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Non-Fermi-liquid states and pairing instability of a general model of copper oxide metals

C. M. Varma
Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974

~Received 17 July 1996!

A model of copper-oxygen bonding and antibonding bands with the most general two-body interactions
allowable by symmetry is considered. The model has a continuous transition as a function of hole densityx and
temperatureT to a phase in which a current circulates in each unit cell. This phase preserves the translational
symmetry of the lattice while breaking time-reversal invariance and fourfold rotational symmetry. The product
of time reversal and fourfold rotation is preserved. The circulating current phase terminates at a critical point
at x5xc , T50. In the quantum critical region about this point the logarithm of the frequency of the current
fluctuations scales with their momentum. The microscopic basis for the marginal Fermi-liquid phenemenology
and the observed long-wavelength transport anomalies nearx5xc are derived from such fluctuations. The
symmetry of the current fluctuations is such that the associated magnetic field fluctuations are absent at oxygen
sites and have the correct form to explain the anomalous copper nuclear relaxation rate. Crossovers to the
Fermi-liquid phase on either side ofxc and the role of disorder are briefly considered. The current fluctuations
promote superconductive instability with a propensity towards ‘‘D-wave’’ symmetry or ‘‘extended
S-wave’’symmetry depending on details of the band structure. Several experiments are proposed to test the
theory.@S0163-1829~97!09121-2#
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I. INTRODUCTION

Besides their exceptionally high superconducting tran
tion temperatures, copper-oxide-~Cu-O-! based metals also
have exceptional normal-state properties.1 Landau Fermi-
liquid theory2 and associated quasiparticle concepts, wh
are a foundation stone for much of our understanding
phenomena in condensed matter, appear to be inapplicab
their normal state. The principal problem is the developm
of a consistenttheoretical framework in which the unusu
metallic properties can be understood. Moreover, it isneces-
sary to have a theory for the normal state to understand
mechanism of the superconductive instability.

Every transport property in the normal state of copp
oxide metals has a temperature dependence unlike other
als. For example, the electrical resistivity has a linear te
perature dependence down toTc for composition near the
highestTc for any class of Cu-O compounds even when t
Tc is as low as 10 K.3 On the other hand, the equilibrium
properties, such as specific heatCv and magnetic suscept
bility x are consistent with the usual temperature depende
and are in fact only about a factor of 2 enhanced over ba
structure calculations.4 The copper-oxide metals are thu
qualitatively different from liquid 3He and heavy fermion
metals where strong interactions produce strong quantita
renormalizations in both equilibrium and transport propert
without changing the asymptotic low-temperature dep
dences and which are properly called Fermi liquids.

Recent reexaminations5 of the foundations of Landau’s
Fermi-liquid theory have confirmed the robustness of
theory for dimensions higher than 1 for any Hamiltoni
with nonsingular low-energy interactions.6 Therefore a prin-
cipal part of the theoretical task is to show that, in a mo
appropriate for copper-oxide metals, elimination of the hig
energy degrees of freedom leads to a singular effective l
energy Hamiltonian. The tremendous variety and numbe
550163-1829/97/55~21!/14554~27!/$10.00
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experiments on copper-oxide metals severely constrain
form of such a low-energy Hamiltonian.

A. Constraints from experiments

A schematic generic phase diagram is drawn in Fig. 1
the basis of the resistivity data. Where measurements
available every other transport property shows correspond
regions. The insulating-antiferromagnetic phase near 1/2
ing and the superconducting phase are shown in bold lin
The normal state is roughly divided into four regions wi
dashed lines representing crossovers from one characte
temperature dependence in transport properties to ano

FIG. 1. Schematic generic phase diagram of the quasi-t
dimensional copper-oxide compounds.x is the density of holes
doped in the planes.xc is the ‘‘optimum’’ composition. The anti-
ferromagnetic phase and the superconducting phases, shown i
solid lines, occur through phase transitions. A series of crosso
shown through dashed lines are discussed in the text. The imp
density, as inferred from the extrapolation of the high-temperat
resistivity toT50, i.e. assuming Mattheisen’s rule, decreases ax
increases. The size of region 4 decreases with increasing diso
for a given x.
14 554 © 1997 The American Physical Society
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55 14 555NON-FERMI-LIQUID STATES AND PAIRING . . .
Region 1, the non-Fermi-liquid phase, hasr(T)'r01r1T
and similarly remarkable ‘‘simple’’ anomalies in all th
other transport properties. In Bi 2201 resistivi
measurements3 are available from 10 to 800 K and i
La1.85Sr0.15CuO4 from 40 to 800 K.7 The measured resistivity
exponent in both is 1.0560.05. We may safely assume that
is 1 with possible logarithmic corrections. Such a behavio
observed only in a very narrow region nearxc . r(T) begins
to decreasebelow the linear extrapolation as temperature
decreased in region 3 and is consistent with an asymp
T2 dependence characteristic of a Fermi liquid. On the l
doping side, in region 2, there is a crossover to resistiv
increasing with decreasing temperature. This regime ma
termed insulating. Strictly speaking, one should draw a th
axis in Fig. 1 labeled disorder. If the zero-temperature in
cept of the high-temperature linear-resistivity is taken a
measure of disorder, one concludes that it generally incre
in the available data asx decreases. The limited systema
data with independent variation of disorder andx clearly
shows that impurities have a dramatic effect in the und
doped regime while in the overdoped regime, region 3, th
effect is conventional.9

The size of region 4 between region 1 and region 2 on
underdoped side depends upon disorder. The crossove
tween region 1 and region 4 is marked by a decrease
Cv /T andx with temperature with their ratio almost inde
pendent of temperature.4 In region 4 the resistivity drops
below the linear extrapolation from region 1. This region h
been termed the spin-gap region, but this is a misnomer.
only do magnetic fluctuations, but optical conductivity a
Raman scattering intensity in all measured polarizations
crease at low energies from their value in region 1. In reg
2 this decline continues while the resisitivity begins to
crease with decreasing temperature.

From data for YBa2Cu4O8(248) under pressure,
10 it ap-

pears thatx is not a unique parameter for the crossovers
Fig. 1. The stochiometric compound 248 has aTc'80 K and
a resistivity with a crossover from;T to a higherT depen-
dence below about 200 K, very similar to the properties
YBa2Cu3O6.7. Under pressure,Tc rises to 110 K atP.100
kbar. Simultaneously the resistivity becomes linear down
Tc . The low-energy excitations also change under press
In 248 the Raman spectrum shows a low-energy decre
Under pressure as resistivity becomes linear the low-ene
spectrum is restored, becoming like that of the optima
doped YBa2Cu3O6.9, i.e., frequency independent.

11

The schematic phase diagram of Fig. 1 suggests tha
anomalous normal state of region 1~as well as superconduc
tivity ! is controlled by fluctuations around the pointx'xc
andT'0. This is consistent with the marginal Fermi-liqu
~MFL! phenomenology12 which suggests that the breakdow
of Landau theory is due to scale-invariant fluctuations c
sistent with having a quantum critical point13 ~QCP! ~i.e., a
singularity atT50) near the ideal composition. The critic
point itself is inaccessible due to the superconductive in
bility.

The MFL has a single-particle self-energy of the form

S~v,q!5lFv lnvc

x
1 ixsgnvG , ~1.1!
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wherex5uvu for uvu@T and5pT for T@uvu; l is a cou-
pling constant andvc is a cutoff energy. The quasiparticl
renormalization amplitude

z~v!5S 12
]ReS

]v D 21

5S 11l ln
vc

x D 21

~1.2!

then vanishes logarithmically as (v,T)→0.
A microscopic theory should specify the nature of t

critical point and the symmetry on either side of it. It shou
also answer the following question: If there is a critical po
at x5xc , T50, what about its continuation in the (x-T)
plane? Should there not be evidence of nonanalytic pro
ties on a line in the (x-T) plane? Experimentally, there i
indeed a crossover in the properties in the (x-T) plane from
region 1 to region 4 of Fig. 1. But why a crossover rath
than a transition? Or is it that the properties studied such
transport and specific heat are often only weakly sensitiv
a transition?

Equation~1! gives only the single-particle scattering ra
tsp

21. This was used to understand12,14 the observed tunneling
conductanceG(V);uVu for T→0 and to predict the line
shapes in single-particle spectra.15 A crucial aspect of the
properties of the Cu-O metals is that the momentum tra
port scattering rates, measured in resistivityr(T) @as well as
in optical conductivity16 s(v,T) and Raman cross section17

SR(v,T)#, are also proportional to max(uvu,T). So is the
energy scattering rateten

21 measured by thermal conductivit
k(T).18 The experimental result that, at (q,v)→0,

tsp
21;tmom

21 ;ten
21;T ~1.3!

puts a strong constraint on theories. The single-particle s
tering rate is required in general to be at least as singula
the momentum scattering ratetmom

21 . The immediate conclu-
sion is that the experiments require Im((v,kF);va,
a<1. Angle-resolved photoemission should be used to
stricter bounds on the single-particle self-energy than h
been done so far. But an easier way might be through
electronic specific heat. The electronic specific heat is
rectly related to the exact single-particle Green’s functio
For the marginal casea51, Cv;N(0)T(11l lnvc /T). A
more singular self-energya,1 givesCv;N(0)Ta. In the
experiments the electronic part ofCv is obtained only by
subtracting the estimated phonon heat capacity and
x'xc is reported to be consistent with;T. While logarith-
mic corrections to it cannot be ruled out, substantial singu
departures are ruled out.

The proportionality of the single-particle and the transp
scattering rates occurs if the fluctuations leading to Eq.~1.1!
are essentially momentum independent as suggested b
MFL phenemenology.~In that case there are no vertex co
rections in the calculation of the conductivity. See furth
discussion in Sec. VII.! But this poses the serious dilemn
that on the one hand we wish to be near a critical point,
the other that we need~nearly! momentum-independent fluc
tuations.

The trivial way to get Eq.~1.3! is if the experiments are in
a temperature rangeT*v* wherev* is the characteristic
frequency of some fluctuations which scatter the fermio
Then the density of such fluctuations is;T, giving Eq.~1.3!.
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14 556 55C. M. VARMA
This is ruled out by the specific heat~and magnetic suscep
tibility experiments! experiments.4 If such fluctuations are o
physical quantities like spin or density fluctuations of ferm
ons, a characteristic enhancement ing5Cv /T of
O(EF /v* );O(102) must occur as in the heavy fermio
compounds. Experimentally, the specific heat and magn
susceptibility at the ideal composition are consistent w
Fermi-liquid behavior,;T and constant, respectively, wit
no more than about a factor of 2 enhancements over no
teracting electrons in the measured temperature range.~The
data, however, do allow for logarithmic or small power la
corrections.! This as well as the fact thats(v,T) and
SR(v,T) behaves smoothly in the rangev&T&vc where
vc;O( 12 eV! suggests that there is no low-energy scale n
optimum doping and that the upper cutoff frequency of
fluctuations is very high,O( 12 eV!.

It is hard to imagine that the fluctuations due to the an
ferromagneticT50 critical point atx'0.02 can have much
to do19 with phenomena at x'xc , with xc*0.15.
Temperature-independent magnetic correlation lengths
about 2 Å are observed atx'xc in YBa2Cu3O6.93.

20

Temperature-dependent lengths of;20 Å are observed in
La1.85Sr0.15CuO4,

21 but with less than;10% of the total
frequency-integrated spectral weight in theq-dependent part
The normal-state anomalies are identical in both compou
Similarly, there is no evidence of any universal pha
separation fluctuations or charge density fluctuations22,23 in
different compounds atx'xc . It would appear that if a criti-
cal point is responsible for the unusual metallic state, it m
be associated with some quite unusual order param
which is hard to detect.

Equations~1.1! and~1.3! cannot be used to understand t
observed anomalies in NMR,24 Hall effect,25 and
magnetoresistance.26 In YBa2Cu3O6.9, where band-structure
calculations27 give a very small usual Hall conductivity du
to particle-hole symmetry, the Hall angleQH5sxy /sxx ,
with the magnetic field perpendicular to the plane, varie25

approximately as
T22 between 100 and 300 K In the same range the n
malized magnetoresistanceDr(H)/r varies26 roughly as
T24 with QH

2 /Dr/r'0(1). The Hall-effect data25(b) in
La22xSrxCuO4, however, appears more complicated wher
saturation in the anomalous contribution occurs at temp
tures below about 60 K. In view of this, it is not clear at t
moment whether the Hall-effect anomaly is a leading lo
temperature singularity or an intermediate- to hig
temperature phenomena. It is worth noting that a singula
in the Hall angle;T22, equivalently a Hall number diverg
ing asT21, implies a spontaneous Hall effect in the lim
T→0, i.e., a Hall voltage in the absence of a magnetic fie
Kotliar et al.28 have found this behavior in a solution of th
Boltzmann equation which, besides a scattering r
tmom

21 ;T, contains a phenomenological skew scattering r
proportional to the applied magnetic field which is;T21.

Perhaps the most astonishing of the normal-state ano
lies are the nuclear relaxation ratesCuT1

21 and OT1
21 of cop-

per and oxygen nuclei, respectively.24 While (CuT1T)
21 ap-

pears to diverge as the temperature is decreased, sugge
singular local magnetic fluctuations at the Cu nucle
(OT1T)

21 is a constant, which is the conventional behavi
tic
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Furthermore, (OT1TK)
21, whereK is the measured Knigh

shift at oxygen, is a constant within 20%, irrespective of t
compound studied or the densityx in any given compound in
the metallic range.29 Other experiments show that copper a
oxygen orbitals are well hybridized. Nevertheless, it appe
that the local magnetic fluctuations at copper and oxyg
sites are quite different.

It is axiomatic that the fluctuations responsible for t
anomalous metallic state also are responsible for the insta
ity to the superconducting state. The anomalous fluctuati
develop a gap in the superconducting state as p
dicted30 and observed in a wide variety of experiments on
quasiparticle relaxation rate deduced through transp
experiments31 and in angle-resolved photoemissio
experiments.32 The symmetry of the superconducting sta
appears to be consistent with ‘‘D wave’’ ~if the lattice
is assumed tetragonal!.33 This issue is not completely
settled yet.34 Moreover, the electron-doped materi
Nd22xCexCuO4 appears to be an ‘‘S-wave’’
superconductor.35

To summarize, existing experiments require aninternally
consistentmicroscopic theory to

~i! reproduce the phase diagram of Fig. 1 with a no
Fermi-liquid metallic phase near the composition for t
highestTc with crossovers to a Fermi liquid on the hig
doping side. The underdoped regime should show a los
low energies of both particle-hole excitations~in spin as well
as charge channels! and of single-particle excitations, and
strong tendency to insulating behavior due to disorder;

~ii ! have equilibrium properties such as specific heat a
magnetic susceptibility near the ideal compositionconsistent
in the measured range ofT with characteristic Fermi-liquid
behavior to within small corrections and in magnitude
within factors ofO(2) of those for noninteracting electron

~iii ! have long-wavelength transport relaxation rates u
to interpret electrical conductivity and thermal conductiv
at the ideal composition that satisfy Eq.~3!. At x5xc the
fluctuations leading to the anomalous transport should h
no scale other than a cutoff of theO(1/2 eV!.

~iv! The fluctuations should have a symmetry such t
they produce singular local magnetic fluctuations at cop
nuclei to give the observed anomalies in the copper nu
relaxation rate, but no singular local magnetic fluctuations
the oxygen nuclei.

