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Microscopic theory of Anderson localization in a magnetic field
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A microscopic diagrammatic Green’s function theory is developed for the Anderson localization of a dis-
ordered two-dimensional electron gas under the influence of a weak external magnetic field. Using symmetry-
adapted representations for the correlation functions, the influence of the magnetic field on the pole structure of
the vertex function is investigated. A self-consistent effective potential is constructed from a class of diagrams,
which are relevant if the quantum corrections to the conductivity are not completely suppressed by the
magnetic field. Simple ladder diagrams do not play any significant role. The microscopic theory generalizes the
self-consistent treatment derived by Vollhardt and Iféo[in Electronic Phase Transitionsedited by W.

Hanke and Y. V. KopaevElsevier, Amsterdam, 1992Phys. Rev. B22, 4666(1980] to the case of weak
nonzero magnetic fields and justifies our former phenomenological approach to the pr{BE&H63-
182997)05304-X

. INTRODUCTION ence or absence of time-reversal symmé&tiyThis astonish-
ing result, which is the subject of some controversial discus-

At low temperatures the transport properties of micro-sions, is valid for 3D systems and does not apply to the 2D
structures are governed by quantum interference effects afase, where one expects a phase transition only when a mag-
conduction electrons during their elastic scattering on impunetic field is present. Furthermore, in two-dimensions topo-
rities. This gives rise to quantum corrections to the classicalogical invariants play a crucial role and a two—parameter
transport, which are due to singular backscattering describestaling theory seems to be necessary. In high-quality quasi-
by ladder diagrams of the particle-particle channel and leativo-dimensional electron-gas systems disorder scattering is
to anomalous temperature and magnetic-field dependenceastimately connected to transitions between various conduct-
Based on a one-parameter scaling theory of localizdtion,ing and insulating states and their dependence on magnetic
which clarified the role of quantum interference effects infield. Such investigations are of fundamental interest in the
microstructures, a theory of weak localization was estabtheory of the quantized Hall effect. In this paper we do not
lished (see, e.g., Ref.)2 which holds in the limit of weak treat this very interesting problem but restrict our consider-
disorder, when the mean free path is much larger than thation of Anderson localization to low magnetic fields, where
Fermi wavelength. The most important success of this theorthe Landau orbit is much larger than the Fermi wavelength.
was the explanation of the anomalous negative magnetore- Finite-size scaling studies of a simple 2D one-electron
sistance(see, e.g., Ref.)3 Results of experiments were in model demonstrated that there are two phase transition
excellent quantitative agreement with the weak localizatiorpoints above a critical impurity concentration as a function
theory so that magnetoresistance measurements have besfithe magnetic-field strengthThe first transition point may
used as a unique probe of electronic processes in such strugecur at very low magnetic fields, whereas the second one is
tures. At higher degrees of disorder, when the elastic scattepbserved at a field strength that is about one order of mag-
ing length A is comparable with the Fermi wavelength nitude smaller than the field at which the shrinkage of the
(keA~1) the quantum corrections to the conductivity be-wave function becomes dominant.
come even more relevant and a self-consistent description of Vollhardt and Wifle derived a self-consistent theory of
disorder effects is desired. Anderson localization by summing up the most strongly di-

Recently, the statistical properties of the energy spectrurwergent diagrams. This theory had been successfully applied
of a three-dimensiondBD) disordered system in a magnetic to both classical and quantum mechanical wave propagation
field have been investigatédSurprisingly, it has been found phenomena in disordered systeffts a review see, e.g., Ref.
that there is a critical ensemble that is characteristic for thé®). Several approaches have been proposed to generalize this
metal-insulator transition irrespective of the presence or abself-consistent scheme to the case of broken time-reversal
sence of a magnetic field. The magnetic field actuallysymmetry, as realized in the presence of an external mag-
changes the universality class, but, nevertheless, the behavinetic field. The main problems of such a generalization are,
of the system at the critical point cannot be distinguishedon the one hand, the identification of the class of diagrams,
from the one without a magnetic field. From a field- which are to be treated self-consistently, and, on the other
theoretical point of view this result is completely unex- hand, to connect the approach with the correct perturbation
pected. It has been speculated that the critical behavior is dubeory for weak disorder. Due to the magnetic field the con-
to a new universality class that is independent of the prestribution of the maximally crossed diagrams of the Cooper
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channel is suppressed and localization can only be due tehich indicates that it is useful to introduce the so-called
divergencies resulting from other diagrammatic contribu-Wigner transformed Green’s function, depending only on
tions. Within an effective field theory a correction to the one wave vectdf

