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Current-temperature phase diagram of layered superconductors
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~Received 4 November 1996!

The behavior of clean layered superconductors in the presence of a finite electric current and in zero-
magnetic field behavior is addressed. The structure of the current temperature phase diagram and the properties
of each of the four regions will be explained. We will discuss the expected current-voltage and resistance
characteristics of each region as well as the effects of finite-size and weak disorder on the phase diagram. In
addition, the reason for which a weakly non-Ohmic region exists above the transition temperature will be
explained.@S0163-1829~97!06721-0#
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I. INTRODUCTION

The understanding of a current’s effect on the behavio
vortices in clean layered superconductors is important on
own merit and is essential for the interpretation of measu
ments which use an electric current as a probe. This issue
been addressed by many authors. Glazman and Kosh1

found that in contrast to quasi-two-dimensional superc
ducting films, there is a nonzero critical current becaus
minimum current is needed to overcome the attraction du
the Josephson coupling between the layers and to drag
vortex pairs. Jensen and Minnhagen2 have generalized the
two-dimensional current voltage (I -V) relation to the layered
case by considering the effect of the Josephson coupling
the intralayer vortex attraction. They find that the volta
goes from being exponentially small to finite with the fo
lowing nonlinear dependence on current:

V5k~T!I @ I2I c
1~T!#a~T!, ~1!

whereI c
1(T) represents the temperature-dependent thres

current needed to overcome the Josephson attraction
k(T) and a(T) are generally taken to be independent
current. The relevance of this equation to such layered
terials as the high-temperature superconductors~HTSC’s!
has been established by several experimental groups.3–5

A rigorous self-consistent study of the effects of a curr
on the critical behavior of vortices in a clean layered syst
was conducted by the author using a renormalization gr
analysis which culminated in theI -T phase diagram.6 As will
be described below, theI -T space was found to be divide
into four regions separated by three characteristic curr
which included a second-order phase transition line. This
has been shown to describe well the behavior of the cop
oxides.7–9Martynovich and Artemov10 have also studied this
system in zero and finite current and also find a second-o
phase transition, but only at larger currents. Langevin sim
lations have also been used to study the effect of a driv
current on an anisotropic Josephson-junction arra11

Gro⁄ nbech-Jensen, Domı´nguez, and Bishop confirmed th
structure of theI -T phase diagram6 finding that the phase
transition occurs at a temperature higher than the tempera
marking the onset of resistance and that the slopes of the
characteristic currents that they studied@ I c

1(T) and I c(T)#
550163-1829/97/55~21!/14536~7!/$10.00
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were linear. While the theoretical and simulational wo
seems sufficient for describing clean, layered systems, t
is now evidence that finite-size effects can produce a lin
current dependence in theV-I relations at small curren
which give way to a nonlinear behavior at larg
currents.8,12–14 This has also been seen in two-dimension
~2D! systems.15,16 These and other properties of layered s
perconductors in the presence of a current need to be
dressed.

In this paper, we explain in more detail and expand up
the results of Ref. 6. In particular the details of how t
I -T phase diagram was derived~Sec. II B!, the nature of the
actual phase transition~Sec. II C!, and the properties of eac
region ~Sec. III! are explained more thoroughly. The orig
of a weak non-Ohmic contribution above the transition te
perature will be discussed in Secs. III C and III D as will th
effects of free vortices created due to finite-size effects~Sec.
IV !. Finally, the effects of weak disorder as calculated
the replica technique will be reported~Sec. V!.

