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Susceptibility of superconductor disks and rings with and without flux creep

Ernst Helmut Brandt
Max-Planck-Institut fu Metallforschung, D-70506 Stuttgart, Germany
(Received 7 November 1996

First some consequences of the Bean assumption of constant critical clyriartype-Il superconductors
are listed and the Bean ac susceptibility of narrow rings is derived. Then flux creep is described by a nonlinear
current-voltage lavEcJ", from which the saturated magnetic moment at constant ramp'-lr;(lts) is derived
for rings with general hole radius, and general creep exponentNext the exact formulation for rings in a
perpendicular applied field ,(t) is presented in the form of an equation of motion for the current density in
thick rings and disks or the sheet current in thin rings and disks. This method is used to compute general
magnetization curvem(H,) and ac susceptibilitieg of rings with and without creep, accounting also for
nonconstan.(B). Typical current and field) profiles are depicted. The initial slope of(H,) (the ideal
diamagnetic momejtand the field of full penetration are expressed as functions of the inner and outer ring
radii a; anda. A scaling law is derived which states that for arbitrary creep expaméimé complex nonlinear
ac susceptibilityy(Hy,») depends only on the combinatidﬂlg’llw of the ac amplitudeH, and the ac
frequency w/27. This scaling law thus connects the known dependengiey(w) in the ohmic limit
(n=1) andy= x(H,) in the Bean limit f—). [S0163-18207)01921-9

I. INTRODUCTION Sec. Il some general features of the static Bean model are
listed. The magnetization curves following from the Bean
model for some basic longitudinal and transverse geometries
are compiled in Sec. lll. The nonlinear ac susceptibility of a
narrow ring is given in Sec. IV. Flux creep effects and the
- saturation magnetization are discussed in Sec. V. Section VI
C““C?" valug\]c, J=|J|=J. If J locally exceedS]C’_ the presents exacgt] equations of motion for the current density in
flux lines will rearrange such that<J. again holds in the ) gisks and rings and for the sheet current in thin disks
entire sup_erconductor_. Ar_l addltlonal_ a_ssumptlon _d_lsregardénd rings: it is shown how these equations can be solved by
the reversible magnetization, or the finite lower critical field yatrix inversion and time integration; numerical results and
Hcy, by writing B=uoH inside (and outsidg the material.  approximate formulas are given for thin rings with arbitrary
Within this model,m depends only on the applied magnetic hole radius, namely, the initial slope of the magnetization
field H, and on the geometry, i.e., on the sample shape angyrve and the field of full penetration in the Bean limit, from
on the orientation of the applled fiel‘dia. Being irreversible, which approximate magnetization curves may be con-
m depends on the history ¢,(t), but it does not depend structed. The exact magnetization curves for thin disks and
explicitly on the timet. This means the rate ,(t) at which  rings are presented in Sec. VII, considering also flux creep
the external field is increased or decreased does not enter taad nonconstant critical current densityB) for sinusoidal
Bean model. applied fieldH 4(t). From these hysteresis loops the nonlin-
In experiments on high-, superconductoreHTSC'’s) the  ear ac susceptibilityw(Ho) = x’ — x” for disks and rings is
effects of flux creep often are not negligible. For example calculated. The main results are summarized in Sec. VIII.
when H,(t) is held constant, the magnetization may relax As a particularly useful result, a scaling law is derived in
and will thus depend on the tinte As a consequence, when Sec. VI B, which applies to any power-law current-voltage
H,(t) is cycled, the predictions of the static Bean model maycurveExJ" (E is the electric fieldland which states that for
be observed at very slow sweep rates, while at high sweegrbitrary creep exponenh=4JInE/dinJ the susceptibility
frequencies deviations occur due to flux creep. This findingy(H,,») depends only on the combinatitty /w1 of
may appear counterintuitive since creep effects are expectetle sweep amplitudél, and sweep frequency/27. This
to be more visible after longer time, i.e., at slow sweep ratesscaling connects the well-known facts that in the ohmic
Our quanitative theory below explains this observation in(n=1) or Bean f—) limits y depends only orw or
terms of a scaling law which states that the same ac suscept,, respectively.
tibility is obtained at higher sweep frequency if the sweep
amplitude is increased accordingly. Within continuum Il. FEATURES OF THE BEAN MODEL
theory, flux creep effects originate from the nonzero resistiv-
ity of HTSC’s occurring at sufficiently high temperatures  Several general features follow from the Bean assumption
and fields. of a static and field-independedy.
In this paper | investigate the influence of flux creep on (i) WhenH, is cycled between-Hy and +Hj, the virgin
the magnetization curves and nonlinear ac susceptibilities afurvem(H,) (with H, increased from zejodetermines the
superconducting disks and rings in a perpendicular field. Ifull hysteresis loop ofm. The branchesn, and m, in de-