conductivity appears in two loop order. This contribution is

independent of the magnetic field and results from the diffu- K 7)= ke

. . . . o Z)= k+A(r),x,z)e . 3
sion channel. In two dimensions there is a logarithmically G(k2) EK 9( (. #2) ®

divergent correctioh that is weaker by a factorkga) —* hi trv-adapted tati fthe G s f
compared to the zero-magnetic-field case but, nevertheles§ 'S Symmetry-adapted representation of the Green's func-
tion accounts for the invariance of the system under mag-

dominates the behavior in sufficiently large systems. Dia- ~ . ; : SN .
grammatic Green's-function theories, which additionally in- netic translations. The inverse transformation is simply given
corporated particle-hole ladder diagratfi$! were only of by

limited success and could not reproduce the field-theoretical _

results. The identification of the class of diagrams, which can G(k,r,,2)= J drG(k—A(r),z)e'*". (4)

be summed up in a self-consistent approximation and are

most important in the vicinity of the metal-insulator phaseNow it is straightforward to see that the Fourier-transformed
transition point, is the main objective of a Green’s-functionDyson equation with the dispersion relatiefk) of the un-
theory of Anderson localization in a magnetic field. In this derlying lattice

paper we propose such a microscopic approach that is valid

if quantum corrections are not completely suppressed by the {z— e[k +A(i Vi) 1}G(Kky kz,2) = 8(ky — ko)
magnetic field and generalizes both the self-consistent theory o

of Iocallzatlon_at yamshmg m.agnetlc fiefdand results of +Z S (Kq ,k,2)G(k Kz ,2) (5)
the weak localization theory with respect to the magnetocon- K

ductivity. Furthermore, the microscopic theory presented

agrees with our previous studies based on a phenomenologiimplifies considerably if one introduces the Wigner trans-
cal reasoning?® formed Green’s functior{3). To that end we introduce the

The paper is organized as follows. In Secs. Il and IIl thenew variablek, x and sum ovek. Furthermore, we take into

symmetry properties of the Green’s functions in a magneti@ccount that in the symmetric gauge the equakifnr=0 is

field are used to introduce the symmetry adapted Wignefulfilled. Throughout we assume that the self-enelyyis
representation. The influence of a weak magnetic field on th#xdependent of momentum. Then, in the symmetry-adapted
pole structure of the vertex function is investigated in SecWigner representation the Dyson equation has the form

IV and the Ward identity is discussed in Sec. V. The main ,

aim of our paper, namely, the selection of diagrams, that {z—elk+ AV ]}G(k,2)=1+2(2)G(k,2), (6)
have to be treated self-consistently in order to construct aghich has the following explicit solution for free electrons in
adequate picture of Anderson localization in a magnetighe conduction band(k) = 7%k%/2m* :'®

field, is presented in Sec. VI. We close with a summary in

Sec. VIl. ~ (—1)"L[2(kD)?]

— e (kh?
g(k,z)=2e ngo z—ho(n+1/2)-2(2)°

)
Il. DYSON EQUATION IN WIGNER REPRESENTATION Herew, is the cyclotron frequency— JATmF ax is the mag-
To consider the peculiarities of the impurity scattering innetic length, and.,, are Laguerre polynomials. We want to

a 2D electron gas under the influence of a transverse mag)-oint out that the Dyson equati((ﬁ) parallels as Closely as
netic field we profit from symmetry-adapted coordinates. Ifpossible the one that is obtained in the absence of any mag-
an external magnetic field is applied to the system, translanetic field.
tional invariance no longer exists so that a simple Fourier
transformation does not reduce the number of independent IIl. WIGNER REPRESENTATION
variables. Consequently, the Fourier-transformed impurity- OF TWO-PARTICLE FUNCTIONS
averaged one-particle Green'’s function, for instance, still de-
pends on two independent momektandk,. Nevertheless, In the one-electron model considered both the conductiv-
one may exploit the following symmetry property of the av- ity and the dynamical diffusion coefficient are expressed by
eraged one-particle Green’s function: the density-density correlation function
G(11.02,2)=G(ry+ 1,041, 2exi AN (11— 1)1, (D) P(11.72.13,14i2,2) =(G(11.13,2)6(1e.12,27). - (8
In accordance with Eq1l) and as a consequence of the in-
which allows the introduction of a symmetry adapted reprevariance against magnetic translatiods, exhibits the fol-
sentation. Heré\(r) is the vector potential of the magnetic lowing symmetry property in the site representation:
field in the symmetric gauge armis on the imaginary time
axis. Performing a Fourier transformation and introducing ®(ry,r2,r3,14,2,2" )=®(ry+r,rp+r,r3+r,1,+r1,2,2")
the new wave vectork,k by k;=k+ k/2 andk,=k— /2, .
the symmetry relation Eo[l)ymflzly be expresseé by XexfiA(N(r—rp=ra+ry)]. (9)
_ As in Sec. Il, a direct Fourier transformation does not result
G(k,k,2)=G(k—A(r),r,,2)e' " (2 in any simplification because there is no momentum conser-
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FIG. 1. Diagrammatic representation of the Bethe-Salpeter pg 2. piagrammatic introduction of the vertex functibn
equation.