II. MODEL AND DERIVATION
OF THE I -T PHASE DIAGRAM

A. Model and recursion relations

We begin with a description of our model which has be
described in detail elsewhere17,18 and so will be kept brief
here. Vortices in layered systems are modeled as a ‘‘gas
charges in a stack of weakly coupled layers interacting
two-body interactions which approximate those of vortices
layered superconductors. Interactions between vortices in
same layer and between vortices in neighboring layers
included but interactions between vortices separated by m
than one layer are neglected. The effect of the currentJ is to
exert a constant force on vortices in a direction perpendic
to J but in opposite directions for oppositely charged vor
ces. Knowing the interaction potentials and the effect of
current, one can write down the partition function and p
form a real-space renormalization group~RG! study on it in
the fashion of Kosterlitz.19 The results are

dx/de52y2@12~1/16!l1J2#, ~2!

dy/de52y@x1~1/2!l lnl#/~11x!1Jy, ~3!
14 536 © 1997 The American Physical Society
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dl/de52l@124y2~11J2!/~11x!#, ~4!

dJ/de5J. ~5!

l is the ratio of the interlayer coupling to the intralayer co
pling p2,e5 ln(l/j0) ~where l is the relevant length scale!,
x54/(bp2)21, and j0 is the zero-temperature correlatio
length. y5exp(2bEc)/l

2 is the fugacity, whereEc is the
‘‘core energy.’’ Note that the current affects not only th
interaction strength parametersx andl but also the fugacity
directly. This is because the current lowers the core ene
of vortices and therefore directly affects the fugacity.

B. The correlation length and the I -T phase diagram

The I -T phase diagram is derived by studying the cor
lation lengthj(T) which is related to the value ofl at which
one terminates the integration of the recursion relations.
cause the calculation leading to Eqs.~2!–~5! assumed smal
vortex density (y), current, and interlayer coupling, the inte
gration of the recursion relations must be terminated w
any of these quantities becomes large. The value ofl at the
cutoff is calledlmax and because only one length~the corre-
lation length! dominates the critical behavior, the followin
identification follows:lmax5j. The temperature dependen
of j is found by considering the first integral of the 2
recursion relations y212ln(11x)22x5c5yi

212ln(11xi)
22xi , where the subscripti denotes the initial or ‘‘bare’’
value of that parameter.c is a constant of integration and
can be shown thatc}(T2TKT)/TKT ~Ref. 19! whereTKT is
the 2D transition temperature. Because we have assume
interlayer coupling to be very weak in our model, it is e
pected thatc should be linear in temperature in the immed
ate vicinity ofTKT for our system.

Plotting ln(lmax/j0) versusc for various currents gives a
indication of the temperature dependence ofj(T) and the
plots are qualitatively similar to that of Fig. 2 in Ref. 18. On
finds that there is a peak inj(T) which occurs at the transi
tion temperature. As one increases the current, the p
shifts to the left corresponding to a decrease in the transi
temperature. This process allows one to determineTc(I ) @or
equivalently I c(T)# which decreases linearly with curren
I c(T) is plotted in Fig. 1 as calculated forxi50.5 and
l i51026. (yi and Ji were varied to sweep throughI -T
space.!

Two more characteristic currents can be derived by co
paring the correlation length for the layered, finite-curre
case~referred to as the full correlation length! to the 2D
finite-current correlation length and to the layeredzero-
current correlation length. In Fig. 1 of Ref. 6, the three co
relation lengths are plotted. As expected, the 2D and
correlation lengths coincide at larger temperatures signify
the 2D behavior of the layered system for temperatu
larger thanTc(I ). The small temperature range over whi
these two correlation lengths separate is taken to be
3D/2D crossover region and marks another character
temperatureTc

2(I ) @or equivalently I c
2(T)# which is also

found to vary linearly with current.~See Fig. 1.!
The third characteristic current comes from comparing

full correlation length with the layered, zero-current corre
tion length. Where these two correlation lengths begin
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separate is the temperature at which the current starts to
fect the system and identifiesTc

1(I ) @or I c
1(T)#. Like I c

2(T), it
is a crossover current and not a phase transition. By vary
the current, it is found thatI c

1(T) is linear at larger currents
and is roughly parallel toI c(T) but crosses over to join
I c(T) at small currents. In other words,I c

1(Tc)5I c(Tc) as
illustrated in Fig. 1. As we shall discuss below, what happe
in finite current at two different temperatures, occurs at o
temperature in zero current.

