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Current-temperature phase diagram of layered superconductors
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The behavior of clean layered superconductors in the presence of a finite electric current and in zero-
magnetic field behavior is addressed. The structure of the current temperature phase diagram and the properties
of each of the four regions will be explained. We will discuss the expected current-voltage and resistance
characteristics of each region as well as the effects of finite-size and weak disorder on the phase diagram. In
addition, the reason for which a weakly non-Ohmic region exists above the transition temperature will be
explained[S0163-18207)06721-Q

I. INTRODUCTION were linear. While the theoretical and simulational work
seems sufficient for describing clean, layered systems, there
The understanding of a current’s effect on the behavior ofs now evidence that finite-size effects can produce a linear
vortices in clean layered superconductors is important on itsurrent dependence in the-1 relations at small current
own merit and is essential for the interpretation of measurewhich give way to a nonlinear behavior at larger
ments which use an electric current as a probe. This issue hasrrents*2~14 This has also been seen in two-dimensional
been addressed by many authors. Glazman and Koshele(2D) systems=>'¢ These and other properties of layered su-
found that in contrast to quasi-two-dimensional superconperconductors in the presence of a current need to be ad-
ducting films, there is a nonzero critical current because @ressed.
minimum current is needed to overcome the attraction due to In this paper, we explain in more detail and expand upon
the Josephson coupling between the layers and to drag apdie results of Ref. 6. In particular the details of how the
vortex pairs. Jensen and Minnhagermave generalized the |-T phase diagram was derivé8ec. Il B), the nature of the
two-dimensional current voltage-V) relation to the layered actual phase transitiofBec. Il Q, and the properties of each
case by considering the effect of the Josephson coupling oregion (Sec. Ill) are explained more thoroughly. The origin
the intralayer vortex attraction. They find that the voltageof a weak non-Ohmic contribution above the transition tem-
goes from being exponentially small to finite with the fol- perature will be discussed in Secs. Ill C and Il D as will the

lowing nonlinear dependence on current: effects of free vortices created due to finite-size efféSec.
IV). Finally, the effects of weak disorder as calculated via
V=k(T)I[I=1(T)]e™, (1)  the replica technique will be report¢8ec. V).

wherel i(T) represents the temperature-dependent threshold
current needed to overcome the Josephson attraction and
k(T) and «(T) are generally taken to be independent of

current. The relevance of this equation to such layered ma- A. Model and recursion relations
terials as the high-temperature superconductet$§SC's)
has been established by several experimental groups.

. MODEL AND DERIVATION
OF THE |-T PHASE DIAGRAM

We begin with a description of our model which has been

. : described in detail elsewhéfe® and so will be kept brief
A rigorous self-consistent study of the effects of a curreNt o e vortices in layered systems are modeled as a “gas” of

on the critical behavior of vortice; in a clean Iayereq SySterTEharges in a stack of weakly coupled layers interacting via
was cc_)ndugted by t_he author using a ren_ormahzatmn_ grouRNO-body interactions which approximate those of vortices in

analysis ‘.Nh'Ch culminated in tHeT phase diagrarfiAs ‘_N'_” layered superconductors. Interactions between vortices in the
be described below, theT space was found to be divided g5me |ayer and between vortices in neighboring layers are
into four regions separated by three characteristic currenty . geq but interactions between vortices separated by more
which included a second-order phase transition line. This to®han one layer are neglected. The effect of the curdéstio

ha% beﬁ_@ ,\jlhown 0 c:]esc(rjitf Welloj;{;]ﬁ behalvior Ofdt_hz Cr?_ppeéxert a constant force on vortices in a direction perpendicular
oxides.” “Martynovich and Artemov’ have also studied this 4 5 1yt in opposite directions for oppositely charged vorti-

system in zero and finite current and also find a seco_nd-prd%res_ Knowing the interaction potentials and the effect of the
phase transition, but only at larger currents. Langevin simu

. " “current, one can write down the partition function and per-
lations have also been used to study the effect of a driving, .. o real-space renormalization gro(RG) study on it in
current on an anisotropic Josephson-junction attay.