d(kk',K2,2")
vation and still four variableg,, ... k, appear. Therefore,
we introduce new independent quantities by =R(k,K',k,2,2")
u(z,z’") 2 R(kq,K'  ,2,2" )2 R(K, Ko, K,2,2")
K+ 7 . K + 1 2 ’
ki=k———, k=K'—3 1-u(z,2) 3 i R(Ky Ko, 062,2")
(14
Kt 7 L K whereR is the Wigner transform of the product of two one-
=k+ —— =k’ + —
kp=kt+ 5= k=k'*3, (10 particle Green’s functionsdG) andu is the effective poten-
tial. To proceed further one may express the density-density
so that Eq(9) is transformed into correlation functiord® by the vertex functiod’ as shown in

Fig. 2. Using the Wigner representation introduced in Sec.

(kK )= (kAT K+ ACT) e I, this equation simplifies considerably and takes the form
Kk, m;2,2' )= +A(r),k' +A(r), Kk, 5;2,2" )e' 7",

11
O (kK k2,2 )=R(kK k22)+ > Rkk,Kk22")
Ky K
Now the Wigner representation of the density-density corre- 1
lation function can be introduced, thereby making it possible XT'(kq,ky,662,2" )R(Ky K 16;2,2").
to reduce the number of independent variables (15

_ From Egs.(14) and (15) it is seen that the vertex function
d(kk',K;2,2")= E f drel (e x)r I does not depend ok andk’. Therefore, we obtain from
x'\n these equations
XOK,k'+A(r), & ,,2,2"). (12
(kK +A(M). &\ 72,2). (12 W(22)
1-u(z,2") 2 G(k+ Kl2,2)G(k— Kl2,2") "
(16)

I'(k;z,2')=
The inverse transformation has the form

_ _ Now the pole structure of the vertex function has to be in-
O (kK k72,2 )= jdrdr’e'("'*"”'e””@(k vestigated, which requires an analytic continuation of the
« one-particle Green'’s functions in the denominator of @)
FAM) K +AT+1') . 12,2'). (13 (z—E+hw+ie andz’—E—ig). For the producig'G* a
(r ( )k )- (13 differential equation is easily derived from the identity

[(gr)—l_(ga)—l]grga:ga_gr (17)
Introducing the Wigner transformed function Ed.2) has o . .
the advantage that the correlation functions depend only oRY considering the Dyson equatid6) and by transferring
three vectorsk,k’, and « as in the homogeneous case the derivatives ork to
(A=0), where quasimomentum conservation holds.

hot — )gf K+ o E+hio ga(k—f E
7(E,0) 2’ 2’
IV. CALCULATION OF THE VERTEX FUNCTION
K K K
The two-particle functiond satisfies the Bethe-Salpeter +G% k— 5B e K+2AV,)+ 5) g'| k+ 7 Etho

equation, which is diagrammatically depicted in Fig. 1. Our
aim is to consider the influence of a magnetic field on Ander- K %
son localization within a self-consistent effective potential -G’ k+ > Etho 8(k—2A(iVK)— 5)
approach. Because in the weak-scattering limit the irreduc-
ible vertexU is independent of the momenta it is expedient K
to start from the so-called diagonal vertex approximation. X G k= EaE

In this approximation the Bethe-Salpeter equation is easily
solved in the Wigner representation and one obfains =27iN(k,k,E,w). (18
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Here the self-energy difference is expressed by an effective N 1 3 1 3
scattering timer according to -

|ﬁ 2 4 uy 2 4 2 4 2 4

7(E,w)’ (19

SE+hw)—23(E)=—
FIG. 3. Diagrammatic representation of the equation for the ir-

We are interested in the limik,w—0 and consider ,w)  reducible vertex.

