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Microscopic theory of Anderson localization in a magnetic field
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A microscopic diagrammatic Green’s function theory is developed for the Anderson localization of a dis-
ordered two-dimensional electron gas under the influence of a weak external magnetic field. Using symmetry-
adapted representations for the correlation functions, the influence of the magnetic field on the pole structure of
the vertex function is investigated. A self-consistent effective potential is constructed from a class of diagrams,
which are relevant if the quantum corrections to the conductivity are not completely suppressed by the
magnetic field. Simple ladder diagrams do not play any significant role. The microscopic theory generalizes the
self-consistent treatment derived by Vollhardt and Wo¨lfle @in Electronic Phase Transitions, edited by W.
Hanke and Y. V. Kopaev~Elsevier, Amsterdam, 1992!; Phys. Rev. B22, 4666 ~1980!# to the case of weak
nonzero magnetic fields and justifies our former phenomenological approach to the problem.@S0163-
1829~97!05304-X#
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I. INTRODUCTION

At low temperatures the transport properties of mic
structures are governed by quantum interference effect
conduction electrons during their elastic scattering on im
rities. This gives rise to quantum corrections to the class
transport, which are due to singular backscattering descr
by ladder diagrams of the particle-particle channel and l
to anomalous temperature and magnetic-field dependen
Based on a one-parameter scaling theory of localizatio1

which clarified the role of quantum interference effects
microstructures, a theory of weak localization was est
lished ~see, e.g., Ref. 2!, which holds in the limit of weak
disorder, when the mean free path is much larger than
Fermi wavelength. The most important success of this the
was the explanation of the anomalous negative magnet
sistance~see, e.g., Ref. 3!. Results of experiments were i
excellent quantitative agreement with the weak localizat
theory so that magnetoresistance measurements have
used as a unique probe of electronic processes in such s
tures. At higher degrees of disorder, when the elastic sca
ing length l is comparable with the Fermi waveleng
(kFl;1) the quantum corrections to the conductivity b
come even more relevant and a self-consistent descriptio
disorder effects is desired.

Recently, the statistical properties of the energy spect
of a three-dimensional~3D! disordered system in a magnet
field have been investigated.4 Surprisingly, it has been found
that there is a critical ensemble that is characteristic for
metal-insulator transition irrespective of the presence or
sence of a magnetic field. The magnetic field actua
changes the universality class, but, nevertheless, the beh
of the system at the critical point cannot be distinguish
from the one without a magnetic field. From a fiel
theoretical point of view this result is completely une
pected. It has been speculated that the critical behavior is
to a new universality class that is independent of the p
550163-1829/97/55~3!/1469~7!/$10.00
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ence or absence of time-reversal symmetry.5–7 This astonish-
ing result, which is the subject of some controversial disc
sions, is valid for 3D systems and does not apply to the
case, where one expects a phase transition only when a m
netic field is present. Furthermore, in two-dimensions to
logical invariants play a crucial role and a two–parame
scaling theory seems to be necessary. In high-quality qu
two-dimensional electron-gas systems disorder scatterin
intimately connected to transitions between various cond
ing and insulating states and their dependence on magn
field. Such investigations are of fundamental interest in
theory of the quantized Hall effect. In this paper we do n
treat this very interesting problem but restrict our consid
ation of Anderson localization to low magnetic fields, whe
the Landau orbit is much larger than the Fermi waveleng

Finite-size scaling studies of a simple 2D one-electr
model demonstrated that there are two phase trans
points above a critical impurity concentration as a functi
of the magnetic-field strength.8 The first transition point may
occur at very low magnetic fields, whereas the second on
observed at a field strength that is about one order of m
nitude smaller than the field at which the shrinkage of
wave function becomes dominant.