~v! The fluctuations should be capable of producing
pairing instability ofD-wave symmetry.

There are of course many other special properties disc
ered in a subject in whichO(53104) papers have been pub
lished. But I regard the requirements listed above as the m
basic or a least the irreducible minimum. The theory dev
oped in this paper attempts to meet these requirements
suggests a few crucial experiments.

B. Choice of a model

The choice of a model with which to do microscop
theory should be influenced by the fact that copper-ox
metals are unique. None of the thousands of transition-m
compounds studied share their properties. The point of v
taken here and elsewhere36 is that the unique properties o
Cu-O metals arise from their unique chemistry in whi
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55 14 557NON-FERMI-LIQUID STATES AND PAIRING . . .
ionic interactions play a crucialdynamicalrole. This point
has been extensively discussed37 and will only be briefly
repeated here. The divalent transition-metal oxides at 1/2
ing can be put on the diagram38 in Fig. 2 in which one of the
axes is the normalized local repulsion energyU on the tran-
sition metal~TM!:

U/W5@E~TM!311E~TM!1122E~TM!21#/W,
~1.4!

whereW is the bandwidth. The other axis is theionic energy

Ex /W5@E~TM11O12!2E~TM21O22!#/W. ~1.5!

U is the energy to convert two transition-metal ions w
formal charge state 21 to one with formal charge state 11

and the other to 31, whileEx is the energy to transfer charg
from the ground-state configuration of a transition-metal
with charge 21 and a nearest-neighbor oxygen ion with 22

to a transition-metal ion with charge 11 and oxygen ion with
charge 12. Screening and dipole corrections, etc., in t
solid are included in the definitions ofU andEx .

As one moves from the left to the right of the period
table, the ionization energy of the TM falls, thereby decre
ing Ex /W relative toU/W with corresponding movement o
Fig. 2. In the insulating state of Cu-O,Ex is only about 1 eV.
It is a charge-transfer insulator with the lowest-energy o
particle spectra primarily on copper, Cu21→Cu1, while the
one-hole spectra is primarily in oxygen, O22→O2; see Figs.
3~a! and 3~b! where the contrast to transition-metal oxid
towards the left of the periodic table is also shown. In t
metallic state, obtained by doping, there are charge fluc
tions on copper and on oxygen of similar magnitud
Ex'1 eV is made up of from two sets of energies, t
atomic level energies and the Madelung or ionic energ
each of which isO~10 eV!. Indeed all transition-metal oxide
owe their structural stability to the ionic energies. But in t
metallic state these energies have little dynamical role
play in most TM oxides because there are hardly any fl
tuations on oxygen; i.e., although the ionic fluctuation ene
term in the Hamiltonian

FIG. 2. The Zaanen-Sawatzky-Allen~ZSA! phase diagram for
3d transition-metal oxides, slightly modified and showing the sc
matic change in the position of the transition-metal oxides go
from left to right of the periodic table. The modification is that o
of the axes is the ionic energyEx defined through particle-hole
spectra. ZSA used the charge transfer gapD defined through one-
particle spectra.Ex,D due to particle-hole interactions.
ll-
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(
i, j

Vi j ninj ~1.6!

has( i, jVi j;O~10 eV!, the fluctuationdnj on the oxygen
ions requires a large energy and is insignificant. An effect
low-energy Hamiltonian of the Hubbard form is then a
equate. This is not true in the metallic state of Cu-O wh
^dn0&/^n0&;O(1).

One of the aims of this paper is to show that finite-ran
interactions, if sufficiently strong, lead to qualitatively ne
features in the phase diagram of the model. The o
dimensional version of the model has been extensively
vestigated by numerical methods.39 Bosonization methods
give incorrect results for the model forV’s*0(Ex) whereas
as is well known the one-dimensional~1D! Hubbard model
can be bosonized for any value ofU. Therein lies a clue to
understanding how in one and higher dimension the lo
energy properties of the model are quite different for sm
V and for largeV. Bosonization is inherently a weak
coupling method; it works in the~1D! Hubbard model be-

-
g

FIG. 3. ~a! Schematic one-hole spectra~measured in photoemis
sion! and one-particle spectra~measured in inverse photoemissio!
projected onto Cu states and oxygen states in Cu-O compoun
1/2 filling. ~b! Schematic one-hole spectra and one-particle spe
for a transition metal oxide far to the left of Cu, say, Cr-O, pr
jected onto Cr and onto O.
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14 558 55C. M. VARMA
cause the properties at weak coupling~smallU/t) aresimilar
to those at large coupling. The numerical results show
change in properties asV is varied; forV*0(Ex) they show
the charge-transfer instability described below, and grow
superconducting correlation length as temperature is
creased, whereas bosonization methods findV’s to be irrel-
evant.~One-dimensional models do not have some esse
features, discussed below, of the model in higher dim
sions.!

C. Preview of the properties of the model

In Sec. II we discuss that it is enough to consider a tw
band model representing Cu and O bonding2b and anti-
bonding2a bands~but with O-O hopping included! as il-
lustrated in Fig. 4. In the hole representation, the chem
potentialm is in the lower band as shown. For noninteracti
electronsm would be in the middle of banda at 1/2 filling as
in La2CuO4 or YBa2Cu3O6. For hole doping, as for mos
Cu-O compounds,m rises with dopingx, for example, in
La22xSrxCuO4 or YBa2Cu3O61x . We will find it important
to consider the most general form of two-body interactio
allowed by symmetry in the space of these two bands. W
the strength of the interactions is on the same scale as
overall electronic bandwidth every term has a crucial role
play.

If m were in the gap between bandsa andb, the model is
identical to the excitonic insulator problem,40 which has been
extensively discussed. We investigate here the model w
m in one of the bands. This changes the problem subs
tively.

It is well known that interactions completely alter the on
electron picture at 1/2 filling; a gap develops around
chemical potential and the relative amount of Cu and O ch
acter of the occupied and unoccupied states is drastic
altered.m stays in the band significantly away from 1/2 fil
ing but the relative Cu-O character of the occupied and
occupied states is again expected to be quite different f
the one-electron picture. If no change in the lattice symme
occurs due to the interactions, this is formally describable
aq50 instability of the one-electron band structure to a st
in which

Tx;Re(
k
Fx~k!^aks

† bks&Þ0. ~1.7!

FIG. 4. The bondingb and the antibonding banda for the two-
dimensional band structure from one-electron theory in the h
representation with chemical potentialm. Under theq50 transition
discussed in the text, identical internal rearrangements in each
cell occur. So the band structure changes merely to the bandsb and
a shown.
a

g
e-

ial
-

-

al

s
n
he
o

th
n-

-
e
r-
lly

-
m
y
y
e

HereFx(k) is a form factor expressing the relative Cu and
character of states in bandsa andb. We will see thatTx is
closely related to the relative average charge in Cu and
orbitals. The mean-field free energy as a function ofTx is
shown in Fig. 5~a!. With TxÞ0, the orbitals must be rehy
bridized, leading to new bandsa andb of the same genera
form asa and b, as shown in Fig. 4. This is expected
occur for strong interactions at very high temperatures for
x of interest just as it does atx50. For the most genera
interactions, such a transition is of first order, as for a f
energy of the form shown in Fig. 5~a!. Previous
investigations41,42 of the model had focused on this charg
transfer instability.

We show that the model also has an interesting seco
order transition in the Ising class to a state in which

Ty;Im(
ks
Fy~k!^aks

† bks&Þ0. ~1.8!

The mean-field free energy, for a fixedTxÞ0, as a function
of Ty for various values of a parameterp which is a function
of x andT is shown in Fig. 5~b!. This transition therefore
occurs on a lineTc(x) in thex-T plane. We will be specially
interested in the properties in the vicinity of the poi
x5xc(0) whereTc50 which we identify as the quantum
critical point.43

A finite Ty provides an additional relative phase to t
wave functions at Cu and the two O sites in a unit cell. W
will see that the ground state with a finiteTy corresponds to
a fourfold pattern of circulating current within a unit ce
with all cells staying equivalent. This is illustrated in Fig.
We may call it the circulating current~CC! phase. Transla-

le

nit

FIG. 5. ~a! The calculated mean-field free energy as a funct
of the real part of interband order parameterTx described in the
text. ~b! For a fixedTx5Tx

0 , the free energy as a function of th
imaginary part of the interband order parameterTy . Ty takes the
value 0 forp.0 and a finite value belowp,0 through a second-
order transition.p is a parameter defined in terms of the paramet
of the Hamiltonian and for a given compound can be varied
varying the electron density, temperature, or pressure.TyÞ0 corre-
sponds to a circulating current pattern in the ground state show
Fig. 10.
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55 14 559NON-FERMI-LIQUID STATES AND PAIRING . . .
tional symmetry is preserved but time-reversal invarian
and fourfold rotational symmetry are broken. The product
the time reversal and the fourfold rotation is preserved.

The pattern shown in Fig. 6 breaks a twofold symmetry
the1’s and the2’s could be reversed uniformally. This i
possible to understand from Fig. 7 which gives the relat
phases of the Cu-dx22y2 and O -px andpy orbitals in a unit
cell atk50. The Hamiltonian has the twofold symmetry th
given the phases of the twopx orbitals the phases of the tw
py orbitals can be reversed. This symmetry is broken by
circulating current phase.

In connection with the excitonic insulator problem and t
Hubbard model at 1/2 filling circulating current phases ha
also been discussed, which also break translational sym
try, and go by the names of orbital antiferromagnets44 or
staggered flux phases.45 There are two important difference
because of which the present work meets requirement~i!
through ~v! above and thus qualifies as a serious candid
for the theory of the Cu-O metals.~i! Our use of a Cu-O
model with more than two atoms per unit cell allows
q50 transition to a circulating current phase, so that latt
translation symmetries are preserved. There is no chang
the symmetry of the band structure.~ii ! We discuss such a
phase in the metallic state. This leads to a very special na
of the collective fluctuations near the QCP due to scatte
of the fluctuations by low-energy particle-hole excitations
the Fermi surface. The problem of determining the spectr
of the fluctuations is the same as the absorption in a de
erate semiconductor with finite-mass electrons and holes
in the limit that the interactions are much larger than
Fermi energy. We show that the logarithm of the frequen
of the fluctuations scales with their momentum; i.e., the Q
has a dynamical critical exponentzd5`. The fluctuations
are thus independent of momentum to a logarithmic ac
racy. This extreme quantum limit is essential to underst
the observed behavior in long-wavelength, low-frequen
transport properties summarized by Eq.~1.3! and its finite-
frequency counterparts.

The model is stated more completely in Sec. II. One c
study the model as interactions are increased from zer
take a strong-coupling point of view and consider correctio
about an infinite value of the interactions. Both approac

FIG. 6. The deduced ground-state current distribution patter
the circulating current phase drawn for four cells. The1 and2
signs indicate magnetic fields pointing up and down.
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lead to the same ‘‘intermediate-energy-scale’’ Hamiltoni
whose analysis begins in Sec. V. Section III is devoted to
strong-coupling expansion. The low-energy Hamiltonian
derived and analyzed in Secs. V and VI where it is sho
that a systematic and controlled analysis is possible.
physical properties of the pure model are investigated in S
VII, and in Sec. VIII a beginning is made to consider th
effect of impurities in the properties of the model. Impuriti
are strongly relevant near azd5` transition. For arbitrarily
small concentration, they convert the lineTc(x) to a cross-
over. We also show that for an arbitrarily small concent
tion of impurities in a non-Fermi liquid, the Fermi surfac
withers away at low temperatures. The density of state
the chemical potential is zero and the resistivity is infinity
T→0 ~unless superconductivity intervenes!.

Not including the effect of disorder the schemati
deduced phase diagram of the model is shown in Fig. 8
region I, the properties are determined by quantum fluct
tions and are that of a marginal Fermi liquid with a crosso
to a Fermi-liquid regime in region III. In region II,TyÞ0 in
the pure limit. This phase should have Fermi-liquid prop
ties at low temperatures in the pure limit but with differe
parameters from that of region III. The transition betwe
regions I and II turns into a crossover at an arbitrarily sm
concentration of impurities. At low temperatures impuriti
are expected to lead to a further crossover in region III to

in

FIG. 8. The theoretical phase diagram in the pure limit. T
effect of impurities is discussed in the text.

FIG. 7. The unit cell of Cu-O compounds in thex-y plane and
the minimal orbital set:dx22y2 orbital of Cu and apx and apy
orbital of oxygen per unit cell. A particular choice of the relativ
phases of the orbitals atk50 is shown.
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insulating regime with a zero density of states at the che
cal potential. The antiferromagnetism phase near 1/2 fill
and the superconductivity phase nearxc which are also prop-
erties of the model are not shown.

In Sec. IX, a beginning is made to study the pairing
stability due to the exchange of the circulating current flu
tuations and a propensity towards a ‘‘D-wave’’ supercon-
ducting instability is indicated.

In Sec. X the shortcomings of the theoretical calculatio
as well as the unexplained features of the experiments
highlighted. Experiments are suggested to test several
tures of the theoretical proposal. The most important is
observe the current pattern of Fig. 6 by polarized-neutron
x-ray scattering.

II. MODEL FOR COPPER OXIDES

The basic building block of the Cu-O compounds is t
elongated CuO6 octahedra in which the planar short bon
un

on
e
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it
b

’
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th
nd
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i-
g

-
-

s
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oxygens are shared at the corners to produce a layered
isotropic three-dimensional structure. The interlayer kine
energy depends on the details of the structure. In the l
anisotropic compounds the interlayer bandwidth
O(1021) of the intralayer bandwidth. Since the properties
such compounds in the temperature region of the nor
state are the same as of those with anisotropy r
O(1024), a two-dimensional model is appropriate for th
essential physics. The basis set for the minimum Ham
tonian is thedx22y2 orbital on the Cu ions and thepx and
py orbitals on the O ions; see Fig. 8. In this basis set
Hamiltonian is written as

H5H01H11H2 . ~2.1!

H0 is the kinetic energy:
H05(
D0

2
~ndi2npxi2npyi!2m~ndi1npxi1npyi!1(

i ,s
tpdds i

† ~px,i1a/2,s2px,i2a,s1py,i1a/2,s2py,i ,2a/2,s!

1tpppx,i1a,s
† ~py,i1a/2,s2py,i2a/2,s!1H.c. ~2.2!
sim-
c.

ns

ila-
p-
Here (i ) sums over the unit cells in the plane,dis
† refers to

the Cud orbitals, andp(x,y),i6a/2,s to the oxygenpx or py
orbitals, which are neighbors to Cu in celli at a distance
a/2. The relative signs in the kinetic energy take into acco
the phases of the orbitals, as shown in Fig. 7.

H1 is the short-range part of the interactions

H15(
i ,s

Udndisndi s̄1Upnpisnpi s̄ . ~2.3!

H2 is the long-range part of the electron-electron interacti
and the exchange interaction important only for near
neighbors:

H25(
i , j

Vi j ninj1(
~ i , j !

Vxsi•sj , ~2.4!

whereni5ndi or npx,i , npy,i as appropriate. One must in
clude the long-rangeVi j;uRi2Rj u21 for uRi2Rj u→` to
keep the long-wavelength charge oscillations at a fin
plasma frequency. Otherwise, only the nearest-neigh
Cu-O and O-OVi j need be considered.

