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Non-Fermi-liquid states and pairing instability of a general model of copper oxide metals
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A model of copper-oxygen bonding and antibonding bands with the most general two-body interactions
allowable by symmetry is considered. The model has a continuous transition as a function of holexdemdity
temperaturel to a phase in which a current circulates in each unit cell. This phase preserves the translational
symmetry of the lattice while breaking time-reversal invariance and fourfold rotational symmetry. The product
of time reversal and fourfold rotation is preserved. The circulating current phase terminates at a critical point
atx=x., T=0. In the quantum critical region about this point the logarithm of the frequency of the current
fluctuations scales with their momentum. The microscopic basis for the marginal Fermi-liquid phenemenology
and the observed long-wavelength transport anomalies xrea, are derived from such fluctuations. The
symmetry of the current fluctuations is such that the associated magnetic field fluctuations are absent at oxygen
sites and have the correct form to explain the anomalous copper nuclear relaxation rate. Crossovers to the
Fermi-liquid phase on either side ®f and the role of disorder are briefly considered. The current fluctuations
promote superconductive instability with a propensity toward®-wave” symmetry or ‘“extended

S-wave”’symmetry depending on details of the band structure. Several experiments are proposed to test the
theory.[S0163-18207)09121-3

I. INTRODUCTION experiments on copper-oxide metals severely constrain the
form of such a low-energy Hamiltonian.
Besides their exceptionally high superconducting transi-

tion temperatures, copper-oxidézu-O-) based metals also A. Constraints from experiments
have exceptional normal-state properfiesandau Fermi-
liquid theory and associated quasiparticle concepts, whic
are a foundation stone for much of our understanding o
phenomena in condensed matter, appear to be inapplicable
their normal state. The principal problem is the developmen
of a consistenttheoretical framework in which the unusual
metallic properties can be understood. Moreover, itdses-

A schematic generic phase diagram is drawn in Fig. 1 on
he basis of the resistivity data. Where measurements are
vailable every other transport property shows corresponding

gions. The insulating-antiferromagnetic phase near 1/2 fill-

g and the superconducting phase are shown in bold lines.
The normal state is roughly divided into four regions with
dashed lines representing crossovers from one characteristic
saryto have a theory for the nor_mal_ state_t_o understand th?’emperature dependence in transport properties to another.
mechanism of the superconductive instability.

Every transport property in the normal state of copper-
oxide metals has a temperature dependence unlike other met-
als. For example, the electrical resistivity has a linear tem- \
perature dependence down T@ for composition near the \

highestT,, for any class of Cu-O compounds even when that Do
T, is as low as 10 K. On the other hand, the equilibrium i1
properties, such as specific h&af and magnetic suscepti- T \\\\ Fe”y]g&-q i
bility x are consistent with the usual temperature dependence 1

and are in fact only about a factor of 2 enhanced over band-
structure calculation.The copper-oxide metals are thus = 4 s
qualitatively different from liquid*He and heavy fermion < | Insul //Q\ Fermi-Liquid
metals where strong interactions produce strong quantitative

Xe X —=—

renormalizations in both equilibrium and transport properties
without changing the asymptotic low-temperature depen-

dences and Whlch_are_ pF:OperIy called F(_erml liquids. ,_ dimensional copper-oxide compounds.is the density of holes
Recent reexaminationf the foundations of Landau's goned in the planes, is the “optimum” composition. The anti-

Fermi-liquid theory have confirmed the robustness of thgerromagnetic phase and the superconducting phases, shown inside
theory for dimensions higher than 1 for any Hamiltoniansgig lines, occur through phase transitions. A series of crossovers
with nonsingular low-energy interactioRgherefore a prin-  shown through dashed lines are discussed in the text. The impurity
cipal part of the theoretical task is to show that, in a modelensity, as inferred from the extrapolation of the high-temperature
appropriate for copper-oxide metals, elimination of the high-resistivity toT=0, i.e. assuming Mattheisen’s rule, decreases as
energy degrees of freedom leads to a singular effective lowincreases. The size of region 4 decreases with increasing disorder
energy Hamiltonian. The tremendous variety and number ofor a given x.

FIG. 1. Schematic generic phase diagram of the quasi-two-
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Region 1, the non-Fermi-liquid phase, ha€T)~py+p;T  wWherex=|w| for |w|>T and=#T for T>|w|; \ is a cou-
and similarly remarkable ‘“simple” anomalies in all the pling constant andv, is a cutoff energy. The quasiparticle
other transport properties. In Bi 2201 resistivity renormalization amplitude
measurementsare available from 10 to 800 K and in
Lay ST 14CUQ, from 40 to 800 K/ The measured resistivity
exponent in both is 1.0560.05. We may safely assume that it 2(w)=
is 1 with possible logarithmic corrections. Such a behavior is
observed only in a very narrow region near. p(T) begins  then vanishes logarithmically as(T)—0.
to decreasebelow the linear extrapolation as temperature is A microscopic theory should specify the nature of the
decreased in region 3 and is consistent with an asymptoticritical point and the symmetry on either side of it. It should
T2 dependence characteristic of a Fermi liquid. On the lowalso answer the following question: If there is a critical point
doping side, in region 2, there is a crossover to resistivityat x=x., T=0, what about its continuation in the-T)
increasing with decreasing temperature. This regime may bplane? Should there not be evidence of nonanalytic proper-
termed insulating. Strictly speaking, one should draw a thirdies on a line in the X-T) plane? Experimentally, there is
axis in Fig. 1 labeled disorder. If the zero-temperature interindeed a crossover in the properties in tleT() plane from
cept of the high-temperature linear-resistivity is taken as aegion 1 to region 4 of Fig. 1. But why a crossover rather
measure of disorder, one concludes that it generally increaséisan a transition? Or is it that the properties studied such as
in the available data as decreases. The limited systematic transport and specific heat are often only weakly sensitive to
data with independent variation of disorder andclearly — a transition?
shows that impurities have a dramatic effect in the under- Equation(1) gives only the single-particle scattering rate
doped regime while in the overdoped regime, region 3, theirr;pl. This was used to understdiid*the observed tunneling
effect is conventiondl. conductanceG(V)~|V| for T—0 and to predict the line
The size of region 4 between region 1 and region 2 on thehapes in single-particle spectraA crucial aspect of the
underdoped side depends upon disorder. The crossover bgroperties of the Cu-O metals is that the momentum trans-
tween region 1 and region 4 is marked by a decrease iport scattering rates, measured in resistiyitf) [as well as
C,/T and y with temperature with their ratio almost inde- in optical conductivity® o-(w,T) and Raman cross sectidn
pendent of temperatufeln region 4 the resistivity drops Sg(w,T)], are also proportional to mag|,T). So is the
below the linear extrapolation from region 1. This region haSenergy scattering ratee_nl measured by thermal conductivity

been termed the spin-gap region, but this is a misnomer. Not(T) 28 The experimental result that, af,@)—O0,
only do magnetic fluctuations, but optical conductivity and

Raman scattering intensity in all measured polarizations de- P G I (1.3
crease at low energies from their value in region 1. In region o mom o Ten
2 this decline continues while the resisitivity begins to in- puts a strong constraint on theories. The single-patrticle scat-
crease with decreasing temperature. tering rate is required in general to be at least as singular as
From data for YBaCu,0q(248) under pressur8,it ap-  the momentum scattering ratgjém. The immediate conclu-
pears thak is not a unique parameter for the crossovers insion is that the experiments require dfw, kg)~ ¢,
Fig. 1. The stochiometric compound 248 hab.a-80 K and  @<1. Angle-resolved photoemission should be used to put
a resistivity with a crossover from T to a higherT depen-  stricter bounds on the single-particle self-energy than have
dence below about 200 K, very similar to the properties ofoeen done so far. But an easier way might be through the
YBa,Cu;Og 7. Under pressurel, rises to 110 K aP=100 electronic specific heat. The electronic specific heat is di-
kbar. Simultaneously the resistivity becomes linear down taectly related to the exact single-particle Green’s function.
T.. The low-energy excitations also change under pressurézor the marginal case=1, C,~N(0)T(1+\Inw./T). A
In 248 the Raman spectrum shows a low-energy decreasgore singular self-energg<1 givesC,~N(0)T“. In the
Under pressure as resistivity becomes linear the low-energgxperiments the electronic part @, is obtained only by
spectrum is restored, becoming like that of the optimallysubtracting the estimated phonon heat capacity and at
doped YBaCu;Os g i.€., frequency independetit. X~X. is reported to be consistent withT. While logarith-
The schematic phase diagram of Fig. 1 suggests that theic corrections to it cannot be ruled out, substantial singular
anomalous normal state of regior(ds well as superconduc- departures are ruled out.
tivity) is controlled by fluctuations around the poixtx, The proportionality of the single-particle and the transport
andT~0. This is consistent with the marginal Fermi-liquid scattering rates occurs if the fluctuations leading to (Edl)
(MFL) phenomenology which suggests that the breakdown are essentially momentum independent as suggested by the
of Landau theory is due to scale-invariant fluctuations coniMFL phenemenology(In that case there are no vertex cor-
sistent with having a quantum critical poif{QCP) (i.e., a rections in the calculation of the conductivity. See further
singularity atT=0) near the ideal composition. The critical discussion in Sec. VI).But this poses the serious dilemna
point itself is inaccessible due to the superconductive instathat on the one hand we wish to be near a critical point, on
bility. the other that we neegghearly) momentum-independent fluc-
The MFL has a single-particle self-energy of the form tuations.
The trivial way to get Eq(1.3) is if the experiments are in
a temperature rangé= w* where w* is the characteristic
frequency of some fluctuations which scatter the fermions.
Then the density of such fluctuations+sT, giving Eq.(1.3).
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This is ruled out by the specific heend magnetic suscep- Furthermore, T, TK) !, whereK is the measured Knight
tibility experiments experimentd. If such fluctuations are of  shift at oxygen, is a constant within 20%, irrespective of the
physical quantities like spin or density fluctuations of fermi- compound studied or the densityn any given compound in
ons, a characteristic enhancement ig=C,/T of the metallic rang&® Other experiments show that copper and
O(Eg/w*)~0(10%) must occur as in the heavy fermion oxygen orbitals are well hybridized. Nevertheless, it appears
compounds. Experimentally, the specific heat and magnetithat the local magnetic fluctuations at copper and oxygen
susceptibility at the ideal composition are consistent withsites are quite different.

Fermi-”quid behavior,~T and constant, respective|y1 with It is axiomatic that the fluctuations responSible for the
no more than about a factor of 2 enhancements over nonirgfhomalous metallic state also are responsible for the instabil-
teracting electrons in the measured temperature réfigie ity to the superconducting state. The anomalous fluctuations

data, however, do allow for logarithmic or small power law dgvelocg) a gap in the superconducting state as pre-
corrections. This as well as the fact that(w,T) and dicted® and observed in a wide variety of experiments on the

Se(w,T) behaves smoothly in the range<T= w, where quasiparticle relaxation rate deduced through transport
[} -~ C

we~0(3 eV) suggests that there is no low-energy scale nea?xperiment%‘l and in  angle-resolved photoemission
octimur; do ing%nd that the upper cutoff fre %nc of theexperiments?‘.2 The symmetry of the superconducting state

P ) bing . 1 PP q y appears to be consistent withD" wave” (if the lattice
fluctuations is very highQ(5 eV).

. . . . _is assumed tetragonaf This issue is not completel
It is hard to imagine that the fluctuations due to the anti- gon peey

e - X settled yet”.4 Moreover, the electron-doped material
ferromagneticT=0 critical point atx~0.02 can have much Nd, .CeCuO, appears to be an Swave”

to do® with phenomena atx~x., with x.=0.15. superconductot®
Temperature-independent magnetic correlation lengths of T4 symmarize, existing experiments requireimternally
about 2 A are observed at~x. in YB&,CuOs03’  consistenmicroscopic theory to
Temperature-de;pendent_ lengths 20 A are observed in (i) reproduce the phase diagram of Fig. 1 with a non-
Lay g5510.16CUO,, > but with less than~10% of the total  Fermi-liquid metallic phase near the composition for the
frequency-integrated spectral weight in tirelependent part. highestT, with crossovers to a Fermi liquid on the high
The normal-state anomalies are identical in both compound@opmg side. The underdoped regime should show a loss at
Similarly, there is no evidence of any universal phaseiow energies of both particle-hole excitatiofiis spin as well
separation fluctuations or charge density fluctuafiofisin  as charge channeland of single-particle excitations, and a
different compounds at~Xx.. It would appear that if a criti-  strong tendency to insulating behavior due to disorder;
cal point i§ respon_sible for the qnusual metallic state, it must (i) have equilibrium properties such as specific heat and
be associated with some quite unusual order parametefagnetic susceptibility near the ideal compositimmsistent
which is hard to detect. in the measured range @f with characteristic Fermi-liquid
Equationg(1.1) and(1.3) cannot be used to understand the hehavior to within small corrections and in magnitude be
observed anomalies in NMK, Hall effect? and ithin factors ofO(2) of those for noninteracting electrons:
magnetpres;stgn@é.ln YBa,CuyOg o, Where band-structure  (jii) have long-wavelength transport relaxation rates used
calculalnon% give a very small usual Hall conductivity due to interpret electrical conductivity and thermal conductivity
to particle-hole symmetry, the Hall angl®,,=oyy /oy,  at the ideal composition that satisfy E@). At x=x. the
with the magnetic field perpendicular to the plane, vafies fluctuations leading to the anomalous transport should have
apgroxmately aS  no scale other than a cutoff of tf@(1/2 eV).
T~ < between 100 and 300 K In the same range the nor- (j) The fluctuations should have a symmetry such that
malized magnetoresistanc&p(H)/p varie$® roughly as  they produce singular local magnetic fluctuations at copper
T~* with ®F/Ap/p~0(1). The Hall-effect dat®® in  nuclei to give the observed anomalies in the copper nuclei
La,_,Sr,CuQ,, however, appears more complicated where aelaxation rate, but no singular local magnetic fluctuations at
saturation in the anomalous contribution occurs at temperahe oxygen nuclei.
tures below about 60 K. In view of this, it is not clear at the  (v) The fluctuations should be capable of producing a
moment whether the Hall-effect anomaly is a leading low-pairing instability ofD-wave symmetry.
temperature singularity or an intermediate- to high-  There are of course many other special properties discov-
temperature phenomena. It is worth noting that a singularitered in a subject in whic® (5% 10%) papers have been pub-
in the Hall angle~T~?, equivalently a Hall number diverg- Jished. But | regard the requirements listed above as the most
ing asT~*, implies a spontaneous Hall effect in the limit basic or a least the irreducible minimum. The theory devel-
T—0, i.e., a Hall voltage in the absence of a magnetic fieldoped in this paper attempts to meet these requirements and
Kotliar et al?® have found this behavior in a solution of the suggests a few crucial experiments.
Boltzmann equation which, besides a scattering rate
Tman~ T, CONtains a phenomenological skew scattering rate
proportional to the applied magnetic field which~sT 2.
Perhaps the most astonishing of the normal-state anoma- The choice of a model with which to do microscopic
lies are the nuclear relaxation rat‘é%rl’l and OTl’l of cop-  theory should be influenced by the fact that copper-oxide
per and oxygen nuclei, respectivéfWhile (°“T,;T) ! ap-  metals are unique. None of the thousands of transition-metal
pears to diverge as the temperature is decreased, suggestt@gmpounds studied share their properties. The point of view
singular local magnetic fluctuations at the Cu nuclei, taken here and elsewhéfds that the unique properties of
(°T,T) ! is a constant, which is the conventional behavior.Cu-O metals arise from their unique chemistry in which