g the fashion of Kosterlit2? Th
Gronbech-Jensen, Domguez, and Bishop confirmed the © fashion of Rosterl @ results are
structure of thel-T phase diagrafnfinding that the phase

— 2rq _ 2
transition occurs at a temperature higher than the temperature dx/de=2y1-(1/16N+J7, @
marking the onset of resistance and that the slopes of the two
characteristic currents that they studigd(T) and I(T)] dy/de=2y[x+ (1L/2AIn\]/(1+x) + Jy, 3)
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d\/de=2\[1—4y?(1+J%)/(1+x)], (4

dJ/de=J. (5)

\ is the ratio of the interlayer coupling to the intralayer cou-
pling p%,e=In(l/&) (wherel is the relevant length scale
x=4/(Bp?)—1, and &, is the zero-temperature correlation
length. y=exp(—BE.)/I? is the fugacity, whereE, is the
“core energy.” Note that the current affects not only the
interaction strength parametersand\ but also the fugacity

directly. This is because the current lowers the core energy

of vortices and therefore directly affects the fugacity.

B. The correlation length and thel-T phase diagram

The |-T phase diagram is derived by studying the corre-

lation length&(T) which is related to the value dfat which
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one terminates the integration of the recursion relations. Be- FIG. 1. Thel-T phase space with the three characteristic cur-

cause the calculation leading to E48)—(5) assumed small
vortex density ), current, and interlayer coupling, the inte-

gration of the recursion relations must be terminated when

any of these quantities becomes large. The valueaifthe
cutoff is calledl ,,,, and because only one lendtte corre-
lation length dominates the critical behavior, the following
identification follows:| ,,,=& The temperature dependence
of ¢ is found by considering the first integral of the 2D
recursion relations y2+ 2In(1+x)—2x=c=y?+2In(1+x)
—2X;, where the subscrigt denotes the initial or “bare”
value of that parametec. is a constant of integration and it
can be shown thato«(T—Tk1)/ Tkt (Ref. 19 whereTgy is

the 2D transition temperature. Because we have assumed the

interlayer coupling to be very weak in our model, it is ex-
pected that should be linear in temperature in the immedi-
ate vicinity of Tt for our system.

Plotting In(,a,/&) versusc for various currents gives an
indication of the temperature dependenceéff) and the
plots are qualitatively similar to that of Fig. 2 in Ref. 18. On
finds that there is a peak #(T) which occurs at the transi-

e

rents derived by studying the correlation lengths as explained in the
text. Thex-axis labelc is proportional toT/Ty+—1.

separate is the temperature at which the current starts to af-
fect the system and identifi@ (1) [or I2(T)]. Like 12(T), it

is a crossover current and not a phase transition. By varying
the current, it is found thati(T) is linear at larger currents
and is roughly parallel td.(T) but crosses over to join
I.(T) at small currents. In other Wordsi(Tc)=Ic(Tc) as
illustrated in Fig. 1. As we shall discuss below, what happens
in finite current at two different temperatures, occurs at one
temperature in zero current.

While 1.(T) can be determined to some precision, the
other two characteristic currents cannot be since they are
crossover currents. One can determine them in different
ways which yield results which are in qualitative agreement
with each other. One can simply take the temperature at
which the difference betweenl(J,\) and, say,
Ima{J=0\) is a certain valug¢or at which this difference is

a certain percentage bf,.{J,\)] to beTé(I). While the val-

tion temperature. As one increases the current, the pedkeS are arbitrary, it is found that the temperature dependen-

shifts to the left corresponding to a decrease in the transitiof!

temperature. This process allows one to deterriig(¢) [or
equivalently I .(T)] which decreases linearly with current.
I.(T) is plotted in Fig. 1 as calculated for;=0.5 and
N\i=10"%. (y; and J; were varied to sweep throughT
space).