Vollhardt and Wo¨lfle derived a self-consistent theory o
Anderson localization by summing up the most strongly
vergent diagrams. This theory had been successfully app
to both classical and quantum mechanical wave propaga
phenomena in disordered systems~for a review see, e.g., Ref
9!. Several approaches have been proposed to generalize
self-consistent scheme to the case of broken time-reve
symmetry, as realized in the presence of an external m
netic field. The main problems of such a generalization a
on the one hand, the identification of the class of diagra
which are to be treated self-consistently, and, on the o
hand, to connect the approach with the correct perturba
theory for weak disorder. Due to the magnetic field the co
tribution of the maximally crossed diagrams of the Coop
1469 © 1997 The American Physical Society
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1470 55P. KLEINERT AND V. V. BRYKSIN
channel is suppressed and localization can only be du
divergencies resulting from other diagrammatic contrib
tions. Within an effective field theory a correction to th
conductivity appears in two loop order. This contribution
independent of the magnetic field and results from the di
sion channel. In two dimensions there is a logarithmica
divergent correction2 that is weaker by a factor (kFl)21

compared to the zero-magnetic-field case but, neverthe
dominates the behavior in sufficiently large systems. D
grammatic Green’s-function theories, which additionally
corporated particle-hole ladder diagrams,10,11 were only of
limited success and could not reproduce the field-theore
results. The identification of the class of diagrams, which
be summed up in a self-consistent approximation and
most important in the vicinity of the metal-insulator pha
transition point, is the main objective of a Green’s-functi
theory of Anderson localization in a magnetic field. In th
paper we propose such a microscopic approach that is v
if quantum corrections are not completely suppressed by
magnetic field and generalizes both the self-consistent th
of localization at vanishing magnetic field12 and results of
the weak localization theory with respect to the magnetoc
ductivity. Furthermore, the microscopic theory presen
agrees with our previous studies based on a phenomeno
cal reasoning.13

The paper is organized as follows. In Secs. II and III t
symmetry properties of the Green’s functions in a magn
field are used to introduce the symmetry adapted Wig
representation. The influence of a weak magnetic field on
pole structure of the vertex function is investigated in S
IV and the Ward identity is discussed in Sec. V. The m
aim of our paper, namely, the selection of diagrams, t
have to be treated self-consistently in order to construc
adequate picture of Anderson localization in a magne
field, is presented in Sec. VI. We close with a summary
Sec. VII.

II. DYSON EQUATION IN WIGNER REPRESENTATION

To consider the peculiarities of the impurity scattering
a 2D electron gas under the influence of a transverse m
netic field we profit from symmetry-adapted coordinates
an external magnetic field is applied to the system, tran
tional invariance no longer exists so that a simple Fou
transformation does not reduce the number of indepen
variables. Consequently, the Fourier-transformed impur
averaged one-particle Green’s function, for instance, still
pends on two independent momentak1andk2. Nevertheless,
one may exploit the following symmetry property of the a
eraged one-particle Green’s function:

G~r1 ,r2 ,z!5G~r11r ,r21r ,z!exp@ iA~r !~r12r2!#, ~1!

which allows the introduction of a symmetry adapted rep
sentation. HereA(r ) is the vector potential of the magnet
field in the symmetric gauge andz is on the imaginary time
axis. Performing a Fourier transformation and introduc
the new wave vectorsk,k by k15k1k/2 andk25k2k/2,
the symmetry relation Eq.~1! may be expressed by

G~k,k,z!5G„k2A~r!,k,z…eik•r ~2!
to
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which indicates that it is useful to introduce the so-call
Wigner transformed Green’s function, depending only
one wave vector14

G~k,z!5(
k
G„k1A~r!,k,z…e2 ik•r. ~3!

This symmetry-adapted representation of the Green’s fu
tion accounts for the invariance of the system under m
netic translations. The inverse transformation is simply giv
by

G~k,k,z!5E drG~k2A~r!,z!eik•r. ~4!

Now it is straightforward to see that the Fourier-transform
Dyson equation with the dispersion relation«(k) of the un-
derlying lattice

$z2«@k11A~ i¹k1
!#%G~k1 ,k2 ,z!5d~k12k2!