B. Choice of a model
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FIG. 2. The Zaanen-Sawatzky-AllgZSA) phase diagram for
3d transition-metal oxides, slightly modified and showing the sche- @
matic change in the position of the transition-metal oxides going Cu ©
from left to right of the periodic table. The modification is that one oot
of the axes is the ionic energ, defined through particle-hole
spectra. ZSA used the charge transfer gagefined through one-
particle spectraE,<A due to particle-hole interactions.
te
ionic interactions play a crucialynamicalrole. This point
has been extensively discusde@nd will only be briefly
repeated here. The divalent transition-metal oxides at 1/2 fill- " R .
ing can be put on the diagrdfin Fig. 2 in which one of the
axes is the normalized local repulsion enetgyn the tran-
sition metal(TM):
U/W=[E(TM)3*"+E(TM)** —2E(TM)** /W, 020"
(14 CrR* ot
whereW is the bandwidth. The other axis is thmic energy
E, /W=[E(TM}*O'")— E(TMZ* O2")J/W. (1.5 b)cr °

U is the energy to convert two transition-metal ions with £ 3. (a) Schematic one-hole spectmeasured in photoemis-
formal charge state 2 to one with formal charge state’l  sjop) and one-particle spectmeasured in inverse photoemission
and the other to 3, while E, is the energy to transfer charge projected onto Cu states and oxygen states in Cu-O compounds at
from the ground-state configuration of a transition-metal ion1/2 filling. (b) Schematic one-hole spectra and one-particle spectra
with charge 2 and a nearest-neighbor oxygen ion with 2 for a transition metal oxide far to the left of Cu, say, Cr-O, pro-
to a transition-metal ion with charge' land oxygen ion with  jected onto Cr and onto O.
charge I . Screening and dipole corrections, etc., in the
solid are included in the definitions &f andE, .

As one moves from the left to the right of the periodic ; Vijnin; (1.6
table, the ionization energy of the TM falls, thereby decreas- .
ing E, /W relative toU/W with corresponding movement of hasZ;_;V;;~0O(10 eV), the fluctuationsn; on the oxygen
Fig. 2. In the insulating state of Cu-@, is only about 1 eV. ions requires a large energy and is insignificant. An effective
It is a charge-transfer insulator with the lowest-energy onefow-energy Hamiltonian of the Hubbard form is then ad-
particle spectra primarily on copper, €u—Cu', while the  equate. This is not true in the metallic state of Cu-O where
one-hole spectra is primarily in oxygen?0—-0; see Figs.  (dng)/{ng)~0O(1).
3(a) and 3b) where the contrast to transition-metal oxides One of the aims of this paper is to show that finite-range
towards the left of the periodic table is also shown. In theinteractions, if sufficiently strong, lead to qualitatively new
metallic state, obtained by doping, there are charge fluctudeatures in the phase diagram of the model. The one-
tions on copper and on oxygen of similar magnitude.dimensional version of the model has been extensively in-
E,~1 eV is made up of from two sets of energies, thevestigated by numerical metho#sBosonization methods
atomic level energies and the Madelung or ionic energiesgive incorrect results for the model fof's=0(E,) whereas
each of which iSD(10 eV). Indeed all transition-metal oxides as is well known the one-dimensiondD) Hubbard model
owe their structural stability to the ionic energies. But in thecan be bosonized for any value 0Of Therein lies a clue to
metallic state these energies have little dynamical role tainderstanding how in one and higher dimension the low-
play in most TM oxides because there are hardly any flucenergy properties of the model are quite different for small
tuations on oxygen; i.e., although the ionic fluctuation energyv and for largeV. Bosonization is inherently a weak-
term in the Hamiltonian coupling method; it works in th€1D) Hubbard model be-
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FIG. 4. The bonding and the antibonding baral for the two- (®)
dimensional band structure from one-electron theory in the hole
representation with chemical potentjal Under theq=0 transition p=0
discussed in the text, identical internal rearrangements in each unit F
cell occur. So the band structure changes merely to the h@uasl
a shown.

cause the properties at weak couplisgrallU/t) aresimilar Ty at Ty = T
to those at large coupling. The numerical results show a
change in properties asis varied; forV=0(E,) they show FIG. 5. (8 The c_alculated mean-field free energy as a function
the charge-transfer instability described below, and growingf the real part of interband order paramefgrdescribed in the
superconducting correlation length as temperature is ddext- (b) For a fixedT,=T,, the free energy as a function of the
creased, whereas bosonization methods ¥itglto be irrel- ~ Maginary part of the interband order paramefgr Ty takes the
evant.(One-dimensional models do not have some essentidf!u€ 0 forp=>0 and a finite value belop<0 through a second-
features, discussed below, of the model in higher dimengrder tran5|t_|onp_ |saparameter_def|ned in terms of the parameters
sions) of the Hamiltonian and fpr a given compound can be varied by
varying the electron density, temperature, or pressty.0 corre-
sponds to a circulating current pattern in the ground state shown in
C. Preview of the properties of the model Fig. 10.

In Sec. Il we discuss that it is enough to consider a two-
band model representing Cu and O bonding and anti- HereFy(k) is a form factor expressing the relative Cu and O
bonding —a bands(but with O-O hopping includedas il-  character of states in bandsandb. We will see thafT, is
lustrated in Fig. 4. In the hole representation, the chemicatlosely related to the relative average charge in Cu and O
potentialy is in the lower band as shown. For noninteractingorbitals. The mean-field free energy as a functionTofis
electronsu would be in the middle of band at 1/2 filing as ~ shown in Fig. %a). With T,#0, the orbitals must be rehy-
in La,CuO, or YBa,CuOs. For hole doping, as for most bridized, leading to new bands and 8 of the same general
Cu-O compoundsy rises with dopingx, for example, in  form asa andb, as shown in Fig. 4. This is expected to
La,_,SK,CuQ, or YBa,CusOg, . We will find it important ~ occur for strong interactions at very high temperatures for all
to consider the most general form of two-body interactionsx Of interest just as it does at=0. For the most general
allowed by symmetry in the space of these two bands. Whefiteractions, such a transition is of first order, as for a free
the strength of the interactions is on the same scale as tighergy of the form shown in Fig. (8. Previous
overall electronic bandwidth every term has a crucial role tghvestigation$"* of the model had focused on this charge-
play. transfer instability.

If w were in the gap between banadsindb, the model is We show that the model also has an interesting second-
identical to the excitonic insulator probleffiwhich has been order transition in the Ising class to a state in which
extensively discussed. We investigate here the model with
w in one of the bands. This changes the problem substan-
tively.

It is well known that interactions completely alter the one-
electron picture at 1/2 filling; a gap develops around theThe mean-field free energy, for a fixdg+ 0, as a function
chemical potential and the relative amount of Cu and O charef T, for various values of a parametemwhich is a function
acter of the occupied and unoccupied states is drasticallgf x and T is shown in Fig. ). This transition therefore
altered.u stays in the band significantly away from 1/2 fill- occurs on a lind.(x) in thex-T plane. We will be specially
ing but the relative Cu-O character of the occupied and uninterested in the properties in the vicinity of the point
occupied states is again expected to be quite different from=x.0) whereT,=0 which we identify as the quantum
the one-electron picture. If no change in the lattice symmetryritical point*3
occurs due to the interactions, this is formally describable by A finite T, provides an additional relative phase to the
aqg=0 instability of the one-electron band structure to a statavave functions at Cu and the two O sites in a unit cell. We
in which will see that the ground state with a finilg corresponds to

a fourfold pattern of circulating current within a unit cell
- + with all cells staying equivalent. This is illustrated in Fig. 6.
Tx Re; FK)(@ysbig) #0- @9 We may call it the circulating currerfCC) phase. Transla-

T,~ |me Fy(K){(af,bye) #0. (1.9
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0 0 FIG. 7. The unit cell of Cu-O compounds in tkey plane and
the minimal orbital setd,2_,> orbital of Cu and ap, and ap,

FIG. 6. The deduced ground-state current distribution pattern irprbital of oxygen per unit cell. A particular choice of the relative
the circulating current phase drawn for four cells. Theand — phases of the orbitals &t=0 is shown.

signs indicate magnetic fields pointing up and down. ) ) ) _
lead to the same “intermediate-energy-scale” Hamiltonian

. . . . . whose analysis begins in Sec. V. Section Il is devoted to the
tional symmetry is preserved but time-reversal invarianc trong-coupling expansion. The low-energy Hamiltonian is
and fourfold rotational symmetry are br_oken. The product ofyerived and analyzed in Secs. V and VI where it is shown
the time reversal and _the .fourfold rotation is preserved.  ihat a systematic and controlled analysis is possible. The
The pattern shown in Fig. 6 breaks a twofold symmetry—ppysical properties of the pure model are investigated in Sec.
the +’s and the—'s could be reversed Unlforma”y. This is V”, and in Sec. VIl a beginning is made to consider the
possible to understand from Fig. 7 which gives the relativeeffect of impurities in the properties of the model. Impurities
phases of the Cds2_y2 and O p, andp, orbitals in a unit  are strongly relevant nearz=oc transition. For arbitrarily
cell atk=0. The Hamiltonian has the twofold symmetry that small concentration, they convert the lifig(x) to a cross-
given the phases of the twm, orbitals the phases of the two over. We also show that for an arbitrarily small concentra-
p, orbitals can be reversed. This symmetry is broken by théion of impurities in a non-Fermi liquid, the Fermi surface
circulating current phase. withers away at low temperatures. The density of states at
In connection with the excitonic insulator problem and thethe chemical potential is zero and the resistivity is infinity as
Hubbard model at 1/2 filling circulating current phases havel —0 (unless superconductivity intervenes _
also been discussed, which also break translational symme- Not including the effect of disorder the schematic-
staggered flux phasé8There are two important differences, €9ion 1, the properties are determined by quantum fluctua-
because of which the present work meets requireménts tions and are that of a marginal Fermi liquid with a crossover

through (v) above and thus qualifies as a serious candidati & Fermi-liquid regime in region lll. In region I, 0 in
for the theory of the Cu-O metalgi) Our use of a Cu-0 e pure limit. This phase should have Fermi-liquid proper-
model with more than two atoms per unit cell allows at|es at low temperatures in the pure limit but with different

g=0 transition to a circulating current phase, so that |atticeoarameters from that of region lll. The transition between

translation symmetries are preserved. There is no change regions | a_nd Il turns ir_1t_o a crossover at an arbitrgrily s_mall
o ) ncentration of impurities. At low temperatures impurities

the symmetry of the band stryctur(el.) We discuss SQCh a are expected to lead to a further crossover in region Ill to an

phase in the metallic state. This leads to a very special nature

of the collective fluctuations near the QCP due to scattering T

of the fluctuations by low-energy particle-hole excitations at

the Fermi surface. The problem of determining the spectrum

of the fluctuations is the same as the absorption in a degen-

erate semiconductor with finite-mass electrons and holes and (NON-FERMI LIQUID.)
in the limit that the interactions are much larger than the QUANTUM
Fermi energy. We show that the logarithm of the frequency AN FLSSIAL[’Q,ILOTNS
of the fluctuations scales with their momentum; i.e., the QCP NN )
has a dynamical critical exponemf=c. The fluctuations \Q\L@LSUS\C\\
are thus independent of momentum to a logarithmic accu- SN
racy. This extreme quantum limit is essential to understand N (FERMILIQUID)
the observed behavior in long-wavelength, low-frequency U RN Pase ()
transport properties summarized by Ef.3 and its finite- (FERMI-LIQUID) XE
frequency counterparts. ; ('0)
The model is stated more completely in Sec. Il. One can ¢ X

study the model as interactions are increased from zero or

take a strong-coupling point of view and consider corrections FIG. 8. The theoretical phase diagram in the pure limit. The
about an infinite value of the interactions. Both approachesgffect of impurities is discussed in the text.
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insulating regime with a zero density of states at the chemiexygens are shared at the corners to produce a layered, an-
cal potential. The antiferromagnetism phase near 1/2 fillingsotropic three-dimensional structure. The interlayer kinetic
and the superconductivity phase ngamvhich are also prop- energy depends on the details of the structure. In the least
erties of the model are not shown. anisotropic compounds the interlayer bandwidth is

In Sec. IX, a beginning is made to study the pairing in-O(1071) of the intralayer bandwidth. Since the properties of
Stablllty due to the eXChange of the CirCUlating current ﬂUC-such Compounds in the tempera‘[ure region of the normal
tuations and a propensity towards &-wave” supercon- state are the same as of those with anisotropy ratio
ducting instability is indicated. , ~ O(10™%), a two-dimensional model is appropriate for the

In Sec. X the shortco_mlngs of the theoretical ca_lculatlonsessentia| physics. The basis set for the minimum Hamil-
as well as the unexplained features of the experiments are .- i< thed,2_,> orbital on the Cu ions and the, and

highlighted. Experlments are suggested to test severa_l fe 'y orbitals on the O ions; see Fig. 8. In this basis set the
tures of the theoretical proposal. The most important is t

observe the current pattern of Fig. 6 by polarized-neutron or amiltonian is written as
X-ray scattering.
Il. MODEL FOR COPPER OXIDES H=Ho+Hy+H,. @D

The basic building block of the Cu-O compounds is the o _
elongated CuQ octahedra in which the planar short bond Ho iS the kinetic energy:

Ao )
Ho= 2, 7(ndi_ Npxi— Npyi) = #(Ngi+ Npyi+Npyi) + .Z tpddyi(Px,i+aze— Pxi-aot Py,itaze— Py,i,—a2e)
T

+ tpppl,i +a,0(Pyitar,e— Pyi-ane) tH.C. (2.2

Here () sums over the unit cells in the plarcdﬂ, refers to  actions are needed in the three-band model than in the sim-

the Cud orbitals, andpy.y.i-an,. to the oxygenp, or p,  Pplified model for the important instabilities derived in Sec.

orbitals, which are neighbors to Cu in cellat a distance V.

a/2. The relative signs in the kinetic energy take into account The dispersion of the bandsandb will be denoted by

the phases of the orbitals, as shown in Fig. 7. €,(k) and e,(k). These are sketched in Fig. 4. Expressions

H; is the short-range part of the interactions for them, derived perturbatively i}, /t,q, are given in Ap-

pendix A. Their eigenvectors are specified by the annihila-
tion operators for states in them in terms of annihilation op-

H1= 2 UdNgioNaio U pNpioNpia- (2.3 erators ford andp,, orbitals at lattice sites:
1o
H, is the long-range part of the electron-electron interactions _ k@
) e = + -
and the exchange interaction important only for nearest Ay = Uad( K) Ao Uax(K)SIN| =5 | P
neighbors: a
+ Ugy(k)sin —; )pyka, (2.59

szizj V|Jn|n1+(2) VXS'SJ', (24)
) (]

ka
wheren;=ng; or Ny, in,i as appropriate. One must in- by = Upg(K) Ao+ be(k)sm(T) Pxio

clude the long-rang&/;;~|R;—R;|~* for |R;—R;|— to
keep the long-wavelength charge oscillations at a finite
plasma frequency. Otherwise, only the nearest-neighbor
Cu-O and O-OVj; need be considered.