es of|}(T) and12(T) do not depend on the chosen values
nor on whether one chooses the absolute difference or the
relative difference. What does depend on these factors are
the slopes. For this reason, it should be emphasized that Fig.
1 is only a rendition of the phase diagram. The slopes of
these lines as well as the temperature and current scales will

Two more characteristic currents can be derived by comvary not only from the less anisotropic materials to the more
paring the correlation length for the layered, finite-current@nisotropic material but also from sample to sanfpkhe

case(referred to as the full correlation lengtho the 2D
finite-current correlation length and to the layeredro-
currentcorrelation length. In Fig. 1 of Ref. 6, the three cor-

relation lengths are plotted. As expected, the 2D and full

fact that the temperature scale and the current scale cannot be
determined in our RG analysis contributes to this
ambiguity®

The temperature dependencel T) has also been con-

correlation lengths coincide at larger temperatures signifyingidered by Jensen and Minnhagevho found it to be linear
the 2D behavior of the |ayered system for temperature@t all Current§° unlike the small-current behavior found in

larger thanT.(1). The small temperature range over which

Ref. 6. Using mean-field theory, they found th:hti/dT

these two correlation lengths separate is taken to be thel/y, wherey=¢,,/4; is the anisotropy factorThe rela-
3D/2D crossover region and marks another characteristifonship between this quantity and our parameter for the

temperatureT2(1) [or equivalently 12(T)] which is also
found to vary linearly with currentSee Fig. 1.

strength of the interlayer coupling igx1/\/\.) This issue
could not be addressed in our approach for the following

The third characteristic current comes from comparing theeeason. When the anisotropy is large<T. and our tem-

full correlation length with the layered, zero-current correla-

perature scale, which is linear ta=T/Ty1t—1, is only valid

tion length. Where these two correlation lengths begin tdor smallt. For similar reasons, the dependencé#@ﬂ') on
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v could not be determined. Fbg(T), no systematic depen- )
dence ony could be identified. || 1(T) 1o(T) ‘If(T)

\ Voclz(T)I[I-IJ(T)]O‘(T)\

) Vecle Te(Teo()-T(T-TKT())]
\

\ 112
C. The phase transition atl .(T) \ / \
\
\

As mentioned above, a second-order phase transition of \
this system occurs at(T). It is here that the nonanalyticity \ \ \
in the correlation length occurs and above why¢h goes to V=0 \ \ \
infinity for largel and below which it goes to zero. In terms \
of vortices, we believe that at this current, free vortex lines \
can be spontaneously created as opposed to being created \
a thermal unbinding of vortex loops. This means that the L\ A \« B \\ C ‘\ D
total vorticity of the system need not be zero but will fluc- \ ==
tuate around zero. This leads to the meaningi()T) which
we see as a natural extension of the definition T). As FIG. 2. The expected current-voltage characteristics ofl tfie
we have stated before, at this current the system starts to base diagram. In region A/ is exponentially small but not 0
affected by the current which we have taken to mean that it igecause, as discussed in Sec. Ill A, vortex loops can blow out in a
now large enough for vortex loops to be thermally unbounddirection perpendicular to the layers. In region B, En. holds at
into vortex lines. In other words, there are two mechanismsmall current{shaded ar@abut will break down at larger currents.
for creating vortex lines, one is by an unbinding of vortex Region D has a weak non-Ohmic contributigg. (6)] which en-
loops and the other is by spontaneous creation. The latter isrs through the renormalization of the transition temperature.
possible because the energy of the vortex line becomes finite
due to screening. In zero current these two mechanisms béric transport properties that are heavily influenced by vorti-
come possible at the same temperature whereas in finite cutes in each region for these materials.
rent, they occur at different temperatures. This is why
[.(T) andlé(T) start out at the same point in zero current . 1-V AND R(T) CHARACTERISTICS
but become separate lines at finite current. As mentioned OF THE |-T PHASE DIAGRAM
above, Martynovich and Artemd¥have studied this system
in zero and finite current. Without a current, they predict a In this section, the regions of tHeT phase diagram will
first-order phase transition which turns into a second-ordeP€ discussed and the expected electrical transport properties
phase transition at a finite current. No evidence for this haée-g.,1-V curves and resistané¥T) measuremenisf each
been presented, however, and in fact there is evidence for&gion will be explained(See Fig. 2.Flux transformer mea-