1(
k̄

S~k1 ,k̄,z!G~ k̄,k2 ,z! ~5!

simplifies considerably if one introduces the Wigner tran
formed Green’s function~3!. To that end we introduce the
new variablesk,k and sum overk. Furthermore, we take into
account that in the symmetric gauge the equationA(r)r50 is
fulfilled. Throughout we assume that the self-energyS is
independent of momentum. Then, in the symmetry-adap
Wigner representation the Dyson equation has the form15

$z2«@k1A~ i¹k!#%G~k,z!511S~z!G~k,z!, ~6!

which has the following explicit solution for free electrons
the conduction band«(k)5\k2/2m* :16

G~k,z!52e2~kl !2(
n50

`
~21!nLn@2~kl !2#

z2\vc~n11/2!2S~z!
. ~7!

Herevc is the cyclotron frequency,l5A\/m*vc is the mag-
netic length, andLn are Laguerre polynomials. We want t
point out that the Dyson equation~6! parallels as closely as
possible the one that is obtained in the absence of any m
netic field.

III. WIGNER REPRESENTATION
OF TWO-PARTICLE FUNCTIONS

In the one-electron model considered both the conduc
ity and the dynamical diffusion coefficient are expressed
the density-density correlation function

F~r1 ,r2 ,r3 ,r4 ;z,z8!5^G~r1 ,r3 ,z!G~r4 ,r2 ,z8!&. ~8!

In accordance with Eq.~1! and as a consequence of the i
variance against magnetic translations,F exhibits the fol-
lowing symmetry property in the site representation:

F~r1 ,r2 ,r3 ,r4 ;z,z8!5F~r11r,r21r,r31r,r41r;z,z8!

3exp@ iA~r!~r12r22r31r4!#. ~9!

As in Sec. II, a direct Fourier transformation does not res
in any simplification because there is no momentum con
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55 1471MICROSCOPIC THEORY OF ANDERSON LOCALIZATION . . .
vation and still four variablesk1 , . . . ,k4 appear. Therefore
we introduce new independent quantities by

k15k2
k1h

2
, k35k82

k

2

k25k1
k1h

2
, k45k81

k

2
, ~10!

so that Eq.~9! is transformed into

F~k,k8,k,h;z,z8!5F„k1A~r!,k81A~r!,k,h;z,z8…eih•r.
~11!

Now the Wigner representation of the density-density co
lation function can be introduced, thereby making it possi
to reduce the number of independent variables

F~k,k8,k;z,z8!5 (
k8,h

E drei ~k2k8!r

3F„k,k81A~r!,k8,h;z,z8…. ~12!

The inverse transformation has the form

F~k,k8,k,h;z,z8!5(
k8

E drdr8ei ~k82k!r8eih•rF„k

1A~r!,k81A~r1r8!,k8;z,z8…. ~13!

Introducing the Wigner transformed function Eq.~12! has
the advantage that the correlation functions depend only
three vectorsk,k8, and k as in the homogeneous ca
(A50), where quasimomentum conservation holds.

IV. CALCULATION OF THE VERTEX FUNCTION

The two-particle functionF satisfies the Bethe-Salpete
equation, which is diagrammatically depicted in Fig. 1. O
aim is to consider the influence of a magnetic field on And
son localization within a self-consistent effective potent
approach. Because in the weak-scattering limit the irred
ible vertexU is independent of the momenta it is expedie
to start from the so-called diagonal vertex approximation17

In this approximation the Bethe-Salpeter equation is ea
solved in the Wigner representation and one obtains15

FIG. 1. Diagrammatic representation of the Bethe-Salpe
equation.
-
e

n

r
-
l
c-
t

ly

F~k,k8,k;z,z8!

5R~k,k8,k;z,z8!

1
u~z,z8!(k1

R~k1 ,k8,k;z,z8!(k2
R~k,k2 ,k;z,z8!

12u~z,z8!(k1 ,k2
R~k1 ,k2 ,k;z,z8!