While I c(T) can be determined to some precision, t
other two characteristic currents cannot be since they
crossover currents. One can determine them in differ
ways which yield results which are in qualitative agreem
with each other. One can simply take the temperature
which the difference betweenlmax(J,l) and, say,
lmax(J50,l) is a certain value@or at which this difference is
a certain percentage oflmax(J,l)# to beTc

1(I ). While the val-
ues are arbitrary, it is found that the temperature depend
cies of I c

1(T) and I c
2(T) do not depend on the chosen valu

nor on whether one chooses the absolute difference or
relative difference. What does depend on these factors
the slopes. For this reason, it should be emphasized that
1 is only a rendition of the phase diagram. The slopes
these lines as well as the temperature and current scales
vary not only from the less anisotropic materials to the m
anisotropic material but also from sample to sample.8 The
fact that the temperature scale and the current scale cann
determined in our RG analysis contributes to th
ambiguity.18

The temperature dependence ofI c
1(T) has also been con

sidered by Jensen and Minnhagen2 who found it to be linear
at all currents20 unlike the small-current behavior found i
Ref. 6. Using mean-field theory, they found thatdIc

1/dT
}1/g, whereg5jab /jc is the anisotropy factor.~The rela-
tionship between this quantity and our parameter for
strength of the interlayer coupling isg}1/Al.) This issue
could not be addressed in our approach for the follow
reason. When the anisotropy is large,Tc

1!Tc and our tem-
perature scale, which is linear int5T/TKT21, is only valid
for small t. For similar reasons, the dependence ofI c

1(T) on

FIG. 1. TheI -T phase space with the three characteristic c
rents derived by studying the correlation lengths as explained in
text. Thex-axis labelc is proportional toT/TKT21.
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g could not be determined. ForI c(T), no systematic depen
dence ong could be identified.

C. The phase transition atI c„T…

As mentioned above, a second-order phase transitio
this system occurs atI c(T). It is here that the nonanalyticity
in the correlation length occurs and above whichy( l ) goes to
infinity for large l and below which it goes to zero. In term
of vortices, we believe that at this current, free vortex lin
can be spontaneously created as opposed to being creat
a thermal unbinding of vortex loops. This means that
total vorticity of the system need not be zero but will flu
tuate around zero. This leads to the meaning ofI c

1(T) which
we see as a natural extension of the definition ofI c(T). As
we have stated before, at this current the system starts t
affected by the current which we have taken to mean that
now large enough for vortex loops to be thermally unbou
into vortex lines. In other words, there are two mechanis
for creating vortex lines, one is by an unbinding of vort
loops and the other is by spontaneous creation. The latt
possible because the energy of the vortex line becomes fi
due to screening. In zero current these two mechanisms
come possible at the same temperature whereas in finite
rent, they occur at different temperatures. This is w
I c(T) and I c

1(T) start out at the same point in zero curre
but become separate lines at finite current. As mentio
above, Martynovich and Artemov10 have studied this system
in zero and finite current. Without a current, they predic
first-order phase transition which turns into a second-or
phase transition at a finite current. No evidence for this
been presented, however, and in fact there is evidence
second-order phase transition at zero field.21

Gro⁄ nbech-Jensen, Domı´nguez, and Bishop11 have arrived
at conclusions similar to ours based on Langevin simulati
of anisotropic 3D, current-driven Josephson-junction arra
There they calculate two quantities, the voltage and the
licity modulus. They find that the helicity modulus goes
zero at a temperature above which the voltage become
nite. They conclude that the phase transition occurs at a t
perature higher than that at which vortex loops start to th
mally unbind in agreement with our results. They also fi
that I c

1(T) and I c(T) are linear in temperature.
To summarize this section, Fig. 1, whereI c