4

second-order phase transition at zero fféld. surements and the detection I@(T) are also discussed.
Gronbech-Jensen, Domguez, and Bishdp have arrived
at conclusions similar to ours based on Langevin simulations A. Region A

of anisotropic 3D, current-driven Josephson-junction arrays. . . . .
There they calculate two quantities, the voltage and the he- This region is defined by where thg full correlation length
licity modulus. They find that the helicity modulus goes to and the_ Iayered, zero-current correlathr) Ien_gth are the same.
zero at a temperature above which the voltage becomes f-i[he commdenc_e of Fhese two quantities is mterpretgd to
nean that in this region the current does not have a signifi-

nite. They conclude that the phase transition occurs at a te nt effect on th tem. In the original r reporting th
perature higher than that at which vortex loops start to therc 2Nt €ffect on the system. € original paper reporting the

Co - .~ |-T phase diagrarh,the current-voltage characteristic was
mally unbind in agreement with our results. They also find a . o
thatlj;(T) and|(T) are linear in temperature. taken to bev(1)=0. In reality, it should read/(1)=0 since

: : . . vortex loops do have a exponentially small chance of being
To summarize this section, Fig. 1, whet(T), 1«(T)  ynpoind in the presence of a currefitbecause the current
and 1£(T) are plotted, represents the “raw” results of our

e ; ) also exerts a force on the segments of the loop which lie
analysis.I(T) is the value of the current at which the sys- phetween and parallel to the layers. In a weakly coupled lay-
tem starts to be affected by the currdp(,T) is the currentat g system this can be neglected Bir(d’) signifies a blow-
which the phase transition occurs, aiidT) is the current at oyt of the loops in a direction predominantly parallel to the
which the 3D/2D crossover occurs. These results were Otb|anes_ AsS one goes to the more isotropic SystemS, this quan-
tained for a system composed strictly of vortex pancakes anky |oses its meaning since the loop can blow out in both the
neglect the structure and behavior of the underlying supefparallel and perpendicular directions simultaneously. In their
fluid. Amplitude fluctuations of the superfluid become sig- simulations, Grabech-Jensen, Domguez, and Bishdp do

nificant near the mean-field transition temperatlitg and  find a small number of blowouts at currents less than
the superfluid is next to nonexistent making vortices a MINO; 1(T). It should be noted that in the two-dimensional limit,

detail. Minnhagef? has taken this into accognt and we will o region does not exist becaU%éT;yzoo)zo.
see an example of its effect when we consider By.[The
position of T.o(l) relative tng(I) was not determined in
our analysis| In the next section we will relate our results to
layered superconductors such as the high-temperature super-In this region, the full correlation length and the layered,
conductors. In particular we will describe the expected eleczero-current correlation length differ from one another signi-