,

~14!

whereR is the Wigner transform of the product of two on
particle Green’s functions (GG) andu is the effective poten-
tial. To proceed further one may express the density-den
correlation functionF by the vertex functionG as shown in
Fig. 2. Using the Wigner representation introduced in S
III, this equation simplifies considerably and takes the fo

F~k,k8,k;z,z8!5R~k,k8,k;z,z8!1 (
k1 ,k2

R~k,k1 ,k;z,z8!

3G~k1 ,k2 ,k;z,z8!R~k2 ,k8,k;z,z8!.
~15!

From Eqs.~14! and ~15! it is seen that the vertex functio
G does not depend onk andk8. Therefore, we obtain from
these equations

G~k;z,z8!5
u~z,z8!

12u~z,z8!(kG~k1k/2,z!G~k2k/2,z8!
.

~16!

Now the pole structure of the vertex function has to be
vestigated, which requires an analytic continuation of
one-particle Green’s functions in the denominator of Eq.~16!
(z→E1\v1 i« and z8→E2 i«). For the productGrGa a
differential equation is easily derived from the identity

@~Gr !212~Ga!21#GrGa5Ga2Gr ~17!

by considering the Dyson equation~6! and by transferring
the derivatives onk to k,

S \v1
i\

t~E,v! DGr S k1
k

2
,E1\v DGaS k2

k

2
,ED

1GaS k2
k

2
,ED «S k12A~ i¹k!1

k

2DGr S k1
k

2
,E1\v D

2Gr S k1
k

2
,E1\v D «S k22A~ i¹k!2

k

2D
3GaS k2

k

2
,ED

52p iN~k,k,E,v!. ~18!

r FIG. 2. Diagrammatic introduction of the vertex functionG.
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1472 55P. KLEINERT AND V. V. BRYKSIN
Here the self-energy difference is expressed by an effec
scattering timet according to

S r~E1\v!2Sa~E!52
i\

t~E,v!
. ~19!

We are interested in the limitk,v→0 and consider (k,v)
corrections resulting from the pole inG so that the (k,v)
dependence on the right-hand side of Eq.~18! can be omitted
andN(k,k,E,v) is replaced by

N~k,E!5
1

2p i
@Ga~k,E!2Gr~k,E!#. ~20!

Furthermore, we restrict our consideration to the region
weak magnetic fields and treat only its influence on the p
structure, which results in logarithmic corrections to the d
namical diffusion coefficient. In this approximation Eq.~18!
may be further simplified with the result

S \v2¹k«~k! p̂~k!1
i\

t~E,v! DGr S k1
k

2
,E1\v D

3GaS k2
k

2
,ED52p iN~k,E!, ~21!

where the following operator was introduced:

p̂~k!5k12A~ i¹k!. ~22!

It is seen from Eq.~22! that the charge of the related coo
eron is 2e, which has been accounted for in wea
localization theory too. Now an iteration of Eq.~21! up to the
third order in\v,k, andA together with Eq.~16! gives our
final result for the vertex function

G~k,E,v!5
u~E,v!

t~E,v! F2 iv1(
i , j

p̂i~k! p̂ j~k!Di j ~E,v!G21

,

~23!

where the spectral diffusion coefficient is defined by

Di j ~E,v!5
t~E,v!

\2

1

N~E!(k N~k,E!
]«~k!

]ki

]«~k!

]kj
. ~24!

N(E)5(kN(k,E) is the density of states at the Fermi leve
The vertex functionG in Eq. ~23! corresponds to the Coope
propagator, which we introduced in our former phenome
logical treatment of the problem.13

V. WARD IDENTITY

The consideration of the due relation between one-
two-particle properties via the Ward identity is inevitable
the microscopic approach to Anderson localization. From
definition of the density-density correlation functionF in
Eq. ~8! the following equation is easily derived for th
Wigner transformed correlation functions:
e

f
le
-

-

d

e

(
k8

F~k,k8,0;E,v!52
Gr~k,E1\v!2Ga~k,E!