1(T), I c(T)
and I c

2(T) are plotted, represents the ‘‘raw’’ results of o
analysis.I c

1(T) is the value of the current at which the sy
tem starts to be affected by the current,I c(T) is the current at
which the phase transition occurs, andI c

2(T) is the current at
which the 3D/2D crossover occurs. These results were
tained for a system composed strictly of vortex pancakes
neglect the structure and behavior of the underlying sup
fluid. Amplitude fluctuations of the superfluid become s
nificant near the mean-field transition temperatureTc0 and
the superfluid is next to nonexistent making vortices a mi
detail. Minnhagen22 has taken this into account and we w
see an example of its effect when we consider Eq.~6!. @The
position of Tc0(I ) relative toTc

2(I ) was not determined in
our analysis.# In the next section we will relate our results
layered superconductors such as the high-temperature s
conductors. In particular we will describe the expected el
of
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tric transport properties that are heavily influenced by vo
ces in each region for these materials.

III. I -V AND R„T… CHARACTERISTICS
OF THE I -T PHASE DIAGRAM

In this section, the regions of theI -T phase diagram will
be discussed and the expected electrical transport prope
@e.g.,I -V curves and resistanceR(T) measurements# of each
region will be explained.~See Fig. 2.! Flux transformer mea-
surements and the detection ofI c

2(T) are also discussed.

A. Region A

This region is defined by where the full correlation leng
and the layered, zero-current correlation length are the sa
The coincidence of these two quantities is interpreted
mean that in this region the current does not have a sig
cant effect on the system. In the original paper reporting
I -T phase diagram,6 the current-voltage characteristic wa
taken to beV(I )50. In reality, it should readV(I ).0 since
vortex loops do have a exponentially small chance of be
unbound in the presence of a current1,23 because the curren
also exerts a force on the segments of the loop which
between and parallel to the layers. In a weakly coupled l
ered system this can be neglected andI c

1(T) signifies a blow-
out of the loops in a direction predominantly parallel to t
planes. As one goes to the more isotropic systems, this q
tity loses its meaning since the loop can blow out in both
parallel and perpendicular directions simultaneously. In th
simulations, Gro⁄ nbech-Jensen, Domı´nguez, and Bishop11 do
find a small number of blowouts at currents less th
I c
1(T). It should be noted that in the two-dimensional lim
this region does not exist becauseI c

1(T;g5`)50.

B. Region B

In this region, the full correlation length and the layere
zero-current correlation length differ from one another sig

FIG. 2. The expected current-voltage characteristics of theI -T
phase diagram. In region A,V is exponentially small but not 0
because, as discussed in Sec. III A, vortex loops can blow out
direction perpendicular to the layers. In region B, Eq.~1! holds at
small currents~shaded area! but will break down at larger currents
Region D has a weak non-Ohmic contribution@Eq. ~6!# which en-
ters through the renormalization of the transition temperature.
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fying that the current has a significant effect on the criti
behavior. This implies that just aboveI c

1(T), vortex loops are
being thermally unbound in the direction parallel to the la
ers and theI -V relation@Eq. ~1!# of Jensen and Minnhagen2

should hold. But this equation should not be expected to h
in all of region B for a number of reasons. First of all, th
equation is based upon the formula for rare escapes ov
barrier.24 This breaks down severely as one increases
current and the energy of the most energetic pairs approa
that of the barrier height. Secondly, it is based upon vor
loop unbinding in the parallel direction~i.e., 2D unbinding!.
Close to the transition temperature, the system is three
mensional in its behavior and loop blowouts in the perp
dicular direction become significant. These effects may
represented to first order by introducing a current dep
dence into the parameters of Eq.~1!. In other words, to be
more strict one should write Eq. ~1! as
V5k(T)I @ I2I(T,I )#a(T,I ) with I@T,I;I c

1(T)#.I c
1(T). At

larger currents,I(T,I ) goes to zero.25 The behavior of
a(T,I ) is less clear. Our renormalization group analy
showed thata(T,I ) should be independent of current over
substantial part of region B at fixed temperature but t
analysis does not incorporate either of the effects mentio
above. What is certain is thata(T,I ) goes to zero atI c(T).
The approximate region in which Eq.~1! is expected to hold
is represented in Fig. 2 by the shaded region.