corrections resulting from the pole i so that the f, o)
G (k,E+hw)—GHKE)

dependence on the right-hand side of B®) can be omitted ' __
andN(k, x,E,w) is replaced by kz Pk k.0, @) ho - (29
1 . After summing up this equation ovée and exploiting the
N(k,E)= ﬁ[g (kE)=G(kE)]. (200 explicit solution ford® from Eq. (14) one obtains
hw
Furthermore, we restrict our consideration to the region of U(E,w)= R(E.w) 2miN(E)’ (26)
weak magnetic fields and treat only its influence on the pole '
structure, which results in logarithmic corrections to the dy-where
namical diffusion coefficient. In this approximation E38)
may be further simplified with the result R(E,w)= A
,w)=2, R(k,K ,0,E,0). (27)
K.k’
. if K A second equation foR(E,w) can be easily derived by fol-
_ e _ )
(h“’ Vie(K)p(x)+ T(E,w))g k+5.E+ho lowing the same steps as put forth in Sec. IV and by setting
therex=0. Consequently, from Ed21) we easily find
K
Xga k—E,E):ZWiN(k,E), (21) 2’7TiN(E)
R o) = T (Ew)’ @9
where the following operator was introduced: which together with Eq(26) results in
P(r)=r+2A(IV,). (22 u(E,w)= (29)

27N(E)7(E,w)
It is seen from Eq(22) that the charge of the related coop-
eron is 2, which has been accounted for in weak-
localization theory too. Now an iteration of E@1) up to the
third order inf w, x, andA together with Eq(16) gives our
final result for the vertex function

This equation relates the up to now unknown effective po-
tential u with the scattering timer and is an essential con-
necting link in our self-consistent scheme.

VI. EFFECTIVE POTENTIAL

UWE w)| . -1 e :
I'(x,E,w)= _|w+i2j Pi(10P; (WD (E.w)| There is still the challenging problem to be addressed,

7(E,0) namely, to select diagrams for the irreducible vettexrom
(23 which the effective potentiall is constructed. The class of
diagrams has to be chosen so as to ensure that in the limit of

where the spectral diffusion coefficient is defined by vanishing magnetic fields the theory by Vollhardt and
Walfle® is recovered. The problem of finding appropriate dia-
"Ew) 1 de(k) de(k) grammatic contributions is complicated by the observation

Dij(E,w)ZTWE N(k,E) KK (24)

K i that simple ladder diagrams of the scattering channels are
unimportant. We consider the same set of diagrams, which
N(E)=Z=ZN(k,E) is the density of states at the Fermi level. we already introduced in our study of Anderson localization
The vertex functiod” in Eq. (23) corresponds to the Cooper in an external electric fiel§ and is depicted in Fig. 3.
propagator, which we introduced in our former phenomenoAmong other and more essential contributions both the sec-
logical treatment of the problef. ond and the third term on the right-hand side of Fig. 3 gen-
erate maximally crossed diagrams of the Cooper channel.
This double counting is corrected by the fourth diagram,
whose contribution, however, can be neglected if the renor-
The consideration of the due relation between one- anehalized coupling is much larger than the bare coupling con-
two-particle properties via the Ward identity is inevitable in stantug. This result is in line with the expectation that in the
the microscopic approach to Anderson localization. From thevicinity of the magnetic-field-mediated metal-insulator phase
definition of the density-density correlation functidh in  transition the maximally crossed ladder diagrams of the
Eq. (8) the following equation is easily derived for the weak-localization theory do not play any significant role.
Wigner transformed correlation functions: The remaining part of the equation for the irreducible vertex

V. WARD IDENTITY
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has the following form in the Wigner representation . .
g 9 P where Dozvﬁrold. As in our former phenomenological

U(k,K',0:E, o) approach? the autocorrelation functioB ,C(x;E, ) of the
Cooper propagator has been introduced, the Fourier compo-
nents of which satisfy the following differential equation ac-

=Up+UgY, G (k+ Kk E+7iw)G (K —kE)(kE,w) cording to Eq.(23)

+Up> G(K + K,E+%w)G(k— 1,E)T (kE,0), {—iw+D(E,w)p(#)2C(KE,w)=1. (37)

(30 At the absence of any magnetic field the opergitk) is
) ) simply given by so that Eq.(36), together with Eq(37),
whereup=%/[27N(E) 70] and ry is the bare elastic scatter- reproduces the self-consistent equations for the dynamical
ing time. The effective coupling constamtmay be obtained  diffusion coefficient worked out by Vollardt and Wie (for
from the irreducible kernelU by means of an average over a review and a discussion of this equation see Re\en
the Fermi surface electrons are subject to a weak external magnetic field Eq.
(37) is conveniently transformed back to the site representa-
1 tion, which leads to the equation
u(E,w)=W2 U(k,k’,0;E,w)N(K,E)N(K’,E).