The magnetic momenh=1rxJ(r)d®r of a type-Il su-
perconductor is often calculated within the Bean mddel,
which assumes that the current densify) cannot exceed a

0163-1829/97/581)/1451314)/$10.00 55 14 513 © 1997 The American Physical Society



14 514 ERNST HELMUT BRANDT 55

creasing and increasirg, read EWQ)=E; (J/J,)"/J (5)
Ho—H, with J=1J|. This useful and realistic power law with finite
ml(Ha:HO):m(HO)_Zm( 5 ) : creep exponenh will be used below to investigate creep

effects, i.e., effects of finite resistivity.
T When the exponent in E@5) is n<«, the Bean proper-
0 a) _ (1) ties (i) to (v) no longer apply. For £n<c the material law
2 (5) leads to flux creep, i.e., a nonlinear, approximately loga-
. ) . rithmic relaxation ofm(t) caused by a nonlinear diffusion of
(ii) Only the ratiosH,/Jc, andHo/Jc enter in EQ.(1).  magnetic flux with J-dependent diffusivityD(J) = E(J)/
For general time-dependeh;(t) one may write uod. With decreasing exponemt the creep becomes more
. a pronounced. In the limih=1, Eq. (5) describes an ohmic
MHa(D]=Jc 1" f[Ha(D/13c], 2 conductor, which exhibits linear diffusion of flux and expo-
wherel is a characteristic length of the specimen drig a ~ Nential relaxation of(t). Note that for generah only the
dimensionless function, see the examples below. combinationE./J¢ enters in Eq(5), and thusk, (the volt-
(i) As noted recently, for the Bean model the energy ade c.riteriom and J.C have no independent meaning. How-
dissipated in the superconductdy follows from m(H,) ever, in the Bean limih—oc only J. matters and the choice
not only for a complete hysteresis cycle, where it is wellof Ec is irrelevant, while in the Ohmic limit
known to be U gs= pofHdm= uo$mdH,, but for any E/J= Ec/Jc_=p i§ _the_ constant resistivity and = p/ uq the
point on the curve m(H,). The dissipated power usual flux diffusivity in ohmic conductors.
P=dUdiSS/dt>O is

mT(Ha,H0)=—m(H0)+2m

IIl. BEAN MAGNETIZATION CURVES

. 3 . , FOR BASIC GEOMETRIES
P= [ JE d°r=—uoHam(Ha) —Ham' (Ha) ], (3
A. Slab, cylinder, strip, disk

wherem’=dm/dH,. With d/dt=H,d/dH, one finds the For later reference | list some basic examples for virgin
dissipated energy 4iss along the virgin curve by time inte- magnetization curves. A large superconducting slab of width

gratingP=dUy/dt=].JE d°r, 2a and ared, and a long cylinder with radiua and length

