the convolution ofGn21 andG1:

Gn~v!5(
kn

g~vn!G
n21~v2vn!

5(
kn

g~vn!E dV Gn21~v2V!d~V2vn!

5E dV Gn21~v2V!(
kn

g~vn!d~V2vn!

5E dV Gn21~v2V!G1~V!. ~2.5!

This simple convolution equation allows one to compu
by recurrence the reduced densitiesGn(v) starting from the
one-phonon densityG1(v), which may be measured or e
timated easily. The practical importance of Eq.~2.5! is con-
siderable. In fact each recursion step using Eq.~2.3! implies
a sampling over a numberN of wave vectors in the Brillouin
zone. To improve the accuracy of the calculation one ne
to increaseN and therefore to increase the computatio
effort required byeachrecursion step. On the contrary, if th
ed

ur-

-

q.
-
e

f

-

ds
l

recursive convolution of Eq.~2.5! is used, the effort required
at each step is independent ofN and depends only on th
resolution with whichGn(v) is desired.

The recursive convolution forGn(v,k) is an easily
proved generalization of Eq.~2.5!:

Gn~v,k!5E dV dK Gn21~v2V,k2K !G1~V,K !.

~2.6!

We wish to stress that Eqs.~2.3!, ~2.4!, ~2.5!, and~2.6! do
not involve any approximation.

B. Damping from double-vertex diagrams

The simplest double-vertex processes are the ‘‘down’’
ergy conversion processes. In a ‘‘down’’n-phonon scatter-
ing process a phonon 1 with energyv1 and wave vectork1 is
annihilated andn21 phonons 2,3,...,n are created. The con
tribution to the dampingG1 of phonon 1 due to ‘‘down’’
n-phonon processes (n>3) is proportional to5,21

(
k2k3•••kn

uV1,2,3,...,nu2@~n211!~n311!•••~nn11!

2n2n3 ...nn#d@v12~v21v31•••1vn!#

3d@k12~k21k31•••1kn!#, ~2.7!

whereV1,2,...,n is thenth order anharmonic coupling coeffi
cient andni5@exp(\vi /kBT)21#21 is the average phonon oc
cupation number. As shown in the derivation of Eq.~2.7!,5

the factorsni11 and ni originate as thermal averages
ordered products of operatorsbi and bi

† , which annihilate
and create phononsi :

ni115^bibi
†&,

ni5^bi
†bi&. ~2.8!

As mentioned in the Introduction, that of Eq.~2.7! is just
one of many terms due to all possible combinations of p
non creations and annihilations. The explicit addition of
missing terms would lead to expressions whose comple
increases withn. We avoid this problem by adopting th
phonon-antiphonon picture.5,10 Both positive ~phonon! and
negative~antiphonon! signs of the phonon energy are a
lowed and all sums on phonon branches are extended to
energy signs. For a negative energyv i ~i.e., an antiphonon!,
the sign of the wave vectork i is also inverted and the mean
ing of the phonon creation and annihilation operators,bi

† and
bi , are exchanged. Thus the thermal averagesni11 andni
are also exchanged in Eq.~2.7!.

Equation~2.7! has the form of a weighted many-phono
density of states, involvingn21 phonons. This density ma
be calculated efficiently using the recurrence relations@Eqs.
~2.3! or ~2.4!# if the weight may be cast in a factorized form
Each of the two thermal factors in square brackets in
~2.7! is already in the required form. For the coupling coe
ficients we are forced to adopt a Peierls-type decoup
approximation5,22 in which uV1,2,...,nu2 is factorized:

uV1,2,...,nu2} f ~ uv1u! f ~ uv2u!••• f ~ uvnu!. ~2.9!
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The functionf (v) should be chosen to give the correct line
behavior ofuV1,2,...,nu2 as one of the phonon frequencies go
to zero.5,19,23 In the previous paper5 we chosef (v)5v.
Here we preferf (v)512exp(2v/vD), wherevD is the De-
bye frequency.19 For smallv, f (v) goes linearly to 0 as
desired. Forv@vD , f (v) tends to 1, and thus we avoid th
spurious dependence of the coupling coefficients on the p
non frequency which was bothering us in Ref. 5.