C. Region C

Region C corresponds to temperatures aboveTc(I ) where
the full correlation length differs from the 2D finite-curre
correlation length. Because one is above the phase trans
free vortex lines can be spontaneously created which
typically considers to mean that the region is Ohmic. Ho
ever, as we will show here and in Sec. III D, a non-Ohm
contribution enters through the renormalization of the criti
temperature due to the current. There are actually non-Oh
contributions from two sources. The first source are,
course, blowouts of smaller vortex loops which still ex
above I c(T). The other piece will enter through the ter
describing the spontaneously created free vortex lines w
is ‘‘largely’’ Ohmic. The resistance is proportional t
1/j(T)2 but a current dependence enters into this through
current-dependent transition temperatureTc(I ). Because our
RG analysis does not accurately describe the 3D region,
functional dependence of the resistance in region C can
be determined. The situation is better in region D.

A curiosity of this region is that its width increases wi
current implying that the 3D region becomes larger ev
though the current tends to decouple the layers. We bel
that this effect is best looked at by saying that the current
a stronger effect onI c(T) thanI c

2(T). It should also be noted
that because the full correlation length differs from the
finite-current correlation length in this region, the behav
should be of a 3D nature. At the same time, however,
interlayer coupling at large length scales is renormalized
zero26–28making 2D signatures conceivable.

D. Region D

In this region, the full correlation length and the 2D finit
current correlation length overlap meaning that the beha
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of the layered system is 2D-like. One can therefore wr
down the resistance formula for this region based
Minnhagen’s 2D formula22 R(T)5exp$2@b„Tc0(I )2T…/
„T2TKT(I )…]

1/2%, whereTc0 is the mean-field transition tem
perature,TKT is the 2D transition temperature, andb is a
constant. To use this for region D in our the layered syste
we must insert the current dependences for the two trans
temperatures:

R~T!5exp$2@b„Tc0~ I !2T…/„T2TKT~ I !…#
1/2%. ~6!

This equation is important because it shows how a w
current dependence can enter into the resistance form
making this region weakly non-Ohmic. Equation~6! has
been checked for YBa2Cu3O72d ~YBCO! data and it is found
to work well29 for weak currents (<1023 Å! using a con-
stantTc0. It should be stressed thatTKT(I ) is not the same as
Tc(I ). TKT(I ) is the temperature at which it appears that t
correlation length in the 2D region would diverge, an
Tc(I ) is the actual temperature at which it diverges once
3D effects take over. As noted above in Sec. II C one sho
keep in mind that the underlying superfluid is also bei
destroyed in this vicinity and so one must also consi
normal-state effects which can wash out the effects of vo
ces.

E. I c
2
„T… and flux transformer geometries

Here we will show how our results can be used to expl
measurements made in the flux transformer geometry30 and
explain how one could measureI c

2(T) which is not easily
determined from the primarily in-plane Eqs.~1! and ~6!. In
the flux transformer geometry arrangement,30 a current is
injected in the top of a sample while a secondary volta
Vs(T) is measured on the bottom. Typically, the current
held constant while the temperature is varied so that horiz
tal slices of theI -T phase diagram can be studied. Such
measurement has been carried out on Bi2Sr2CaCu2O82y
~BSCCO! samples in zero-field by Wanet al.,31 where it was
found that near the transition temperature a peak appeare
Vs(T) for various current values. On the low-temperatu
side of the peak,Vs(T) rises rather abruptly from a value
in contrast to the high-temperature side whereVs descends to
0 but starts to increase before reaching it.