Diagonalization ofH, gives the model “one-electron” where
band structure, which has “Cu-O bonding” and “antibond-
ing bands™” and a O-O “nonbonding band.” Fog,=0, the 1
bonding band-b and the antibonding ban¢ a are decou- dl‘gaz_z d;rgeik'Ri,
pled from the nonbonding bant,,# 0 is important for the N
results of this paper, but | consider only the bonding and the
antibonding for simplicity and neglect the nonbonding band.
The eigenvalues and eigenvectors of the bands kept must
include the effects of,,. It will be clear that smaller inter-

. [kya
+Upy(K)Sin == Pyko» (2.5

1 .
T _ T k-R;
pX(y)ko_ \/NEI Pix(y)ge' R'.
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i label the unit cells; the Cu atom in the unit celk takento ~ Where because there is no hybridization at the zone center
be atR;. Expressions for these coefficients, also calculated
perturbatively int,,/t,y, are given in Appendix A.
Band-structure calculations givg,2t,,,A,~O(1 eV),
various spectroscopic methods give the local repulsion on

Cu: U~O(10 eV). As good an estimate of the nearest- We write the kinetic energy completely generally as
neighbor Cu-O repulsion as any is

Ho, cenzzi Ag(Ngi—Npji)- (3.3

Vin=e?/[ (1 eV)Ry], (2.6 Ho, intercell:(ij)z: tiﬂ,jv(/’L?—a’VJO'_l— H.c), (3.4

Lo,V
whereR; is 1/2 the unit cell size ané(1 eV) is the measured

long-wavelength di-electric constant at an energyQfl so that it reproduces the one-electron bonding and antibond-

eV), which is ~4. This gives the nearest-neighbor Cu-O ![?1?) boa:qn;:S(;r;‘;‘\;s‘%gk;mng\r:g;droo(r)\?e'rTahfaﬁsg Icgrngrn?r:én
interaction=1.7 eV. So multiplied by the number of neigh- 9 . 1 ; 9 g€

o e . nearest neighbors. This conflict between the necessity of us-
bors and considering polarization corrections, etc., the chat-

acteristic Madelung energies controlling Cu-O charge flucng nonorthogonal orbitals to handle strong local, but not just

. . . on-site, interactions and Bloch waves for a periodic lattice
tuations is also ofO(10 eV). Calculations of Madelung . .
6 - X : appears unavoidable. We need not dwell on this because the
energie®® in the actual lattice support this estimate.

The interaction energies and the overall electronic bandf—maI projected Hamiltoniaxd.1) for further analysis depends

width are therefore of the same order. We can directlyon[}/h%ni:é Tarz'[?érxtermsi andH.,, remain of the same gen-
project the Hamiltoniari2.1) onto the basis set of the bond- _ .~ %700 ’slas i E2q (2.3 and Eq.(2.4) with
Ing and antlbond|.ng space Qrb|tals obtained by diagonaliz a redefinition of coefficients. We will simply regard that the
ing Eq. (2.2. This results in the most general two-band

Hamiltonian allowable by symmetry. Such a Hamiltonian gjtegcéﬁnir:ertmhz 2?)¥aeti2ﬁigrrfr\1lé ”::\?V Igoteef;ir::]igejr?fé with-
(projected to interactions in the spin-singlet channel, which ging '
alone is importantis given in Eq.(4.1). The reader may at

this point skip directly to Eq(4.1) and the subsequent analy- A. States in the strong-coupling limit

sis. Although this approach is quite consistent for the metal- The |ow-energy Hamiltonian for this model will now be
lic state, it is hard to derive the insulating phase near 1/%erived. Since some of the important interactions are intra-
filing from such a basis or to see that, although the low-ce|jylar, we specify a basis set in terms of the states of a cell
energy physics at 1/2 filling of the general model is identicalpy cutting off the kinetic-energy connection between cells
to the Hubbard model, it may not be so in the metallic stategnd the long-range Coulomb interactions.

A basis of local real-space orbitals constructed in the strong- consider an average occupation of{%) holes per unit
coupling limit to suppress some of the charge fluctuations igg|| as required by (x) negative charges per unit cell
more c_onvenient. The next s_ection is devoted to dgriving thgssumed uniformly distributed by imposing a chemical po-
projections of the Hamiltoniai2.1) to such a basis. The tentjal . The minimumlow-energybasis must then include
subsequent analysis, which is a simple generalization ofiates with one hole and with two holes per unit cell.

slave boson method$ yields the Hamiltoniar{4.1) as well. We define thezero-hole statep); [0) as the closed-shell

The rgsults of t.his paper are qualitgtively similar Starting(spin zer9 configuration in which the charge state of all
from either end in the ratio of interaction energy to the One-oxvgen ions is & and of all copper ions is Cl.

particle bandwidth. One-hole statesThese are of two kinds.
(i) d] ;|0): a hole in the Cud,2_2 orbital with energy
IIl. STRONG-COUPLING LIMIT Ao— . Chemically, this is the spin-1/2 state €wWD?~

It is convenient to rewrite the Hamiltonian as an intracellWhich is the nominal ground-state configuration of the insu-
part and an intercell part to calculate in the strong-couplind@tor-

limit. We define a linear combinatiob!. of operators on (i) d3,0): @ hole in the orbital created 1y, , i.e., the
oxygen orbitals in a cell which hybridize with thed,» ,, ~ 0Xygend orbital, with energy—Ao— u. (If such an orbital
orbital in the same cell: were localized on one atom, the charge configuration would
be Cu"O™)
1 Lowest-energy two-hole statd€ |0): The lowest-energy

Df,= \/Z(pHax_ Pi-atPita,~Pi-a): (31  two-hole state is the spin-singlet state with one hole in the

Cu d orbital and the other in the oxyget orbitals. The
DiTa creates an orbital which also transforms asla ,»  energy of this state i&,=V—2u. (If the latter were con-
orbital about the center of the céll In the geometry of the fined to one atom, the charge configuration would be
Cu-O lattice the orbitals created 1y, are not orthogonal Cu"O™.) ¢! should be thought of as a hard-core boson op-
for near-neighboi. Wannier orbitals can be defined which erator.
are orthogonal for differerit Such orbitals can be expressed  Neglected statesThese are the following.

as a linear combination of the orbitals createdrhy, . (i) Two holes in the bonding combination of oxygen or-
H, can be reexpressed as bitals with energy—2A,—2u+U,. No essential physical

difference arises if we include these two-hole states also in
Ho=Ho cert Ho,intercels (3.2 the low-energy sector.
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(ii) Triplet state with one hole on Cd and the other on

the oxygens. This is ab0v¢;r|0) by the exchange energy

Vy, which isO(Vj;) for (ij) nearest neighbors.

(i) Two holes on the Cud orbitals with energy
2A0—2u+Uy.

(iv) Three or a higher number of holes per unit cell.

(v) The zero-hole state/;|0) with energy 0.

At low energies, the allowed cells in a célimust fulfill
the completeness relation or constraint

Uit Bl =1,
where l/liE(le d]_l dZT dZi)i'

(3.5

It is convenient to intro-

duce Pauli matriceer and 7 to specify, respectively, the spin

(1 |) degree of freedom and the orbitél 2) degree of
freedom in the one-hole sector of the problem.

To derive a low-energy Hamiltonian, we must project Eq.

(2.1) to states which fulfill the constrair{B.5). To this end,

the bare operatord;, andD;, are expressed in terms of the

constrained operators through the identities

oLy
diazﬁ ¢i d2i—a'sgml (36)
o1y
Dirr:E d)i dli—osgm' (37)
The intracell terms are transformed by noting that
Ndio=N1ioct Ngis2, (3.9
Np,, = N2ict Ngir2, (3.9
where
N,=d], di,, etc, and n,=a'¢;. (3.10
B. Hamiltonian in the strong-coupling limit
In terms of allowed states in the cell,
VongiNpi = VoN; (3.1
and, fori#j,
VijndinDj=Vij(n1in2j+n¢in¢j+n1in¢j+n¢in2j).
(3.12

The termZ;V;;n;n,; is assumed to be already included in
the definition of the differencé\y of the one-hole states.

Summing over andj and using Eq(3.5) the last two terms
cancel the second term and renormalizg. In general, the
interactions of thed; state and theal, state with the neigh-
bors are different and symmetry allows terms of the form

(izj) Vij(Ny—nz)ng;. (3.13

These renormalizad , downward proportionally to the den-
sity of two-hole states as found in Hartree-Fock and other

previous calculation$:#?
Equation(3.3) is simply

C. M. VARMA

Ho,ceu:Aozi (Ngi—ny). (3.19

Consider now the intercell part of the kinetic energy.
Starting from a configuration obeying the constraint, the in-
tercell kinetic energy leads to configurations which preserve
the constraint as well as those that do not. Consider first the
former. These are necessarily processes which alter the two-
hole occupation in ceil and one-hole occupation in cglto
one hole ini and two hole inj or vice versa, for example,

¢1d1;,10)—d}i,4]]0). (3.19
Therefore, Eq.(3.4) projected to the lower-energy states
gives (Wlth t” Etid,jD)

i ju( 1ol b+ H.C).
(3.1

The kinetic energy also operates on the one-hole states of
neighboring cells andj, creating disallowed stat&fsgi and
the disallowed two-hole states gn Eliminating such a ki-
netic energy term by aanonical transformatioeads to an
effective low-energy interaction in the space of the allowed
one-hole states. This process is similar to that by which a
Heisenberg exchange Hamiltonian is generated from the
Hubbard Hamiltoniaf® The new feature here is that the one-
hole sector has & degree of freedom as well as;adegree
of freedom. So there is an exchangesrspace as well as
o space. The one-band Hubbard model produces an isotropic
exchange Hamiltonian because the full Hamiltonian is in-
variant to spin rotations. This is again true anspace here,
but not in 7 space. The eigenvectors of the pseudospin
have in general different local energiés#0 in Eq.(3.14
and different transfer integrals. Also, there are very many
different intermediate states with no obvious rotational in-
variance. Here we derive the form of the effective interaction
Hamiltonian from completely general considerations. An ex-
plicit derivation with calculation of the coefficients is given
in Appendix B.

The intracell kinetic energy terms in E(.4) which con-
nect the allowed one-hole states to the disallowed states may
be written in terms of products of operators

Ho intercei™ N
ij),o,uv

¢gida(ri ' d);,ujda(rj ' a= 1121 (317)
whereg/; creates the zero-hole state azyﬁ@lm creates one of
the disallowed two-hole states labeled py The canonical
transformation consists in eliminating the intermediate states
bbibh,; (Where now the allowed two-hole stats’ is in-
cluded in ). The most generagbairwise effective Hamil-
tonian is the sum over products of two kinetic energy opera-
tors with appropriate energy denominator. It has the general

form

Hint:izj Jij;' (XT(ﬂiTo"rwjaT) Z, (XT’ lpjTO"T’ wia’fr’)i
o (319
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where @=1,]) and 7=(d;,d,). In Eq. (2.23, J;;x, X, is
the sum over intermediate high-energlsallowed states of
matrix elements to such states divided by the correspondin
energy denominators.

Equation(3.18 can be rewritten as

(3.19

II"It

2 Jij(14— oy~ o)) (Al4—mAT).

The Hamiltonian is isotropic it space and\ expresses the
anisotropy inr space:

A =X X0 (3.20

In Eq. (3.19,
7= (d}d; —d3dy);, (3.2
ni=(d1dy+d3dy), (3.22
ryi=i(didy—d+d,);. (3.23

With axes defined as in Eq63.21)—(3.23 the most general
form of A is such as to generate

Hlm H +Hanisr (3-24)
Hyy=[dm7+ 3, (7, 7 +H.c)l(1/4— ;- o)),

(3.29

L +77)](14- 0y ay).
(3.26

The only conceivable terms missing in Eq8.24—(3.26
are those linear im, . Note thatr,;=i(D/d;—dD;). There-
fore (remembering thab; andd; refer to wave functions at
different points in the unit cell) 7,; represents a current
distribution within the unit cell. Terms linear inr,; cannot

Hanis= [‘JZX(TTJ"'TI J)+J (7'+

be generated from a time-reversal-invariant Hamiltonian.
Another way of seeing this is that if one has two bands as in
Fig. 4 whose states are created by linear combination of op-

eratorsafr and biT, respectively, the most general two-body
interactions(with operators on sites i and pre (ignoring
spin)

tat

alalaja;, bb/bjb;, a'blbja;,
alTbjran| s Taijjbi ,
a,TaTani , bTbTb i,
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rameters of the Cu-O problem. Thedegrees of freedom
make the problem richer and afford the possibility of new
physics pursued in this paper.

At this point it is useful to collect all the terms of the
effective Hamiltonian

-3

Ao+§j: Vijn¢j)(nli_n2i)
_Z )\i(n1i+n2i+n¢i_1)_l’«§i: (Ngj+Ng+n4)

+ HO,interceII'" 2| E¢n¢i +H int - (3-27)

\; enforces the constraint andis introduced to fix the hole
density at (2X). H;, is given by Eqs(3.24—(3.26).
C. Mean field for the slave bosons

We look for uniform mean-field solutions

Ai=(A)=N\, (3.28

b= ()= . (3.29

We also look for spin-singlet solutions in the bonds- ()
favored by the kinetic energy term in E¢3.27) and the
decompositiorf®

|

2 X 11[/]'0"7" l/,i o7’

(2

oT

+
2 XT'T/Ii <r7'(v[/j oT

o, 7

~ €ij ( E xflflfiT(rﬂrl//j oT + e-izj /4J|J ’ (33@
where
€j= 2J|J < 2 XTlr//iTrrTlf/Ij <r7'> (33],)

are mean-field amplitudes.