Using the approximate factorization of Eq.~2.9!, the
dampingG1

(n) due ton-phonon double vertex processes, i
cluding all combinations of creation and annihilation even
becomes5

G1
~n!} (

k2•••kn
@g~v2!g~v3!•••g~vn!2g~2v2!g~2v3!•••g

3~2vn!#d@v12~v21v31•••1vn!#

3d@k12~k21k31•••1kn!#, ~2.10!

where all sums extend to both positive and negative ener
and we have defined

g~v!5 H f ~ uvu!@n~ uvu,T!11#
f ~ uvu!n~ uvu,T!

for v>0
for v<0. ~2.11!

By allowing sums on both signs of the energy, Eq.~2.10!
describes any combination of phonon creation and annih
tion processes in which a phonon 1 decays with conserva
of its energyv1 and momentumk1 . In other words, all
combinations of phonons and ‘‘antiphonons’’ are consider

The dampingG1
(n) is now expressed as the combination

two densities with factorized weights, each in the form
quired by Eq.~2.1!, and may thus be computed efficiently b
using Eqs.~2.4! or ~2.6!. As the sums in Eq.~2.10! are ex-
tended to both energy signs and the Dirac’sd is an even
function, it turns out that these two densities represent a
ally a unique function evaluated at two different place
Gn(v1 ,k1) andG

n(2v1 ,2k1). This is convenient becaus
the recursive algorithm automatically yields the density
all values ofv andk.

For the purposes of this paper, we prefer to neglect
dependence of the densities on the wave vector, repla
them with reduced densitiesGn(v) @Eq. ~2.2!#. This is a very
good approximation,5,13 which enables us to use the simp
one-dimensional recursive convolution of Eq.~2.5!. We have
now discussed all the components of the algorithm for
double vertex damping, which is described in the next s
tion.

III. METHODS

A. Efficient calculation of the many-phonon density of states

As discussed in the Introduction, we advocate a strat
in which the average anharmonic couplings are fitted to
experimental temperature dependence of the damping.
algorithm for computing the damping is based on a repres
tation of the many-phonon density of states as a recur
convolution and involves the following approxima
tions: ~1! only the double vertex diagrams are consider
~2! a Peierls type approximation is adopted for the anh
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monic coupling coefficients, and~3! the dependence of th
density of states on the wave vector is neglected.

We assume that the experimental frequenciesv i and the
linewidth 2G i(T) as a function of the temperatureT are
known for a set of phonon branchesi . A measured or esti-
mated unweightedone-phonon density of states,D1(v)
5(kid(v2vki), is also available, in the form of a numer
cal histogram in a frequency range 0<v<vmax with some
suitable channel width. For definiteness, we normal
D1(v) to a total area equal to the number of phon
branches. With this choice, the numerical value of the d
sity, and thus those of the anharmonic coupling coefficie
does not change if the analysis is restricted to a subset o
phonon branches by neglecting the internal modes or o
portions ofD1(v).

Starting fromD1(v), we evaluate for the range2vmax
<v<vmax and for a given temperatureT the auxiliary tem-
perature dependent density

G1~v,T!5 HD1~ uvu! f ~ uvu!@n~ uvu,T!11#
D1~ uvu! f ~ uvu!n~ uvu,T!

for v>0
for v<0,

~3.1!

wheren(v,T)5@exp(\v/kBT)21#21 is the average phonon
occupation number. Forv.0 or v,0, this density de-
scribes the probability of emission~i.e., creation! or absorp-
tion ~i.e., annihilation! of a target phonon with frequencyuvu.
The thermal weightn11 accounts for both spontaneous a
stimulated emission, whilen is the weight appropriate to
absorption. The factorf (v)512exp(2v/vD) approxi-
mately describes the way in which the anharmonic coupl
coefficients go to zero while the phonon frequency goes
zero. The Debye frequencyvD is simply identified with the
largest frequency of the three acoustic branches, and ma
found from the densityD1(v) as that vD for which
*0

vDdv D1(v)53.
FromG1, we compute a sequence of many-phonon d

sitiesG2, G3,...,Gn, up to the desired ordern, using the
recursive convolution of Eq.~2.5!:

Gn~v,T!5E dV Gn21~v2V,T!G1~V,T!. ~3.2!