Diagonalization ofH0 gives the model ‘‘one-electron’
band structure, which has ‘‘Cu-O bonding’’ and ‘‘antibon
ing bands’’ and a O-O ‘‘nonbonding band.’’ Fortpp50, the
bonding band2b and the antibonding band2a are decou-
pled from the nonbonding band.tppÞ0 is important for the
results of this paper, but I consider only the bonding and
antibonding for simplicity and neglect the nonbonding ba
The eigenvalues and eigenvectors of the bands kept m
include the effects oftpp . It will be clear that smaller inter-
t

s
st

e
or

e
.
st

actions are needed in the three-band model than in the
plified model for the important instabilities derived in Se
IV.

The dispersion of the bandsa andb will be denoted by
ea(k) and eb(k). These are sketched in Fig. 4. Expressio
for them, derived perturbatively intpp /tpd , are given in Ap-
pendix A. Their eigenvectors are specified by the annih
tion operators for states in them in terms of annihilation o
erators ford andpx,y orbitals at lattice sites:

aks5uad~k!dks1uax~k!sinS kxa2 D pxks

1uay~k!sinS kya2 D pyks, ~2.5a!

bks5ubd~k!dks1ubx~k!sinS kxa2 D pxks

1uby~k!sinS kya2 D pyks , ~2.5b!

where

dks
† 5

1

AN(
i
dis
† eik•Ri,

px~y!ks
† 5

1

AN(
i
pix~y!s
† eik•Ri.
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i label the unit cells; the Cu atom in the unit celli is taken to
be atRi . Expressions for these coefficients, also calcula
perturbatively intpp /tpd , are given in Appendix A.

Band-structure calculations givetdp ,2tpp ,D0;O~1 eV!;
various spectroscopic methods give the local repulsion
Cu: U;O~10 eV!. As good an estimate of the neares
neighbor Cu-O repulsion as any is

VNN*e2/@e~1 eV!R0#, ~2.6!

whereR0 is 1/2 the unit cell size ande~1 eV! is the measured
long-wavelength di-electric constant at an energy ofO~1
eV!, which is '4. This gives the nearest-neighbor Cu-
interaction*1.7 eV. So multiplied by the number of neigh
bors and considering polarization corrections, etc., the c
acteristic Madelung energies controlling Cu-O charge fl
tuations is also ofO~10 eV!. Calculations of Madelung
energies46 in the actual lattice support this estimate.

The interaction energies and the overall electronic ba
width are therefore of the same order. We can direc
project the Hamiltonian~2.1! onto the basis set of the bond
ing and antibondingk-space orbitals obtained by diagonali
ing Eq. ~2.2!. This results in the most general two-ban
Hamiltonian allowable by symmetry. Such a Hamiltoni
~projected to interactions in the spin-singlet channel, wh
alone is important! is given in Eq.~4.1!. The reader may a
this point skip directly to Eq.~4.1! and the subsequent anal
sis. Although this approach is quite consistent for the me
lic state, it is hard to derive the insulating phase near
filling from such a basis or to see that, although the lo
energy physics at 1/2 filling of the general model is identi
to the Hubbard model, it may not be so in the metallic sta
A basis of local real-space orbitals constructed in the stro
coupling limit to suppress some of the charge fluctuation
more convenient. The next section is devoted to deriving
projections of the Hamiltonian~2.1! to such a basis. The
subsequent analysis, which is a simple generalization
slave boson methods,47 yields the Hamiltonian~4.1! as well.
The results of this paper are qualitatively similar starti
from either end in the ratio of interaction energy to the on
particle bandwidth.

III. STRONG-COUPLING LIMIT

It is convenient to rewrite the Hamiltonian as an intrac
part and an intercell part to calculate in the strong-coupl
limit. We define a linear combinationDis

† of operators on
oxygen orbitals in a celli which hybridize with thedx22y2

orbital in the same cell:

Dis
† 5

1

A4
~pi1ax

2pi2ax
1pi1ay

2pi2ay
!. ~3.1!

Dis
† creates an orbital which also transforms as adx22y2

orbital about the center of the celli . In the geometry of the
Cu-O lattice the orbitals created byDis

† are not orthogona
for near-neighbori . Wannier orbitals can be defined whic
are orthogonal for differenti . Such orbitals can be expresse
as a linear combination of the orbitals created byDis

† .
H0 can be reexpressed as

H05H0,cell1H0,intercell, ~3.2!
d

n

r-
-

d-
y

h

l-
2
-
l
.
g-
is
e

of

-

l
g

where because there is no hybridization at the zone cen

H0, cell5(
i

D0~ndi2nDi !. ~3.3!

We write the kinetic energy completely generally as

H0, intercell5 (
~ i j !,s,mn

t im, jn~m is
† n js1H.c.!, ~3.4!

so that it reproduces the one-electron bonding and antibo
ing bands. Here (m,n) sum overd or D. The use of nonor-
thogonal orbitals makest i j nonzero over a range larger tha
nearest neighbors. This conflict between the necessity of
ing nonorthogonal orbitals to handle strong local, but not j
on-site, interactions and Bloch waves for a periodic latt
appears unavoidable. We need not dwell on this because
final projected Hamiltonian~4.1! for further analysis depend
only on symmetry.

The interaction termsH1 andH2 remain of the same gen
eral form in terms ofDis’s as in Eq.~2.3! and Eq.~2.4! with
a redefinition of coefficients. We will simply regard that th
interaction terms have been rewritten in terms ofD ’s, with-
out changing the notation for the new coefficients.

A. States in the strong-coupling limit

The low-energy Hamiltonian for this model will now b
derived. Since some of the important interactions are in
cellular, we specify a basis set in terms of the states of a
by cutting off the kinetic-energy connection between ce
and the long-range Coulomb interactions.

Consider an average occupation of (11x) holes per unit
cell as required by (11x) negative charges per unit ce
assumed uniformly distributed by imposing a chemical p
tentialm. The minimumlow-energybasis must then include
states with one hole and with two holes per unit cell.

We define thezero-hole statef0i
† u0& as the closed-shel

~spin zero! configuration in which the charge state of a
oxygen ions is O22 and of all copper ions is Cu1.

One-hole states: These are of two kinds.
~i! d1s i

† u0&: a hole in the Cudx22y2 orbital with energy
D02m. Chemically, this is the spin-1/2 state Cu21O22

which is the nominal ground-state configuration of the ins
lator.

~ii ! d2s i
† u0&: a hole in the orbital created byDis

† , i.e., the
oxygend orbital, with energy2D02m. ~If such an orbital
were localized on one atom, the charge configuration wo
be Cu1O2.!

Lowest-energy two-hole statesf i
†u0&: The lowest-energy

two-hole state is the spin-singlet state with one hole in
Cu d orbital and the other in the oxygend orbitals. The
energy of this state isEf[V22m. ~If the latter were con-
fined to one atom, the charge configuration would
Cu1O2.! f i

† should be thought of as a hard-core boson o
erator.

Neglected states: These are the following.
~i! Two holes in the bonding combination of oxygen o

bitals with energy22D022m1Up . No essential physica
difference arises if we include these two-hole states also
the low-energy sector.
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~ii ! Triplet state with one hole on Cud and the other on
the oxygens. This is abovef i

†u0& by the exchange energ
Vx , which isO(Vi j ) for ( i j ) nearest neighbors.

~iii ! Two holes on the Cud orbitals with energy
2D022m1Ud .

~iv! Three or a higher number of holes per unit cell.
~v! The zero-hole statef0i

† u0& with energy 0.
At low energies, the allowed cells in a celli must fulfill

the completeness relation or constraint

c i
†c i1f i

†f i51, ~3.5!

wherec i[(d1↑ d1↓ d2↑ d2↓) i . It is convenient to intro-
duce Pauli matricess andt to specify, respectively, the spi
(↑ ↓) degree of freedom and the orbital~1 2! degree of
freedom in the one-hole sector of the problem.

To derive a low-energy Hamiltonian, we must project E
~2.1! to states which fulfill the constraint~3.5!. To this end,
the bare operatorsdis andDis are expressed in terms of th
constrained operators through the identities

dis
† 5

1

A2
f i
†d2i2ssgns, ~3.6!

Dis
† 5

1

A2
f i
†d1i2ssgns. ~3.7!

The intracell terms are transformed by noting that

ndis5n1is1nf i /2 , ~3.8!

nDis
5n2is1nf i /2 , ~3.9!

where

n1s5d1s
† d1s , etc., and nf i

5f i
†f i . ~3.10!

B. Hamiltonian in the strong-coupling limit

In terms of allowed states in the cell,

V0ndinDi5V0nf i ~3.11!

and, for iÞ j ,

Vi j ndinD j5Vi j ~n1in2 j1nf inf j1n1inf j1nf in2 j !.
~3.12!

The term( jVi j n1in2 j is assumed to be already included
the definition of the differenceD0 of the one-hole states
Summing overi and j and using Eq.~3.5! the last two terms
cancel the second term and renormalizeEf . In general, the
interactions of thed1 state and thed2 state with the neigh-
bors are different and symmetry allows terms of the form

(
~ i , j !

V̄i j ~n1i2n2i !nf j . ~3.13!

These renormalizeD0 downward proportionally to the den
sity of two-hole states as found in Hartree-Fock and ot
previous calculations.41,42

Equation~3.3! is simply
.

r

H0,cell5D0(
i

~n1i2n2i !. ~3.14!

Consider now the intercell part of the kinetic energ
Starting from a configuration obeying the constraint, the
tercell kinetic energy leads to configurations which prese
the constraint as well as those that do not. Consider first
former. These are necessarily processes which alter the
hole occupation in celli and one-hole occupation in cellj to
one hole ini and two hole inj or vice versa, for example,

f i
†d1 js

† u0&→d2is
† f j

†u0&. ~3.15!

Therefore, Eq.~3.4! projected to the lower-energy state
gives ~with t i j[t id, jD)

H0,intercell5 (
~ i j !,s,mn

t im, jn~f i
†dms idns j

† f j1H.c.!.

~3.16!

The kinetic energy also operates on the one-hole state
neighboring cellsi and j , creating disallowed statesf0i

† and
the disallowed two-hole states onj . Eliminating such a ki-
netic energy term by acanonical transformationleads to an
effective low-energy interaction in the space of the allow
one-hole states. This process is similar to that by whic
Heisenberg exchange Hamiltonian is generated from
Hubbard Hamiltonian.48 The new feature here is that the on
hole sector has at degree of freedom as well as as degree
of freedom. So there is an exchange int space as well as
s space. The one-band Hubbard model produces an isotr
exchange Hamiltonian because the full Hamiltonian is
variant to spin rotations. This is again true ins space here,
but not in t space. The eigenvectors of the pseudospint
have in general different local energies,DÞ0 in Eq. ~3.14!
and different transfer integrals. Also, there are very ma
different intermediate states with no obvious rotational
variance. Here we derive the form of the effective interact
Hamiltonian from completely general considerations. An e
plicit derivation with calculation of the coefficients is give
in Appendix B.

The intracell kinetic energy terms in Eq.~3.4! which con-
nect the allowed one-hole states to the disallowed states
be written in terms of products of operators

f0i
† das i , f2m j

† das j , a51,2, ~3.17!

wheref0i
† creates the zero-hole state andf2m i

† creates one of
the disallowed two-hole states labeled bym. The canonical
transformation consists in eliminating the intermediate sta
f0i
† f2m j

† ~where now the allowed two-hole statef j
† is in-

cluded inm). The most generalpairwise effective Hamil-
tonian is the sum over products of two kinetic energy ope
tors with appropriate energy denominator. It has the gen
form

H int5(
i j

Ji j(
s,t

~xtc ist
† c jst! (

s8,t8
~xt8c js8t8

† c is8t8!,

~3.18!
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where (s5↑,↓) and t5(d1 ,d2). In Eq. ~2.23!, Ji j xtxt8 is
the sum over intermediate high-energy~disallowed! states of
matrix elements to such states divided by the correspon
energy denominators.

Equation~3.18! can be rewritten as

H int52(
i j

Ji j ~1/42si•sj !~A/42tiAtj !. ~3.19!

The Hamiltonian is isotropic ins space andA expresses the
anisotropy int space:

Att85xtxt8. ~3.20!

In Eq. ~3.19!,

tzi5~d1
†d12d2

†d2! i , ~3.21!

txi5~d1
†d21d2

†d1! i ~3.22!

tyi5 i ~d1
†d22d2

†1d1! i . ~3.23!

With axes defined as in Eqs.~3.21!–~3.23! the most genera
form of A is such as to generate

H int5Hxy1Hanis, ~3.24!

Hxy5@Jzztz
i tz

j1J'~t1
i t2

j 1H.c.!#~1/42si•sj !,
~3.25!

Hanis5@Jzx~tx
i tx

j 1tx
i tz

j !1J'8 ~t1
i t1

j 1t2
i t2

j !#~1/42si•sj !.
~3.26!

The only conceivable terms missing in Eqs.~3.24!–~3.26!
are those linear inty . Note thattyi5 i (Di

†di2di
†Di). There-

fore ~remembering thatDi anddi refer to wave functions a
different points in the unit celli ) tyi represents a curren
distribution within the unit celli . Terms linear intyi cannot
be generated from a time-reversal-invariant Hamiltoni
Another way of seeing this is that if one has two bands a
Fig. 4 whose states are created by linear combination of
eratorsai

† and bi
†, respectively, the most general two-bod

interactions~with operators on sites i and j! are ~ignoring
spin!

ai
†aj

†ajai , bi
†bj

†bjbi , ai
†bj

†bjai ,

ai
†bj

†ajbi , ai
†aj

†bjbi ,

ai
†aj

†ajbi , bi
†bj

†bjai ,

plus Hermitian conjugates of these. The terms in the first
can be rewritten in terms oftz

i tz
j , in the second line in terms

of (t1
i t2

j 1H.c.) and (t1
i t1

j 1H.c.), and those in the third
line in terms of (tzitx j1H.c.) just as in Eqs.~3.24!–~3.26!.

At 1/2 filling, x50, the stated2s i
† u0& is not allowed in the

low-energy subspace. Thenc i[(d1↑d1↓) only, and the low-
energy Hamiltonian is obtained by dropping thet depen-
dence in Eq.~2.24!. The familiar Heisenberg Hamiltonian i
then obtained. If one drops thet variable in the metallic state
as well, the familiart-J Hamiltonian derivable from the Hub
bard model in the strong-coupling limit is obtained. As d
cussed in the Introduction, this is not justifiable for the p
g

.
in
p-

e

-
-

rameters of the Cu-O problem. Thet degrees of freedom
make the problem richer and afford the possibility of ne
physics pursued in this paper.

At this point it is useful to collect all the terms of th
effective Hamiltonian

H5(
i

S D01(
j
Vi j nf j D ~n1i2n2i !

2(
i

l i~n1i1n2i1nf i21!2m(
i

~n1i1n2i1nf i !

1H0,intercell1(
i
Efnf i1H int . ~3.27!

l i enforces the constraint andm is introduced to fix the hole
density at (11x). H int is given by Eqs.~3.24!–~3.26!.

C. Mean field for the slave bosons

We look for uniform mean-field solutions

l i5^l i&5l, ~3.28!

f i5^f i&5f. ~3.29!