The other decomposition of the interaction term in which
mean-field amplitudes fot; are introduced is more impor-
tant to us. Note that given spin singlets in the bonds
(i—1j), uniform spatial solutions in- space are favored by
the interactions in Eq3.24), for J, >J] .

We now diagonalize the bilinear terms irspace, i.e. the
first five terms in Eq(3.27), and transform tk space. This
introduces bands andb. Let a}_, b}, create particles in

plus Hermitian conjugates of these. The terms in the first "néhese bands:

can be rewritten in terms szrjz, in the second line in terms
of (7, 7_+H.c.) and ¢, 7. +H.c.), and those in the third
line in terms of (,;7y;+H.c.) jUSt as in Eqs(3.249—(3.26.

At 1/2 filling, x=0, the statel}_.|0) is not allowed in the
low-energy subspace. Theh=(d,,d;|) only, and the low-
energy Hamiltonian is obtained by dropping thedepen-
dence in Eq(2.24). The familiar Heisenberg Hamiltonian is
then obtained. If one drops thevariable in the metallic state
as well, the familiat-J Hamiltonian derivable from the Hub-
bard model in the strong-coupling limit is obtained. As dis-
cussed in the Introduction, this is not justifiable for the pa-

o= UdikeT o s (3.32
Bro=—VkA1ko+ Uxloke » (3.33
vi/u=tar] 3tan” T, /A], (3.39
=t (3.39
and
A=(A+Ve?). (3.36
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Heret, is the lattice momentum transform gf . The effec-
tive Hamiltonian projected to the bandsandb is given by
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@2 on x derived below. This in turn makes the effective
interactions.7 depend onx also. If Eq.(4.1) is considered

Eq. (4.1). We denote the dispersion of the two bands due talirectly derived from Eq(2.1), the kinetic energy and the

this diagonalization also by, ande,, . They have the sym-

interactions are transformations of the bare terms. One can

metry properties of the band structure in the one-electromterpret the operators,,, by, as in Eqs(3.32 and(3.33

ap

(3.

H

proximation, i.e., Eq(2.5).

IV. ANALYSIS OF THE TWO BAND HAMILTONIAN

In the strong-coupling limit théntermediateenergy-scale
Hamiltonian obtained from Eq3.27) after Egs.(3.28 and

29 is

= _(7\+M_1)k2 (al(rakv—’_blobk(r)_()\—i_/u“— E¢)n¢

or as the bare band-structure operators given by(E§).

For short-range interactions, tligs can be written as a
sum over products of separable functions with the symmetry
of the lattice. In terms of the leading such terms, we define.

j,yg(k,k',q>525 TPk FUK' Q) (4.7
where 7,{=(X,y,z). The form factors¥,’s are obtained by
Fourier transforming Eq.3.26 and using the rotations
(3.32 and (3.33 or directly from Eq.(2.1).

F,'s have a rather messy form. | assume that there is one

+ +
+ + +Hiy. . . i - . ;
;, €karBoBko T EkboPioPko ™ Hint “.D particular lattice harmonic which dominates and henceforth
o drops the superscripg. Of course, the dominant harmonic
Hint is given by can be determined only from a detailed calculation. Such
_ calculations are not done in this paper, nor are they necessary
Hint=Hxy+ Hanis, 42 for the principal conclusions drawn.
In Eq. (4.1) we have dropped the mean-field decomposi-
Hyy= > T AK K, Q) TaqTarg+ J1 (KK Q) tion (3._3]). It §|mply rgnormahzes the k]ne_t|c energy in Eq.
kk'.q (4.1) without introducing any new qualitative features. The
interaction term in Eq.4.1) is purely in the spin-singlet
X (kg Tk a ™ TykaTyia) 43 Channel. Due to lattice effects, couplings of the form
TykqTzk’q @Nd Ty Tk g @re also produced but they vanish as
Hane= > ToxK K", Q) TxkqTak g+ H.CH T| g—~0 and play no essential role. | have dropped such terms.
k,k’,q
X (K,K', Q) (TxqTak! q— Tykq Tyk!q) (4.4) A. Instabilities

We look for instabilities of theg=0 intracell excitonic
nature. They can arise only if the parameter$lip are the
same scale or larger than the bandwidth. To calculate the
properties of the new states, one introduces, as usual, uni-
form (q=0) mean field amplitudes, which will be deter-

wherer, 4 are defined ira-b space[not to be confused with
momentum transforms of Eq&3.21)—(3.23)]:

. T
Tzkq™= Bk+qak — bk+qbk )

Takq= i (ankar quak)’ (4.5 ~ Mmined variationally:
i T,= Fy(k), 4.8
Tykq:_i(al+qbk_bl+qak)- z jzz; (T2 00 F2(K) (4.8
As mentioned in Sec. Il, Eq4.1) follows directly from _ E + -
the “bare Hamiltonian,” Eq.(2.1), by transforming to the Tx= 2‘7""; (ko™ T (k) “.9
noninteracting bands using E@.5 (neglecting the terms in
the first line, which only serve to renormalize parameters i . B
The transformation from the baté’s andV’s to 7's using Ty=- §«7yy§k: (70— Tk,0>]:y(k)E§k: T,(k),
Eq. (2.5 is straightforward and not explicitly presented here. (4.10
The only important point to note is that one should always _ . ’
include both the particle hole channels. Thugin,; is writ- ~ where 7, (k)=7,(k,0). We also define the amplitude,
ten as and angled by
T, =T +iT,|, tamg=T,/T,. (4.1)

v t i T t
5| 2 (@l din) (P, Pio) + (AlePjo) (P, i) N _ _
o0 The splitting of the bands always provides an effective

4.6 field acting onr,. Therefore any interesting instabilities can

' only be in ther,-7, plane. We therefore look for instabilities
We note that the instabilities discussed here do not occur fawhich determine the magnitude of an order parameter in
the model with only on-site interactions, just as in the case othe 7,-7, plane and its angl@, with respect to the, axis.
the Hamiltonian derived in the strong-coupling limit. In the  If H,, were ignored, the model is isotropic about the
strong-coupling limit the kinetic energy parameterand A axis. There would be just one transition of a second-order
depend on the hole density through the dependence of nature with massless collective fluctuations. The coupling to

+one-electron terms.
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fermions of the collective modes would vanish in the long- b, K, v
wavelength limit because these modes arise due to breaking
a continuous symmetnH s reduces the symmetry so that,
as shown below, the general model has one first-order tran-
sition and two second-order transitions of the Ising variety as
the parameters in the modg@hcluding ) are varied.

Before we proceed with the calculations, it is useful to (a)
discuss the excitation spectra for interaction strerighds

than necessary to cause the instability. Consider first only 2 0 b b
H,y. The problem of the excitation spectra between a par- m
a a a o a b
(b) (©)

(@, q)

a, k+q, o+v

tially filled banda and an emptyor fully filled) bandb has
been investigated in degenerate semicondutt@nsd with
the approximation of a dispersionless banébr the Fermi-
edge singularitieS>2in the core spectrum of metals. The b

absorptionspectrum is given bysee Fig.(9a)]
a
(d)

x(®,9)~ > ; A(K,v;©,9)Ga(k+q, v+ ) Gy(k,v),

412 FIG. 9. Exact representation of the interband susceptibility as a
where A is the complete vertex in the particle-hole channelfunction of energyw and momentuny. The lines are exact one-
with energy momentumd,q), andG, andGy, are the(ex-  particle Green's functions anti is the completéreduciblg vertex.
ach single-particle Green’s functions. Using the fact that(b) The interband susceptibility in the ladder diagram approxima-
bandb is empty(at T=0), the sum ovewr can be explicitly  tion to A of (a). (c) Elementary self-energy and vertex corrections
carried out with the result neglected inb).

C

] by a shakeoff of low-energy particle-hole excitations at the
X<wﬂ)~; Ak v, )Gk )=t ey Fermi surface. Therefore processes which smooth the Fermi-
(4.13  edge singularities will also smooth the excitonic edge.
The effect of a finite hole mass or rec8ibn the Fermi-
For small interactions, there is a modification of the spectrgdge spectra is to smooth the singularity. Auger processes
at the threshold energy ;= e,(kg) — . We are interested now introduce a self-energy f@,, which is smooth on the
only in interactions large enough that an excitonic collectivegcale of the recoil energy,(ke) — €, (zone boundary All
mode, which does not overlap the interbamth transitions, k's from the zone boundary t&: now contribute to the
is pulled out. The simplest approximation for the calculationsypsorption for any given externgl and momentum is con-

is to consider a rigid Fermi sea which only serves to blockseryed by particle-hole scattering on the Fermi surface. Both
out a part of the phase space. This is the ladder diagram

approximation forA, Fig. 9b). In this case one obtains a

sharp collective mode with spectral functior- §(w (a) No Recoil
— we(q)). This is a poor approximation for the line shape.
The dressing of the exciton by low-energy particle-hole ex-
citations at the Fermi surface—the simplest processes are
represented in Fig.(8)—modifies the line shape nonpertur-
batively. The problem has been solved exaétlin the
recoil-less limit, i.e., for a dispersionletsband where the
interaction strength can be parametrized by a phase shift Pox

Iy

S(€). In this case\ is also independent of momentuaand ®
x is therefore independent gf The absorption line shape is
as sketched in Fig. 18). Near the excitonic threshold it is (b) With Recoil
given by

X(w)fv(w—wex)_lﬂl_‘so/”)z, 0> wey. (414 mx
Here &, is the phase shift at thehemical potentialmodulo Increasing
7—the phase shift required to pull an exciton from the con- Interaction

tinuum. we, is determined by the details of band structure,
the density of conduction electrons, and the strength of the
potential. Note that in the weak-coupling limit the absorption G, 10. (a) Interband absorption spectrum near the excitonic
line shape has precisely the same exporiebtit the absorp-  threshold in the approximation that baidis infinitely massive,
tion edge is at the energy . Thus Eq.(4.14 may be re-  after Ref. 52.(b) Interband absorption spectrum near the excitonic
garded as the Fermi-surface singularity pulled dowmlQ ledge with finite hole mass. The excitonic ledge shifts to lower
or that the absorption displays the excitonic edge as modifiednergy as the interband interactions increase.

(]
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G, and A are now functions ok. The extra integrations in In general, higher anisotropies are also generated from the
Eq. (4.12 then round off the singularity over the recoil en- starting Hamiltonian. | do not give their derivation but
ergy. If interactions are strong enough to pull out an excitonmerely introduce, in the mean-field approximation, a term
the excitonic edge must be similarly rounded off near theCcod'd in the free energy. The mean-field anisotropy free
excitonic edgewe,. This is shown in Fig. 1M®). Similar  energy is then

behavior must exist for a range of from O to order the

difference fromkg to the zone boundary. We may write F anis= ACOSH+ Bcos' 6+ Ccos' . (4.20

qualitatively that A, B, andC are functions of the density of holesas well as,
R in general, of temperature.
x@)=x|—F | (4.19
C. Condition for instability
wherel is the smaller of the recoil energies ot,. x (X)
has the form(4.14 for x>1, but nearx=0, y(x) is a
smooth function ok. As already mentioned only the ladder diagrams, Fig),8
The two important points in the above discussion @e are considered in this approximation.
that for large enough interactions an excitonic state is pulled The mean-field free energy then is

1. Rigid Fermi sea

out with or without recoil and(ii) that recoil is always a 2 5
levant perturbation, smoothing out the singularity at the L 2
releve ’ Lt arty a Fue=7— + 5 +(E4+\)¢%— o
Fermi edge and therefore at the excitonic edge if it exists. 47,, 47,
As the interaction strength in E§4.1) increaseswe,(q) 1
decreases. The band structure in E4.1) is unstable for =S In(l-—e FEm Y +F, . (4.2])
interactions for which Re(0,0)— . It appears difficult to Br.m=a.p anis

get explicit closed form expressions fgfq,») taking into
account the dressing of the exciton by |0w_energy partide- We will be interested eSpeCiaIIy in the V|C|n|ty of the hole
hole pairs. In subsequent sections, | present explicit resultdensity where thé ;s vanishes to leading order. It is con-
with the frozen Fermi-sea approximation, and then discus¥enient then to begin the analysis by ignorifg,s. One
from general considerations the essential features of the efhereby determine§, , T,, and ¢. F,ys is then used to
act y(w,q). determined.
The variational one-electron Green'’s function is
B. Anisotropies
Gaa ab

The anisotropic interaction termg, and 7, play a quite Go(k,w)= ( G G ) =[w—Ho(k)]™, (422
different role than7, and.7,,. It is convenient to first focus ba  =bb
on these differences. The effective interactify as derived et FKT,  FKT,
in Appendix B is in general smaller thai, and 7, . But Ho(k)=
the amplitudeT, is always finite because of the splitting FLk)Ty = FAK) T,
between the bonding-and antibonding: bands in Eq(4.1,  The mean-field band structui, , 5 and the eigenvectors

i.e., an effective uniform field- riz. The term proportional to @y, Bk, are obtained as usual by diagonaliziAg(k):
J»x in Eq. (4.4) is therefore approximated as

). (4.23

( ak(r) Ck Sk) ( Ao (4.243
‘-szl TZTX+Tz; 7'xk]:xz(k)"_-l—x; 7'zk]:xz(k)} Bko =Sk C/\byo . .
(4.1 Here
T, and T, will therefore have no low-energy dynamics. So, Cx=CON 2, SK=SiM\ /2,
at low energies, the corrections to the mean-field approxima-
tion (4.16 are unimportant. The second and third terms in tarh = F (KT, /[ exa— e+ 2F,(K)].  (4.24b
Eqg. (4.16 merely renormalize the band structure provided
T, andT, are finite. The first term may be written as Minimizing Fye with respect ton and u gives
Acosd, A=T,MT,T,. 4.1
S @1 $7+ 2 f(Bum—p)=1 (4.29
Consider next the term proportional f§ in Eq. (4.4). In o
the mean-field approximation we write it as and
(T (T2 (T2 (4.18 *=Xx, (4.2

Therefore this term acts as a quadratic anisotropy field in thevheref(z) is the Fermi function. Equation(@.25 and(4.26)
x-y plane if an excitonic state condenses. This anisotropymply that the Luttinger theorem on the volume enclosed by
may be written as the Fermi surface is satisfied.
B Minimizing Fye with respect toT,, T, , and ¢ yields,
B(cosh), B=(J)) NT,)> (419  respectively,
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T, IExm L
+ > f(Egm—p)———=0, (4.27)
27, f& ™ T, (T, T, &) x| T.]. (4.32
T, IEkm ¢
27, + &~ f(Exm—x) aT, =0, (4.28 Equations(4.27)—(4.29 are rigid Fermi-sea approximations

of the general condition
IExm
ip

From Appendix B note that/, >7,. We expecfl, to have
only a minor effect which is determined mainly by the “ex-
ternal field” A. The stability of the mean-field approxima-
tion for ¢; is ensured by a finite value for the “boson”
chemical potentiak ,+ \. In fact, apart from detailed quan-
titative issues, we need look only at E¢.28 which can be
rewritten as

JE
M+ gt 2 (B w)—5 =0 (429 dety *(«=09=0)=0 (433

to determine the variational parametdrs, T,, and ¢.