EachGn is nonzero in the range2nvmax<v<nvmax, while
the integral can be restricted to the range2vmax<V
<vmax. The structure of Eqs.~3.1! and~3.2! ensures that all
Gn’s maintain the same physical dimensions asD1 ~the re-
ciprocal of a frequency!. The convolution inGn, being ex-
tended to both signs, automatically accounts for all poss
combinations of creations and/or annihilations ofn target
phonons, each one with the proper energy sign and ther
weight. In practicev is the total energy which the targe
phonons gain from~for v.0! or lose to (v,0) the source
phonon. Thus

rn~v,T!5Gn~v,T!2Gn~2v,T! ~3.3!

describes the net~gain-loss! thermally averagedn-phonon
population which is available for the decay of a source p
non of frequencyv in a scattering process involvingn11
phonons.
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To illustrate the algorithm forrn just described, we dis
play in Fig. 1 the various steps in the calculation of t
three-order density of states for the lattice phonons of N2 at
T535 K. The one-phonon density is first calculated direc
from its definitionD1(v)5(kid(v2vki). Details of this
calculation appear in Sec. IV. The weighted dens
G1(v,T) is then obtained from Eq.~3.1!. Then-phonon den-
sitiesG2(v,T) andG3(v,T) are then computed in sequen
using the recursive relation~3.2! and finally inserted in Eq.
~3.3! to yield the net densityrn(v,T).

To evaluate the consequences of replacingGn(v,k) with
Gn(v), we have computedGn(v,k) via Eqs.~2.1! and~2.4!.
The difference betweenGn(v,k) andGn(v) is found to be
barely noticeable already forn52. Therefore the approxima
tion of neglecting the dependence of the densities on
phonon wave vector is fully justified.

To obtain the total linewidth 2G i for a phonon at fre-
quencyv i , we multiply the netn-phonon densityrn by the
average squared anharmonic coupling coefficientCn11

i and
sum onn:

2G i~T!5C0
i 1C3

i r2~v i ,T!1C4
i r3~v i ,T!1•••

1Cn11
i rn~v i ,T!1••• , ~3.4!

where a phenomenological parameterC0
i has been added t

represent any residual temperature independent linewidth
due to many-phonon scattering, such as an instrumenta
impurity broadening. The coefficientsCn

i , which depend on

FIG. 1. Calculation of the three-phonon density of states for
lattice modes ofa-N2 at T535 K. From top to bottom: one-
phonon density D1(v)5Skid(v2vki), auxiliary densities
G1(v,T) @Eq. ~3.1!#, G2(v,T) andG3(v,T) @Eq. ~3.2!#, and ther-
mally weighted densityr3(v,T) @Eq. ~3.3!#. D1, Gn, and rn are
defined for v in the ranges@0,vmax#, @2nvmax,nvmax#, and
@0,nvmax#, respectively, wherevmax'70 cm21 is the largest lattice
frequency.
e

ot
or

the branch indexi , may be obtained by fitting Eq.~3.4! to
the experimentalG i(T) or computed from a potentia
model.5

TheCn
1 coefficient for a given phonon mode 1 is implic

itly defined by comparison of Eq.~3.4! with Eq. ~2.7!. The
corresponding explicit definition5 in terms of then-phonon
couplingsV1,2,3,...,n and of the closely related derivative
F1,2,3,...,n of the total potential with respect to then normal
coordinates associated tok1 ,k2 ,k3 ,...,kn ~Refs. 9, 19, and
24! is

Cn
152p~n21!!n2 (

k2k3•••kn
uV1,2,3,...,nu2

3@ f ~v2! f ~v3!••• f ~vn!#
21, ~3.5!

V1,2,3,...,n5
1

n! S \

2v1

\

2v2

\

2v3
•••

\

2vn
D 1/2F1,2,3,...,n .