We also look for spin-singlet solutions in the bonds (i2 j )
favored by the kinetic energy term in Eq.~3.27! and the
decomposition:49

JS (s,t xtc ist
† c jstD S (

s8t8
xt8c js8t8c is8t8D

'e i j S (st
xtc ist

† c jstD 1e i j
2 /4Ji j , ~3.30!

where

e i j52Ji j K (
s,t

xtc ist
† c jstL ~3.31!

are mean-field amplitudes.
The other decomposition of the interaction term in whi

mean-field amplitudes forti are introduced is more impor
tant to us. Note that given spin singlets in the bon
( i2 j ), uniform spatial solutions int space are favored by
the interactions in Eq.~3.24!, for J'.J'8 .

We now diagonalize the bilinear terms int space, i.e. the
first five terms in Eq.~3.27!, and transform tok space. This
introduces bandsa and b. Let aks

† , bks
† create particles in

these bands:

aks5ukd1ks1vkd2ks , ~3.32!

bks52vkd1ks1ukd2ks , ~3.33!

vk /uk5tan@ 1
2 tan

21t̃k /D#, ~3.34!

t̃k5tkf
2, ~3.35!

and

D5~D1V̄f2!. ~3.36!
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Heretk is the lattice momentum transform oft i j . The effec-
tive Hamiltonian projected to the bandsa andb is given by
Eq. ~4.1!. We denote the dispersion of the two bands due
this diagonalization also byeka andekb . They have the sym-
metry properties of the band structure in the one-elect
approximation, i.e., Eq.~2.5!.

IV. ANALYSIS OF THE TWO BAND HAMILTONIAN

In the strong-coupling limit theintermediate-energy-scale
Hamiltonian obtained from Eq.~3.27! after Eqs.~3.28! and
~3.29! is

H52~l1m21!(
ks

~aks
† aks1bks

† bks!2~l1m2Ef!nf

1(
k,s

ekasaks
† aks1ekbsbks

† bks1H int . ~4.1!

H int is given by

H int5Hxy1Hanis, ~4.2!

Hxy5 (
k,k8,q

Jzz~k,k8,q!tzkqtzk8q1J'~k,k8,q!

3~txkqtxk8q1tykqtyk8q!, ~4.3!

Hanis5 (
k,k8,q

Jzx~k,k8,q!txkqtzk8q1H.c.1J'8

3~k,k8,q!~txkqtxk8q2tykqtyk8q!, ~4.4!

wheretk,q are defined ina-b space@not to be confused with
momentum transforms of Eqs.~3.21!–~3.23!#:

tzkq5ak1q
† ak2bk1q

† bk ,

txkq5
1
2 ~ak1q

† bk1bk1q
† ak!, ~4.5!

tykq52
i

2
~ak1q

† bk2bk1q
† ak!.

As mentioned in Sec. II, Eq.~4.1! follows directly from
the ‘‘bare Hamiltonian,’’ Eq.~2.1!, by transforming to the
noninteracting bands using Eq.~2.5! ~neglecting the terms in
the first line, which only serve to renormalize paramete!.
The transformation from the bareU ’s andV’s to J’s using
Eq. ~2.5! is straightforward and not explicitly presented he
The only important point to note is that one should alwa
include both the particle hole channels. ThusVndinp j is writ-
ten as

V

2 F (
s,s8

~dis
† dis!~pjs8

† pjs8!1~dis
† pjs8!~pjs8

† dis!G
1one-electron terms. ~4.6!

We note that the instabilities discussed here do not occu
the model with only on-site interactions, just as in the case
the Hamiltonian derived in the strong-coupling limit. In th
strong-coupling limit the kinetic energy parameterst̃ andD
depend on the hole densityx through the dependence o
o

n

.
s

or
f

f0
2 on x derived below. This in turn makes the effectiv

interactionsJ depend onx also. If Eq. ~4.1! is considered
directly derived from Eq.~2.1!, the kinetic energy and the
interactions are transformations of the bare terms. One
interpret the operatorsaks , bks as in Eqs.~3.32! and ~3.33!
or as the bare band-structure operators given by Eq.~2.5!.

For short-range interactions, theJ’s can be written as a
sum over products of separable functions with the symme
of the lattice. In terms of the leading such terms, we defi

Jhz~k,k8,q![(
s
JhzFh

s ~k,q!Fz
s~k8,q!, ~4.7!

whereh,z5(x,y,z). The form factorsFh’s are obtained by
Fourier transforming Eq.~3.26! and using the rotations
~3.32! and ~3.33! or directly from Eq.~2.1!.
Fh8’s have a rather messy form. I assume that there is

particular lattice harmonic which dominates and hencefo
drops the superscripts. Of course, the dominant harmon
can be determined only from a detailed calculation. Su
calculations are not done in this paper, nor are they neces
for the principal conclusions drawn.

In Eq. ~4.1! we have dropped the mean-field decompo
tion ~3.31!. It simply renormalizes the kinetic energy in E
~4.1! without introducing any new qualitative features. Th
interaction term in Eq.~4.1! is purely in the spin-singlet
channel. Due to lattice effects, couplings of the for
tykqtzk8q andtykqtxk8q are also produced but they vanish
q→0 and play no essential role. I have dropped such ter

A. Instabilities

We look for instabilities of theq50 intracell excitonic
nature. They can arise only if the parameters inH int are the
same scale or larger than the bandwidth. To calculate
properties of the new states, one introduces, as usual,
form (q50) mean field amplitudes, which will be dete
mined variationally:

Tz[Jzz(
k

^tzk,0&Fz~k!, ~4.8!

Tx[
1

2
Jxx(

k
^tk,0

† 1tk,0
2 &Fx~k!, ~4.9!

Ty[2
i

2
Jyy(

k
^tk,0

† 2tk,0
2 &Fy~k![(

k
Ty~k!,

~4.10!

whereFa(k)[Fa(k,0). We also define the amplitudeT'

and angleu by

T'[uTx1 iTyu, tanu5Ty /Tx . ~4.11!

The splitting of the bands always provides an effect
field acting ontz . Therefore any interesting instabilities ca
only be in thetx-ty plane. We therefore look for instabilitie
which determine the magnitudeT' of an order parameter in
the tx-ty plane and its angleu, with respect to thetx axis.

If Hanis were ignored, the model is isotropic about thez
axis. There would be just one transition of a second-or
nature with massless collective fluctuations. The coupling
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fermions of the collective modes would vanish in the lon
wavelength limit because these modes arise due to brea
a continuous symmetry.Hanis reduces the symmetry so tha
as shown below, the general model has one first-order t
sition and two second-order transitions of the Ising variety
the parameters in the model~includingm) are varied.

Before we proceed with the calculations, it is useful
discuss the excitation spectra for interaction strengthless
than necessary to cause the instability. Consider first o
Hxy . The problem of the excitation spectra between a p
tially filled banda and an empty~or fully filled! bandb has
been investigated in degenerate semiconductors50 and with
the approximation of a dispersionless bandb for the Fermi-
edge singularities50–52 in the core spectrum of metals. Th
absorptionspectrum is given by@see Fig.~9a!#

x~v,q!;(
n

(
k

L~k,n;v,q!Ga~k1q,n1v!Gb~k,n!,

~4.12!

whereL is the complete vertex in the particle-hole chann
with energy momentum (v,q), andGa andGb are the~ex-
act! single-particle Green’s functions. Using the fact th
bandb is empty~at T50), the sum overn can be explicitly
carried out with the result

x~v,q!;(
k

L~k,n;v,q!Gb~k,n!un52v1eak2m .

~4.13!

For small interactions, there is a modification of the spec
at the thresholdenergy e t[eb(kF)2m. We are interested
only in interactions large enough that an excitonic collect
mode, which does not overlap the interbanda-b transitions,
is pulled out. The simplest approximation for the calculatio
is to consider a rigid Fermi sea which only serves to blo
out a part of the phase space. This is the ladder diag
approximation forL, Fig. 9~b!. In this case one obtains
sharp collective mode with spectral function;d„v
2vex(q)…. This is a poor approximation for the line shape

51

The dressing of the exciton by low-energy particle-hole
citations at the Fermi surface—the simplest processes
represented in Fig. 9~c!—modifies the line shape nonpertu
batively. The problem has been solved exactly52 in the
recoil-less limit, i.e., for a dispersionlessb band where the
interaction strength can be parametrized by a phase
d(e). In this caseL is also independent of momentumk and
x is therefore independent ofq. The absorption line shape i
as sketched in Fig. 10~a!. Near the excitonic threshold it i
given by

x~v!;~v2vex!
211~12d0 /p!2, v.vex. ~4.14!

Hered0 is the phase shift at thechemical potential, modulo
p—the phase shift required to pull an exciton from the co
tinuum. vex is determined by the details of band structu
the density of conduction electrons, and the strength of
potential. Note that in the weak-coupling limit the absorpti
line shape has precisely the same exponent,51 but the absorp-
tion edge is at the energye t . Thus Eq.~4.14! may be re-
garded as the Fermi-surface singularity pulled down tovex
or that the absorption displays the excitonic edge as mod
-
ng

n-
s

ly
r-

l

t

a

e

s
k
m

-
re

ift

-
,
e

d

by a shakeoff of low-energy particle-hole excitations at t
Fermi surface. Therefore processes which smooth the Fe
edge singularities will also smooth the excitonic edge.

The effect of a finite hole mass or recoil50 on the Fermi-
edge spectra is to smooth the singularity. Auger proces
now introduce a self-energy forGb which is smooth on the
scale of the recoil energyeb(kF)2eb ~zone boundary!. All
k’s from the zone boundary tokF now contribute to the
absorption for any given externalq, and momentum is con
served by particle-hole scattering on the Fermi surface. B

FIG. 9. Exact representation of the interband susceptibility a
function of energyv and momentumq. The lines are exact one
particle Green’s functions andL is the complete~reducible! vertex.
~b! The interband susceptibility in the ladder diagram approxim
tion to L of ~a!. ~c! Elementary self-energy and vertex correctio
neglected in~b!.

FIG. 10. ~a! Interband absorption spectrum near the excito
threshold in the approximation that bandb is infinitely massive,
after Ref. 52.~b! Interband absorption spectrum near the excito
ledge with finite hole mass. The excitonic ledge shifts to low
energy as the interband interactions increase.
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Gb andL are now functions ofk. The extra integrations in
Eq. ~4.12! then round off the singularity over the recoil e
ergy. If interactions are strong enough to pull out an excit
the excitonic edge must be similarly rounded off near
excitonic edgevex. This is shown in Fig. 10~b!. Similar
behavior must exist for a range ofq from 0 to order the
difference fromkF to the zone boundary. We may writ
qualitatively that

x~v,q!5xS v2vex~q!

G D , ~4.15!

whereG is the smaller of the recoil energies orvex. x (x)
has the form~4.14! for x@1, but nearx50, x(x) is a
smooth function ofx.

The two important points in the above discussion are~i!
that for large enough interactions an excitonic state is pu
out with or without recoil and~ii ! that recoil is always a
relevant perturbation, smoothing out the singularity at
Fermi edge and therefore at the excitonic edge if it exist

As the interaction strength in Eq.~4.1! increases,vex(q)
decreases. The band structure in Eq.~4.1! is unstable for
interactions for which Rex(0,0)→`. It appears difficult to
get explicit closed form expressions forx(q,v) taking into
account the dressing of the exciton by low-energy partic
hole pairs. In subsequent sections, I present explicit res
with the frozen Fermi-sea approximation, and then disc
from general considerations the essential features of the
actx(v,q).

B. Anisotropies

The anisotropic interaction termsJzx andJ'8 play a quite
different role thanJ' andJzz. It is convenient to first focus
on these differences. The effective interactionJzz as derived
in Appendix B is in general smaller thanJxx andJyy . But
the amplitudeTz is always finite because of the splittin
between the bonding-b and antibonding-a bands in Eq.~4.1!,
i.e., an effective uniform field;tz

i . The term proportional to
Jzx in Eq. ~4.4! is therefore approximated as

Jzx21FTzTx1Tz(
k

txkFxz~k!1Tx(
k

tzkFxz~k!G .
~4.16!

Tz andTx will therefore have no low-energy dynamics. S
at low energies, the corrections to the mean-field approxi
tion ~4.16! are unimportant. The second and third terms
Eq. ~4.16! merely renormalize the band structure provid
Tz andTx are finite. The first term may be written as

Acosu, A5Jzx21TzT' . ~4.17!

Consider next the term proportional toJ'8 in Eq. ~4.4!. In
the mean-field approximation we write it as

~J'8 !21@~Tx!
22~Ty!

2#. ~4.18!

Therefore this term acts as a quadratic anisotropy field in
x-y plane if an excitonic state condenses. This anisotr
may be written as

B~cos2u!, B5~J'8 !21~T'!2. ~4.19!
,
e

d

e

-
lts
s
x-

a-

e
y

In general, higher anisotropies are also generated from
starting Hamiltonian. I do not give their derivation bu
merely introduce, in the mean-field approximation, a te
Ccos4u in the free energy. The mean-field anisotropy fr
energy is then

Fanis5Acosu1Bcos2u1Ccos4u. ~4.20!

A, B, andC are functions of the density of holesx as well as,
in general, of temperature.

C. Condition for instability

1. Rigid Fermi sea

As already mentioned only the ladder diagrams, Fig. 8~b!,
are considered in this approximation.

The mean-field free energy then is

FMF5
Tz
2

4Jzz
1

T'
2

4J'

1~Ef1l!f22l0

2
1

b (
k,m5a,b

ln~12e2b~Ekm2m!!1Fanis. ~4.21!

We will be interested especially in the vicinity of the ho
density where theFanis vanishes to leading order. It is con
venient then to begin the analysis by ignoringFanis. One
thereby determinesT' , Tz , and f. Fanis is then used to
determineu.

The variational one-electron Green’s function is

G0~k,v!5SGaa Gab

Gba Gbb
D 5@v2H0~k!#21, ~4.22!

H0~k!5S eka1Fz~k!Tz F'~k!T'

F'~k!T' ekb2Fz~k!Tz
D . ~4.23!

The mean-field band structureEk a,b and the eigenvectors
aks , bks are obtained as usual by diagonalizingH0(k):

S aks

bks
D 5S ck sk

2sk ck
D S aks

bks
D . ~4.24a!

Here

ck5coslk/2 ,sk5sinlk/2 ,

tanlk5F'~k!T' /@eka2ekb12Fz~k!#. ~4.24b!

Minimizing FMF with respect tol andm gives

f21(
k,m

f ~Ekm2m!51 ~4.25!

and

f25x, ~4.26!

wheref (z) is the Fermi function. Equations~4.25! and~4.26!
imply that the Luttinger theorem on the volume enclosed
the Fermi surface is satisfied.

Minimizing FMF with respect toTz , T' , andf yields,
respectively,



x-
-
’’
-

re

at
gh

r
o
ta
on
h
lie

-
er

ts
po
e
th
i
al

til
rg
e

s

V A
r
an

ape

ff
rs-

ult

t.
an-
h;

is
s-
h
ny
nd
o-
the
lso
en-
le

r
is
-
en
the
the
er

55 14 567NON-FERMI-LIQUID STATES AND PAIRING . . .
Tz
2Jz

1(
km

f ~Ekm2m!
]Ekm

]Tz
50, ~4.27!