B. Region B
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fying that the current has a significant effect on the criticalof the layered system is 2D-like. One can therefore write
behavior. This implies that just aboVi(T), vortex loops are down the resistance formula for this region based on
being thermally unbound in the direction parallel to the lay-Minnhagen’s 2D formul® R(T)=exp{—[b(Te(l)—T)/
ers and the-V relation[Eq. (1)] of Jensen and Minnhagén (T—Tg1(1))]1¥?, whereT, is the mean-field transition tem-
should hold. But this equation should not be expected to holgherature, Tt is the 2D transition temperature, atdis a
in all of region B for a number of reasons. First of all, the constant. To use this for region D in our the layered system,
equation is based upon the formula for rare escapes overvae must insert the current dependences for the two transition
barrier?* This breaks down severely as one increases théemperatures:
current and the energy of the most energetic pairs approaches
that of the barrier height. Secondly, it is based upon vortex R(T)=exp[—[b(Teo(1) =T (T—Tr(IN]¥A.  (6)
loop unbinding in the parallel directiofi.e., 2D unbinding.
Close to the transition temperature, the system is three difhis equation is important because it shows how a weak
mensional in its behavior and loop blowouts in the perpencurrent dependence can enter into the resistance formula
dicular direction become significant. These effects may bénaking this region weakly non-Ohmic. Equatidf) has
represented to first order by introducing a current depenbeen checked for YB&u;0;_ 5 (YBCO) data and it is found
dence into the parameters of Ed). In other words, to be to work welP® for weak currents €102 A) using a con-
more  strict one should write Eqg. (1) as stantT. It should be stressed th&j (1) is not the same as
V=K(T)I[1=Z(T,1)]4TD with Z[T,I~13(T)]=1%(T). At Te(l). Ter(1) is the temperature at which it appears that the
larger currents,Z(T,I) goes to zer§® The behavior of correlation length in the 2D region would diverge, and
«(T,1) is less clear. Our renormalization group analysisTc(l) is the actual temperature at which it diverges once the
showed thatx(T,1) should be independent of current over a 3D effects take over. As noted above in Sec. Il C one should
substantial part of region B at fixed temperature but thikeep in mind that the underlying superfluid is also being
analysis does not incorporate either of the effects mentionedlestroyed in this vicinity and so one must also consider
above. What is certain is that(T,|) goes to zero ak.(T). normal-state effects which can wash out the effects of vorti-
The approximate region in which E(fl) is expected to hold Ces.
is represented in Fig. 2 by the shaded region.

E. 12(T) and flux transformer geometries

C. Region C Here we will show how our results can be used to explain

Region C corresponds to temperatures abbyé) where  measurements made in the flux transformer georifeanyd
the full correlation length differs from the 2D finite-current explain how one could measuté(T) which is not easily
correlation length. Because one is above the phase transitiqietermined from the primarily in-plane Eq4) and (6). In
free vortex lines can be spontaneously created which onghe flux transformer geometry arrangem&hg current is
typically considers to mean that the region is Ohmic. How-injected in the top of a sample while a secondary voltage
ever, as we will show here and in Sec. Il D, a non-Ohmicv(T) is measured on the bottom. Typically, the current is
contribution enters through the renormalization of the criticalheld constant while the temperature is varied so that horizon-
temperature due to the current. There are actually non-Ohmigy| slices of thel-T phase diagram can be studied. Such a
contributions from two sources. The first source are, ofmeasurement has been carried out onSBCaCyOg_,
course, blowouts of smaller vortex loops which still exist(BSCCQ samples in zero-field by Waet al,>! where it was
abovel (T). The other piece will enter through the term found that near the transition temperature a peak appeared in
describing the spontaneously created free vortex lines whicly (T) for various current values. On the low-temperature
is “largely” Ohmic. The resistance is proportional to side of the peaky(T) rises rather abruptly from a value 0
1/£(T)? but a current dependence enters into this through the, contrast to the high-temperature side whegalescends to
current-dependent transition temperatligél). Because our  ( but starts to increase before reaching it.
RG analysis does not accurately describe the 3D region, the The behavior of th&/(T) peak can be explained in terms
functional dependence of the resistance in region C canngf thel-T phase diagram. The onset of the secondary voltage
be determined. The situation is better in region D. _on the low-temperature side (1), where the loops starts
A curiosity of this region is that its width increases with to plow out due to the current. Because there is finite inter-
current implying that the 3D region becomes larger evenayer coupling in this region, the movement of free vortices
though the current tends to decouple the layers. We believg the upper layers is translated through to the bottom of the
that this effect is best looked at by saying that the current hagamp|e32 The peak gets larger as one goes deeper into region
a stronger effect ohe(T) thanlZ(T). It should also be noted B because more loops are blowing out. However, as one
that because the full correlation length differs from the 2Dgoes into region C, this effect is offset by the gradual layer
finite-current correlation length in this reg.ion, the behaviordecoupling and sW(T) begins to decrease and in principle
should be of a 3D nature. At the same time, however, thgyj| decrease to a value zero @f(l). If one could neglect
mterlg\yzgr coupling at large length scales is renormalized tQmpjitude fluctuationsV(T) would decrease to zero at
zerd®**making 2D signatures conceivable. T2(1) but this was not the case in Ref. 31. We have deter-
_ mined Ié(T) from the secondary voltage data of Ref. 31
D. Region D using an onset voltage of 0.0V as our threshold. It is
In this region, the full correlation length and the 2D finite- plotted in Fig. 3 along with its error bars which were deter-
current correlation length overlap meaning that the behaviomined from the temperature resolution used in the measure-
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— ' ' ] system. Indeed, linedr-V characteristics at small currents
have been observed by Paracchini and Rorfaiioon
s YBCO, by Matsuo etal. on layered conventional
superconductor¥’ in the author's own analysi§ of 1-V
—— ] measurements from various groups on YBCO and BSCCO
materials, and by Repaci and co-workers in ultrathin YBCuO
—— films!>8who attributed the small current Ohmic behavior to
4t ] finite-size effects. Repaci and co-work€r¥ go on to report
—— that the low-sensitivity data are consistent with a KTB tran-
N sition. Here, we will address finite-size effects on the critical
0 : : — = behavior and thé-T phase diagram. While their effect may
84.8 85.2 85'6T K] 86 86.4 ultimately destroy the phase transition, our posttids that
KTB behavior can still be observed and that the structure of
FIG. 3. 11(1) determined fromV(T) as measured in the flux the |-T phase diagram is reflected in electronic transport
transformer measurements of Ref. 31. As discussed in the texweagurements{.‘l’he effect of a fm'.tel‘ on 2D Jo_sephson— .
within the error bars this data is consistent with our results tha!‘!“c“o"? arrays was _recently conS|_dered theoretically and in
Ti(1) be linear in current. simulations .by Simkin and I{qsterl]t”f) .
As mentioned above, finite-size effects introduce an
Ohmic term into thd -V characteristics which are typically
purely nonlinear belowr (1) which can be seen through the
following simplified derivation. The kinetic equation for the
formation of free vortices in terms of the density of free
vorticesng is