The behavior of theVs(T) peak can be explained in term
of the I -T phase diagram. The onset of the secondary volt
on the low-temperature side isTc

1(I ), where the loops starts
to blow out due to the current. Because there is finite int
layer coupling in this region, the movement of free vortic
in the upper layers is translated through to the bottom of
sample.32 The peak gets larger as one goes deeper into re
B because more loops are blowing out. However, as
goes into region C, this effect is offset by the gradual lay
decoupling and soVs(T) begins to decrease and in princip
will decrease to a value zero atTc

2(I ). If one could neglect
amplitude fluctuations,Vs(T) would decrease to zero a
Tc
2(I ) but this was not the case in Ref. 31. We have de

mined I c
1(T) from the secondary voltage data of Ref. 3

using an onset voltage of 0.01mV as our threshold. It is
plotted in Fig. 3 along with its error bars which were dete
mined from the temperature resolution used in the meas
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14 540 55STEPHEN W. PIERSON
ment ofVs(T). Within the error bars it is possible to say th
the data is linear inT as found by others using in-plan
I -V measurements3–5,8 and also predicted in Ref. 6 althoug
it is not as convincing as the other data.

Even thoughTc
2(I ) could not be determined from the da

of Ref. 31 this method remains the best hope for study
I c
2(T). It may be possible to find a sample in which the laye
become decoupled before the underlying superfluid bre
down and a close inspection of the Wanet al. data suggests
that Tc

2(I ) might be determined at small currents. It shou
also be noted that the their data do manifest the beha
predicted by our results and discussed in Sec. III C: as
current is increased,Tc

2(I )2Tc
1(I ) increases.

IV. FINITE-SIZE EFFECTS

In this section, we consider finite-size effects which ma
the energy of a single vortex finite and therefore make
possible to have free vortices in zero-current at temperat
below the critical temperature. The presence of these
vortices destroys the Kosterlitz-Thouless-Berezinskii~KTB!
transition33,34 turning it into a crossover. This is because t
free vortices screen the interactions more strongly than
vortex pairs do , which in turn makes vortex pair unbindi
possible at lower temperatures than originally discussed
Kosterlitz and Thouless.33 Nevertheless, it is still possible t
see KTB behavior as we explain below.

There are two ways in which finite-size effects enter. In
chargeless superfluid, the bare energy of a 2D, single vo
is lnL, whereL is the size of the system. In charged sup
fluids, the energy of a 2D, single vortex goes as lnlL

2/d,
wherelL is the London penetration depth andd is the thick-
ness of the film. Usually, however,L and lL are large in
typical samples and thus do not smear the transition i
significant way. Beasley, Mooij, and Orlando35 along with
others36 pointed this out in the late 1970s. In the presence
a current, the principle consequence of a finiteL or lL is to
contribute an Ohmic term to the otherwise purely nonlin
~below Tc) I -V characteristics which can dominate at lo
currents and can wash out the phase transition.

In the HTSC’s there is evidence thatlL is small and
therefore can significantly affect the critical behavior in th

FIG. 3. I c
1(I ) determined fromVs(T) as measured in the flux

transformer measurements of Ref. 31. As discussed in the
within the error bars this data is consistent with our results t
Tc
1(I ) be linear in current.
g
s
ks

or
e

e
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e
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a

f

r

system. Indeed, linearI -V characteristics at small curren
have been observed by Paracchini and Romano12,13 on
YBCO, by Matsuo et al. on layered conventiona
superconductors,14 in the author’s own analysis7,8 of I -V
measurements from various groups on YBCO and BSC
materials, and by Repaci and co-workers in ultrathin YBC
films15,16who attributed the small current Ohmic behavior
finite-size effects. Repaci and co-workers15,16go on to report
that the low-sensitivity data are consistent with a KTB tra
sition. Here, we will address finite-size effects on the critic
behavior and theI -T phase diagram. While their effect ma
ultimately destroy the phase transition, our position37 is that
KTB behavior can still be observed and that the structure
the I -T phase diagram is reflected in electronic transp
measurements.~The effect of a finiteL on 2D Josephson
junction arrays was recently considered theoretically and
simulations by Simkin and Kosterlitz.38!