~3.6!

B. Least squares fit: choice of the model

The fit to the experimental dampings is a typical optim
zation problem. The dampingGe has been measured at
numberN of temperaturesTe and a model functionG(T),
which depends of a set of undetermined parametersCn , has
been chosen. A combination of parameters which minimi
the distance of the model from the experiment is desired
situations like the present one, where the experimental er
do not appear to fluctuate wildly and ‘‘outliers’’ are not e
pected, an appropriate measure of distance is theL2
metric,25,26 that is the usualx2 deviation between measure
and model dampings:

x25 (
e51

N FGe2G~Te!

se
G2. ~3.7!

The ‘‘weight’’ se is the standard deviation of theeth obser-
vation. Whense is not available, the usual procedure25,26 is
to first assign an arbitrary constants to all observations, then
fit the model parameters by minimizingx2, and finally re-
computes25(e@Ge2G(Te)#

2/N. This recipe yields an es
timate s for the standard deviation of the measuremen
which will be eventually propagated to an error~i.e., a con-
fidence interval! for the fit parameters.

Because our model equation forG(Te), Eq. ~3.4!, con-
tains, in principle, an infinite number of terms, it is necess
to select an appropriate finite combination of fitting para
eters. One has to choose~1! whether to include or not the
temperature independent broadeningC0 , and~2! the highest
ordern included in the series. Since low order multiphon
processes are more probable than high order processe
does not make sense to include a term without including
previous terms in the series.

To provide an example of the problems involved in suc
selection, we have chosen two of the phonons of solid2,
namely theEg symmetry lattice mode near 38 cm21 and the
Ag stretching mode near 2328 cm21, and separately mini-
mized thex2 deviation between the experimental and mod
damping with several different combinations$ i , j ,...% of
nonzero parameters$Ci ,Cj ,...%. Figure 2 displays a com
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parison between the experimental and fitted dampings
some of these combinations. For the phonon at 38 cm21 we
also list in Table I the optimal values of the parameters.

For the lattice phonon~upper panel of Fig. 2!, the n53
decay processes alone~set $3%! underestimate the observe
temperature dependence of the damping, thus indicating
higher order processes are also required. The$34% set per-
forms significantly better, as expected, while the$345% set
provides only a very small additional improvement. Sin
the$03% and$034% sets require negative coefficients~Table I!,
they are considered as physically meaningless and are
shown in Fig. 2. The constant termC0 must be excluded
from the fit.

For the stretching phonon~lower panel of Fig. 2!, there
are non53 decay processes allowed by the energy con
vation constraints@i.e.,r2(v,T)50 for w52328 cm21#. Be-
cause then54 processes alone~set $4%! overestimate the
observed temperature dependence, it is necessary to inc
C0 , the only possible lower order term. The$04% set repro-
duces the observations quite well, and, again, the$045% set
yields a negligible improvement.

If we were to choose a preferred set of parameters for
lattice mode on an intuitive basis, we would discard the s
$03% and $034% as meaningless, and then adopt the rule
thumb ‘‘keep adding terms until the improvement in the
becomes small enough’’ to select the$34% set as the best an
most informativeset. For the same reason we would sel
the $04% set for stretching phonon. We aim to formalize a
to automate these intuitive notions.

The decision whether to include or not a temperature
dependent dampingC0 is, in part, a matter of preference. W
recall that a source phonon may decay in ‘‘down’’ proces

FIG. 2. Choice of the theoretical model for the temperature
pendence of the linewidth 2G of the Eg lattice mode at 38 cm21

~upper panel! and theAg stretching mode at 2328 cm21 ~lower
panel!. Circles: experiments~Refs. 14–17!; lines: fits with dif-
ferent sets$ i , j ,...% of nonzero coefficients, as indicated in the fi
ure.
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in which all of its energy is redistributed by creating a num
ber of phonons of smaller energy, and in various types
‘‘up’’ processes in which the decay is assisted by the ad
tional energy provided by the annihilation of one or mo
preexisting phonons. At 0 K the thermal phonons populatio
is zero and ‘‘up’’ processes are not allowed. Therefore a
observed linewidth at very low temperatures must be due
‘‘down’’ decay and/or to the temperature independent bro
eningC0 .