12

I [mA]

ment of V¢(T). Within the error bars it is possible to say that
the data is linear inT as found by others using in-plane
|-V measurements®®and also predicted in Ref. 6 although
it is not as convincing as the other data.

Even thoughr'(1) could not be determined from the data
to Ref. 31 this methpd remgins the best' hopg for studying dng /dt=T(T, )+ Trg(T) —kyn2, 7)
I(T). It may be possible to find a sample in which the layers . . . .
become decoupled before the underlying superfluid breakgherel';(T,J) is the rate at which free vortices are being
down and a close inspection of the Wanal. data suggests created by pair unbinding due to thermal activation over the
that TZ(1) might be determined at small currents. It shouldbarrier made possible by the curreiit;o(T) is the rate at
also be noted that the their data do manifest the behavigihich free vortices are created due to finite-size effects, and
predicted by our results and discussed in Sec. Il C: as th¥: is a constant. It is a standard derivafida show that

current is increasedlf(l)—Té(l) increases.

Ly(T,)e[1 = 1g(T) 1™, ®

IV. FINITE-SIZE EFFECTS which corresponds to the rate at which bound vortex pairs
. . _ o _ are thermally activated over a barrier amg(T) corresponds
In this section, we consider finite-size effects which maketg a bare exponent that must be renormalized. The rate at

the energy of a single vortex finite and therefore make ityhich free vortices are spontaneously created is proportional
possible to have free vortices in zero-current at temperaturag g Boltzman factor:

below the critical temperature. The presence of these free
vortices destroys the Kosterlitz-Thouless-Berezin§KirB) IegT)xexd —Egry/kgT], 9
transitior?>**turning it into a crossover. This is because the _ _
free vortices screen the interactions more strongly than th&/here Egy is the energy of a free vortex. As pointed out
vortex pairs do , which in turn makes vortex pair unbinding@P0ve, Eq(8) is valid for rare escapes over a barrier and also
possible at lower temperatures than originally discussed b{Pr when the vortex loop blowouts are in a direction parallel
Kosterlitz and Thoules® Nevertheless, it is still possible to 0 the planes. In that limit, one can takeg(T) to be inde-
see KTB behavior as we explain below. _pendem Qf current. It is Eq7) that one uses to derive E@.)