The qualitative form ofy(w,q) for an interaction strength
less than the critical value has been discussed in Sec. IV A
and illustrated in Fig. 1®). Let us defing as the parameter
[which is a function of the parameters in the Hamiltonian
(4.1)] such that the instability toward$, #0 occurs at a
temperatureTl, for p=p.(T.). First considerT;~0. What
does the condition(4.33 for the instability imply for
F(Epuo— ) — F(Exgo— 1) Im)_((w,_q) when the latter is over(_dampe_d and ha}s the shape

a7 Bo =0. as in Fig. 1@b) rather than a-function as in the rigid Fermi-
(Ekao— Exgo) sea approximationy(w,q) has to satisfy the requirement

(4.30

The (approximatg condition for one electron band structure Imy(w,q)=—Imx(-w,q). (4.39
to be unstable is obtained by

1
7_— 2
27, *% 7. (k)

For w small compared tavey, IMmy(w,0)~ w, while for w
large compared ta,,, it is nearly a constant up to a cutoff

L+E |j:i(k)|2f(6ka"_ﬂ)_f(ekb"_'“) -0. o, on the scale of the Fermi energy. Then by Kramers-
27, %o (€kar— €kbo) Kronig transform the leading term in
(4.3)
_ . _ . . - Cc
At T=0, the right-hand side of Eq4.3]) is of order Rey(w,0)~In —maxwex,w))'

N(0)In(W+ €;)/ €, . Since the “threshold energyé¢, and the

bandwidth W are of similar order, we need 2 N(0) of  Ag p—p(0), we—0. Near this point, Int(w,0)

O(1) to have an instability. We will in fact assume that ~sgn(®).

2J,N(0) is large enough that the instability is at a very high  \ye see that recoil reduces the singularity @s+0 of

temperature. Stability is achieved By #0, which corre- g(w,o) near the transition af=0 asp— p(0) from the
o]

sponds simply to changing the relative Cu and O character 0 fnction of the rigid-sea approximation or the exact result

the occupied and unoccupied bands. This result is no MOTE; 14 for the recoil-less case. In terms of Ed. 14 recoil

than the statement that just as at 1/2 filling the charge statgakes the phase shi, at the chemical potential irrelevant.
away form 1/2 filling is determined by the electron-electronpisg appears quite unavoidable—on the one hand, recoil can-

interactions, not just by the one-electron band structure. Thigot prevent the instability if the interaction is large enough;
behavior has been seen in a variety of earliefon the other hand, the singularity in E6f.14 which is a
calculationst** We will see below that whef s is con- Fermi-edge singularity is wiped out by recoil. The result is
sidered, the transition t&, #0 becomes of first order, ex- nat the instability occurs with the least singular form pos-
cept at two points. Itis o_nly near those two points that inter-jp|e- x(®,0)~In(w+i0). As discussed in connection with
esting properties can arise. Eq. (4.15), the smoothing of the excitonic edge occurs at any
externalg due to the mixing by Auger processes of interband
particle-hole pairs over essentially the whole range of mo-
Only the ladder diagrams are considered in the vedex menta. Thus for interaction energies large compared to the
in deriving Eqs(4.27—(4.29); i.e., the Fermi sea merely acts Fermi energy as required for the instability and therefore also
to restrict phase space. As already discussed, this is a po@rge compared to the recoil energy, the frequency depen-
approximation. For sufficiently strong interactions the one-dence of the Iny(w,q) is nearly the same over the whole
electron band structure is of course unstable even with theange ofg. The imaginary part 0f(w,q) is then reminiscent
inclusion of low-energy patrticle-hole excitations, such as inof the form of the Cooper-pair-fluctuation propagator
Figs. §c) and &d). But several details change. In general,above a  superconductive transition  which is
the mean-field amplitude$,, T,, andT, are functions of ~iw/max(w,T) over a range ofj smaller than the coher-
frequency. But as a variational ansatz, Egs8)—(4.10 may  ence lengtt¥, i.e., the size of the Cooper pairs. Here, given
still be introduced. The considerations of anisotropy stillthe strong coupling required to engender the instability, the
continue to hold as in Sec. IV B. The mean-field free energyexcitons have size of the order of the lattice spacing. So the
(4.21) is an approximation of the general case, whereThe iw/max(w,T) form of damping is expected to persist over
and ¢ dependencéafter integrating over the Fermionsiay  most of the Brillouin zone.
be written as The form for x(w,q) near forT=0 asp—p.(0) is thus

2. Soft Fermi sea
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i we )—1 that we have arrived at a new class of statistical-mechanical
x(@,q)~

+In model for quantum-critical points.
MaX(@, e P)) MaX(, ex(P)) We will discuss below how regimes 1 and 3 of the phase

- -1 diagram of Fig. 1 may be identified with the phaséof
+x°9°+[pc(0)—p]| (4.39 ") and regimes 2 and 4 with the phase Il of the mean-field
theory. The nature of the fluctuations will be shown to vary
wherew, is an upper cutoff energy, andprovides the scale in phase | as a function of and T leading to a crossover in
of dispersion. At a finite temperature, we must use the facthe properties from regime 1 to regime 3 in Fig. 1. We will
that thew and T dependence iy(w,q) must scale a/T. also show that the phase transitions between phase | and
So, forT> w, phase Il also becomes a crossover for arbitrarily small disor-

_ . der.
ad +In e )
maxT,wedP))  MaxXT,we(P))

X(@,9,T)~

E. Circulating current phase

-1

2.2 _ 0,#(0,7) implies that in the ground state, a current
TR+ p(T) p]} ' (4.39 flows in each cell. Since the momentum of the instability is
zero, the current pattern respects lattice-translation symme-
try. The current pattern within a cell can be deduced from the
mean-field Hamiltonian witl® # 0, which is now Eq(4.23

We now consider the effects dfays. On minimizing it the substitutiorT, — T, e'®, T, e '® in the off-diagonal
Fanis With respect tof, one finds that the equilibrium value terms. To calculate the current pattern, first find the eigen-
0., is given by vectors of the conduction band with+0:

0®,=0 for (A+2B+4C)<0 (4.39

D. Determining @

(4.42
O,=m for (—A+2B+4C)<0 (4.38
Now use Egs.(2.5 to expressa,b in terms of d, and

for phase I. - Pxy(K) using coefficients given in Appendix A. This yields
For C>0, there occurs a second order transition of the ™

Ising variety to

o =Uag(K) Ao+ Uax(K) Prscot Uay(K) Pyior s (443
0<O,<m for —A<2B+4C<A (4.39

for phase 11.® continuously rotates in phase Il #B,C whereu’s are complex coefficients:

vary.
Noting thatA,B,C are in general functions ofandT, we N _ g )
may write the mean-field anisotropy energy as Ua(d,x,y)(K)=Ra(a x,y)(K) € Fxyte, (4.49
Fanis= Go(X, T)[0— O y(x,1)]%+ - - -, (4.40  There is no need to exhibit the complicated expressions for
where these coefficients because the current pattern can be deduced

from their general properties specified below.
(x,T)=0 for *A+2B+4C=0, ie., O = The current in a bond going from a copper site to an
B ’ (;1_"”) oxygen site in thex or y direction is

Therefore the transition & ,,=0 or 7 is of second order.
Let us denote the transition lin@nderstanding that as is
varied we will be concerned only with either | to Il of ko
I transition) by x.(T.).

2
JdX:;tpd|m<di0pi+x,0'>

Let us stay for definiteness in the vicinity 6f,,=0. For - 2a tog > cosk—RadRaxsu{ ba(K) — by (K)].
0,=0, the high-temperature transition occurs as a first- T PUSe 2
order transition with a real order paramefigr. When®, (4.45

#0, the mean-field order parameter is compl&x:+iT, .

T,#0 implies that in the ground state, a current dlstrlbutlon

occurs within each unit cell which has the same phase i Il;The sum ovexk of the term with sirk,a/2) is zero using
every unit cell. inversion symmetry. Now note thatt,q changes sign

The content of the mean-field theory is summarized i<~ ~X and the sum in Eq4.49 is symmetric under inver-
Fig. 5, where the free energy is shown as a functior of sion. Hence the current between a copper orbital at ai site
andT, and in Fig. 8. Throughout the temperature region ofand an oxygen orbitals at- (a/2)x andi — (a/2)x are equal
|ntere5tT #0. As (p=*+A+2B+4C) is varied by varying and opposite. This holds also for the current between copper
x (andT), a second-order Ising transition frofiy=0 to the  orbitals ati and oxygen orbitals atr (a/2)y.
circulating current phasg,# 0 occurs.(We note in passing The current between two oxygen orbitals in the same cell,
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_ op : along the diagonals. On zone fadgs=0 or 7/a, ky=0 or
]xy:T|m<pi+x,api+y,o> mr/a, the eigenvalues do change. The lowest lattice harmonic
consistent with these symmetries dgz2_,2. So there is a

2aty,, Kxa—Kya change in the single-particle spectra in the circulating current
= k;k cos——— Ro (KRG (K) phase ofd,2_2 symmetry.
F The ground-state current contribution of each statde-
X sin ¢y (K) — ¢y(K)]. (4.46  pends onk and there iSO(1) electron per unit cell in the

conduction band. The orbital magnetic moment of the circu-
lating current in each of the quadrants in Fig. 6 is

(0.05up), with the assumption that the average state con-
butes~ 1/4ug per unit cell.

The sum in Eq(4.46) is identical for the other three oxygen-

oxygen bonds around a given copper atom, but as is evide
from the phases shown in Fig. 8,, reverses sign cyclically i
in going around the four bonds, and therefore so does the

current.
The direction of the current between the copper and the V. COLLECTIVE MODES AND FERMION-BOSON
oxygen orbitals and between the oxygen orbitals fixes the COUPLING

pattern show in Fig. 6. So, together with breaking time-
reversal symmetry, fourfold rotational symmetry is broken.

Butsthe p][oq[ﬁct of th? two Is left angnant. ¢ . _There is always a finite effective field coupling linearly to
ome further conclusions can be drawn from an examlnaTz‘ So the fluctuations in thedirection are always massive.

tion of the U's. If t;,=0, tax(K)=ay(K). ~Then any  The interesting modes are in tig— T, space. So define
[ ¥ad(K) — ¥ y(K) ] can be removed by a unitary transfor-

mation without affecting the eigenvalues or the eigenvectors. 1

This is physically obvious from looking at Fig. 6; a current 5ijq=§jxx2 (leq+ T Fx(K @) — Ty, (5.1
between copper and oxygen orbitals is meaningless in the k
absence of a current between the oxygen orbitals.

We can also deduce that there is no contribution to the
currents from states on the diagonals in the Brillouin zone,
*k,=*k,. Correspondingly, there is no change in the
single-particle eigenvalues in the circulating current phas@he effective Hamiltonian determining the fluctuations is

We now consider the fluctuations in the state+#0.
They are interesting only near theldr ") to Il transition.

i
8Ty q=— EJyy; (Teq— T Fyk@)—-Ty. (5.2

Ao 1
Hiue= 2 (algbL,)Ho(k>( 0| T2 37, (TTxadTxat OTyq8Ty.0) + 2 1 (KQ) @ gbict by g0 (3T + 6Ty o)
120 T (K (@ gbi B 20 8Ty g+ 0T )+ Hais. (53

Again, let us ignore the effects of anisotropy to begin withsion of the amplitude modes. Their frequencies ngai0
but choose® ,=0, i.e., T, =T,. The spectrum of the fluc- are of orderT, ; they will not be considered further.

tuations Let us now include the effect of anisotropy, but stay near
Ito Il (orl’ to ) instability. From Eq(4.40, the anisotropy
DA, w)=(8T,8T (0, w), (5.4 energy provides a quadratic te@y(x, T) 5T to the fluctua-
tions. Including this effect
m/m
is given in the frozen Fermi-sea approximat|éig. 8(b)] by Dg(q,w)= 0= 2P+ Gy, T) (5.7
Dy Y(g,0) ) where «/a is the order ofT,. The spectral weight of the
0-1 =5+ |Fka) llective modem*/m i
DY Yqw)| 27 collective modem*/m is
X[Gaa(k+q,0+v)Gpp(k,v) m*
—~0(T,/W). (5.9
+Gap(k+q, 0+ v)Gpa(k,v)]. (5.6 m
At =0, g—0, the equation foDS is identical to Eq(4.30 Equations(5.6) are special cases, in the rigid Fermi-sea

determiningT,. So a long-wavelength massless phase ompproximation of the general equation
current mode exists as is to be expected when the anisotropy
in the 7,-7, plane is zero. The poles m;’ give the disper- x Xq,0)=0, (5.9
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which determines the fluctuation spectra, just as E427)— Consider now the coupling of the fermions to the low-
(4.29 are special cases of E¢.33 which determines the energy collective modes in the vicinity of;(0) where a
one-particle spectra through fixing,, etc. In the frozen transition from T, =T, to a complex order parameter
Fermi-sea approximation, there is no damping of the collecT,+iT, occurs. The coupling of the Fermions to th&,

tive fluctuations—the excitonic resonances have a spectrdluctuations comes from the fourth term in E&.3) and a
function proportional to & function. As discussed in Sec. similar term in Eq.(4.4). We must reexpress the fermion
IV A for the case whenT,=0, inclusion of low-energy operators in terms of the low-energy fermions created by
particle-hole fluctuations changes the spectral function of th@zﬁg by using the rotatior{4.24). The coupling is written as
excitonic collective mode in an essential way. T, w)

including low-energy particle-hole fluctuations with #0 _ . t t

has the same functional form as discussed in Sec. IV C, but HF‘B_k%U b g(ka) a"+q'”ak'”( OTyq™ 5Ty‘q)'
calculated with the new band structure, Equatighg3 and (5.11
(4.24). The dispersion of the soft excitonic collective mode
atq—0, described by)g(q,w), again has the same form for
G=0 as discussed in Sec. IV C, leading to E@E35 and

One finds from the fourth term in E§5.3) [the correspond-
ing term from Eq.(4.4) introduces no important differente

(4.36. Including the effect of the anisotropy on the fluctua- [ Akrq— Mk
tions, we have a(k,q)=go ]—"y(k,q)sm(T . (5.12
o i we -1 In Eq. (5.12 we have introduced, with dimensions of
D (q,w)zDoH +In )] energy, so thavT, is henceforth dimensionlesgg is ex-
y y
max(|],T,Go) max(w|,T.Go) pected to be ofO(Eg). In general Fy(k,q) is finite for

-1 g—0, butg(k,q) vanishes linearly withy. So, even through

(5.10  we have an Ising transition, the coupling of the Fermion to
the fluctuations vanishes at long wavelength. This occurs be-

_ ) . cause the bands are split due to “external” fields and the fact

Here D, parametrizes the spectral weight of the fluctuationyy 5t nor . or 7.7 coupling is allowed at long wavelengths.
—1 e xTy zly

expected to be 0O(Eg"). The second-order transition oc- The vanishing of the coupling at long wavelengths is, how-

curs wherG(x,T)=0 as in Eqs(4.37)—(4.39)-l(HE'ncefOrth ever, not fatal because in the fluctuation spectrum, Eq.