[, in aparallel field have the magnetic momehts
m(Hy,) Hy
Udiss:MOfo H dm—uofo m dH Mga= — JcaA(2h—h?) , (6)
Ha My = — mJca’l(h—h?+h%/3) @
=uoHm(H,) —2 f m(H) dH . 4 _ . )
#oHaM(Ha) = 2po | - m( ) @ for o=h=1 with h=H,/H,, whereH,=J.a is the field of

] ] full penetration. ForH,=H,, or h=1, m stays constant
Formula(4) means thaUdis_S is IWICG the area between _th_e since the current density has saturated +oJ.. in the entire
curve m(H) and the straight line connecting the origin sgmple.
m=H=0 with the pointm(H,). It appears that the relations A thin strip®~’ of width 2a and lengthi >a and a circular
(3) and (4) are restricted to the case of constapt they  gisk8-10 of radiusa, both with thicknessl<a, in a trans-
were shown to apply to all the basic Bean examples in lon- ygrse fieldH, have the magnetic moments

gitudinal and transverse geometries listed below, but they do

not apply to ohmic conductors. So far, | do not know a Msyrip(Ha) = —Jcda?ltanth 8
general proof.

(iv) In the Bean model the influence of the history of 32 o, 1 sinhh|
H,(t) is partly erased whem, is cycled with increasing Mgis Ha) = — Jeda’ 3| COS * o+ o 9

amplitude. In particular, for perodikl,(t) with slowly in-

creasing amplitude, a Bean superconductor of arbitrary gefor 0<h<e with h=H,/H., where H.=J.d/m for the
ometry “remembers” only the last cycle. It will be shown in strip andH .= J.d/2 for the disk. The two curve) and(9)
Sec. VI that this property approximately holds even whendiffer by less than 0.012 if normalized to the same initial
strong creep occurs. slope m’'(0) and same saturation valus(), cf. Fig. 1,

(v) The magnetic momer does not depend explicitly where we plot the universal functiond(x)=mgy;,/
on the timet. Therefore,m does not depend on the sweep (—J.da?l) with x=wH.,/J.d and f(X)=mgg/
rate or, ifH,(t) is periodic, on the sweep frequency and also(— wJ.da*3) with x=8H,/mJ.d, which both exhibit
not on the shape dfl ,(t) (whether sinusoidal, square, trap- f'(0)=f(«)=1 and almost coincide. The computed nor-
ezoidal, etg. This property applies even wheh depends malized Bean magnetic momemt,,{H,) for a thin super-
on the magnetic fiel®. It just means that one considers the conducting square™'? differs from mgg(H,) by less than
static response and neglects flux creep. 0.002.

(vi) The static Bean model follows when a nonlinear In the considered limitl/a—0, the transverse moments
current-voltage lawE(J) with a sharp bend al=1J; is as-  mgi(H,) andmgg(H,) saturate only at infinitely large field
sumed. A simple such model is to take the limit- inthe  H,. With finite thicknessd the magnetic saturation is
power law reached when the flux and current front, which is positioned
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Miing(Ha) = — (Ha/HIM) Mgy,  Ha<HM",

cy'Iind;r
I slab rin
/e mring(Ha): — Msats HaBHp °. (12
’ disk o,/a=0.4 ] This is so since the screening supercurrent in the ring is
/4 o6 ] limited to a maximum valué.=J.dw. As long as the cur-
IE L 4 g5t ] rent | induced in the ring by the applied fielth, is
E [ 0.8 1 [I|<I¢, no magnetic flux can penetrate through the ring into
T 1 the hole of the ring. Whetl|=1 is reached, the ring be-
| 0.9 rings | comes transparent to magnetic flux. Therefore, when the ap-
I 0.95 ] plied field is increased further, flux lines will move through
o 'Hq/'dcd 1 the ring as despribgd in Refs. 6 and 7, which treat jthe super-
o . L Ly conducting strip with transport current in an applied field,
0 1 H 2 3 see also the flux profiles in Fig. 10 below. The flux lines

transport magnetic flux into the ring hole until the screening
FIG. 1. Bean magnetization curves(H,) for a thin strip[Eq.  current has decreased again to the vdlue The magnetic