As mentioned above, finite-size effects introduce
Ohmic term into theI -V characteristics which are typicall
purely nonlinear belowTc(I ) which can be seen through th
following simplified derivation. The kinetic equation for th
formation of free vortices in terms of the density of fre
vorticesnF is

dnF /dt5GJ~T,J!1GFS~T!2k1nF
2 , ~7!

whereGJ(T,J) is the rate at which free vortices are bein
created by pair unbinding due to thermal activation over
barrier made possible by the current,GFS(T) is the rate at
which free vortices are created due to finite-size effects,
k1 is a constant. It is a standard derivation2 to show that

GJ~T,J!}@ I2I c
1~T!#2aB~T!, ~8!

which corresponds to the rate at which bound vortex pa
are thermally activated over a barrier andaB(T) corresponds
to a bare exponent that must be renormalized. The rat
which free vortices are spontaneously created is proportio
to a Boltzman factor:

GFS~T!}exp@2EFV /kBT#, ~9!

whereEFV is the energy of a free vortex. As pointed o
above, Eq.~8! is valid for rare escapes over a barrier and a
for when the vortex loop blowouts are in a direction paral
to the planes. In that limit, one can takeGFS(T) to be inde-
pendent of current. It is Eq.~7! that one uses to derive Eq.~1!
in the limit of EFV5`.

Proceeding with Eq.~7!, one assumes a steady state so
tion and finds

nF}AGJ~T,J!1GFS~T!. ~10!

This is readily put in the form of a current-voltage relatio
sinceR}nF andV5IR:

V5IAm1~T!1k~T!2@ I2I c
1~T!#2a~T!. ~11!

At low currents, the first term will dominate and theI -V
curves will be linear but at larger currents it is possible
the second term to dominate and for theI -V curves to be-
come nonlinear. Therefore, by taking into account the fi
term, it is still possible to determineI c

1(T) anda(T). The
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currentI * (T) at which the second term dominates introduc
a fourth characteristic current into theI -T phase diagram
which becomes quite different in the presence of finite-s
effects as we discuss below. If the temperature depend
of m1(T) and k(T) were known, it would be possible t
determine the relationship betweenI * (T) anda(T). As it is
we have,

I * ~T!5I c
1~T!1@m1~T!/k~T!2#1/[2a~T!] ~12!

which tells us thatI * (T) lies aboveI c
1(T) and that their

difference increases with temperature.@In this last statemen
we have made use of some empirical understanding
m1(T/k(T).# Based on this we can modify theI -T phase
diagram to include finite-size effects as we illustrate in F
4. Within the solid lines is where one would expect the no
linear behavior due to vortex pair unbinding. The lower so
line is I * (T) and the upper isI c(T). We have not included
the effect of the renormalization ofI c(T) due to the free
vortices here. To a first approximation, their effect will be
shift this quantity to lower temperatures and perhaps
smear it. The renormalization of the quantities in Eq.~11!
should also be accounted for but here we do not expect
drastic changes. Figure 4 is similar to Fig. 8 of Ref. 13 b
the differences are important. TheirI 0(T) is defined through
a phenomenological equation different than Eq.~1! and is
therefore distinct fromI c

1(T) and I * (T). Furthermore, the
Ohmic region and non-Ohmic regions have different sha
in the two figures.