Gy is dimensionless, having been scaledyy".) The fluc-  (5.10), all g’s are(to a logarithmic accuragyequally impor-

tuations have a finite frequeney, above and a finite value tant in properties which integrate the spectrum to energies of
belog)/v the transitioricharacteristic of transitions of the Ising the order of temperature.
class.

Equation(5.10 is crucial in the analysis below of the \; ANALYSIS OF THE LOW-ENERGY HAMILTONIAN
properties of the model. It is clear that the very singular _ _ _ _
result from the rigid Fermi-sea approximation, K§.7), is The end result of the pre_cedlng two sections is a simple
quite incorrect.(It also gives properties il=2 which are Hamiltonian for the calculation of low-energy properties:
too singular compared to experimgrithe combined effect
of infrared processes at the Fermi surface qnd recoil t.ogether H= 2 e k)algakﬁ DS—l(q,w)ﬁT; qﬁTy q
with analyticity requirements has been discussed in Sec. ko ‘

IV C to lead to Eq«(5.10. This justification is only heuristic.

An evaluation of processes like in Figic®to find A exactly +> iakaal . aw (ST. +8TH ). (6.1
appears very hard, if not impossible. Earlier, a three-body ;q (K Q) oo OTyg 0Ty ). (6.1
scattering approach to the problem was sugge¥tidnight

be possible to evaluatb(q,w) systematically in such an
approximation. Note that whe#, of Eq. (4.14 is zero, as
argued here, 18,(w)~w !, at least for the recoilless
case This is consistent with the conjectdfehat a three-
body resonance at the chemical potential may lead to th . ;
observed normal-state anomalies. nes the fermion propagatioo(k,w) =(aa’)(k,w).

There are no other massless modes in the model. Earlie The real pat:f[ of Flg.bl(h)bfor gzo waodre;nqr_mahzfes
investigation&"%2 of the charge-transfer instability in the 1€ MassG. This can be absorbe In a redefinition xaf.
model found a diverging compressibility indicating phases'm'larly the leadingg dependence-q- merely redefines

separation. If one adopts a short-range interaction model, tH&€ coefficient« in Eq. (5.10. The imaginary part gives the
density fluctuations have a dispersion-q. Near the critical uSu@l Landau damping contribution iw/veq. If we use

point of the charge-transfer instability, a low-energy mode offénormalized fermion propagators in Fig.(@1 the result is

ST, couples to such density fluctuations pushing the “elec.Modified to

tron sound velocity” to zero. In a model with Coulomb in- ;

teractions, the density fluctuations are at the plasma fre- lo/max(imz(e,T,G),veq).

qguency. Phase separation then does not ofgnless the We will show that in the non-Fermi-liquid regime
system has inhomogeneously distributed fixénic) Im2 (w,T)~max(,T). This is an additive correction to the
charge$ imaginary part in Eq(5.10 and is therefore unimportant at

+ k20%+ Go(x,T)

We now analyze the properties of this Hamiltonian in the
regime near the | to Il transition nedr=0.

It is best to start by considering the simple physical pro-
cesses depicted in Figs. (B1-11(f). Here the wiggly lines
?enote the fluctuation propagatidh(y)(q,w) and the solid
i
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(a) (b)

Equation (6.4 may be useful in analyzing angle-resolved
photoemission experiments discussed below.
Consider next the vertex correction shown in the graph of

& Fig. 10(). In the limit q— O first and thenw—0, it is given
by a Ward identity(in the pure limi},
(©)

C) 1
Aw=z, (65)

/
“< Q wherez is the quasiparticle renormalization amplitude given
: (e) (f)

7T+lw

+iaT|. (6.9

(Zw/w)ln(

c

by Eqg.(1.2). In the “g limit” it is given by another Ward
identity in terms ofdX/dk. SinceZ is found very weakly
dependent onk—kg), this is ignorable.
FIG. 11. Processes for analysis of the low-energy Hamiltonian; FOr generak andg, a finite vertex correctio®@(g) non-
(a), (b), (c) are processes considered for the boson self-enédyy, Singular as a function ofo and k—kg) is found. If the
for the fermion self-energy(e) is the lowest-order correction to the “bare” coupling constang(k,q) is less tharD(1), this may
boson-fermion vertex(f) Leading self-energy due to anharmonic be simply absorbed in the redefinition g{k,q). One can
interaction between the fluctuations. formally devise 1IN schemes to keep such vertex corrections
controlled.
all g. This would not be true in the rigid Fermi-sea approxi- We briefly consider the renormalization o6, in
mation in which the fluctuations iB°(q,») are completely D,(q,») due to anharmonic interactions. The leading con-
undamped(In that caseD® has the same functional depen- tribution comes from
dence ong and w as the transverse electromagnetic field
propagators in a mef&l) One can also examine higher-order Ul 6T g0l 6Tgr, 0|2, (6.6)
renormalizations, Fig(11b) and Fig.(11¢ to conclude that
they are irrelevant, and the imaginary part of the process iMhereu>0 is a phenomenological coefficient expected to be
Fig. 11(b) is proportional tow while Fig. 1Qc) is propor- ©n the same scale as the upper cutoff energy of the fluctua-
tional to 2. tions. The self-energy of the modes proportionaltoFig.
Consider next the fermion self-energy graph, Fig(dll 11(f), has the leading temperature correction proportion to

The imaginary part of the self-energy is easily seen to be UT (independent ofi) for x~x.(0). This may be absorbed
in X.(T) and suppresses the transition temperat(iience-

1 € forth we can drop the superscript 0 @GandD.) A proper
ImE(q,w)zN(O)f dd_le delmD(2Kex, 0 — €) analysis of the fluctuations near the transition line which
0 ‘1 changes from a quantum transition B0 to a classical
€ w—€ Ising transition at high temperature has not been carried out.
tanhz—_l_+coth?}, (6.2 A very important general point to note in this connection
is that the correlation length exponentat T=0 as a func-
where tion of (x—x;) is 0 while it is 1 for thed=2 classical Ising
model. This is expected to turn the transition line to a cross-
€1 = ve(|q|Fkex) + RS (€1 5). (6.3  over for arbitrarily small disorder as discussed in Sec. VIII.
' ' We can estimate roughly the different regimes of fluctua-
It is found consistent to ignorE(€) in the right-hand side of tions from the properties of the propagaf®(q,®). No so-
Eq. (6.3. For T=0, the limits of € integration are 0 tav phisticated analysis of the crossover between different re-
[except for an ignorable region ok integration of gimes is attempted. Consider first the departure of the
0(w/Eg)]. The x integration, using Eq(5.10 for Dy for  transition temperature of the circulating current phase from
Go=0, then leads to a constant, so that the final result iF=0 at x=x.(0). We assume parameters are such that at
proportional towsgnw. Similarly for T<w, the result is pro- T=0, the CC phase occurs farx.(0). This guess is based
portional toTsgrw. The self-energy has negligible momen- on the parameters calculated in Appendix B and the decrease
tum dependencéf the Fermi surface has no significant nest- of A with x and can be checked only through a detailed
ing). These results are true for any dimension more than levaluation of Eqs(4.27—(4.29. Then the transition tem-
The d independence of the self-energy, and other propertieperatureT.(x), given by the divergence in B€0,0), is at
in which these fluctuations are sampled over energies to the
scale of the external frequency and temperature, arises be-
cause in Eq(5.10 the fluctuations are essentially lo¢alen ('”
though R®(0,0) diverges a5~ ]. We may express both
the real part and the imaginary part of the self-energy by afhis gives
expression which interpolates between thel <1 and the
w/T>1 limits: T.=—G(T.); (6.9

X g%(2Kex)

W¢

maxT,.,G)

-1
) =—G for G<0. (6.7
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i.e., the transition temperature is essentially proportional to
—G(0).

For finite T.(G), in a narrow temperaturdT_. region
nearT.(G), the fluctuations are characteristic of the classical
Ising model. We have not investigated here how the width of
this regime varies witfT; . In this regime, the classical ther-
mal occupalltion of fluctuations(where 3coth(w/2T)
=[n(w/T)+3]~T/w) determines the thermodynamic and .
other properties because the characteristic energy of the flu® noted that the propagat¢s.10 for G=0 is not the
tuations isO(AT.)<T. If the characteristic energy of the Zg= I|m|t of the propagato;sﬂlscu_ssed for e>_<ample in Ref.
fluctuations is much larger thah the zero-point occupation 13 Which are~(iw/q”+q®) "%, with z4 defined to be
of the fluctuations dominates the properti@s this regime (a+B).
cothw/T~1). The physical properties in this regime are gov-
erned by the quantum fluctuations. Within this regime, we
must distinguish when the characteristic scale of the fluctua-
tions is given by temperature itself and when it is given by
G(x). The former is the non-Fermi-liquid regime and the
latter the Fermi-liquid regime. From the form Bf(q, w), the
crossover between the two occursTat G(x) for G>0.

The momentum-integrated fluctuation spectrum for
T>|G| gives a measure of the frequency distribution:

FIG. 12. Elementary processes for optical conductivity.

VIl. PHYSICAL PROPERTIES

The transport properties in regimédsee Fig. 8 which are
controlled by the quantum-critical point and the crossover to
the customary behavior at low temperature for the overdoped
case, region lll, are calculated below.

In the pure limit, region Il should show Fermi-liquid
properties but with different parameters from region Ill due
to the alteration of states near the Fermi surfac@ py 0. In
the next section | argue that the transition between region |
and Il is only a crossover and that at low temperatures region
Il is dominated by disorder such that the density of states at
the chemical potential is zero. One should, however, expect a
bump inC,/T and y at the | to Il crossover. There is a
decrease in low-energy fluctuations in region liGsin Eq.
(5.10 is finite. But with the density of states at the chemical
potential tending to zero at low temperatures due to disorder,
a Fermi-liquid behavior may never be observable except in
very pure samples.

In the pure limit, although an order parameter develops in
region Il, it is by no means clear that there exist observable

h itical regi h ) singularities inC,/T or x at the transition. Certainly, at
Above the narrow critical regime nedg(G), the properties p=0, z=0o0, no singularities exist. The crossover to Ising

are governed by the quantum fluctuations. Non-Fermi-liquidsjn g jarities(only logarithmic in the specific heaat high
behavior is to be expected. F&<O0, i.e., the ordered side, temperatures fox far from x, may occur with a very small

the fluctuations have a gap. So Fermi-liquid behavlmit 50t de at observable temperatures. This requires further
with unusually small parameterss to be expected in the work.

pure limit. We have not yet calculated the change in one-
particle spectra due to the change in dispersion in this region
discussed in Sec. IV E and the change in the spectral func-

f d?gimD(q, )

max w,T)

We
r"ma)(a),T)

1 -1
~—[7r/2—tan‘1 ) ”

T

N2 (for w<T

T nT (for w<T)

We
~In; (for w>T). (6.9

A. Single-particle spectra: Angle-resolved photoemission

tion due to the altered fluctuations.

For G>0, the fluctuations have a gap @(G) for
T<G. Fermi-liquid behavior is therefore to be expected but
with parameters determined I6y.

experiments and single-particle tunneling

A one-particle self-energy of the forr(il.1) was sug-
gested on phenomenological grout8isWhile angle-
resolved photoemission spectroscdyRPES experiments

The different regimes are shown in Fig. 12. We are nowwere soon found consisténtwith this behavior, there has

ready to calculate the physical properties of Ejl). Given

been since then a considerable development in such experi-

Eq. (6.1, all physical properties can be calculated in a con-ments. Closer bounds should be put to this prediction. A
trolled and systematic fashion because of the unimportanceseful formula to fit the self-energy which interpolates prop-
of vertex corrections in the fermion-boson scattering and therly betweenw/T<1 andw/T>1, while obeying analyticity
boson propagator. For instance, the single-particle selfrequirements, is given by E¢6.4). At low energies and low
energy may be calculated self-consistently by using theéemperatures this behavior is modified in an interesting way
renormalized Fermion propagator in Fig.(81 The answer by defects, as discussed later.

remains unaltered as in other problems with momentum- Single-particle tunneling has traditionally been a powerful
independent self-energy. In the fluctuation spe¢#rd0, all  tool for measuring the frequency dependence of the single-
momenta are equally important to logarithmic accuracy inparticle spectra. Here, the interpretation of the tunneling
the regime controlled by the quantum-critical poigtscales  spectra is complicated by the fact that if the self-energy is
as Inw. Formally this corresponds to a dynamical critical momentum independent, its effect is not felt in the tunneling
exponentzy—oe. This appears crucial to understanding manyspectra unless the tunneling matrix element is momentum
of the observed anomalies in copper-oxide metals. It shouldependent. The situation has been amply discussed in Ref.
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14 and need not be repeated. Under suitable conditions, the 8000
conductance as a function of voltages(V)—G(0)

~ImZ(V)~V, as observed for tunneling in thedirection.

The observeds(V) varies weakly for tunneling in tha-b 6000
plane. This has also been discussed. A new experimental
development is the observatfrby inelastic scanning tun-
neling microscopy thafG(V)—G(0)]/|V| increases as the
distance of the tip to the surface increases thereby decreasing
G(0). This is in accordance with Ref. 14.

As in the case of superconductivity through electron-
phonon scattering, tunneling spectroscopy should serve to
identify the spectra of the glue for superconductivityf the
collective modeD(q,w) is the glue, the tunneling conduc- ‘ i ‘ i ‘
tance in the superconducting sta®V) — G(0)~|V|, above 0 2000 4000 6000
the superconducting gap as observed in appropriate geom- @) FREQUENCY (cm™)
etry. Quantitative verification of these ideas has been diffi-
cult because the slope of the conductance curve depends on
“extraneous” factors as discussed. But it should be possible
in carefully designed experiments to normalize away the ex-
traneous factors. After normalization the slope should de-
pend only on the coupling constant which determines the
superconducting transition temperatdrg.