For the stretching phonons of N2, due to the structure o
the one phonon density of states and to the energy conse
tion constraints, there are no combinations of phonons av
able for ‘‘down’’ decay. In such cases, which occur fr
quently for internal phonons, one has to allow for a const
term to reproduce the observed linewidth at 0 K. For N2 this
residual linewidth is 2C0'0.005 cm21 ~Fig. 2!, a value
which is comparable to the statistical error evidenced by
fluctuations of the measurements.

For the lattice phonons the energy conservation c
straints for ‘‘down’’ decay can always be satisfied. Sin
both ‘‘down ’’decays and temperature independent broad
ing C0 contribute to the damping at low temperature, a
since for N2 the latter term appears comparable to the m
surement errors, an unambiguous separation of the 0 K line-
width into the two contributions is impossible. In such
situation it is preferable to neglectC0 with respect to the
much larger broadening due to ‘‘down’’ decay.

To close this discussion, we summarize oura priori
recipe for including or not theC0 term: ~1! always include
C0 for those internal phonons for which the structure of t
density of states does not allow ‘‘down’’ decay;~2! unless
there is evidence of structural, isotopical, or chemical dis
der, do not includeC0 for all the lattice phonons and fo
those internal phonons for which ‘‘down’’ decay is allowe

After deciding on the inclusion of theC0 term, one has to
choose the highest orderCn included in the series, a choic
which can only be donea posteriori. Clearly this choice
cannot be based solely on the agreement between mea
ment and fit. In fact, though the experimental data could
reproduced exactly by using a number of terms~i.e., param-
eters! equal to the number of measurements, such a fit wo
contain no useful information beyond that already contain
in the data. In some sense, we aim to maximize the a
tional information provided by the fit.

A reasonable measure of the amount of information in
fit is the Akaike Information Criterion~AIC!,27,28 originally
derived in a maximum likelihood context, and defined by

AIC5 ln~x2!12K, ~3.8!

where K is the number of adjustable parameters in t
model. The model with the minimum AIC is regarded as t
best representation of the experimental data. When two
ferent models have almost equalx2 deviations, the mode
with the lower AIC is that with the smaller number of pa
rameters. By minimizing thex2 deviation for several alter-
native models and then by choosing the model with the m
mum AIC, one effectively combines a best fit criterion wi
a ‘‘principle of parsimony.’’

We use an AIC analysis to choose the optimal ordern for
truncating the series for the phonon damping, Eq.~3.4!.
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Table I presents the results of such an analysis for the t
perature dependence of the dampingG(T) of the phonon at
38 cm21 of N2 . We have separately minimized thex2 by
including one, two, three, etc. consecutive terms of the se
for the damping. For each set$ i , j ,...% the table lists the
optimal coefficientsCi ,Cj ,..., together with the correspond
ing AIC and squared correlation coefficientR2.

The table clarifies the mechanism through which the A
analysis weighs accuracy and complexity of the fit funct
to identify the best model. In the sequence$3%, $34%, $345%,...,
the AIC first decreases, because the$34% set is much better
than the$3% set ~R2 much closer to 1!, and then increases
because the very small gain in the fit does not compen
for the cost of additional adjustable parameters. The A
analysis captures very well our intuitive reasoning and c
rectly identifies the$34% set as themost informativemodel.
Table I also indicates that, as usually expected, the coup
coefficients decrease with increasing ordern.

C. Least squares fit: error analysis

The set of parameters$Ci
min% which has the minimum AIC

and yields the minimumx2 distance between measuremen
and model,xmin

2 , is considered as the ‘‘best’’ set. This set
parameters is by no means the ‘‘true’’ set, because a rep
tion of the measurements would yield a different set$Ci% of
parameters. The probability distribution for$Ci%, which de-
termines the confidence region for the parameters, obvio
depends on the probability distribution for the measu
ments. If the measurement errors follow a normal~Gaussian!
distribution, then it can be proved that the quantityDx2

5x2($Ci%)2xmin
2 follows a chi-square distribution.25,26 For

each parameterCi , the regions withDx2,1, 4, or 9 enclose
the 1s, 2s, or 3s interval of confidence~the interval where
Ci falls with probability 68.3%, 95.4%, and 99.73%!. The
recipe mentioned in Sec. III B is to be followed to evaluates
when the experimentalse’s are not available.