. (31) {—iw—D(E,0)[V,—i2A(1)]3C(r;E, )= &(r). (39)

Because a singulae dependence is introduced only by the o the special case of a disordered two-dimensional system

vertex functionl’, Eq. (30) may be further simplified by he foliowing self-consistent equation for the dynamical dif-
averaging it over the Fermi surface, which we denote simply, sion coefficient results from Eqé36) and (39):
by a bar '

1 1 (lkg)2 12
U(E,0)=Ug| 1-2G (K E+Aw)G(K E) > F(K;E,ao}. D=Do~ —ZWZhNJl’b(EJr(?] +Sﬁ)
(32 112
—y E*SE”' (39)

Only terms that are proportional @ G* contribute signifi-

cantly to the average so that we obtain
wherel = J7c/eH is the magnetic lengttky~ 1/v 79 an ap-

5 propriate momentum cutofiy the digamma function, ansl
R(E"")> __ 1 (—iw—s) the variable of the Laplace transformation, which
N(E) 47°N(E)°u(E,w)*’ can be identified with the inverse inelastic scattering time
(33 1/r,. Solutions of this transcendental equation for the diffu-
sion coefficient were compared with results of other self-
Inserting this result into Eq.32), the following relation be- consistent approaches and with experimental data in Ref. 13.
tween the effective potential and the vertex functioh’ is  In the weak-coupling limit kzA > 1), where the disorder can

— 1
g aE__<

47°

obtained: be treated within the framework of perturbation theory, the
diffusion coefficientD on the right-hand side of E¢39) can
s, T(1E, ) be replaced by, which leads to the well-established weak-
U(E,w)=ug| 1+ > 5. (39 localization theory of the magnetoconductivityDur basic
2m°N(E)“u(E,w) results[Egs. (36)—(38)], which we derived in this paper on

. _ _ . the basis of a microscopic model, have already been used to
For an isotropic system we introduce the renormalized dythoroughly investigate Anderson localization in anisotropic

namical diffusion coefficient three-dimensional electron systems under the influence of
weak magnetic fields’ There it has been demonstrated that
D(E,w)=v,2:T(E,w)/d, (35) there is a metal-insulator phase boundary, which separates

localized states at low-magnetic-field strengths, where the
which is in accordance with Eq24). d denotes the dimen- diffusion coefficient scales to zero, from extended states at
sion of the lattice. Considering the res(®9) derived from somewhat higher magnetic fields. This can be seen immedi-
the Ward identity, Eq(34) for the self-consistent potential ately from Eq.(39) in the limit of vanishing inelastic scat-
takes the following form for the diffusion coefficient tering (s—0) and weak magnetic fields, where we obtain
[cf. Eq.(22) in Ref. 19

D(E,w)= 1 Do , (36) 5

11
1+ﬁwN(E)§ ClE,0) D—O:1+;m{ln[(kpho)(wcro)]—C}, (40)
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results are indeed valid for large system sizes satisfying

I<L this agreement demonstrates that the particle-hole

renormalization does not play any significant role at least

near the 3D metal-insulator transition point. Further work
eC seems to be necessary to decide the question whether the

wy TO:WGXF(—’JTKF)\O), (41 numerical data really apply to an infinite system or are re-

FRo stricted to system sizes smaller than the magnetic length.

at which the renormalized diffusion coefficient vanishes. Be- Our self-consistent model has been used to investigate

low this magnetic-field strength the states are localized. Thighagnetic-field-mediated Anderson localization in anisotropic

is due to the fact that one obtains two solutions in thissystem&’ at an arbitrary alignment of the magnetic fiéfd.

magnetic-field region if the infrared cutoff vanishes=0).  There it has been shown that the approach is in accord with

The physically relevant one is simplp =0, which is ap- numerous well-established limiting results.