There are two ways in which finite-size effects enter. In ain the limit of Egy=.
chargeless superfluid, the bare energy of a 2D, single vortex Proceeding with Eq(7), one assumes a steady state solu-
is InL, whereL is the size of the system. In charged2super—t'On and finds
fluids, the energy of a 2D, single vortex goes as;id,
where\ | is the London penetration depth adds the thick- Neos VT y(T, )+ T T). (10
ness of the film. Usually, howevet, and\_ are large in  This is readily put in the form of a current-voltage relation
typical samples and thus do not smear the transition in @jnceRen: andV=IR:
significant way. Beasley, Mooij, and Orlaridcalong with
others® pointed this out in the late 1970s. In the presence of V=1Jmy(T)+k(MZ1 - 15(T) 124D, (11)
a current, the principle consequence of a fiiiter A is to
contribute an Ohmic term to the otherwise purely nonlinearAt low currents, the first term will dominate and theV
(below T.) 1-V characteristics which can dominate at low curves will be linear but at larger currents it is possible for
currents and can wash out the phase transition. the second term to dominate and for th& curves to be-

In the HTSC's there is evidence that is small and come nonlinear. Therefore, by taking into account the first
therefore can significantly affect the critical behavior in thisterm, it is still possible to determinlé;(T) and «(T). The
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) systems have been considered in the past. Rubinstein,
VoM Shraiman, and Nelséfand Korshunof* have studied the
Vel (m (T)+K(T)[I-1 1 (T)Pem) V2 effc—;-cts of a randpm configuration of quench.ed vortex pairs.

\ José? has investigated the 2D ferromagnetic planar model
\ where the coupling is taken to be a random variable while
\ Fischef® has studied a system where the disorder is intro-
\ duced via the fugacity. The effect of a quenched, random
\ one-body potential on a one-component vortex @as, no
\ antivortice$ has been considered by Menon and Dasdpta
\ and we will follow their notation here. We will present the
\ calculation for the layered case which is also applicable to
B\ C \ the 2D case.
-\ \ > The essence of the replica technique is to average the
T disorder ovemn replicas of the system which is done via the
identity [ InZ]=lim,,_, oS dV4P(Vy)(Z"-1)/n, whereZ is the
due to finite-size effects. Note that the original phase lines ar artition function for the layered vortex gas and -] rep

shown here as dashed lines. Within the solid lines is where on esents an overage over the probability distribution of the

would expect the effect of vortex-pair unbinding. The shaded regior:alsorder'P(Vd) is & Gaussian distribution with zero mean

is where one would expect E@l1). Outside of the solid lines, value al:]d short , ranged spatial correlations
Ohmic behavior is expected although it could be exponentially[vd(r)Vd(r )]:Aé(“_r |)’ where A r_epresents_, the

small at lower temperatures and currents. Slightly non-Ohmic beSt€Ngth of the disorder. The effect of this averaging is to
havior may persist to the right on the non-Ohmic region as a resylintroduce an interaction between vortices in different replicas

of transition temperature renormalization. which includes the standard logarithmic interaction in addi-
tion to a short-ranged disorder-induced interaction which is
Jroportional to— BAS(|r—r'|) as described in more detail
In Ref. 44. After this averaging, the model is similar to that
é)f Fischef® except the additional disorder-induced interac-
{ion is long ranged there.