(8)] and disk[Eq. (9)], and for rings with radius ratiog, /a=0.4, momentm= wR2| of the ring thus saturates to the value

0.6, 0.8, 0.9, and 0.95 in perpendicular fi¢ld . The curves are

normalized to unity initial slope and unity saturation value by plot- |m| S Mga= mR?| c- (13

ting m(H,)/mg,; versus H,m'(0)/mg;. Also shown is . . . . Lo

m(H,)/m,, for long slabSEq. (6)] and cylinderdEq. (7)] in par- The applied field _\/aludei_p _at which this sa_turg\}lon is reached

allel field, plotted versusi,/H, to avoid crossing of curves. The follows from the inductivityL of the flat ring;

inset showsm(H,) for these rings and the disk in constant units

mZ= 73.da%3 for m andJ.d for H,, which show how the mag- L= R( Inﬁ _ c) (14)

netic saturation is reached earlier with increasing hole radius Ko w

The ring data were computed using a creep exponett01. . . . .
wherec=1/2. For comparison, the inductivity of a ring made

of a wire with diametew<R is also given by formuld14)

but with c=2.2221Our computation in Sec. VI finds that for

a flat superconducting ring one actually ltas0.614 in for-
mula(14). This is so because the resak 1/2 assumes uni-
form current density across the ring, while the real current
distribution is peaked at the edges of the rfrign the limit

atx,=r,=alcosth, has penetrated to a distaneal/2 from
the centex=0 orr=0, i.e., tox,=r~d/2. More precisely,
one finds from analytical calculatiolis the penetration
fields™ for d<a,

H;trip: ch 1+|n2_a , (10 w<R the sheet currenlg in a superconducting ring behaves
™ d as in a straight thin strip)s(r) = (1/7)(w?/4—x?) =12 with
x=r —R. Therefore, when flux penetrates the conductor of a
Hdisk_ 9 2+|n2—a (11) flat ring, the constant decreases frars0.614=2—1In4 at
P €2 dl|- H,=0 toc=1/2 (or c=0.307=1—1In2, see Sec. VIl Bat

H.=H_". For simplicity one may put~1/2 in the next
The prefactors in Eq910) and (11) are the above defined three formulas.
critical fields of strips and disks,H.=J.d/7 and The magnetic flux generated in the ring hole by a ring
Hc=J.d/2. Above the penetration field§L0) or (11) the  cuyrrentl is ¢=LI. As long asl <1 one has ideal screening,
magnetic moment saturates to the valog€§"=J.da’l and  thus¢= — mR2uH,. Equating these two fluxes one obtains
Ml =Jcda’m/3. for the flat ring

7R

The cutoff problem forH, does not arise if the central In(8R/w) —c
part of the strip or disk is removed. The magnetic moment ofat H,= H, one has reached|=1,=J.wd, thus
the resulting double stripwith connected endsr ring then
saturates naturally, with the penetration figt}, and the fing In(8R/w)—c
saturated magnetic moment depending on the width or radius Hp :T| c* (16
of the cut-out slit or hole. For the thin double strip the Bean
magnetic momeni(H,) in principle may be calculated by The slope ofm(H,) for H,<H, is therefore
conformal mapping as suggested in Ref. 6. For both the
double strip and the ring the numerical method of Refs. , _ _
15—-20 may be used to compute the flux penetration and the Mring(0) = = g — B 17
magnetic moment, cf. Sec. VI.