4000

c (Qcm)'1

2000

8000 :

6000

4000

o (Qcm)'1

B. Long-wavelength transport properties

. . . o 2000
As discussed in Sec. |, an important constraint is put on a

theory of copper-oxide metals by the fact that if the long-

wavelength transport properties are interpreted by kinetic i ,

theory or by semiclassical Boltzmann equations, the scatter- 0 2000 4000 6000

ing rate for momentum loss measured in electrical resistivity (b) FREQUENCY (cm™")

and the scattering rate for energy loss measured in thermal

conductivity have the same temperature dependence. Within F|G. 13. (a) The calculated optical conductivity based on the

experimental uncertainty, the single-particle scattering raténheory which reproduces results based on phenomenology in Refs.

measured in tunneling or ARPES experiments also has the2a) and 12b). The parameters used aig~2 eV, \=0.5, and

same frequency dependence. This is especially surprising il,=1200 K. A soft cutoff is used(b) Experimental results for the

a theory in which the breakdown of Fermi-liquid theory is optical conductibility in the basal plane, from Ref. 60.

sought through a critical point where the long-wavelength

susceptibility diverges. One might imagine then that only 1 (o= sin'g

long wavelength fluctuations or forward scatterings are im- Nﬂfo 61+sin40

portant in scattering the fermions, so that the backward scat-

tering required in momentum transport would make theis O(1). One canshow by an explicit calculation that the

transport rate for momentum have a higher temperature déart of the process of Fig. 12 for o<T does not change

pendence than in the energy transport. the argument. The conductivity can therefore be calculated
The backward scattering is enforced in momentum transfrom Figs. 12a) alone with just a numerical renormalization

port usuaiiy through Considering the two processes shown |ﬁf the coefficient. Note that due to lattice effects, conserva-

Fig. 12. If, for instance, the bosons are acoustic phonons, tHéon of momentum with initial and final states on the Fermi

leading T2 contributions to the dc resistivity of each of the surface does not imply conservation of current. If for arbi-

processes in Fig. 13 is exactly cancelled leading to a resigtarily small  scattering occurs from a given state on the

tivity proportional toT®. Fermi surface to a substantial part of the Fermi surface, re-
The situation is quite different WItD(q,w) of the form S|St|V|ty limited Only by the density of fluctuation results.

(5.10. Then there is no cancellation to leading order pe-Since thedensity of statesf the fluctuations is essentially a

tween the self-energy and the vertex diagrams of Fig. 1Zonstant, a linear-ifi- resistivity is to be expected.

because for energy transfer of the order temperature’ mo- The calculation of electrical rESiStiVity, Optical conductiv-

mentum transfer throughout the zone is important. Ifity, thermal conductivity, and Raman scattering intensity

D(q,w) were truiy independent of momentum, as assumedrom Eq (61) is therefore essentia”y the same as done

in the marginal Fermi-liquid phenomenolo&y/Fig. 12b)  earlier}?®12®) with similar results apart from logarithmic

would be identically zero due to the vector nature of thecorrections.

incoming and outgoing vertices. This is generally true for

any “s-wave” scattering. WithD(q,w) of the form(5.10),

thes-wave scattering part fap~T andk andk’ both on the Optical conductivity as a function ab andT is a much

Fermi surface more stringent test of the theory thafT) alone. The con-

(7.9

1. Optical conductivity
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ductivity at near-ideal doping has a very slow high- C. NMR and inelastic magnetic neutron scattering

frequency falloff unlike thew 2 Drude form. When vertex The application of the theory to the NMR properties has
corrections are unimportant, as in the present theory, the Cofeen also described elsewhétenly the principal points are
ductivity can be calculated from the single-particle Green’sq;mmarized here. The current fluctuati¢BslO generate an
function alone. Then the conductivity at frequencies up toqpitq| magnetic field which vanishes gt=0 both at the
O(? ) is ~[Im3(w)]"* with logarithmic correction. De-  ¢opper site and the oxygen site as may be seen from Fig. 10.
tailed comparisons with experiments have recently beeny finite g, an orbital magnetic field proportional t is
done by Abrahamé’ Earlier calculations were reported in generated at the copper sites but not at the oxygen sites. This
Ref. 12b). For completeness and to show the quality of thejs pecause around the fourfold-coordinated Cu site a circu-
fit to the experiments, the experimental results for the iNqating current due to the electrons can be constructed to O
plane conductivity deduced for untwinned single crystal is ) ‘hut not at the twofold-coordinated oxygen site. This
shown on the same scale with the calculations with indicatedyes rise to an anomalous orbital contribution to the mag-
parameters in Figs. 18 and 13b), respectively. netic correlation functions at the Cu sites:

The microscopic theory from the strong-coupling limit,
Sec. lll, provides an additional important feature: Thera-

a 6
band optical conductivity sum rule is IMxom(d, ®)~ pi(qa)? go) ImD(q,w), (7.5

* o whereay is the radius of the Cul orbital. The nuclear re-
0 o(0) do=wy. (7.2 |axation rate calculated using E(f.5 has the correct tem-
perature dependence to fit the observations on’@xygen

Given the constraint3.5) the allowed density fluctuations nuclear relaxation rate follows the Koringa law. ,
determiningw? are only between the one-hole and the two- One (anlthe most important aspects of the experimental
hole statesp;. From Eq.(4.26 the density of the two-hole result$* is that the oxygen relaxano_n rate c_i|V|ded by the
states ix. Thereforewf,~x(1—x). A proportionality of Eq.  9XY9€n Knight shift does not vary elther with or from_
(7.2 to x for x<0.2 has been noted experimentafly. C‘?mp"“r!d to compound within exp_enmental uncertainty.
In regime lll, where the integrated fluctuation spectra isleen this fact and the fact that antlferromagnetllc_: quctua—_
~0lG, a croséover fromp(T)~T to T2G and a corre- tions, to the extent they are seen, change the position of their

; ; . . _ peak and their width witlx, it is impossible to take seriously
sponding change imr(w) is predicted belowf ~G. proposals which rely on the cancellation of such fluctuations

at oxygen sites to account for the observations. A more ro-

bust symmetry is called for. In the picture presented here
The graphs of Fig. 13 with energy current external verti-lattice symmetry never allowg,.,(d, ) at oxygen sites.

ces give the thermal conductivity(T). The usual kinetic The predictedyq(q,w), EqQ. (7.5, can be measured by

2. Thermal conductivity

theory expression follows: inelastic neutron scattering. Perhaps inelastic x-ray scattering
can help distinguish the orbital magnetic fluctuations from
k(T)=~1C,(T){v2)7(T), (7.3  spin fluctuations. Equation(7.5) predicts an unusually

smoothqg dependence and scattering up to the high-energy

with 7&1(1-) =\uT andC,(T)=TIn(w,/T). Ay, departs from qutoﬁ at anyq. The measureq-inte.grated magnetig fluctua-
Mmom by NUMerical factors due to the different angular aver-ion spectrum in Lags Sty 15CUQ; is consisterit with Eq.

ages in momentum and thermal transport. The WiedemantY-5). Further tests are suggested especially in compounds
Franz ratio «(T)/To(T) is expected to be where nesting features of the band structure do not introduce

~ (A i/ N morm) IN(w/T). sharpg-dependent features at low energies. A direct test of
the theory would be inelastic neutron scattering experiments
3. Raman scattering intensity in several Brillouin zones and transformation back to real

i i _ . space to deduce separately the magnetic fluctuations on oxy-
As has been discussed before the Raman intensity in Gen and on Cu. Only a Fermiliquid contribution

Iattice ha_s a part proportional to the current-current correla-_ N(0)w/que for w=qug and 0 beyond should be seen on
tion function and hence oxygen, which in appropriate range is negligible compared to
Eq. (7.5, which should be seen only on Cu.
Sk, T)~[N(o/T)+1]wo(w,T). (7.4
. Lo VIIl. EFFECTS OF IMPURITIES

So a Raman intensity independent of frequency and tempera-
ture near the ideal composition is expected as observed. The problem of disorder in a non-Fermi liquid is compli-
Crossover to a behavior linear i at low w in regimes Il cated(and interesting Only a preliminary treatment of some
and Il is predicted and has been observed in regime Il witHdeas is presented here to clarify aspects of the phase dia-
a crossover to regime | under pressure. In principle, suclgram of copper oxides in the underdoped regime and the fate
Sg(w,T) is expected in all polarizations, and the relative of the transition to the circulating current phase in the pres-
intensity may in general be quite different. ence of disorder.

The collective fluctuation$5.10 also couple directly in First consider the effect of disorder in the transition from
the Raman experiment. But since I0,0)~wo(w,T),  phase | to phase Il, the circulating current phase. The Harris
this also gives the behavior of Ef.4). criteria®® may be used in the classical regime of the transition
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to determine if quenched disorder, which varies theal  where in the pure limit the fluctuations have a gap and a
transition temperatur@.(r) is relevant This is derived by marginal self-energy is not expected. One possible way this
equating the free-energy contribution due to fluctuation incan happen is if the fluctuations acquire a finite low-energy
T.(r) in a correlation volume to the pure fluctuation energyspectral weight due to disorder. This would be consistent

in the same volume. If with excitations in the glassy state conjectured above.
dv—2<0, (8.) IX. SUPERCONDUCTIVE INSTABILITY
disorder is relevant. Here is defined in terms of the corre- It is only natural that the fluctuations responsible for the

lation length ag~(T—T¢) " for a fixedx. In the Gaussian  anomalous normal state also lead to the instability to super-
fluctuation regime,y=1/2 while in the critical fluctuation conductivity. We again look to the low-energy Hamiltonian,
regime for thed=2 Ising modelv=1, and so disorder is Eq. (6.1), to deduce the effective interaction in the particle-
relevant in the former and marginally irrelevant in the latter.particle channel. As usual, this gives for total momentum of
This is expected to be true at asymptotically high temperathe pair equal to zero:
tures far away fromx=x.(0) in the phase diagram, Fig. 12.

Now consider the transition afi=0 as a function of

— ' * L’ !
[Xx—X.(0)]. At T=0 only zero frequency fluctuations come Hipair= g 9(k.k")g* (=k,=k")D(k=k', )
to play. So the dynamical critical exponent cannot affect '
the relevance of disorder. The Harris criteria may be ex- a’ikamaT_kwa_kg,akg_ (9.1

pected to therefore to be valid, but we should define

through @=w,), £é~[x—x,(0)] . Using Eq.(5.10 and Equation(9.2) is now used to deduce the symmetry channel

noting that atw=0, T=0, Inx—x(0)| scales as}?, vo=0. with the largest pairing interaction. The procedure followed

The Harris criteria then suggests that disorder is stronglys the generalization to more than one atom per unit cell case

relevant. Not much definite appears to be known about th@f that in Ref. 65, where it was shown that antiferromagnetic

physical state when this is the case. The best guess is that tHéctuations promote even-parity spin-singlet pairing which

phase transition turns into a crossover and that a glassy loWtas “d-wave” symmetry in metals with appropriate band

temperature phase results with random local orientations dftructures. The situation here is much more complicated; a

the order parameter. This is quite reasonable when correl&reliminary analysis is given below. The propagator

tion lengths are shorti,=0); there is local ordering around D(Q,®) is to a very good approximation independent of mo-

each defect with no correlations building up between regiongnentum for frequencies of importance for pairing which

around different defects. are always higher tham. SoD can be regarded as a con-
To summarize the above, the correlation length exponerfitant,Do with an upper frequency cutotb.. The effective

changes from 0 to its classical Ising value at asymptoticallypairing Kernel is then

high temperatures and largg(0)—x. Correspondingly one 3 N

expects only a crossover in tixeT plane to a glassy circu- _ 2 12ei k™ Ak

lating current phase. (—1)90D0|fy(k)+fy(k | sz( 2 ) 0.2

The problem is even more interesting because the smgl%here uppercase corresponds to spin-singieen parity

article excitations begin to acquire more singular self- S . o ;
gnergy than Eq.(1.1) %r 6.4) dque to defects.g It was and Iowercgse to spin-triplébdd parity pairing. We wish to
conjecturea that a non-Fermi liquid is an insulator for arbi- E;pr??shtr;]ls astr? sum ovetr prc;dtl:]ctsl C;I functlgnﬂxh@r;]d
trarily small disorder(resistivity —«~ asT—0) if supercon- which have the symmetry of the fatlice and which are
ductivity does not intervene at a higher temperature. In re_[‘nutually orthogonal. Sticking to the lowest lattice harmon-

cent calculations this conjecture has been supported by some: W€ look for coefficients in the expansion

systematic calculatiorfS. The result of these calculations is (3)[Js+ IAAKAK ) +IpD(K)D(K ) +---1, (9.3
that the impurity contribution to the resistivity in a marginal ’
;grr;rghrlngd is proportional to [ below a crossover tem- (= D[3(TixToxt TigTiry) + -+ 1, (9.4)
where Jg is the coefficient for the simpls-wave pairing,
T~ (we/m)exp — N~ ke ). (8.2)  Ja for pairing of “extendeds-wave form,” i.e.,
Here/, is the mean free path due to impurities calculated in A(k) =cok,a+cok,a, (9.5

the Born approximation. Below such an energy scale th . . -
density oI states at the chemical potential also tends to zer6P for pairing of “d-wave form,” i.e.,
as (Inw)™=. _ _

The observed low-temperature resistivity in dirty samples D(k)=coda—cokya, ©8
or in samples in which superconductivity is suppressed by @andJ; for the odd-parity form sika or sirka. The ellipses
large magnetic fieldas well as the temperature dependencen Egs.(9.3) and(9.4) refer to higher lattice harmonics, i.e.,
of the anisotropy in the resistivityis consistent with these periodic functions of R,a, 2k,a, and so on, which we ig-
calculationg* These calculations rely on using the marginalnore and which are automatically mixed in to the gap func-
self-energy to calculate the impurity scattering vertextion below T, due to the nonlinearity in the gap equation.
through a Ward identity. The experiment gives & hesis-  sirf{(\«—\)/2] in Eq. (9.2) is a very complicated function,
tivity in a wide range of doping in underdoped samples,but it has two properties which help write down the leading
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dependence oR,k’ consistent with lattice symmetry. It is The results of Ref. 65 show that any bosonic fluctuations

zero fork=k’ and peaks when the difference momenta issuch that the pairing interaction is miminal fq=0 and

maximum possible, i.e., atk(=k;==/a, ky,—ky==/a).  maximum forq= () produced-wave pairing. To distin-

The lowest lattice harmonic satisfying these conditions is guish between mechanisms requires the experiments dis-
cussed above.