We have done a renormalization group analysis on the
new partition function which consists of two steps, a course-
graining and a rescaling. While the integrations for the
course graining step cannot be done exactly, one can show
that the resulting terms have no logarithmic or linear depen-
dencies and so will not renormalize the interaction strength
] . ) 1 ~ parameterp? and\. To do this integral, one approximates
which tells us thati*(T) lies abovel;(T) and that their {he s function by the short-ranged expresébn
difference increases with temperatura this last statement exp[—rzlgg]. The rescaling steps alone result in the following

we have made use of some empirical understanding ofgcyrsion relation for the disorder strengitiA/de=— A

my(T/k(T).] Based on this we can modify theT phase hich is immediately seen by considerirgBA S(R) with
diagram to include finite-size effects as we illustrate in Fig.q,q substitutionR’ =R/(1+d/7). Since it is unlikely that

4' Within thg solid lines is wherg one.wo_uld expect the no.n'coarse-graining effects will contribute to making the disorder
linear behavior due to vortex pair unbinding. The lower solid

L e ) . more important, this parameter is irrelevant.
line is 1*(T) and the upper i$,(T). We have notincluded  gecayse the disorder does not affect the recursion rela-
the effect of the renormalization df(T) due to the free

tions of the system parametew$, A, andy and the disorder
vortices here. To a first approximation, their effect will be to Y P « Y

. . ; arametelA is irrelevant, our results show that a weak, ran-
shift this quantity to lower temperatures and perhaps tQom one-body potential has no effect on the critical behav-
smear it. The renormalization of the quantities in Efyl)

hould also b 4 for but h q ior of the system in agreement with the results of Ref. 43.
should also be accounted for but here we do not expect any;q js expected since even with one vortex in a pair pinned,

drastic changes. Figure 4 is similar to Fig. 8 of Ref. 13 bUtthe pair can still unbind because of the “freedom” of the
the differences are important. Théy(T) is defined through

a phenomenological equation different than Ef. and is
therefore distinct froml 2(T) and I*(T). Furthermore, the
Ohmic region and non-Ohmic regions have different shapes
in the two figures.

FIG. 4. The approximate modifications to th& phase diagram

currentl* (T) at which the second term dominates introduce
a fourth characteristic current into tHeT phase diagram
which becomes quite different in the presence of finite-siz
effects as we discuss below. If the temperature dependen
of my(T) and k(T) were known, it would be possible to
determine the relationship betweEhT) anda(T). As it is
we have,

I*(T)=13(T) +[my(T)/k(T)2]H2a(D] (12)

other vortex.

VI. DISCUSSION AND SUMMARY

Numerous aspects of the current-temperature phase dia-
gram have been considered here including its derivation, the
current-voltage characteristics of each region, properties of

In this section, the effect of a quenched, random one-bod$he phase lines, and the use of the flux transformer geometry
potential V4(R) on the system will be considered using theto studylg(T). We have also considered finite-size effects
replica techniqué® The primary effect of this type of disor- and derived a current-voltage equation for this case. Finally,
der is to pin a vortex, but various types of disorder on 2Dthe effect of a weak, random, one-body potential was found

V. EFFECTS OF DISORDER
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to be weak. An interesting consequence of the current deperiuding the dependencies of the characteristic currents
dence of the critical temperature is to make the system(T),I(T), andI?(T) on the anisotropy factoy.

slightly non-Ohmic abové& .. Within these topics, three new
equations have been presented which could be tested experi-
mentally. Equation6) incorporates the current dependence
into the critical temperatures in the resistance formula mak- The author gratefully acknowledges D. Domuez, P.

ing the system slightly non-Ohmic above the transition tem-Minnhagen, L. Miu, C. Paracchini, L. Romano, and S.
perature. Eq(11) is the current-voltage relationship for sys- Shenoy, for useful conversations. | also thank S. Hebboul
tems where finite-size effects are important. Associated witlet al. for providing theirV¢(T) data, M. Friesen for his con-
this equation is Eq(12) which marks the crossover current tribution in deriving Eq.(3), and T. M. Katona for assistance
from finite-effect-induced Ohmic behavior to a pair- with Fig. 3. This work was supported by the Office of Naval
unbinding-induced non-Ohmic behavior. There remain manyResearch and early stages of it were carried out at the Naval
interesting aspects of tHeT phase diagram to consider in- Research Laboratory.
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