First | discuss the limit of a thin narrow ring with width Comparing this with the ideal diamagnetic moment of the
w much smaller than the mean radiusR, disk obtained from Eq(9),
a;=R—w/2<sr<R+w/2=a. The virgin magnetization
curve of such a ring is composed of two straight lines, Myis 0)=—82%3 , (18)

B. Narrow ring l=g¢lL= H,. (15
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1.0 pe—r—e—t—ee —_— parallelogram£®~2° From these loops one obtains the com-
‘\.\ plex susceptibilityy=x' —i x" of a superconducting narrow
AN ] ring with constant J.. For cycled magnetic field
o9} T \31\ : H,(t)=Hsin(wt) one may defin& 2’
N)Q /// \:‘Q‘-
og ,// 3 o 2m —iwt
L ost %%‘_ X(Ho)= WHOJO m(t) e dt . (19
E \ Note that thisnonlinearsusceptibility does not depend on the
0.7 1 iy frequencyw/27 if m(t) is taken from the Bean model, but it
4 depends on the sweep amplitudg. In contrast, thdinear
¥ susceptibility of an ohmic conductor or of any conductor
0.6 o y with linear complex resistivitye.g., a superconductor above
a,/a the depinning ling depends orw but not onHy. One may
also consider the higher harmonic responsgs,
FIG. 2. The initial slopen’(0) of the magnetization curve of a v=2,34 ..., by replacing in Eq. (19 exp(-iwt) by

nonlinear conductor or a superconductor ring versus the rati%xp(—ith). Here | shall consider the fundamental response
x=a, /a of the inner and outer radius. This is also the magnetic

. . Lo o =x1(Ho) and the strongest harmonigg(Hy). The sus-
moment of an ideal diamagnet in unit applied field. The dots denot P P h
the computed values, see Table I. The dotted and dashed lines gi%eptlbmtleS X»(Ho) for thin disks are given by Clem and

0
the approximation$42) for small and largex. ancheZ. . -
From Egs.(1), (12), and(19) one obtains the susceptibil-

one finds the remarkable result that a ring has a slightlyty of the ring normalized to the initial valug(0)=—1, i.e.,
smaller ideal diamagnetic moment than a disk of the samé y— x/|m’(0)|,
outer radiusa=R+w/2>w, although the flux expelled from
the ring and disk is the samea®ioH . S Y'(h)=—1, x"(h)=0, h=1,
The initial slopem;,;(0) and the penetration field ;"
are computed below in Sec. VII for superconducting rings 11 1
with arbitrary inner radius &a, <a. The results, depicted in ¥'(h)=—=— Zarcsis— —s J1—s2,
Figs. 2 and 3, show that the expressiofis6) with 2 ™
c=0.307=1-1In2 and (17) with c=0.614=2—1In4 are ex-
cellent approximations with a relative deviation of less than 4h-1 1
v

2% for a;/a>0.8. Figure 1 shows that the magnetization xX'(N=——7=—- h=1 (20)
curves of wide rings are no longer straight lines but are

slightly curved and merge with the curve for the disk Whe”with h=H
a1—>0.

o/H, ands=2/h—1, see Fig. 4top).
Interestingly, with the ring susceptibility20) the polar
plot x” versusy’ with h as a parameter isymmetri¢i.e.,
IV. SUSCEPTIBILITY OF NARROW RINGS Y'(x) yields the same curve ag(—1— x'). Figure 4(bot.

With the prescription(1) the virgin magnetization curve tom) shows these polar plots for the ring and for the disk and
(120 vyields hysteresis loops in the shape of strip. The maximum of the dissipative part of the ring sus-
ceptibility xma=1/m=0.318 occurs ath=2 (at s=0).

For large amplitudesh=Hy/H,>1 one has x'(h)
~—1.69h%? and y" (h) ~4/=h.

i ] The x(H,) for disks and strips differ by less than 0.010
2 F 1 (x") or 0.0043 "), and x(Hg) for thin squares and disks

I ] differ by less than 0.001. The maximupf,,=0.240 771
(0.236 466 for the disk (strip) occurs at x=8Hg/

I ] 7). d=2.4738 orx=mHq/J.d=2.4642; for these field units

1t . see the discussion below E9). For large amplitudes

- ] x>1 one hasy’~1.910k%? (1.930k%? for disks (strips

and y"~4/mx for both. This means that the large amplitude

| e behavior ofy(H) is very similar for rings, disks, and strips,

0 e if the amplitudeH,, is expressed in the reduced units of Fig.
0 a,/a 1 1, which vyield unity initial slope and unity saturation of

m(H,).