T'

2J'

1(
km

f ~Ekm2m!
]Ekm

]T'

50, ~4.28!

2lf1
]E

df
1(

k,m
f ~Ekm2m!

]Ekm

]f
50. ~4.29!

From Appendix B note thatJ'@Jz . We expectTz to have
only a minor effect which is determined mainly by the ‘‘e
ternal field’’ D. The stability of the mean-field approxima
tion for f i is ensured by a finite value for the ‘‘boson
chemical potentialEf1l0. In fact, apart from detailed quan
titative issues, we need look only at Eq.~4.28! which can be
rewritten as

1

2J'

1(
k,s

uF'~k!u2
f ~Ekas2m!2 f ~Ekbs2m!

~Ekas2Ekbs!
50.

~4.30!

The ~approximate! condition for one electron band structu
to be unstable is obtained by

1

2J'

1(
ks

uF'~k!u2
f ~ekas2m!2 f ~ekbs2m!

~ekas2ekbs!
50.

~4.31!

At T50, the right-hand side of Eq.~4.31! is of order
N(0)ln(W1e t)/e t . Since the ‘‘threshold energy’’e t and the
bandwidthW are of similar order, we need 2J'N(0) of
O(1) to have an instability. We will in fact assume th
2J'N(0) is large enough that the instability is at a very hi
temperature. Stability is achieved byT'Þ0, which corre-
sponds simply to changing the relative Cu and O characte
the occupied and unoccupied bands. This result is no m
than the statement that just as at 1/2 filling the charge s
away form 1/2 filling is determined by the electron-electr
interactions, not just by the one-electron band structure. T
behavior has been seen in a variety of ear
calculations.41,42 We will see below that whenFanis is con-
sidered, the transition toT'Þ0 becomes of first order, ex
cept at two points. It is only near those two points that int
esting properties can arise.

2. Soft Fermi sea

Only the ladder diagrams are considered in the vertexL
in deriving Eqs.~4.27!–~4.29!; i.e., the Fermi sea merely ac
to restrict phase space. As already discussed, this is a
approximation. For sufficiently strong interactions the on
electron band structure is of course unstable even with
inclusion of low-energy particle-hole excitations, such as
Figs. 8~c! and 8~d!. But several details change. In gener
the mean-field amplitudesTx , Ty , andTz are functions of
frequency. But as a variational ansatz, Eqs.~4.8!–~4.10! may
still be introduced. The considerations of anisotropy s
continue to hold as in Sec. IV B. The mean-field free ene
~4.21! is an approximation of the general case, where thT
andf dependence~after integrating over the Fermions! may
be written as
of
re
te

is
r

-

or
-
e
n
,

l
y

~T' Tz f! x21S T'

Tz

f
D . ~4.32!

Equations~4.27!–~4.29! are rigid Fermi-sea approximation
of the general condition

detx21~v50,q50!50 ~4.33!

to determine the variational parametersT' , Tz , andf.
The qualitative form ofx(v,q) for an interaction strength

less than the critical value has been discussed in Sec. I
and illustrated in Fig. 10~b!. Let us definep as the paramete
@which is a function of the parameters in the Hamiltoni
~4.1!# such that the instability towardsT'Þ0 occurs at a
temperatureTc for p5pc(Tc). First considerTc'0. What
does the condition~4.33! for the instability imply for
Imx(v,q) when the latter is overdamped and has the sh
as in Fig. 10~b! rather than ad-function as in the rigid Fermi-
sea approximation.x(v,q) has to satisfy the requirement

Imx~v,q!52Imx~2v,q!. ~4.34!

For v small compared tovex, Imx(v,0);v, while for v
large compared tovex, it is nearly a constant up to a cuto
vc on the scale of the Fermi energy. Then by Krame
Kronig transform the leading term in

Rex~v,0!; lnS vc

max~vex,v! D .
As p→pc(0), vex→0. Near this point, Imx(v,0)
;sgn(v).

We see that recoil reduces the singularity asv→0 of
x(v,0) near the transition atT50 as p→pc(0) from the
d function of the rigid-sea approximation or the exact res
~4.14! for the recoil-less case. In terms of Eq.~4.14! recoil
makes the phase shiftd0 at the chemical potential irrelevan
This appears quite unavoidable—on the one hand, recoil c
not prevent the instability if the interaction is large enoug
on the other hand, the singularity in Eq.~4.14! which is a
Fermi-edge singularity is wiped out by recoil. The result
that the instability occurs with the least singular form po
sible: x(v,0); ln(v1i0). As discussed in connection wit
Eq. ~4.15!, the smoothing of the excitonic edge occurs at a
externalq due to the mixing by Auger processes of interba
particle-hole pairs over essentially the whole range of m
menta. Thus for interaction energies large compared to
Fermi energy as required for the instability and therefore a
large compared to the recoil energy, the frequency dep
dence of the Imx(v,q) is nearly the same over the who
range ofq. The imaginary part ofx(v,q) is then reminiscent
of the form of the Cooper-pair-fluctuation propagato53

above a superconductive transition which
; iv/max(v,T) over a range ofq smaller than the coher
ence lengthj0, i.e., the size of the Cooper pairs. Here, giv
the strong coupling required to engender the instability,
excitons have size of the order of the lattice spacing. So
iv/max(v,T) form of damping is expected to persist ov
most of the Brillouin zone.

The form forx(v,q) near forT50 asp→pc(0) is thus
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x~v,q!;F S iv

max„v,vex~p!…
1 ln

vc

max„v,vex~p!…D
21

1k2q21@pc~0!2p#G21

, ~4.35!

wherevc is an upper cutoff energy, andk provides the scale
of dispersion. At a finite temperature, we must use the
that thev andT dependence inx(v,q) must scale asv/T.
So, forT@v,

x~v,q,T!;F S iv

max„T,vex~p!…
1 ln

vc

max„T,vex~p!…D
21

1k2q21@pc~T!2p#G21

. ~4.36!

D. Determining u

We now consider the effects ofFanis. On minimizing
Fanis with respect tou, one finds that the equilibrium valu
Qm is given by

Qm50 for ~A12B14C!,0 ~4.37!

for phase I and

Qm5p for ~2A12B14C!,0 ~4.38!

for phase I8.
For C.0, there occurs a second order transition of

Ising variety to

0,Qm,p for 2A,2B14C,A ~4.39!

for phase II.Q continuously rotates in phase II asA,B,C
vary.

Noting thatA,B,C are in general functions ofx andT, we
may write the mean-field anisotropy energy as

Fanis5G0~x,T!@u2Qm~x,t !#21•••, ~4.40!

where

G0~x,T!50 for 6A12B14C50, i.e., Qm50,p.
~4.41!

Therefore the transition atQm50 or p is of second order.
Let us denote the transition line~understanding that asx is
varied we will be concerned only with either I to II or I8 to
II transition! by xc(Tc).

Let us stay for definiteness in the vicinity ofQm50. For
Qm50, the high-temperature transition occurs as a fi
order transition with a real order parameterTx . WhenQm
Þ0, the mean-field order parameter is complex:Tx1 iTy .
TyÞ0 implies that in the ground state, a current distributi
occurs within each unit cell which has the same phase
every unit cell.

The content of the mean-field theory is summarized
Fig. 5, where the free energy is shown as a function ofTx
andTy and in Fig. 8. Throughout the temperature region
interestTxÞ0. As (p[6A12B14C) is varied by varying
x ~andT), a second-order Ising transition fromTy50 to the
circulating current phaseTyÞ0 occurs.~We note in passing
ct

e

t-

in

n

f

that we have arrived at a new class of statistical-mechan
model for quantum-critical points.!

We will discuss below how regimes 1 and 3 of the pha
diagram of Fig. 1 may be identified with the phase I~or
I 8) and regimes 2 and 4 with the phase II of the mean-fi
theory. The nature of the fluctuations will be shown to va
in phase I as a function ofx andT leading to a crossover in
the properties from regime 1 to regime 3 in Fig. 1. We w
also show that the phase transitions between phase I
phase II also becomes a crossover for arbitrarily small dis
der.

E. Circulating current phase

QmÞ(0,p) implies that in the ground state, a curre
flows in each cell. Since the momentum of the instability
zero, the current pattern respects lattice-translation sym
try. The current pattern within a cell can be deduced from
mean-field Hamiltonian withQÞ0, which is now Eq.~4.23!
with the substitutionT'→T'e

iQ,T'e
2 iQ in the off-diagonal

terms. To calculate the current pattern, first find the eig
vectors of the conduction band withQÞ0:

Ea~k!âks5@eka1Fz~k!Tz#aks1F'~k!T'e
iQbks .

~4.42!

Now use Eqs.~2.5! to expressa,b in terms of dk and
px,y(k) using coefficients given in Appendix A. This yield

âks5ûad~k!dks1ûax~k!pxks1ûay~k!pyks , ~4.43!

whereû’s are complex coefficients:

ûa~d,x,y!~k![Ra~d,x,y!~k!eif~d,x,y!~k!. ~4.44!

There is no need to exhibit the complicated expressions
these coefficients because the current pattern can be ded
from their general properties specified below.

The current in a bond going from a copper site to
oxygen site in thex or y direction is

j dx5
2

p
tpdIm^dis

† pi1x,s&

5
2a

p
tpd (

k,kF
cos

kxa

2
RâdRâxsin@fd~k!2fx~k!#.

~4.45!

@The sum overk of the term with sin(kxa/2) is zero using
inversion symmetry.# Now note that tpd changes sign
x→2x and the sum in Eq.~4.45! is symmetric under inver-
sion. Hence the current between a copper orbital at a si
and an oxygen orbitals ati1(a/2)x̂ and i2(a/2)x̂ are equal
and opposite. This holds also for the current between cop
orbitals ati and oxygen orbitals ati6(a/2)ŷ.

The current between two oxygen orbitals in the same c
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j xy5
atpp
a

Im^pi1x,s
† pi1y,s&

5
2atpp
a (

k,kF
cos

kxa2kya
2

Râx~k!Rây~k!

3sin@fx~k!2fy~k!#. ~4.46!

The sum in Eq.~4.46! is identical for the other three oxygen
oxygen bonds around a given copper atom, but as is evi
from the phases shown in Fig. 8.tpp reverses sign cyclically
in going around the four bonds, and therefore so does
current.

The direction of the current between the copper and
oxygen orbitals and between the oxygen orbitals fixes
pattern show in Fig. 6. So, together with breaking tim
reversal symmetry, fourfold rotational symmetry is broke
But the product of the two is left invariant.

Some further conclusions can be drawn from an exam
tion of the û’s. If tpp50, cax(k)5cay(k). Then any
@cad(k)2cax,y(k)# can be removed by a unitary transfo
mation without affecting the eigenvalues or the eigenvect
This is physically obvious from looking at Fig. 6; a curre
between copper and oxygen orbitals is meaningless in
absence of a current between the oxygen orbitals.

We can also deduce that there is no contribution to
currents from states on the diagonals in the Brillouin zo
6kx56ky . Correspondingly, there is no change in t
single-particle eigenvalues in the circulating current ph
ith
-

o
ro
nt

e

e
e
-
.

a-

s.

e

e
,

e

along the diagonals. On zone faceskx50 or p/a, ky50 or
p/a, the eigenvalues do change. The lowest lattice harmo
consistent with these symmetries isdx22y2. So there is a
change in the single-particle spectra in the circulating curr
phase ofdx22y2 symmetry.

The ground-state current contribution of each statek de-
pends onk and there isO(1) electron per unit cell in the
conduction band. The orbital magnetic moment of the cir
lating current in each of the quadrants in Fig. 6
O(0.05mB), with the assumption that the average state c
tributes;1/4mB per unit cell.

V. COLLECTIVE MODES AND FERMION-BOSON
COUPLING

We now consider the fluctuations in the stateT'Þ0.
They are interesting only near the I~or I 8) to II transition.
There is always a finite effective field coupling linearly
Tz . So the fluctuations in thez direction are always massive
The interesting modes are in theTx2Ty space. So define

dTx,q5
1

2
Jxx(

k
^tk,q

1 1tk,q
2 &Fx~k,q!2Tx , ~5.1!

dTy,q52
i

2
Jyy(

k
^tk,q

1 2tk,q
2 &Fy~k,q!2Ty . ~5.2!

The effective Hamiltonian determining the fluctuations is
Hfluc5(
ks

~aks
† bks

† !H0~k!S aks

bks
D 1(

q

1

4J'

~dTx,q
† dTx,q1dTy,q

† dTy,q!1(
k,q
F'~kq!~ak1q

† bk1bk1q
† ak!~dTx,q1dTx2q

† !

1 i(
k,q
F'~kq!~ak1q

† bk2bk1q
† ak!~dTy,q1dTy,2q

† !1Hanis. ~5.3!
ar

ea
Again, let us ignore the effects of anisotropy to begin w
but chooseQm50, i.e.,T'5Tx . The spectrum of the fluc
tuations

Dx
0~q,v![^dTxdTx&~q,v!, ~5.4!

Dy
0~q,v![^dTydTy&~q,v! ~5.5!

is given in the frozen Fermi-sea approximation@Fig. 8~b!# by

HDx
021~q,v!

Dy
021~q,v!

J 5
1

2J'

1(
k,n

uF~k,q!u2

3@Gaa~k1q,v1n!Gbb~k,n!

6Gab~k1q,v1n!Gba~k,n!#. ~5.6!

At v50, q→0, the equation forDy
0 is identical to Eq.~4.30!

determiningTx . So a long-wavelength massless phase
current mode exists as is to be expected when the anisot
in the tx-ty plane is zero. The poles ofDx

0 give the disper-
r
py

sion of the amplitude modes. Their frequencies nearq'0
are of orderTx ; they will not be considered further.

Let us now include the effect of anisotropy, but stay ne
I to II ~or I 8 to II! instability. From Eq.~4.40!, the anisotropy
energy provides a quadratic termG0(x,T)dTy

2 to the fluctua-
tions. Including this effect

Dy
0~q,v!5

m/m*

v22k2q21G0~x,T!
, ~5.7!

wherek/a is the order ofTx . The spectral weight of the
collective modem* /m is

m*

m
;0~Tx /W!. ~5.8!

Equations~5.6! are special cases, in the rigid Fermi-s
approximation of the general equation

x21~q,v!50, ~5.9!
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which determines the fluctuation spectra, just as Eqs.~4.27!–
~4.29! are special cases of Eq.~4.33! which determines the
one-particle spectra through fixingTx , etc. In the frozen
Fermi-sea approximation, there is no damping of the coll
tive fluctuations—the excitonic resonances have a spe
function proportional to ad function. As discussed in Sec
IV A for the case whenTx50, inclusion of low-energy
particle-hole fluctuations changes the spectral function of
excitonic collective mode in an essential way. Thex(q,v)
including low-energy particle-hole fluctuations withTxÞ0
has the same functional form as discussed in Sec. IV C,
calculated with the new band structure, Equations~4.23! and
~4.24!. The dispersion of the soft excitonic collective mo
atq→0, described byDy

0(q,v), again has the same form fo
G50 as discussed in Sec. IV C, leading to Eqs.~4.35! and
~4.36!. Including the effect of the anisotropy on the fluctu
tions, we have

Dy
0~q,v!5D0F H iv

max~ uvu,T,G0!
1 lnS vc

max~ uvu,T,G0!
D J 21

1k2q21G0~x,T!G21

. ~5.10!