\v
. ~25!

After summing up this equation overk and exploiting the
explicit solution forF from Eq. ~14! one obtains

u~E,v!5
1

R~E,v!
2

\v

2p iN~E!
, ~26!

where

R~E,v!5(
k,k8

R~k,k8,0;E,v!. ~27!

A second equation forR(E,v) can be easily derived by fol
lowing the same steps as put forth in Sec. IV and by sett
therek50. Consequently, from Eq.~21! we easily find

R~E,v!5
2p iN~E!

\v1 i\/t~E,v!
, ~28!

which together with Eq.~26! results in

u~E,v!5
\

2pN~E!t~E,v!
. ~29!

This equation relates the up to now unknown effective p
tential u with the scattering timet and is an essential con
necting link in our self-consistent scheme.

VI. EFFECTIVE POTENTIAL

There is still the challenging problem to be address
namely, to select diagrams for the irreducible vertexU, from
which the effective potentialu is constructed. The class o
diagrams has to be chosen so as to ensure that in the lim
vanishing magnetic fields the theory by Vollhardt a
Wölfle9 is recovered. The problem of finding appropriate d
grammatic contributions is complicated by the observat
that simple ladder diagrams of the scattering channels
unimportant. We consider the same set of diagrams, wh
we already introduced in our study of Anderson localizati
in an external electric field18 and is depicted in Fig. 3
Among other and more essential contributions both the s
ond and the third term on the right-hand side of Fig. 3 ge
erate maximally crossed diagrams of the Cooper chan
This double counting is corrected by the fourth diagra
whose contribution, however, can be neglected if the ren
malized coupling is much larger than the bare coupling c
stantu0. This result is in line with the expectation that in th
vicinity of the magnetic-field-mediated metal-insulator pha
transition the maximally crossed ladder diagrams of
weak-localization theory do not play any significant ro
The remaining part of the equation for the irreducible ver

FIG. 3. Diagrammatic representation of the equation for the
reducible vertex.
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55 1473MICROSCOPIC THEORY OF ANDERSON LOCALIZATION . . .
has the following form in the Wigner representation

U~k,k8,0;E,v!

5u01u0(
k
Gr~k1k,E1\v!Ga~k82k,E!G~k;E,v!

1u0(
k
Gr~k81k,E1\v!Ga~k2k,E!G~k;E,v!,

~30!

whereu05\/@2pN(E)t0# andt0 is the bare elastic scatte
ing time. The effective coupling constantu may be obtained
from the irreducible kernelU by means of an average ove
the Fermi surface

u~E,v!5
1

N~E!2(k,k8
U~k,k8,0;E,v!N~k,E!N~k8,E!.

~31!

Because a singulark dependence is introduced only by th
vertex functionG, Eq. ~30! may be further simplified by
averaging it over the Fermi surface, which we denote sim
by a bar

u~E,v!5u0F122 Gr~k,E1\v!Ga~k8,E!(
k

G~k;E,v!G .
~32!

Only terms that are proportional toGrGa contribute signifi-
cantly to the average so that we obtain

GrGa>2
1

4p2 SR~E,v!

N~E! D 252
1

4p2N~E!2u~E,v!2
.

~33!

Inserting this result into Eq.~32!, the following relation be-
tween the effective potentialu and the vertex functionG is
obtained:

u~E,v!5u0F11
(kG~k;E,v!

2p2N~E!2u~E,v!2G . ~34!

For an isotropic system we introduce the renormalized
namical diffusion coefficient

D~E,v!5vF
2t~E,v!/d, ~35!

which is in accordance with Eq.~24!. d denotes the dimen
sion of the lattice. Considering the result~29! derived from
the Ward identity, Eq.~34! for the self-consistent potentia
takes the following form for the diffusion coefficient

D~E,v!5
D0

11
1

\pN~E!(k
C~k;E,v!