FIG. 3. The field of full penetratioi,, of thin superconductor A further remarkable property of the ac response of a
rings in the Bean model with constant critical current dengity ~ Narrow ring within the Bean model is that the absolute value
plotted versus the ratie=a, /a of the inner and outer radius. The Of x3 is related to the dissipative part of, Eq. (20), by
dots denote the computed values, see Table I. The dashed linéx3(Ho)|=3x"(Ho). This exact coincidence was also noted
show the approximationg8) for small and largex, and the solid by Ishida and Mazaki* who proved it theoretically and
line the expressior49). found nice agreement with experiments. For higher harmon-

VAR
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3 E(J) with positive curvature. Variouk(J) laws were sug-
fings (a,/a=1, 0.9, 0.8) 1 gested based on microscopic models. For example, the col-
disk  (a,=0) ] lective creep® and vortex glass pictur&syield a current-
density-dependent activation energy for thermally activated
depinning,

\
\

strip

Bean limit
n>>1

U(J)=Uo[(J./I)*—1]/a (21)

with a>0.28-3%|nserting this into the Arhennius law

E(J)=E.exd —U(J)/KT] (22)

° one obtains a highly nonlinear resistivip(J) =E(J)/J. In
the limit <1, Eq.(21) becomedJ(J)=~UIn(J./J), yield-
0.3 T 0.9 | ing with Eq. (22) E(J)=Eexd—UJ)/KT]=E4J/J) kT,
7 NN 0.8 This is the power law, Eq(5), with n=U,/kT. Such a
= X 0.6 power law, or a logarithmitJ(J), or a small glass exponent
I / o S04 | a<1, is often observed in experiments.
- strip  disk A\ The power law (5) is very convenient for analytical
W\ calculationd!~*%and for computation$4~21In creep experi-
“\\.\ ] ments where the ramping of,(t) is stopped at tim¢=0
\d one obtains after some transient time the universal
' relaxatiof®3¢  Eox(#/t)V("" U=zt and m(t)xJ
oo b o« (r/t)Y0"V~1—-[1/(n—1)]In(t/7) if n>1. In the ohmic
0 ~x' 1 limit n=1 one haan(t)oJoExexp(—t/7).
In Eg. (5) general dependencds=J.(B) andn=n(B)

FIG. 4. Top: Real and imaginary parts of the complex susceptiare allowed. Of course, further dependences on temperature
bility x(Ho)=x'—ix" of thin strips, disks, and rings with various and on any other spatially constant parameter are also al-
radius ratiosa; /a plotted versus the amplitude, of the ac field in  lowed, as in the original Bean model. Statit—{ ) exten-
the Bean model with constadt . The unit ofH, is J.d/« for the  sions of the Bean model td.=J.(B) have often been
strip and7rJ.d/8 for the disk. For ring$, is in units of a penetra- considere&;37 but also dynamic computations with creep,
tion field Hy~H, which gives best fit to the sharp rise in the ideal using Eq.(5) with n<o, present no difficult)}?vlgsupercon-
ring x": H,/J.d=0.126(0.210 for a;/a=0.9 (0.8), while from  ductors with inhomogeneous pinning, produced, e.g., by par-
Table | one had,/J.d=0.136(0.239. For a;/a—1 one finds  tjg] jrradiation, are easily modeled by using a space depen-
Hy/H,— 1. Bottom: Polar plots of the same=x'—ix". For the dentJC(r)_l9,20
narrow (not necessarily thinring x' andx” [Eq. (20)] are discon- One can easily calculate the fully penetrated state which
tinuous atHo=H, and the polar plot is symmetric. is reached after sufficiently long timte— during constant

ramp rateH,. In this stationary state the current has satu-
rated, thus the current-caused magnetic field does not change
any more, and the electric fieldEg, follows from

VX Eg,=—B=—B,, whereB,=uoH,. This very general

law applies to any geometry and specimen shape. For disks
and rings this means

icsv=>5, 7,..., a similar relationship does not apply. We will
see in Sec. VIII below that this property is lost when flux
creep is allowed for.