HereD0 parametrizes the spectral weight of the fluctuat
expected to be ofO(EF

21). The second-order transition oc
curs whenG0(x,T)50 as in Eqs.~4.37!–~4.39!. ~Henceforth
G0 is dimensionless, having been scaled byD0

21.! The fluc-
tuations have a finite frequencyG0 above and a finite value
below the transition~characteristic of transitions of the Isin
class!.

Equation ~5.10! is crucial in the analysis below of th
properties of the model. It is clear that the very singu
result from the rigid Fermi-sea approximation, Eq.~5.7!, is
quite incorrect.~It also gives properties ind52 which are
too singular compared to experiment.! The combined effect
of infrared processes at the Fermi surface and recoil toge
with analyticity requirements has been discussed in S
IV C to lead to Eq.~5.10!. This justification is only heuristic
An evaluation of processes like in Fig. 9~c! to findL exactly
appears very hard, if not impossible. Earlier, a three-bo
scattering approach to the problem was suggested.54 It might
be possible to evaluateDy(q,v) systematically in such an
approximation. Note that whend0 of Eq. ~4.14! is zero, as
argued here, ImGb(v);v21, at least for the recoilless
case.50 This is consistent with the conjecture54 that a three-
body resonance at the chemical potential may lead to
observed normal-state anomalies.

There are no other massless modes in the model. Ea
investigations41,42 of the charge-transfer instability in th
model found a diverging compressibility indicating pha
separation. If one adopts a short-range interaction model
density fluctuations have a dispersionv;q. Near the critical
point of the charge-transfer instability, a low-energy mode
dTx couples to such density fluctuations pushing the ‘‘el
tron sound velocity’’ to zero. In a model with Coulomb in
teractions, the density fluctuations are at the plasma
quency. Phase separation then does not occur@unless the
system has inhomogeneously distributed fixed~ionic!
charges#.
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Consider now the coupling of the fermions to the low
energy collective modes in the vicinity ofxc(0) where a
transition from T'5Tx to a complex order parameter
Tx1 iTy occurs. The coupling of the Fermions to thedTy
fluctuations comes from the fourth term in Eq.~5.3! and a
similar term in Eq.~4.4!. We must reexpress the fermio
operators in terms of the low-energy fermions created
aks
† by using the rotation~4.24!. The coupling is written as

HF-B5 (
k,q,s

i g~k,q! ak1q,s
† ak,s~dTyq1dTy2q

† !.

~5.11!

One finds from the fourth term in Eq.~5.3! @the correspond-
ing term from Eq.~4.4! introduces no important difference#

g~k,q!5g0 Fy~k,q!sinS lk1q2lk

2 D . ~5.12!

In Eq. ~5.12! we have introducedg0 with dimensions of
energy, so thatdTy is henceforth dimensionless.g0 is ex-
pected to be ofO(EF). In generalFy(k,q) is finite for
q→0, butg(k,q) vanishes linearly withq. So, even through
we have an Ising transition, the coupling of the Fermion
the fluctuations vanishes at long wavelength. This occurs
cause the bands are split due to ‘‘external’’ fields and the f
that notxty or tzty coupling is allowed at long wavelengths
The vanishing of the coupling at long wavelengths is, ho
ever, not fatal because in the fluctuation spectrum,
~5.10!, all q’s are~to a logarithmic accuracy! equally impor-
tant in properties which integrate the spectrum to energie
the order of temperature.

VI. ANALYSIS OF THE LOW-ENERGY HAMILTONIAN

The end result of the preceding two sections is a sim
Hamiltonian for the calculation of low-energy properties:

H5(
k,s

e~k!aks
† aks1Dy

021~q,v!dTy,q
† dTy,q

1(
k,q

ig~k,q!ak1qs
† ak,s~dTy,q1dTy,2q

† !. ~6.1!

We now analyze the properties of this Hamiltonian in t
regime near the I to II transition nearT50.

It is best to start by considering the simple physical p
cesses depicted in Figs. 11~a!–11~f!. Here the wiggly lines
denote the fluctuation propagationDy

0(q,v) and the solid
lines the fermion propagationG0(k,v)5^aa†&(k,v).

The real part of Fig. 11~a! for q→0, v→0 renormalizes
the massG. This can be absorbed in a redefinition ofxc .
Similarly the leadingq dependence;q2 merely redefines
the coefficientk in Eq. ~5.10!. The imaginary part gives the
usual Landau damping contribution; iv/vFq. If we use
renormalized fermion propagators in Fig. 11~a!, the result is
modified to

iv/max„ImS~v,T,G!,vFq….

We will show that in the non-Fermi-liquid regim
ImS(v,T);max(v,T). This is an additive correction to th
imaginary part in Eq.~5.10! and is therefore unimportant a
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all q. This would not be true in the rigid Fermi-sea appro
mation in which the fluctuations inD0(q,v) are completely
undamped.~In that caseD0 has the same functional depe
dence onq and v as the transverse electromagnetic fie
propagators in a metal55.! One can also examine higher-ord
renormalizations, Fig.~11b! and Fig.~11c! to conclude that
they are irrelevant, and the imaginary part of the proces
Fig. 11~b! is proportional tov while Fig. 10~c! is propor-
tional tov2.

Consider next the fermion self-energy graph, Fig. 11~d!.
The imaginary part of the self-energy is easily seen to b

ImS~q,v!5N~0!E
0

1

dd21xE
e1

e2
deImDR

0~2kFx,v2e!

3g2~2kFx!F tanhe

2T
1coth

v2e

2T G , ~6.2!

where

e1,25vF~ uqu7kFx!1ReS~e1,2!. ~6.3!

It is found consistent to ignoreS(e) in the right-hand side of
Eq. ~6.3!. For T50, the limits of e integration are 0 tov
@except for an ignorable region ofx integration of
0(v/EF)#. The x integration, using Eq.~5.10! for D0 for
G050, then leads to a constant, so that the final resul
proportional tovsgnv. Similarly for T!v, the result is pro-
portional toTsgnv. The self-energy has negligible mome
tum dependence~if the Fermi surface has no significant nes
ing!. These results are true for any dimension more than
Thed independence of the self-energy, and other proper
in which these fluctuations are sampled over energies to
scale of the external frequency and temperature, arises
cause in Eq.~5.10! the fluctuations are essentially local@even
though ReD(0,0) diverges asG21#. We may express both
the real part and the imaginary part of the self-energy by
expression which interpolates between thev/T!1 and the
v/T@1 limits:

FIG. 11. Processes for analysis of the low-energy Hamilton
~a!, ~b!, ~c! are processes considered for the boson self-energy~d!
for the fermion self-energy.~e! is the lowest-order correction to th
boson-fermion vertex.~f! Leading self-energy due to anharmon
interaction between the fluctuations.
in

is

1.
s
he
e-

n

S~v,T!5plF ~2v/p!lnS pT1 iv

vc
D1 ipTG . ~6.4!

Equation ~6.4! may be useful in analyzing angle-resolve
photoemission experiments discussed below.

Consider next the vertex correction shown in the graph
Fig. 10~e!. In the limit q→0 first and thenv→0, it is given
by a Ward identity~in the pure limit!,

Lv5
1

z
, ~6.5!

wherez is the quasiparticle renormalization amplitude giv
by Eq. ~1.2!. In the ‘‘q limit’’ it is given by another Ward
identity in terms ofdS/]k. SinceS is found very weakly
dependent on (k2kF), this is ignorable.

For generalv andq, a finite vertex correctionO(g) non-
singular as a function ofv and k2kF) is found. If the
‘‘bare’’ coupling constantg(k,q) is less thanO(1), this may
be simply absorbed in the redefinition ofg(k,q). One can
formally devise 1/N schemes to keep such vertex correctio
controlled.

We briefly consider the renormalization ofG0 in
D0(q,v) due to anharmonic interactions. The leading co
tribution comes from

uudTq,vu2udTq8,v8u2, ~6.6!

whereu.0 is a phenomenological coefficient expected to
on the same scale as the upper cutoff energy of the fluc
tions. The self-energy of the modes proportional tou, Fig.
11~f!, has the leading temperature correction proportion
uT ~independent ofd) for x'xc(0). This may be absorbed
in xc(T) and suppresses the transition temperature.~Hence-
forth we can drop the superscript 0 onG andD.! A proper
analysis of the fluctuations near the transition line wh
changes from a quantum transition atT50 to a classical
Ising transition at high temperature has not been carried

A very important general point to note in this connecti
is that the correlation length exponentn at T50 as a func-
tion of (x2xc) is 0 while it is 1 for thed52 classical Ising
model. This is expected to turn the transition line to a cro
over for arbitrarily small disorder as discussed in Sec. VI

We can estimate roughly the different regimes of fluctu
tions from the properties of the propagatorD(q,v). No so-
phisticated analysis of the crossover between different
gimes is attempted. Consider first the departure of
transition temperature of the circulating current phase fr
T50 at x5xc(0). We assume parameters are such that
T50, the CC phase occurs forx<xc(0). This guess is based
on the parameters calculated in Appendix B and the decre
of D with x and can be checked only through a detail
evaluation of Eqs.~4.27!–~4.29!. Then the transition tem-
peratureTc(x), given by the divergence in ReD(0,0), is at

S ln U vc

max~Tc ,G!
U D 21

52G for G,0. ~6.7!

This gives

Tc.2G~Tc!; ~6.8!

;
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i.e., the transition temperature is essentially proportiona
2G(0).

For finite Tc(G), in a narrow temperatureDTc region
nearTc(G), the fluctuations are characteristic of the classi
Ising model. We have not investigated here how the width
this regime varies withTc . In this regime, the classical the
mal occupation of fluctuations„where 1

2coth(v/2T)
5@n(v/T)1 1

2]'T/v… determines the thermodynamic an
other properties because the characteristic energy of the
tuations isO(DTc)!T. If the characteristic energy of th
fluctuations is much larger thanT, the zero-point occupation
of the fluctuations dominates the properties~in this regime
cothv/T'1). The physical properties in this regime are go
erned by the quantum fluctuations. Within this regime,
must distinguish when the characteristic scale of the fluc
tions is given by temperature itself and when it is given
G(x). The former is the non-Fermi-liquid regime and th
latter the Fermi-liquid regime. From the form ofD(q,v), the
crossover between the two occurs atT'G(x) for G.0.

The momentum-integrated fluctuation spectrum
T@uGu gives a measure of the frequency distribution:

E d2qImD~q,v!

'
1

p H p/22tan21Fmax~v,T!

v S ln vc

max~v,T! D
21G J

;
v

T
ln

vc

T
~ for v!T!

; ln
vc

v
~ for v@T!. ~6.9!

Above the narrow critical regime nearTc(G), the properties
are governed by the quantum fluctuations. Non-Fermi-liq
behavior is to be expected. ForG,0, i.e., the ordered side
the fluctuations have a gap. So Fermi-liquid behavior~but
with unusually small parameters! is to be expected in the
pure limit. We have not yet calculated the change in o
particle spectra due to the change in dispersion in this reg
discussed in Sec. IV E and the change in the spectral fu
tion due to the altered fluctuations.

For G.0, the fluctuations have a gap ofO(G) for
T!G. Fermi-liquid behavior is therefore to be expected b
with parameters determined byG.

The different regimes are shown in Fig. 12. We are n
ready to calculate the physical properties of Eq.~6.1!. Given
Eq. ~6.1!, all physical properties can be calculated in a co
trolled and systematic fashion because of the unimporta
of vertex corrections in the fermion-boson scattering and
boson propagator. For instance, the single-particle s
energy may be calculated self-consistently by using
renormalized Fermion propagator in Fig. 11~a!. The answer
remains unaltered as in other problems with momentu
independent self-energy. In the fluctuation spectra~5.10!, all
momenta are equally important to logarithmic accuracy
the regime controlled by the quantum-critical point:q scales
as lnv. Formally this corresponds to a dynamical critic
exponentzd→`. This appears crucial to understanding ma
of the observed anomalies in copper-oxide metals. It sho
o

l
f

c-

-
e
a-

r

d

-
n
c-

t

-
ce
e
lf-
e

-

n

l
y
ld

be noted that the propagator~5.10! for G50 is not the
zd5` limit of the propagators discussed for example in R
13, which are;( iv/qb1qa)21, with zd defined to be
(a1b).

VII. PHYSICAL PROPERTIES

The transport properties in regime I~see Fig. 8! which are
controlled by the quantum-critical point and the crossover
the customary behavior at low temperature for the overdo
case, region III, are calculated below.

In the pure limit, region II should show Fermi-liquid
properties but with different parameters from region III d
to the alteration of states near the Fermi surface byTyÞ0. In
the next section I argue that the transition between regio
and II is only a crossover and that at low temperatures reg
II is dominated by disorder such that the density of state
the chemical potential is zero. One should, however, expe
bump in Cv /T and x at the I to II crossover. There is
decrease in low-energy fluctuations in region II asG0 in Eq.
~5.10! is finite. But with the density of states at the chemic
potential tending to zero at low temperatures due to disor
a Fermi-liquid behavior may never be observable excep
very pure samples.

In the pure limit, although an order parameter develops
region II, it is by no means clear that there exist observa
singularities inCv /T or x at the transition. Certainly, a
n50, z5`, no singularities exist. The crossover to Isin
singularities~only logarithmic in the specific heat! at high
temperatures forx far from xc may occur with a very smal
amplitude at observable temperatures. This requires fur
work.

A. Single-particle spectra: Angle-resolved photoemission
experiments and single-particle tunneling

A one-particle self-energy of the form~1.1! was sug-
gested on phenomenological grounds.12 While angle-
resolved photoemission spectroscopy~ARPES! experiments
were soon found consistent15 with this behavior, there has
been since then a considerable development in such ex
ments. Closer bounds should be put to this prediction
useful formula to fit the self-energy which interpolates pro
erly betweenv/T!1 andv/T@1, while obeying analyticity
requirements, is given by Eq.~6.4!. At low energies and low
temperatures this behavior is modified in an interesting w
by defects, as discussed later.

Single-particle tunneling has traditionally been a power
tool for measuring the frequency dependence of the sin
particle spectra. Here, the interpretation of the tunnel
spectra is complicated by the fact that if the self-energy
momentum independent, its effect is not felt in the tunnel
spectra unless the tunneling matrix element is momen
dependent. The situation has been amply discussed in

FIG. 12. Elementary processes for optical conductivity.
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14 and need not be repeated. Under suitable conditions
conductance as a function of voltage,G(V)2G(0)
;ImS(V);V, as observed for tunneling in thec direction.
The observedG(V) varies weakly for tunneling in thea-b
plane. This has also been discussed. A new experime
development is the observation56 by inelastic scanning tun
neling microscopy that@G(V)2G(0)#/uVu increases as the
distance of the tip to the surface increases thereby decrea
G(0). This is in accordance with Ref. 14.

As in the case of superconductivity through electro
phonon scattering, tunneling spectroscopy should serv
identify the spectra of the glue for superconductivity.57 If the
collective modeD(q,v) is the glue, the tunneling conduc
tance in the superconducting state,G(V)2G(0);uVu, above
the superconducting gap as observed in appropriate ge
etry. Quantitative verification of these ideas has been d
cult because the slope of the conductance curve depend
‘‘extraneous’’ factors as discussed. But it should be poss
in carefully designed experiments to normalize away the
traneous factors. After normalization the slope should
pend only on the coupling constant which determines
superconducting transition temperatureTc .