In the least squares fit for the mode at 38 cm21 we have
found that the optimal parameters are not well determi
and, as shown by Table I, fluctuate wildly when the num
of terms is varied. This pathology is due to the fact that
‘‘basis functions’’ of the problem, i.e., the weighte
n-phonon densities of statesrn(v,T) of Eq. ~3.4!, are highly
correlated to one another. In the limiting case of a perf
correlation, one can build linear combinations of the ba

TABLE I. Minimum AIC analysis for theEg mode near
38 cm21. For each set$ i , j ,...% the table reports the optimal coeffi
cients Ci ,Cj ,..., the AIC and thecorrelation coefficientR2

5Se@G(Te)2Ḡ#2/Se@Ge2Ḡ#2. Here G(T) is given by Eq.~3.4!
and Ḡ is the average experimental damping.C0 is in cm21; the
other coefficients are in cm22.

Set AIC R2
C0

cm21
C3

cm22
C4

cm22
C5

cm22

$3% 5.613 0.876 19.234
$34% 5.421 0.986 2.845 0.339
$345% 7.261 0.988 7.678 0.082 0.034
$03% 7.063 0.928 21.456 24.336
$034% 7.330 0.987 0.340 20.350 0.380
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functions exactly equal to zero, and add to the fit arbitra
multiples of such degenerate combinations without any
fect on thex2. Even this singular situation does not imp
that the fit is totally meaningless, but merely that the coe
cient in front of a degenerate combination is undetermin
The coefficients of other combinations may well be det
mined with high precision.

The recommended method for singular, or close to sin
lar, x2 problems is singular value decomposition~SVD!. As
the SVD algorithm is described in many numerical analy
handbooks,25,26 we will simply summarize the main prin
ciples of the method. Because the theoretical dampi
G(T) of Eq. ~3.4! are linear in the fit parameters$Ci%, the
x2 deviation of Eq.~3.7! is a second order polynomial in
$Ci%. The surfaceDx25const is therefore a quadratic form
which describes a multidimensional ellipsoid centered
$Ci

min%. The SVD procedure is mathematically analogous
the diagonalization of a dynamical matrix which gives t
eigenvectors and eigenfrequencies of a set of coupled
monic oscillators; SVD yields an orthonormal set of vecto
V j describing the principal axes of the ellipsoid in terms
the original parameters, and a corresponding set of ‘‘singu
values’’ wj whose reciprocals are the axis lengths. The p
cedure returns in effect a rotation from the old paramet
$Ci2Ci

min% to a new set of parameters$Aj% which diagonal-
ize theDx2 quadratic form:

Dx25w1
2A1

21w2
2A2

21•••1wn
2An

2. ~3.9!

The absence of cross terms in Eq.~3.9! indicates that the new
parametersAj are mutually independent~statistically uncor-
related!. Those combinationsV j of the original parameters
with the largerwj have the larger effect on the fit and a
therefore the more precisely determined combinations.

IV. CALCULATIONS

We present here the details of the test calculation
a-N2. Solid nitrogen in itsa phase crystallizes as a cub
lattice~space groupPa3,Th

6! and is stable in the temperatur
range 0–36 K.29 The factor group analysis of thek50 lattice
modes predicts five Raman active modes~with symmetry
Ag1Eg13Tg!, two infrared active modes (2Tu), two opti-
cally inactive modes (Au1Eu), and one acoustic mod
(Tu). The experimental temperature dependence of
damping, G(T), is available for most of the active
modes.14–18For each of these modesi we have estimated the
average anharmonic coupling coefficientsCn and their con-
fidence regions by fitting the experimentalG i(T).