, ~36!
ly

-

where D05vF
2t0 /d. As in our former phenomenologica

approach,13 the autocorrelation function(kC(k;E,v) of the
Cooper propagator has been introduced, the Fourier com
nents of which satisfy the following differential equation a
cording to Eq.~23!

$2 iv1D~E,v! p̂~k!2%C~k;E,v!51 . ~37!

At the absence of any magnetic field the operatorp̂(k) is
simply given byk so that Eq.~36!, together with Eq.~37!,
reproduces the self-consistent equations for the dynam
diffusion coefficient worked out by Vollardt and Wo¨lfle ~for
a review and a discussion of this equation see Ref. 9!. When
electrons are subject to a weak external magnetic field
~37! is conveniently transformed back to the site represen
tion, which leads to the equation

$2 iv2D~E,v!@¹r2 i2A~r!#2%C~r;E,v!5d~r!. ~38!

For the special case of a disordered two-dimensional sys
the following self-consistent equation for the dynamical d
fusion coefficient results from Eqs.~36! and ~38!:

D5D02
1

2p2\NF
FcS 121H lk02 J 21s

l 2

4D D
2cS 121s

l 2

4D D G , ~39!

wherel5A\c/eH is the magnetic length,k0;1/vFt0 an ap-
propriate momentum cutoff,c the digamma function, ands
(2 iv→s) the variable of the Laplace transformation, whic
can be identified with the inverse inelastic scattering ti
1/t« . Solutions of this transcendental equation for the dif
sion coefficient were compared with results of other se
consistent approaches and with experimental data in Ref
In the weak-coupling limit (kFl@1), where the disorder can
be treated within the framework of perturbation theory, t
diffusion coefficientD on the right-hand side of Eq.~39! can
be replaced byD0, which leads to the well-established wea
localization theory of the magnetoconductivity.3 Our basic
results@Eqs. ~36!–~38!#, which we derived in this paper on
the basis of a microscopic model, have already been use
thoroughly investigate Anderson localization in anisotrop
three-dimensional electron systems under the influence
weak magnetic fields.19 There it has been demonstrated th
there is a metal-insulator phase boundary, which separ
localized states at low-magnetic-field strengths, where
diffusion coefficient scales to zero, from extended states
somewhat higher magnetic fields. This can be seen imm
ately from Eq.~39! in the limit of vanishing inelastic scat
tering (s→0) and weak magnetic fields, where we obta
@cf. Eq. ~22! in Ref. 19#

D

D0
511

1

p

1

kFl0
$ ln@~kFl0!~vct0!#2C%, ~40!
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1474 55P. KLEINERT AND V. V. BRYKSIN
with vc5\/m* l 2 being the cyclotron frequency andC Eu-
ler’s constant. From Eq.~40! it follows that there is a critical
magnetic field determined by

vc* t05
eC

kFl0
exp~2pkFl0!, ~41!

at which the renormalized diffusion coefficient vanishes. B
low this magnetic-field strength the states are localized. T
is due to the fact that one obtains two solutions in t
magnetic-field region if the infrared cutoff vanishes (s50).
The physically relevant one is simplyD50, which is ap-
proximated by the numerical solution of Eq.~39! when s
goes to zero. The localization length of the states in w
magnetic fields is, however, much larger than the zero-fi
localization length.

From a renormalization-group analysis20,21 it is known
that in d52 dimensions logarithmically divergent corre
tions exist that are due to diffusion poles and dominate
magnetic-field-mediated localization if the system sizeL is
much larger than the zero-field localization lengthj. This
scale-invariant contribution that does not depend on the m
netic field is smaller by a factor (kFl0)