V. EFFECTS OF DISORDER

In this section, the effect of a quenched, random one-b
potentialVd(R) on the system will be considered using t
replica technique.39 The primary effect of this type of disor
der is to pin a vortex, but various types of disorder on

FIG. 4. The approximate modifications to theI -T phase diagram
due to finite-size effects. Note that the original phase lines
shown here as dashed lines. Within the solid lines is where
would expect the effect of vortex-pair unbinding. The shaded reg
is where one would expect Eq.~11!. Outside of the solid lines
Ohmic behavior is expected although it could be exponenti
small at lower temperatures and currents. Slightly non-Ohmic
havior may persist to the right on the non-Ohmic region as a re
of transition temperature renormalization.
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systems have been considered in the past. Rubins
Shraiman, and Nelson40 and Korshunov41 have studied the
effects of a random configuration of quenched vortex pa
José42 has investigated the 2D ferromagnetic planar mo
where the coupling is taken to be a random variable wh
Fischer43 has studied a system where the disorder is int
duced via the fugacity. The effect of a quenched, rand
one-body potential on a one-component vortex gas~i.e., no
antivortices! has been considered by Menon and Dasgup44

and we will follow their notation here. We will present th
calculation for the layered case which is also applicable
the 2D case.

The essence of the replica technique is to average
disorder overn replicas of the system which is done via th
identity @ lnZ#5limn→0*dVdP(Vd)(Z

n21)/n, whereZ is the
partition function for the layered vortex gas and@•••# rep-
resents an overage over the probability distribution of
disorder.P(Vd) is a Gaussian distribution with zero mea
value and short ranged spatial correlatio
@Vd(r )Vd(r 8)#.Dd(ur2r 8u), where D represents the
strength of the disorder. The effect of this averaging is
introduce an interaction between vortices in different replic
which includes the standard logarithmic interaction in ad
tion to a short-ranged disorder-induced interaction which
proportional to2bDd(ur2r 8u) as described in more deta
in Ref. 44. After this averaging, the model is similar to th
of Fischer43 except the additional disorder-induced intera
tion is long ranged there.

We have done a renormalization group analysis on
new partition function which consists of two steps, a cour
graining and a rescaling. While the integrations for t
course graining step cannot be done exactly, one can s
that the resulting terms have no logarithmic or linear dep
dencies and so will not renormalize the interaction stren
parametersp2 andl. To do this integral, one approximate
the d function by the short-ranged expression44

exp@2r2/j0
2#. The rescaling steps alone result in the followin

recursion relation for the disorder strength:dD/de52D
which is immediately seen by considering2bDd(R) with
the substitutionR85R/(11dt/t). Since it is unlikely that
coarse-graining effects will contribute to making the disord
more important, this parameter is irrelevant.

Because the disorder does not affect the recursion r
tions of the system parametersp2,l, andy and the disorder
parameterD is irrelevant, our results show that a weak, ra
dom, one-body potential has no effect on the critical beh
ior of the system in agreement with the results of Ref.
This is expected since even with one vortex in a pair pinn
the pair can still unbind because of the ‘‘freedom’’ of th
other vortex.

VI. DISCUSSION AND SUMMARY

Numerous aspects of the current-temperature phase
gram have been considered here including its derivation,
current-voltage characteristics of each region, properties
the phase lines, and the use of the flux transformer geom
to study I c

2(T). We have also considered finite-size effec
and derived a current-voltage equation for this case. Fina
the effect of a weak, random, one-body potential was fou
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to be weak. An interesting consequence of the current de
dence of the critical temperature is to make the sys
slightly non-Ohmic aboveTc . Within these topics, three new
equations have been presented which could be tested ex
mentally. Equation~6! incorporates the current dependen
into the critical temperatures in the resistance formula m
ing the system slightly non-Ohmic above the transition te
perature. Eq.~11! is the current-voltage relationship for sy
tems where finite-size effects are important. Associated w
this equation is Eq.~12! which marks the crossover curre
from finite-effect-induced Ohmic behavior to a pa
unbinding-induced non-Ohmic behavior. There remain ma
interesting aspects of theI -T phase diagram to consider in
,

t

y
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en-
m

eri-
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k-
-

ith

y

cluding the dependencies of the characteristic curre
I c
1(T),I c(T), andI c

2(T) on the anisotropy factorg.
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