B. Long-wavelength transport properties

As discussed in Sec. I, an important constraint is put o
theory of copper-oxide metals by the fact that if the lon
wavelength transport properties are interpreted by kin
theory or by semiclassical Boltzmann equations, the sca
ing rate for momentum loss measured in electrical resisti
and the scattering rate for energy loss measured in the
conductivity have the same temperature dependence. W
experimental uncertainty, the single-particle scattering r
measured in tunneling or ARPES experiments also has
same frequency dependence. This is especially surprisin
a theory in which the breakdown of Fermi-liquid theory
sought through a critical point where the long-wavelen
susceptibility diverges. One might imagine then that o
long wavelength fluctuations or forward scatterings are
portant in scattering the fermions, so that the backward s
tering required in momentum transport would make
transport rate for momentum have a higher temperature
pendence than in the energy transport.

The backward scattering is enforced in momentum tra
port usually through considering the two processes show
Fig. 12. If, for instance, the bosons are acoustic phonons
leadingT3 contributions to the dc resistivity of each of th
processes in Fig. 13 is exactly cancelled leading to a re
tivity proportional toT5.

The situation is quite different withD(q,v) of the form
~5.10!. Then there is no cancellation to leading order b
tween the self-energy and the vertex diagrams of Fig.
because for energy transfer of the order temperature,
mentum transfer throughout the zone is important.
D(q,v) were truly independent of momentum, as assum
in the marginal Fermi-liquid phenomenology,12 Fig. 12~b!
would be identically zero due to the vector nature of t
incoming and outgoing vertices. This is generally true
any ‘‘s-wave’’ scattering. WithD(q,v) of the form ~5.10!,
thes-wave scattering part forv'T andk andk8 both on the
Fermi surface
he
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1

2pE0
2p

du
sin4u

11sin4u
~7.1!

is O(1). One canshow by an explicit calculation that th
part of the process of Fig. 12~b! for v!T does not change
the argument. The conductivity can therefore be calcula
from Figs. 12~a! alone with just a numerical renormalizatio
of the coefficient. Note that due to lattice effects, conser
tion of momentum with initial and final states on the Fer
surface does not imply conservation of current. If for ar
trarily small v scattering occurs from a given state on t
Fermi surface to a substantial part of the Fermi surface,
sistivity limited only by the density of fluctuation results
Since thedensity of statesof the fluctuations is essentially
constant, a linear-in-T resistivity is to be expected.

The calculation of electrical resistivity, optical conducti
ity, thermal conductivity, and Raman scattering intens
from Eq. ~6.1! is therefore essentially the same as do
earlier,12(a),12(b) with similar results apart from logarithmic
corrections.

1. Optical conductivity

Optical conductivity as a function ofv andT is a much
more stringent test of the theory thanr(T) alone. The con-

FIG. 13. ~a! The calculated optical conductivity based on t
theory which reproduces results based on phenomenology in R
12~a! and 12~b!. The parameters used arevp'2 eV, l50.5, and
vc51200 K. A soft cutoff is used.~b! Experimental results for the
optical conductibility in the basal plane, from Ref. 60.



h-

co
n’
t

ee
n
h
in
i
te

it,

s
o

i

rti

er
a

in
la

e
ve

it
uc
ve

as

. 10.

This
cu-
o O
is
ag-

-

tal
e

ty.
a-
heir

ns
ro-
ere

y
ring
m

rgy
-

nds
uce
t of
nts
eal
oxy-
n
n
to

li-
e
dia-
fate
es-

m
rris
ion

14 574 55C. M. VARMA
ductivity at near-ideal doping has a very slow hig
frequency falloff unlike thev22 Drude form. When vertex
corrections are unimportant, as in the present theory, the
ductivity can be calculated from the single-particle Gree
function alone. Then the conductivity at frequencies up
O(v21

c ) is ;@ ImS(v)#21 with logarithmic correction. De-
tailed comparisons with experiments have recently b
done by Abrahams.58 Earlier calculations were reported i
Ref. 12~b!. For completeness and to show the quality of t
fit to the experiments, the experimental results for the
plane conductivity deduced for untwinned single crystal
shown on the same scale with the calculations with indica
parameters in Figs. 13~a! and 13~b!, respectively.

The microscopic theory from the strong-coupling lim
Sec. III, provides an additional important feature: The~intra-
band! optical conductivity sum rule is

E
0

`

s~v! dv5vp
2 . ~7.2!

Given the constraint~3.5! the allowed density fluctuation
determiningvp

2 are only between the one-hole and the tw
hole statesf i . From Eq.~4.26! the density of the two-hole
states isx. Thereforevp

2;x(12x). A proportionality of Eq.
~7.2! to x for x&0.2 has been noted experimentally.59

In regime III, where the integrated fluctuation spectra
;v/G, a crossover fromr(T);T to T2/G and a corre-
sponding change ins(v) is predicted belowT;G.

2. Thermal conductivity

The graphs of Fig. 13 with energy current external ve
ces give the thermal conductivityk(T). The usual kinetic
theory expression follows:

k~T!' 1
3Cv~T!^vF

2&t th~T!, ~7.3!

with t th
21(T)5l thT andCv(T)'Tln(vc /T). l th departs from

lmom by numerical factors due to the different angular av
ages in momentum and thermal transport. The Wiedem
Franz ratio k(T)/Ts(T) is expected to be
;(l th /lmom)ln(vc /T).

3. Raman scattering intensity

As has been discussed before the Raman intensity
lattice has a part proportional to the current-current corre
tion function and hence

SR~v,T!;@n~v/T!11#vs~v,T!. ~7.4!

So a Raman intensity independent of frequency and temp
ture near the ideal composition is expected as obser
Crossover to a behavior linear inv at low v in regimes II
and III is predicted and has been observed in regime II w
a crossover to regime I under pressure. In principle, s
SR(v,T) is expected in all polarizations, and the relati
intensity may in general be quite different.

The collective fluctuations~5.10! also couple directly in
the Raman experiment. But since ImD(0,v);vs(v,T),
this also gives the behavior of Eq.~7.4!.
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C. NMR and inelastic magnetic neutron scattering

The application of the theory to the NMR properties h
been also described elsewhere;61 only the principal points are
summarized here. The current fluctuations~5.10! generate an
orbital magnetic field which vanishes atq50 both at the
copper site and the oxygen site as may be seen from Fig
At finite q, an orbital magnetic field proportional toq is
generated at the copper sites but not at the oxygen sites.
is because around the fourfold-coordinated Cu site a cir
lating current due to the electrons can be constructed t
(q), but not at the twofold-coordinated oxygen site. Th
gives rise to an anomalous orbital contribution to the m
netic correlation functions at the Cu sites:

Imxorb~q,v!'mB
2~qa!2S a0a D 6ImD~q,v!, ~7.5!

wherea0 is the radius of the Cud orbital. The nuclear re-
laxation rate calculated using Eq.~7.5! has the correct tem
perature dependence to fit the observations on Cu.57 Oxygen
nuclear relaxation rate follows the Koringa law.

One of the most important aspects of the experimen
results24,29 is that the oxygen relaxation rate divided by th
oxygen Knight shift does not vary either withx or from
compound to compound within experimental uncertain
Given this fact and the fact that antiferromagnetic fluctu
tions, to the extent they are seen, change the position of t
peak and their width withx, it is impossible to take seriously
proposals which rely on the cancellation of such fluctuatio
at oxygen sites to account for the observations. A more
bust symmetry is called for. In the picture presented h
lattice symmetry never allowsxorb(q,v) at oxygen sites.

The predictedxorb(q,v), Eq. ~7.5!, can be measured b
inelastic neutron scattering. Perhaps inelastic x-ray scatte
can help distinguish the orbital magnetic fluctuations fro
spin fluctuations. Equation~7.5! predicts an unusually
smoothq dependence and scattering up to the high-ene
cutoff at anyq. The measuredq-integrated magnetic fluctua
tion spectrum in La1.85Sr0.15CuO4 is consistent21 with Eq.
~7.5!. Further tests are suggested especially in compou
where nesting features of the band structure do not introd
sharpq-dependent features at low energies. A direct tes
the theory would be inelastic neutron scattering experime
in several Brillouin zones and transformation back to r
space to deduce separately the magnetic fluctuations on
gen and on Cu. Only a Fermi-liquid contributio
;N(0)v/qvF for v&qvF and 0 beyond should be seen o
oxygen, which in appropriate range is negligible compared
Eq. ~7.5!, which should be seen only on Cu.

VIII. EFFECTS OF IMPURITIES

The problem of disorder in a non-Fermi liquid is comp
cated~and interesting!. Only a preliminary treatment of som
ideas is presented here to clarify aspects of the phase
gram of copper oxides in the underdoped regime and the
of the transition to the circulating current phase in the pr
ence of disorder.

First consider the effect of disorder in the transition fro
phase I to phase II, the circulating current phase. The Ha
criteria62may be used in the classical regime of the transit
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to determine if quenched disorder, which varies thelocal
transition temperatureTc(r ) is relevant. This is derived by
equating the free-energy contribution due to fluctuation
Tc(r ) in a correlation volume to the pure fluctuation ener
in the same volume. If

dn22,0, ~8.1!

disorder is relevant. Heren is defined in terms of the corre
lation length asj;(T2Tc)

2n for a fixedx. In the Gaussian
fluctuation regime,n51/2 while in the critical fluctuation
regime for thed52 Ising modeln51, and so disorder is
relevant in the former and marginally irrelevant in the latt
This is expected to be true at asymptotically high tempe
tures far away fromx5xc(0) in the phase diagram, Fig. 12

Now consider the transition atT50 as a function of
@x2xc(0)#. At T50 only zero frequency fluctuations com
to play. So the dynamical critical exponentzd cannot affect
the relevance of disorder. The Harris criteria may be
pected to therefore to be valid, but we should definen
through (n[n0), j;@x2xc(0)#

2n0. Using Eq. ~5.10! and
noting that atv50, T50, lnux2xc(0)u scales asq2, n050.
The Harris criteria then suggests that disorder is stron
relevant. Not much definite appears to be known about
physical state when this is the case. The best guess is tha
phase transition turns into a crossover and that a glassy
temperature phase results with random local orientation
the order parameter. This is quite reasonable when corr
tion lengths are short (n050); there is local ordering aroun
each defect with no correlations building up between regi
around different defects.

To summarize the above, the correlation length expon
changes from 0 to its classical Ising value at asymptotic
high temperatures and largexc(0)2x. Correspondingly one
expects only a crossover in thex-T plane to a glassy circu
lating current phase.

The problem is even more interesting because the sin
particle excitations begin to acquire more singular se
energy than Eq.~1.1! or ~6.4! due to defects. It was
conjectured8 that a non-Fermi liquid is an insulator for arb
trarily small disorder~resistivity→` asT→0) if supercon-
ductivity does not intervene at a higher temperature. In
cent calculations this conjecture has been supported by s
systematic calculations.63 The result of these calculations
that the impurity contribution to the resistivity in a margin
Fermi liquid is proportional to lnT below a crossover tem
perature

Tx'~vc /p!exp~2l21AkFl 0!. ~8.2!

Herel 0 is the mean free path due to impurities calculated
the Born approximation. Below such an energy scale
density of states at the chemical potential also tends to z
as (lnv)21.

The observed low-temperature resistivity in dirty samp
or in samples in which superconductivity is suppressed b
large magnetic field~as well as the temperature dependen
of the anisotropy in the resistivity! is consistent with these
calculations.64 These calculations rely on using the margin
self-energy to calculate the impurity scattering vert
through a Ward identity. The experiment gives a lnT resis-
tivity in a wide range of doping in underdoped sample
n
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where in the pure limit the fluctuations have a gap and
marginal self-energy is not expected. One possible way
can happen is if the fluctuations acquire a finite low-ene
spectral weight due to disorder. This would be consist
with excitations in the glassy state conjectured above.

IX. SUPERCONDUCTIVE INSTABILITY

It is only natural that the fluctuations responsible for t
anomalous normal state also lead to the instability to sup
conductivity. We again look to the low-energy Hamiltonia
Eq. ~6.1!, to deduce the effective interaction in the particl
particle channel. As usual, this gives for total momentum
the pair equal to zero:

Hpair5(
k,k8

g~k,k8!g* ~2k,2k8!D~k2k8,v!

a2ks98
† a2k8s9

† a2ks8aks . ~9.1!

Equation~9.1! is now used to deduce the symmetry chan
with the largest pairing interaction. The procedure follow
is the generalization to more than one atom per unit cell c
of that in Ref. 65, where it was shown that antiferromagne
fluctuations promote even-parity spin-singlet pairing whi
has ‘‘d-wave’’ symmetry in metals with appropriate ban
structures. The situation here is much more complicated
preliminary analysis is given below. The propagat
D(q,v) is to a very good approximation independent of m
mentum for frequenciesv of importance for pairing which
are always higher thanT. SoD can be regarded as a con
stant,D0 with an upper frequency cutoffvc . The effective
pairing Kernel is then

;S 3

21D g02D0uFy~k!1Fy(k8u2sin2S lk2lk8
2 D , ~9.2!

where uppercase corresponds to spin-singlet~even parity!
and lowercase to spin-triplet~odd parity! pairing. We wish to
express this as a sum over products of functions ofk and
k8 which have the symmetry of the lattice and which a
mutually orthogonal. Sticking to the lowest lattice harmo
ics, we look for coefficients in the expansion

~3!@JS1JAA~k!A~k8!1JDD~k!D~k8!1•••#, ~9.3!

~21!@Jt~TkxTk8x1TkyTk8y!1•••#, ~9.4!

where JS is the coefficient for the simples-wave pairing,
JA for pairing of ‘‘extendeds-wave form,’’ i.e.,

A~k!5coskxa1coskya, ~9.5!

JD for pairing of ‘‘d-wave form,’’ i.e.,

D~k!5coskxa2coskya, ~9.6!

andJt for the odd-parity form sinkxa or sinkya. The ellipses
in Eqs.~9.3! and~9.4! refer to higher lattice harmonics, i.e
periodic functions of 2kxa, 2kya, and so on, which we ig-
nore and which are automatically mixed in to the gap fun
tion below Tc due to the nonlinearity in the gap equatio
sin2@(lk2lk8)/2# in Eq. ~9.2! is a very complicated function
but it has two properties which help write down the leadi
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dependence onk,k8 consistent with lattice symmetry. It i
zero for k5k8 and peaks when the difference momenta
maximum possible, i.e., at (kx5kx85p/a, ky2ky85p/a).
The lowest lattice harmonic satisfying these conditions is

12 1
2 @cos~kx2kx8!a1cos~ky2ky8!a#. ~9.7!

In uFy(k)1Fy(k8)u2, the only part I keep is a constant; th
others give harmonics. One then gets the relative magnitu
in units ofg0

2D0'lN21(0):

s-wave pairing: 3JS53;

D-wave pairing: 3JD523/2;

extend s-wave pairing: 3JA523/2;

triplet pairing: Jt511.

This immediately implies that simples-wave pairing and
triplet pairing Kernels are repulsive. In the present ca
simples-wave pairing is disallowed simply from the fact th
the effective interaction vanishes at long wavelength, and
triplet is disallowed because the fluctuations conserve s
The kernels forD-wave and extendeds-wave pairing are
attractive and of equal magnitude. The situation is thus id
tical to the case of antiferromagnetic fluctuations with flu
tuations peaking at (kxa5p, kya5p).