1— 4 cogk,— k})a+cosgk,—k/)al. 9.7)
In | 7y (k) +Fy(k')|?, the only part | keep is a constant; the ~ X. CONCLUDING REMARKS, FURTHER THEORY,
others give harmonics. One then gets the relative magnitudes AND FURTHER EXPERIMENTS

H H 2 —~ -1 .
in units ofggDo~AN"7(0): This investigation has been based on two basic assump-

tions: (i) Breakdown of Landau theory in more than one
dimension requires scale-invariant low-energy fluctuations.
(i) The solid-state chemistry of copper oxide is special and

s-wave pairing:  35=3;

D-wave pairing:  3p=—3/2; responsible for its special physical properties. Accordingly, |
have formulated the copper-oxide model of Sec. Il and tried

extend s-wave pairing:  Jp=—3/2; to investigate its properties in a systematic manner to find
unusual singular low-energy fluctuations. The model does

triplet pairing:  J;=+1. have an antiferromagnetic instability at small doping. It

o _ o ] - probably has other finitg-instabilities at largex for a range
This immediately implies that simple-wave pairing and of parameters, especially if there is a nesting of the Fermi
triplet pairing Kernels are repulsive. In the present caseyrface. Given the experimental data, | do not regard the
simples-wave pairing is disallowed simply from the fact that singular fluctuations near such instabilities as a solution to
the effective interaction vanishes at long wavelength, and thghe fundamental problems stated in Sec. I. | have found a
triplet is disallowed because the fluctuations conserve spirhzo transition to an unusual circulating current phase on a
The kernels forD-wave and extended-wave pairing are |ine the x-T plane in the general model in the pure limit
attractive and of equal magnitude. The situation is thus idenrerminating at a quantum critical point at=x., T=0. The
tical to the case of antiferromagnetic fluctuations with fluc-model has unusual low-energy fluctuations in which the
tuations peaking ati{a= 7, kya= ). logarithm of the frequency scales with the momentum, so

TheT, is determined, as usual, from the linear gap equathat the fluctuations are essentially local in space. Such local
tion projected to the lattice harmonick. for D-wave pair-  fluctuations are essential to understand the peculiar normal-
ing is in general different thaﬂi’é, depending purely on the state transport anomalies in which the momentum scattering
band structure, and the chemical potential, exactly as for theate, energy scattering rate, and the single-particle scattering
case of antiferromagnetic fluctuations. For that case and withate are all proportional td. They have the right energy
Cu-O band structure on a square lattitevave pairing is scale to give a “continuous behavior” in optical and Raman
formed to be favored in explicit calculations. The large den-conductivities from zero frequency to energies@fl eV).
sity of states due to the proximity to van Hove singularitiesThe current fluctuations also produce local orbital magnetic
in the (sr,7r) direction favorsd-wave pairing. The same is field fluctuations which have the symmetry and temperature
therefore expected in the present case. Just as for antiferrdependence to account for the extraordinary NMR relaxation
magnetic fluctuations, variations in the band structure nearates on Cu and O nuclei. The fluctuations also couple to
the Fermi surface give superconducting states of differenfermions to give a superconducting instability withwave
symmetries for the same interaction vertex. symmetry favored. Disorder appears to convert the transition

The upper cutofiv, of D(q,w) is of O(Eg); from afitto line to the circulating current phase to a crossover line due to
normal-state transport experiments, the couphng0.5. As  the quasilocal nature of the fluctuations.
for normal-state transport, vertex corrections are unimportant There exist several incomplete aspects of the theory pre-
for calculations ofT;, etc. So a consistent theory can be sented here. While it has been shown conclusively that the
built. circulating current instability does indeed occur in the model,

It is worth noting that a signature of the glue for super-the phase diagram in the-x plane has not been determined.
conductivity is provided by the tunneling conductance. Un-This requires an explicit numerical solution of the mean-field
der appropriate experimental conditions, as discussed in Seequations(4.27—(4.29 with an assumed set of reasonable
VII A and Ref. 14,dG(V)/dV (above the superconducting parameters. | have relied on Refs. 50-52 and general analy-
gap is proportional to the density of state of the glue for ticity conditions for fluctuations near an instability to present
superconductivity weighted by tleedependence of the cou- a heuristic derviation of the form of the fluctuation spectrum,
pling constant: the famous d¢?(w)F(w).”%" The present Egs.(4.35 and (4.36. A better calculation is desirable. A
theory predicts this to be a constamtith small corrections  detailed treatment of the different regimes of fluctuations and
up to the cutoffw.. This is indeed observed but only in the effect of disorder is needed. A complete examination of
some geometries for reasons discussed in Ref. 14. Furthére superconductive instabiliff/.(x) is possible and should
systematic studies are called for. Optical conductivity in thebe done.
superconducting phase for frequencies larger than twice the What are the principal experiments on which this paper
gap also can be wused to deduce the glue fohas been silent? Firstis the question of the very interesting
superconductivity® The existing data are again consistentmagnetotransport anomali&s?° | have indicated in Sec. |
with the form(5.10. that the experimental results do not appear to show that they
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have asymptotic low-energy and low-temperature singulariresistivity falls below the extrapolation from high tempera-
ties. But even so, the peculiar subleading behavior ought ttures clearly appears. The crossover to the circulating current
be calculated. It is true that circulating current fluctuationsphase in such samples should not be two broad. One should
lead to chiral scattering in a perpendicular magnetic field. Adook for signatures of this in thermodynamic experiments,
noted in Ref. 28, the temperature dependence of such chirgpecific heat, and magnetic susceptibility which should show
scattering is reflected in the magnetotransport anomalies. B@ bump near the crossover and a significant decrease below.
so far | have not succeeded in formulating their effect con-Such samples at low temperatures would be particularly suit-
sistently. Second, very interesting changes in angle resolveable to look for direct evidence discussed above the circulat-
photoemission specffahave been observed in going from ing current phase.
region 1 to region 4 of the phase diagram of Fig. 1. It would  The conjecture about magnetotransfitand the behavior
be very natural to try to associate these with the transition off the critical fluctuations in a magnetic field can be tested by
crossover to the circulating current phase. The observed Raman scattering experiment in a magnetic field. The po-
changes in the spectra are most pronounced where the Ferfafized part of the spectra proportional to the magnetic field
surface of the ideally doped samples crosses thed)-  should acquire singular low-energy, low-temperature form.
(7, 1) direction and least pronounced where the Fermi sur- Some of the other tests of the theory have already been
face crosses the (0,0yr(0) direction; i.e., the changes have mentioned. These includé) improved angle-resolved pho-
x2—y? symmetry. As discussed in Sec. IV E the changes ifoemission experiments to verify E(5.4) and its modifica-
the one-particle spectra in the circulating current phase als#ons due to impurities deduced in Ref. 68) measurement
do havex2—y? symmetry. This is quite intriguing but a cal- Of the electronic specific heat in loll; copper oxideg(for
culation of the one-particle spectral function in the circulat-€xample, the single-layer Bi compound with~10 K near
ing current phase is necessary to draw any Conc|usion£dea| Compositiohto see theTInT contribution to the elec-
Third, there are aspects of NMR experiments, especially th&onic specific heat(iii) controlled single-particle tunneling
anisotropy in the relaxation rate, which are not explained irEXperiments to see the spectrum of the “glue” for supercon-
Ref. 61. Understanding anisotropy effects in NMR requires gluctivity. It should be mentioned that optical conductivity
theory of the coupling of fluctuation between different and Raman scattering experiments tor-2A can also be
planes. used to deduce the spectrum of the “glue,” and very impor-

Are there experiments left to do after tig5x10%) al-  tantly, (iv) inelastic neutron scattering in two or more
ready published to test the conclusions of this paper? ThBrillouin zones to deduce the projection g{q,w) sepa-
answer is yes, but most of them are difficult experiments. rately on the Cu and O atoms.

The most direct and convincing test of the theory would
be the observation of the circulating current phase in the ACKNOWLEDGMENTS

underdoped samples and its evolution as a function of tem- | have benefited through comments and discussions on
rature. As di rlier, long-ran rder is unlikely . . ; !
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but correlation lengths should be large in very pure sample : AT T
The current patern in Fig. 6 can be observed by Bragg sca _gngupta, and Q. Si. Appendix B is primarily the work of Q.
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that with polarized neutrons the spin-flip cross section in th% ?ﬁrhsel Qggge?.egﬁgf%fgg?gghvﬁ?ﬁlaémmgﬂzﬁgd g'szléspsr')ﬁns
circulating current phase at the (1,1) Bragg peak isB Batlogg, E. I. Blount, T Giamar;:hi v Kur(;da. P B’
O(103) the nuclear cross section. y C Lo L S

Another test would be evidence for local magnetic fieldsL'ttleWOOd’ O. Narikiyo, P. Nozieres, K. Miyake, S. Schmitt-

. X : ; Rink, C. Sire, A. Sudbo, and R. E. Walstedt. Discussions
in regions 4 and 2 which are estimated to ®&0 G). As o P ’
shown in Fig. 6, the local field is interstitial; there is no with B. |. Halperin, D. Huse, and S. Sachdev on aspects of

magnetic field either on Cu or O lattice sites. Muon Spincrmcal phenomena relevant to this work are also gratefully

resonance would be a way to look for interstitial fields if acknowledged.
muons were to sit at the interstitial sites indicated in Fig. 6.

As noted, the spectrum of current fluctuationgjatO as APPENDIX A: ONE-ELECTRON BAND STRUCTURE
a function of w, T, andx is directly observable in Raman AND EIGENVECTORS

scattering. A direct test of the theory would be evidence for The pand structure and the eigenvectors gy of Eq.

the fluctuation spectra of E¢5.10 at largeq and the differ- (2 2) for top/tp,g<1 are given here. Fdry=0, the bonding

ence in its projection on to the Cu and O sites obtainable by, anq the antibonding bands have dispersions

scattering in several Brillouin zones mentioned above. In the

;ection on NMR and inelastic ngutrqn scattering, I.men- ég,b(k):i[(AO/2)2+4tf>ds>2<y(k)]1/2’ (A1)

tioned that existing neutron scattering in;LsaSr 5 Cu Oy is ) ) ] )

consistent with the magnetic fluctuatidhgerived from Eq.  Where s, (k) =sir’(ka/2) and the nonbonding band is

(5.10. More detailed tests, especially with scattering over ahondispersive with energy Ao/2. The eigenvectors may be

large range in momentum and frequency in ¥Ba Og,  SPecified by the band annihilation operators in terms of these

which shows no nesting related peaksqjrspace, are sug- in the orbitalsdf, , pJy,. Plk, as in Eq.(2.5).

gested. The coefficients in2.58 and(2.5b) for t,,=0 (specified
In very pure samples of YB&Cu; Og 7 and (248, which by a superscript Oare

at stoichiometry behaves as an underdoped material, the 0 0

sliver region 4 between regions 1 and 2 in Fig. 1 where the Uag(K) =[A72+ €5(k) 1/Na(k), (A2)
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Ugyy(K) = 2it 5/ N,(K),
Upg(K)=[ A2+ €p(K) 1/Np(K),

Uy (K) = = 2it,4/Np(K),

where N, p(K)={[A/2+ € p(K) |+ 4t3 8% (K)}Y2 The

nonbonding orbital has an energyA/2 and is annihilated
by

i[sin(kya/2) pyc— sin(kya/2) pyK]/s,y(K).
The changes in the coefficients in E¢2.59 and(2.5b

(A3)

are calculated to first order iy, using as a perturbation the

0O-0 hopping Hamiltonian

kya

2

k.a
——|sin

2

H1=4tppk2 sin PhoPie+H.C., (Ad)

Uag(K)=U04(K)+ fap(k)udq(K),
Uax(K) = S, Ud(K) = faptip (K) T+ Facudys,,  (A5)
Uay(K) =8,[ud,(K) — f apt (k) 1= Facudys, -

For the coefficients in Eq(2.5b replacea<~b in Eq.
(A4). In Eq. (A4) ,
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H, is the kinetic energy3.4) and(3.16). We give the results

for elements of S,H,,] in the approximation that all the
neglected statespecified in Sec. Ill A except the zero-hole
state(with energy 0 are assumed to be infinitely high com-
pared to the low-energy states: the two one-hole states at
energy *A—u and the two-hole state at energy
E,=V—2u. (No essential difference arises in the more gen-
eral and messy situationAccordingly, we write the kinetic
energy in terms of operatod;, andd,;, using Eqs(3.6),

(3.7) and the first term of Eq3.17):

1
diTa:J_ESg”ﬂﬁrdzifo"‘dLgd’Oi, (B5)

p_ 1 T T
Dioz\/_§59m¢i dij—o+d3i, i
The bare kinetic energy d,ix, EQ.(3.4), is

Hux= > tiPd],Dj,+t%],d;,+t7°D],D;,+H.c.
i<j,o
(B6)
Inserting Eq.(A5) into Eq.(A6), we solve forS in Eq. (A3)
by taking matrix elements between the states of

Hiowt Hhigh Of known energy. S is then inserted into Eq.
(A4). The second term gives the exchange Hamiltonian of

(k)= 04tppo sinz(kxalg)sinz(kyaIZ) W0 (k) ul (k) the form(3.19. The part in spinr space is isotropic because
(€pk— €ak) Sky(K) ax Y of rotational invariance ino- space. The part ind;—d.)
space is specified as
= foa(K), P P
i
A sit(kai2)—si(a2)  ka ka R ¢
= Si——sin— [ R
ac(K) (Aol2— €% s2,(K) In—=-sin— (ry 7x IM x (B7)
I
=~ fuelk). (A6) k
M has the form
APPENDIX B: EXCHANGE HAMILTONIAN IN 7 SPACE M 0 0
yy
Here, the exchange HamiltoniaB.18 is derived from
A , 0 My My, (B8)
the strong-coupling limit where the high-energy states de-
scribed in Sec. Il A are eliminated by a canonical transfor- 0 My Mg

mation.

which we already discussed is the most general form allow-

As usual in such a procedure, we write the Hamiltonian aSple

H=Hu,+H high™ H mix (B1)

whereH,,,, contains the low-energy states we wish to keep,

+

i.e., stategd], |0), d};,|0). Hygn are the states we wish to

discard andH ,x connects states iHly,, andHpgn. We in-
troduce a canonical transformation

H=¢'SHe 'S, (B2)

such that, to linear order iH,,, matrix elements connect-

ing states oM, andHy,jg Vanish. This requires th& be
determined by

(B3)

The transformed Hamiltonian, to second ordeHiR;, is

Hmix+i[SaHlow+Hhigh]:0-

H=Ho+i[SHmyl. (B4)

We find that withE ,+ 2A=E.. andE;*+E_'=E %
Mil =2 tlth /E .+ (o) E,
Mik= — 2t tho/E 4~ (tfp) /E,

M= (t13+t32)/E 4 — (1) 2/E, (B9)

M!x:MQz:_tHD(t]dld'i_tBD) = t=
2 E.

E_

A rotation, Egs(3.32 and(3.33 aboutr,, which diago-
nalizes the kinetic energy ®-b space of Sec. 1V, is used to
get the Hamiltonian which on Fourier transforming gives Eg.
(4.2). For the special casé =0, the rotation is by an angle
/4. In that case and ify4=tpp=0,
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jL:tﬁD/EqS! T,,=0, Then for{r,)=1, A+2B=0. For the more general case, a

) condition onA or x can always be found, so that the condi-

(Fex= Tyy) = ~tao/ By, B10  ion for a QCP derived in Sec. IV; i.e; A+2B+4C=0 is
Tox=3t50/E .- fulfilled.
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