21 compared to the
suppressed quantum corrections resulting from the Coo
channel. Nevertheless, for sufficiently large system sizes
inelastic scattering times only this classical localizing te
survives. Although our self-consistent Green’s-function a
proach includes particle-hole ladder diagrams via the Be
Salpeter equation we did not treat a renormalization of
diffusions from which such a result could be derived. Rat
we focused our attention on the magnetic-field-induc
renormalization of the quantum corrections that are relev
if the magnetic lengthl is larger than the system sizeL or the
inelastic scattering length. That means that we restricted
treatment to the case where the cooperons are not compl
suppressed by the magnetic field and constructed an effe
potential from the particle-particle channel. Consequen
our approach is applicable in the weak-magnetic-field reg
( l.L) where it approaches the weak-localization theory
the magnetoresistance if the disorder becomes w
(kFl0@1). Up to now it has not been clear how magnet
field-induced electron localization due to divergencies co
ing from particle-hole diffusion poles could be describ
within the framework of a self-consistent diagramma
theory.

For a three-dimensional system we calculate the local
tion lengthjB in a magnetic field. Near the metal-insulat
transition point Eqs.~36! and~38! can be cast into the close
form19

2h

pkFl0
E
0

1

dxE
0

`

dt
sinh~ t/2!

sinh~ht!

3exp$2@1/21x211/~jBk0!
2#t%51, ~42!

whereh52/(lk0)
2 is the magnetic-field parameter. Solvin

this equation in the magnetic-field region consider
(h!1), we obtain the same critical exponentn521 for the
divergence of the localization lengthjB as in the case with-
out any magnetic field.9 This surprising result is in line with
conclusions drawn from numerical studies.4 If the numerical
-
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results are indeed valid for large system sizes satisfy
l,L this agreement demonstrates that the particle-h
renormalization does not play any significant role at le
near the 3D metal-insulator transition point. Further wo
seems to be necessary to decide the question whethe
numerical data really apply to an infinite system or are
stricted to system sizes smaller than the magnetic length

Our self-consistent model has been used to investig
magnetic-field-mediated Anderson localization in anisotro
systems19 at an arbitrary alignment of the magnetic field.22

There it has been shown that the approach is in accord
numerous well-established limiting results.

VII. SUMMARY

The asymptotic critical behavior of the disordered syst
in a magnetic field is governed by the unitary universal
class that reflects effectively broken time-reversal symme
if l,L. On the other hand, under the conditionL& l most of
the relevant electronic trajectories cover the whole area
the system behaves approximately according to the ortho
nal symmetry.23 In this case the cooperon is not complete
suppressed by the magnetic field and the construction
self-consistent theory of Anderson localization that includ
an external magnetic field is straightforward. Using a mic
scopic Green’s-function approach we identified a class
vertex diagrams that accounts for the magnetic-field-indu
metal-insulator phase transition in a disordered tw
dimensional electron gas ifL& l . The basic ideas we pre
sented in this paper have already been exploited to t
Anderson localization in an external electric field.18 It has
been shown that the particle-hole and particle-particle lad
diagrams do not contribute significantly and that the d
grams, which have to be summed up, exhibit a complica
structure. The selected diagrammatic contributions have b
used to construct a self-consistent effective potential tha
connected with the dynamical diffusion coefficient via t
Ward identity. We restricted our consideration to the lowe
order change of the pole structure in the vertex function d
to a magnetic field, allowing us to determine logarithm
corrections to the renormalized diffusion coefficient. T
second-order contribution, which would introduce the H
component of the diffusion tensor, has been neglected.
calculation greatly profited from the introduction of symm
try adapted representations.

Our basic results completely agree with the former p
nomenological approach to the problem,13 which has already
been used to treat the field dependence of Anderson loca
tion in anisotropic systems19 and at arbitrary orientations o
the magnetic field.22 The microscopic Green’s-function ap
proach that we presented here generalizes the self-consi
theory worked out by Vollhardt and Wo¨lfle9 and reproduces
the magnetoconductivity results of the weak-localizati
theory in the limit of weak disorder.

Further progress may be expected from an extension
our microscopic description to higher magnetic fields, wh
the quantum Hall effect becomes relevant. But it is also s
gestive to assume that a completely new approach has t
envisaged in this case because in the region of high magn
fields almost all states are strongly localized.
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