TheTc is determined, as usual, from the linear gap eq
tion projected to the lattice harmonics.Tc

D for D-wave pair-
ing is in general different thanTc

A , depending purely on the
band structure, and the chemical potential, exactly as for
case of antiferromagnetic fluctuations. For that case and
Cu-O band structure on a square latticed-wave pairing is
formed to be favored in explicit calculations. The large de
sity of states due to the proximity to van Hove singularit
in the (p,p) direction favorsd-wave pairing. The same i
therefore expected in the present case. Just as for antif
magnetic fluctuations, variations in the band structure n
the Fermi surface give superconducting states of differ
symmetries for the same interaction vertex.

The upper cutoffvc of D(q,v) is ofO(EF); from a fit to
normal-state transport experiments, the couplingl'0.5. As
for normal-state transport, vertex corrections are unimpor
for calculations ofTc , etc. So a consistent theory can
built.

It is worth noting that a signature of the glue for supe
conductivity is provided by the tunneling conductance. U
der appropriate experimental conditions, as discussed in
VII A and Ref. 14,dG(V)/dV ~above the superconductin
gap! is proportional to the density of state of the glue f
superconductivity weighted by theq dependence of the cou
pling constant: the famous ‘‘a2(v)F(v).’’ 57 The present
theory predicts this to be a constant~with small corrections!
up to the cutoffvc . This is indeed observed but only i
some geometries for reasons discussed in Ref. 14. Fu
systematic studies are called for. Optical conductivity in
superconducting phase for frequencies larger than twice
gap also can be used to deduce the glue
superconductivity.66 The existing data are again consiste
with the form ~5.10!.
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The results of Ref. 65 show that any bosonic fluctuatio
such that the pairing interaction is miminal forq50 and
maximum forq5(p,p) produced-wave pairing. To distin-
guish between mechanisms requires the experiments
cussed above.

X. CONCLUDING REMARKS, FURTHER THEORY,
AND FURTHER EXPERIMENTS

This investigation has been based on two basic assu
tions: ~i! Breakdown of Landau theory in more than on
dimension requires scale-invariant low-energy fluctuatio
~ii ! The solid-state chemistry of copper oxide is special a
responsible for its special physical properties. Accordingly
have formulated the copper-oxide model of Sec. II and tr
to investigate its properties in a systematic manner to fi
unusual singular low-energy fluctuations. The model do
have an antiferromagnetic instability at small doping.
probably has other finite-q instabilities at largerx for a range
of parameters, especially if there is a nesting of the Fe
surface. Given the experimental data, I do not regard
singular fluctuations near such instabilities as a solution
the fundamental problems stated in Sec. I. I have foun
q50 transition to an unusual circulating current phase o
line the x-T plane in the general model in the pure lim
terminating at a quantum critical point atx5xc , T50. The
model has unusual low-energy fluctuations in which t
logarithm of the frequency scales with the momentum,
that the fluctuations are essentially local in space. Such lo
fluctuations are essential to understand the peculiar norm
state transport anomalies in which the momentum scatte
rate, energy scattering rate, and the single-particle scatte
rate are all proportional toT. They have the right energy
scale to give a ‘‘continuous behavior’’ in optical and Ram
conductivities from zero frequency to energies ofO~1 eV!.
The current fluctuations also produce local orbital magne
field fluctuations which have the symmetry and temperat
dependence to account for the extraordinary NMR relaxa
rates on Cu and O nuclei. The fluctuations also couple
fermions to give a superconducting instability withd-wave
symmetry favored. Disorder appears to convert the transi
line to the circulating current phase to a crossover line du
the quasilocal nature of the fluctuations.

There exist several incomplete aspects of the theory
sented here. While it has been shown conclusively that
circulating current instability does indeed occur in the mod
the phase diagram in theT-x plane has not been determine
This requires an explicit numerical solution of the mean-fie
equations~4.27!–~4.29! with an assumed set of reasonab
parameters. I have relied on Refs. 50–52 and general an
ticity conditions for fluctuations near an instability to prese
a heuristic derviation of the form of the fluctuation spectru
Eqs. ~4.35! and ~4.36!. A better calculation is desirable. A
detailed treatment of the different regimes of fluctuations a
the effect of disorder is needed. A complete examination
the superconductive instabilityTc(x) is possible and should
be done.

What are the principal experiments on which this pap
has been silent? First is the question of the very interes
magnetotransport anomalies.25,26 I have indicated in Sec. I
that the experimental results do not appear to show that
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have asymptotic low-energy and low-temperature singul
ties. But even so, the peculiar subleading behavior ough
be calculated. It is true that circulating current fluctuatio
lead to chiral scattering in a perpendicular magnetic field.
noted in Ref. 28, the temperature dependence of such c
scattering is reflected in the magnetotransport anomalies.
so far I have not succeeded in formulating their effect c
sistently. Second, very interesting changes in angle reso
photoemission spectra67 have been observed in going fro
region 1 to region 4 of the phase diagram of Fig. 1. It wou
be very natural to try to associate these with the transition
crossover to the circulating current phase. The obser
changes in the spectra are most pronounced where the F
surface of the ideally doped samples crosses the (p,0)-
(p,p) direction and least pronounced where the Fermi s
face crosses the (0,0)-(p,0) direction; i.e., the changes hav
x22y2 symmetry. As discussed in Sec. IV E the changes
the one-particle spectra in the circulating current phase
do havex22y2 symmetry. This is quite intriguing but a ca
culation of the one-particle spectral function in the circul
ing current phase is necessary to draw any conclusi
Third, there are aspects of NMR experiments, especially
anisotropy in the relaxation rate, which are not explained
Ref. 61. Understanding anisotropy effects in NMR require
theory of the coupling of fluctuation between differe
planes.

Are there experiments left to do after theO(53104) al-
ready published to test the conclusions of this paper?
answer is yes, but most of them are difficult experiments

The most direct and convincing test of the theory wou
be the observation of the circulating current phase in
underdoped samples and its evolution as a function of t
perature. As discussed earlier, long-range order is unlik
but correlation lengths should be large in very pure samp
The current patern in Fig. 6 can be observed by Bragg s
tering of polarized neutrons or polarized x rays. I estim
that with polarized neutrons the spin-flip cross section in
circulating current phase at the (1,1) Bragg peak
O(1023) the nuclear cross section.

Another test would be evidence for local magnetic fie
in regions 4 and 2 which are estimated to beO~50 G!. As
shown in Fig. 6, the local field is interstitial; there is n
magnetic field either on Cu or O lattice sites. Muon sp
resonance would be a way to look for interstitial fields
muons were to sit at the interstitial sites indicated in Fig.

As noted, the spectrum of current fluctuations atq50 as
a function ofv, T, and x is directly observable in Rama
scattering. A direct test of the theory would be evidence
the fluctuation spectra of Eq.~5.10! at largeq and the differ-
ence in its projection on to the Cu and O sites obtainable
scattering in several Brillouin zones mentioned above. In
section on NMR and inelastic neutron scattering, I me
tioned that existing neutron scattering in La1.85Sr.15Cu O4 is
consistent with the magnetic fluctuations21 derived from Eq.
~5.10!. More detailed tests, especially with scattering ove
large range in momentum and frequency in YBa2 Cu3 O6.9
which shows no nesting related peaks inq space, are sug
gested.

In very pure samples of YBa2 Cu3 O6.7 and ~248!, which
at stoichiometry behaves as an underdoped material,
sliver region 4 between regions 1 and 2 in Fig. 1 where
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resistivity falls below the extrapolation from high temper
tures clearly appears. The crossover to the circulating cur
phase in such samples should not be two broad. One sh
look for signatures of this in thermodynamic experimen
specific heat, and magnetic susceptibility which should sh
a bump near the crossover and a significant decrease be
Such samples at low temperatures would be particularly s
able to look for direct evidence discussed above the circu
ing current phase.

The conjecture about magnetotransport28 and the behavior
of the critical fluctuations in a magnetic field can be tested
a Raman scattering experiment in a magnetic field. The
larized part of the spectra proportional to the magnetic fi
should acquire singular low-energy, low-temperature form

Some of the other tests of the theory have already b
mentioned. These include~i! improved angle-resolved pho
toemission experiments to verify Eq.~6.4! and its modifica-
tions due to impurities deduced in Ref. 63,~ii ! measurement
of the electronic specific heat in low-Tc copper oxides~for
example, the single-layer Bi compound withTc'10 K near
ideal composition! to see theTlnT contribution to the elec-
tronic specific heat,~iii ! controlled single-particle tunneling
experiments to see the spectrum of the ‘‘glue’’ for superco
ductivity. It should be mentioned that optical conductivi
and Raman scattering experiments forv.2D can also be
used to deduce the spectrum of the ‘‘glue,’’ and very imp
tantly, ~iv! inelastic neutron scattering in two or mor
Brillouin zones to deduce the projection ofx(q,v) sepa-
rately on the Cu and O atoms.
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APPENDIX A: ONE-ELECTRON BAND STRUCTURE
AND EIGENVECTORS

The band structure and the eigenvectors forH0 of Eq.
~2.2! for tpp /tpd!1 are given here. Fortpd50, the bonding
b and the antibondinga bands have dispersions

ea,b
0 ~k!56@~D0 /2!214tpd

2 sxy
2 ~k!#1/2, ~A1!

where sxy
2 (k)5sin2(kya/2) and the nonbonding bandn is

nondispersive with energy2D0/2. The eigenvectors may b
specified by the band annihilation operators in terms of th
in the orbitalsdks

† , pxks
† , pyks

† as in Eq.~2.5!.
The coefficients in~2.5a! and~2.5b! for tpp50 ~specified

by a superscript 0! are

uad
0 ~k!5@D/21ea

0~k!#/Na~k!, ~A2!
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uax,y
0 ~k!52i t pd /Na~k!,

ubd
0 ~k!5@D/21eb

0~k!#/Nb~k!,

ubx,y
0 ~k!522i t pd /Nb~k!,

where Na,b(k)5$@D/21ea,b
0 (k)#214tpd

2 sx,y
2 (k)%1/2. The

nonbonding orbital has an energy2D/2 and is annihilated
by

i @sin~kya/2!pxk2sin~kxa/2!pyk#/sxy~k!. ~A3!

The changes in the coefficients in Eqs.~2.5a! and ~2.5b!
are calculated to first order intpp using as a perturbation th
O-O hopping Hamiltonian

H154tpp(
k,s

sinS kxa2 D sinS kya2 D pxks† pyks
† 1H.c., ~A4!

uad~k!5uad
0 ~k!1 f ab~k!ubd

0 ~k!,

uax~k!5sx@uax
0 ~k!2 f abuby

0 ~k!#1 f acuay
0 sy , ~A5!

uay~k!5sy@uay
0 ~k!2 f abuax

0 ~k!#2 f acuay
0 sx .

For the coefficients in Eq.~2.5b! replacea↔b in Eq.
~A4!. In Eq. ~A4! ,

f ab~k!5
4tpp

~ebk
0 2eak

0 !

sin2~kxa/2!sin2~kya/2!

sxy
2 ~k!

uax
0 ~k! uby

0 ~k!

5 f ba~k!,

f ac~k!5
4tpp

~D0/22eak
0 !

sin2~kxa/2!2sin2~kya/2!

sxy
2 ~k!

sin
kxa

2
sin
kya

2

52 f bc~k!. ~A6!

APPENDIX B: EXCHANGE HAMILTONIAN IN t SPACE

Here, the exchange Hamiltonian~3.18! is derived from
the strong-coupling limit where the high-energy states
scribed in Sec. III A are eliminated by a canonical transf
mation.

As usual in such a procedure, we write the Hamiltonian

H5H low1Hhigh1Hmix , ~B1!

whereH low contains the low-energy states we wish to ke
i.e., statesd1is

† u0&, d2is
† u0&. Hhigh are the states we wish t

discard andHmix connects states inH low andHhigh. We in-
troduce a canonical transformation

H̃5eiSHe2 iS, ~B2!

such that, to linear order inHmix , matrix elements connect
ing states ofH low andHhigh vanish. This requires thatS be
determined by

Hmix1 i @S,H low1Hhigh#50. ~B3!

The transformed Hamiltonian, to second order inHmix , is

H̃5H01 i @S,Hmix#. ~B4!
-
-

s

,

H0 is the kinetic energy~3.4! and~3.16!. We give the results
for elements of@S,Hmix# in the approximation that all the
neglected statesspecified in Sec. III A except the zero-ho
state~with energy 0! are assumed to be infinitely high com
pared to the low-energy states: the two one-hole state
energy 7D2m and the two-hole state at energ
Ef5V22m. ~No essential difference arises in the more ge
eral and messy situation.! Accordingly, we write the kinetic
energy in terms of operatorsd1is andd2is using Eqs.~3.6!,
~3.7! and the first term of Eq.~3.17!:

dis
† 5

1

A2
sgnsf i

†d2i2s1d1is
† f0i , ~B5!

Dis
† 5

1

A2
sgnsf i

†d1i2s1d2is
† f i .

The bare kinetic energy orHmix , Eq. ~3.4!, is

Hmix5 (
i, j ,s

t i j
dDdis

† Djs1t i j
dddis

† djs1t i j
DDDis

† Djs1H.c.

~B6!

Inserting Eq.~A5! into Eq. ~A6!, we solve forS in Eq. ~A3!
by taking matrix elements between the states
H low1Hhigh of known energy. S is then inserted into E
~A4!. The second term gives the exchange Hamiltonian
the form~3.19!. The part in spins space is isotropic becaus
of rotational invariance ins space. The part in (d12d2)
space is specified as

~ty
i tx

i tz
i !MS ty

i

tx
i

tz
i
D . ~B7!

M has the form

S Myy 0 0

0 Mxx Mxz

0 Mzx Mzz

D , ~B8!

which we already discussed is the most general form allo
able.

We find that withEf62D[E6 andE1
211E2

21[Ē21:

Myy
i j 522 tdd

i j tDD
ji /Ef1~ tdD

i j !2/Ē,

Mxx
i j 522tdd

i j tDD
ji /Ef2~ tdD

i j !2/Ē,

Mzz
i j 5~ tdd

i j 21tDD
i j 2 !/Ef2~ tdD

i j !2/Ē, ~B9!

Mzx
i j 5Mxz

i j 5
1

2
tdD
i j ~ tdd

j i 1tDD
ji !S 1

E1
1

1

E2
D .

A rotation, Eqs.~3.32! and~3.33! aboutty , which diago-
nalizes the kinetic energy toa-b space of Sec. IV, is used t
get the Hamiltonian which on Fourier transforming gives E
~4.2!. For the special caseD50, the rotation is by an angle
p/4. In that case and iftdd5tDD50,
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J'5tdD
2 /Ef , Jzz50,

~Jxx2Jyy!52tdD
2 /Ef , ~B10!

Jzx5 1
2 tdD

2 /Ef .
a
fer
it

ica

d
-

n
on

is

-

ca
Then for ^tz&51, A12B50. For the more general case,

condition onD or x can always be found, so that the cond

tion for a QCP derived in Sec. IV; i.e.,6A12B14C50 is

fulfilled.
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