The one-phonon density,D1(v)5(kid(v2vki), has
been calculated by sampling the full Brillouin zone~BZ!
with about 10 000 wave vectors. The phonon frequenc
have been computed at the extrapolated 0 K crystal
structure30 with the intermolecular potential model of Mur
thy et al.,31 to which we have added a purely harmonic i
tramolecular potential.5 The Debye frequency, estimated b
integratingD1(v), is vD533.3 cm21. The recursive algo-
rithm described in Sec. III A has then been used to comp
the thermally weightedn-phonon densities@Eq. ~3.3!#
rn(v,T) up to n55, for all temperaturesT at whichG has
been measured. These densities, evaluated at the mode
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quencyv i , are to be inserted in the model equation for t
fit @Eq. ~3.4!#.

Minimum AIC fits have been performed for all phono
modesi for which experimentalG i(T)’s are available. All
sets of consecutive nonzero coefficients,C3 , C4 , C5 , and
C6 , have been tested. As previously discussed, the cons

FIG. 3. Linewidth 2G (cm21) vs temperatureT ~K! for the
phonons ofa-nitrogen. Phonon modes are labeled by their symm
try species and calculated harmonic frequency in cm21. Circles
denote experiments~Refs. 14–18!. Linestyles distinguish fit results
total linewidth ~solid lines!; individual contributions due toC0

~dash-dot!, C3 ~dashes!, andC4 ~dots!.
nt

termC0 has been included only for the stretching modes.
provide a worked example of the connection between po
tial model andCn coefficients, we have also computedCn

through Eqs.~3.5! and ~3.6!. The potential derivatives hav
been computed numerically, as described in Ref. 5.

V. RESULTS

The results of the fits are shown in Fig. 3. We have fou
that the $34% set has the best AIC for all lattice mode
whereas the$04% set has the best AIC for the two stretchin
phonons. As shown in Fig. 3, the dominant contribution
the width at higher temperatures is given in all cases by
diagrams of vertex ordern54. This conclusion is in agree
ment with thea priori calculations.5 The anharmonic cou-
pling coefficientsCn obtained from the fits are listed in Tabl
II together with thea priori Cn calculated from the potential
The calculated coefficients of Table II are different fro
those of Ref. 5, due to a different choice for the weig
function, to changes of units, and to a programming error
the stretching modes.

Both fitted and calculatedCn decrease quite fast with in
creasing ordern. In this respect thea priori computation
confirms the results of the AIC analysis, and indicates t
for a-N2 then-phonon processes beyondn54 are not very
important with respect to three- and four-phonon process

A more meaningful comparison betweena priori compu-
tation and fit depends on the confidence region of the fit. T
SVD confidence ellipsoids for the fit coefficients are sho
in Fig. 4 together with thea priori coefficients. Each ellip-
soidDx2<9, whose principal axes have orientationV j and
length 1/wj , encloses the 3s confidence region for the coef
ficientsC3 andC4 ~or C0 andC4! for a single mode. For all
lattice modes, the ellipsoids are very elongated and hav
negative slope for the major axis, thus indicating a nega
correlation betweenC3 andC4 . Thus substantial variation
of C3 , compensated by smaller variations ofC4 in the op-
posite direction, are allowed by the fit data. Previo

-

s
TABLE II. Anharmonic coupling coefficientsCi obtained from the AIC fit to the experimental linewidth
and calculated as averages of potential derivatives according to Eqs.~3.5! and ~3.6!. Phonon modes are
labeled by their symmetry species and calculated harmonic frequency.

Sym. Freq.
cm21

C0

cm21
C3

cm22
C4

cm22
C5

cm22

Eg 38 Fit 2.845 0.339
Calc. 2.158 0.202 2.91331023

Tu 45 Fit 2.749 0.055
Calc. 2.343 0.226 4.76231023

Tg 47 Fit 3.632 0.261
Calc. 3.387 0.219 3.60131023

Tg 70 Fit 3.294 0.754
Calc. 2.647 0.115 2.55731023

Ag 2328 Fit 0.66631022 0.12931022

Calc. 0.075 2.20031025 2.75631028

Tg 2329 Fit 0.10331021 0.16731022

Calc. 0.101 6.60831025 3.13231028
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55 14 863VIBRATIONAL DENSITY OF STATES AND . . .
studies9,12,32 indicate that large ambiguities in the fit param
eters are a common occurrence. As shown by Fig. 4, tha
priori C n are not particularly well correlated to the fitte
Cn , although they usually lie within or close to the 3s con-
fidence region of the fit. Please note that the regions co
sponding to negative coefficients, though allowed by the
must be rejected on physical grounds.