proximated by the numerical solution of E9 whens

goes to zero. The localization length of the states in weak

with w.=#%/m* 12 being the cyclotron frequency ar@ Eu-
ler's constant. From Ed40) it follows that there is a critical
magnetic field determined by

magnetic fields is, however, much larger than the zero-field VIl. SUMMARY
localization length.
From a renormalization-group analy@&é! it is known The asymptotic critical behavior of the disordered system

that in d=2 dimensions logarithmically divergent correc- in @ magnetic field is governed by the unitary universality
tions exist that are due to diffusion poles and dominate th&lass that reflects effectively broken time-reversal symmetry
magnetic-field-mediated localization if the system dizés  if I<L. On the other hand, under the conditiors| most of
much larger than the zero-field localization lengthThis  the relevant electronic trajectories cover the whole area and
scale-invariant contribution that does not depend on the maghe system behaves approximately according to the orthogo-
netic field is smaller by a factork{h,) ~* compared to the Nhal symmetry?® In this case the cooperon is not completely
suppressed quantum corrections resulting from the Coopd&uppressed by the magnetic field and the construction of a
channel. Neverthe|655, for sufﬁcienﬂy |arge System sizes ar@lf'conSiStent theory of Anderson localization that includes
inelastic scattering times only this classical localizing terman external magnetic field is straightforward. Using a micro-
survives. Although our self-consistent Green’s-function ap-Scopic Green’s-function approach we identified a class of
proach includes particle-hole ladder diagrams via the Bethezertex diagrams that accounts for the magnetic-field-induced
Salpeter equation we did not treat a renormalization of thénetal-insulator phase transition in a disordered two-
diffusions from which such a result could be derived. Rathedimensional electron gas lf<I. The basic ideas we pre-
we focused our attention on the magnetic-field-inducedsented in this paper have already been exploited to treat
renormalization of the quantum corrections that are relevarf\nderson localization in an external electric fiefdlt has

if the magnetic length is larger than the system sikeor the ~ been shown that the particle-hole and particle-particle ladder
inelastic scattering length. That means that we restricted oufiagrams do not contribute significantly and that the dia-
treatment to the case where the cooperons are not completedyams, which have to be summed up, exhibit a complicated
suppressed by the magnetic field and constructed an effectividructure. The selected diagrammatic contributions have been
potential from the particle-particle channel. Consequentlyused to construct a self-consistent effective potential that is
our approach is app|icab|e in the Weak-magnetic-fie]d regioﬁlonnected with the dynamical diffusion coefficient via the
(I>L) where it approaches the weak-localization theory ofWWard identity. We restricted our consideration to the lowest-
the magnetoresistance if the disorder becomes weaRrder change of the pole structure in the vertex function due

(keho>1). Up to now it has not been clear how magnetic-t0 @ magnetic field, allowing us to determine logarithmic
field-induced electron localization due to divergencies comcorrections to the renormalized diffusion coefficient. The

ing from particle-hole diffusion poles could be describedsecond-order contribution, which would introduce the Hall

within the framework of a self-consistent diagrammaticcomponent of the diffusion tensor, has been neglected. The

theory. calculation greatly profited from the introduction of symme-
For a three-dimensional system we calculate the localizally adapted representations.

tion length &g in a magnetic field. Near the metal-insulator ~ Our basic results completely agree with the former phe-

transition point Eqs(36) and(38) can be cast into the closed homenological approach to the probléfwhich has already

formt? been used to treat the field dependence of Anderson localiza-
tion in anisotropic system$and at arbitrary orientations of
2h (1 (= sinht/2) the magnetic field® The microscopic Green's-function ap-

Wk—F)\ofO deo dtm proach that we presented here generalizes the self-consistent

theory worked out by Vollhardt and We® and reproduces

X exp{ —[1/2+ X2+ 1/ £gko) 2]t} =1, (42)  the magnetoconductivity results of the weak-localization

theory in the limit of weak disorder.

whereh=2/(lko)? is the magnetic-field parameter. Solving  Further progress may be expected from an extension of
this equation in the magnetic-field region consideredour microscopic description to higher magnetic fields, where
(h<1), we obtain the same critical exponent —1 for the  the quantum Hall effect becomes relevant. But it is also sug-
divergence of the localization leng#fg as in the case with- gestive to assume that a completely new approach has to be
out any magnetic field.This surprising result is in line with envisaged in this case because in the region of high magnetic
conclusions drawn from numerical studfe.the numerical fields almost all states are strongly localized.
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