TheC0 andC4 coefficients for the stretching modes a
both well determined (s'10%) and exhibit a rather wea
cross correlation~the axes of the ellipsoids do not devia
much from theC0 andC4 axes!. For these modes the com
parison between fit and calculation is quite problema
sinceC3 is not experimentally accessible, due to the abse
of two-phonon resonances around 2328–2329 cm21, and
C0 has a purely phenomenological origin without a well d
fined a priori equivalent. ForC4 , the only coefficient for
which a comparison is possible, the results obtained from
potential derivatives are substantially smaller than those
tained from the fit.

Our results cannot be directly compared to the anh
monic constants obtained from a phenomenological fit
the Tu mode,18 since this includes the state density fac
also. Comparison of the temperature dependence of the c
and quartic contributions to the linewidth in the two cas
indicates, however, that the two methods lead to essent
the same results.

FIG. 4. Anharmonic coupling coefficientsCn for the lattice and
the stretching modes~upper and lower panel, respectively!. C3 and
C4 are in cm22 units; C0 in cm21. Symbols: coefficients com
puted as averages of potential derivatives. Ellipsoids: 3s param-
eter confidence region obtained from the SVD analysis. Harmo
frequencies (cm21) label nearby ellipsoids and, as indicated by t
arrows, corresponding calculated coefficients.
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VI. DISCUSSION AND CONCLUSIONS

We have developed a very efficient method to calcul
the phonon damping in anharmonic crystals starting from
one-phonon density of states and the average anharm
couplings between phonons. The one-phonon density is u
to obtain then-phonon thermally weighted densities whic
when multiplied by the coupling coefficients, yield the va
ous high order contributions to the phonon damping. F
a-N2 we have obtained the coupling coefficientsCn in two
different ways: by averaging potential derivatives, with t
potential model of Murthyet al.,31 and by fitting the experi-
mental temperature dependence of the phonon damping.
teria for choosing an optimal combination of decay proces
and methods to estimate the confidence region of the co
cients have been presented in the context of the fit.

For the lattice modes ofa-N2 the calculated coefficients
C3 andC4 are of the same magnitude as those obtained fr
the fit, although considerable deviations exist among the
ferent modes. For the stretching modes, the calculatedC4
coefficients are much smaller than those from the fit. T
situation corresponds to that found in most past calculati
for the damping,12,33–36which were usually restricted ton
53 processes. Then53 results for the lattice modes of N2
~Refs. 33 and 34! indicate that different potential model
with comparable harmonic frequencies may give surprisin
large linewidth differences. Furthermore, it should be no
that in calculations like the present one5,12,37 the a priori
average couplingC4 has been estimated by sampling ove
restricted class of coefficients. Therefore,C4 is expected to
be less accurate thanC3 , which is averaged over all coeffi
cients. This expectation is consistent with the results of
fit. For the lattice modes, thea priori C3 lie within the con-
fidence region of the fit, whereas this does not apply
C4 .

In the calculations for then53 contribution to the decay
of internal modes12,35,38~for systems wheren53 decays are
allowed! the experimental linewidth was also systematica
underestimated. These findings indicate that detailed ag
ment between the fitted and computedCn can only be ob-
tained by fine tuning of the potential model. Intramolecu
anharmonicity, totally neglected in the present calculatio
is probably to be blamed for most of the discrepancies fou
for the stretching modes.

The methods discussed in this paper provide a system
strategy for extracting information on the potential anharm
nicity from the experimental temperature dependence of
phonon linewidths and a rational way of comparing the e
tracted information with a potential model.
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