For comparison with the Bean limit—< shown in Fig.
4, the complex susceptibility for disks and various rings is
depicted in Fig. 5 for finite creep exponems 3, 5, 11, 51,
and 201. These curves were computed by the method of Sec.
VI using the current-voltage power law(5) anq s &?Bai , (23)
w=2E./(ugl:da). Note that with increasing hole radius 2
a;, a bend develops in the curves (Hg), x"(Hg), and A
X"(—x'") atHy=H,. This bend is sharpest in the Bean limit where ¢ is the azimuthal unit vector anl,= uoH,. From
n—o but it dissapears for strong creep=5. The tiny the current-voltage law (5), which inverted reads
wiggles of " and x” atHy<H,, are artifacts caused by the J=J. (E/E.)Y"E/E, one obtains with Eq(23)
spatial grid used for the computation, but the bends near

Hp are real. At small amplitudeblo<H,, x' and x” for .[B,a n/ o\ 1n
rings with finite width deviate considerably from the narrow Jarm @| == = . (29
! o P 2E. a
ring Bean limit (y'=—1, x"=0) even for largen.
The saturated magnetic moment of a ring with outer radius
V. EFFECTS OF FINITE RESISTIVITY a, inner radiusa; =a—w, and thicknessl is thus

Within a continuum description the phenomenon of flux a
creep is caused by the finite resistivity of the superconductor |m|$msat:d77f r2J(r) dr, (25)
or of any conductor with a nonlinear current-voltage curve a
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0.0
(b)

FIG. 5. (a) Top: Real and imaginary parts of the nonlinear complex susceptiki(ityy) = x’ —ix" of a thin disk plotted versus the ac
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5
11
51
201
Bean
n>>1
disk
a,/a=0
/
0 —x'

1 0.4
n=3 . 5 n=3
11
I 51
______ 201
->< i ,'/ ’ \\\\\
N\ . ™~
/ *Bean disk
4
I'l \\\
- ring N
‘ W
! a,/a=0.6 >
I I O'O

o q n=3
. n=3 0.4 - 5
11
1 e 51
51
ZSOuR, S 201\,
’/' RN = Le=TTTTT - NN
Z 201 > Y e
4 " 'Bean rin .
# 'Bean disk \ 4 9
N %" 'Bean disk N
ring \\\ 1 ';r/’ ring ‘\\
! a,/a=0.4 ) / 9;/a=0.9
N . . . 0.0
0 0
-X' ! (d) X'

amplitudeH,, for various creep exponents=3, 5, 11, 51, and 201 iE=E_(J/J.)" with constant]. . H is in unitsJ.d. Bottom: Polar plots
of the samey=x' —ix". The dashed line shows the Bean mode}c for the disk.(b) Same aga) but for a wide ring with radius ratio
a,/a=0.4. (c) Ring with a;/a=0.6. (d) Ring with a;/a=0.9. The dashed curves show and x” for the narrow Bean ring with
a,/a—1 and for the disk; for the field units see the caption of Fig. 4.
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1/n

N a 3+(1/n) B a i 1Ja dr2 1
- J3a%dl1-(= a J(r,t)=puq dr’f dz’ Q(r,r’) ~f(r',t),
Mg 3n+1‘]°ad 1 (a) }(ZEC (r,\t)=puo ay 0 Q( ) ( )
In the Bean limitn— o the first factor in Eq(25) reduces to f(r’t):J(r,t)nE_ﬁ_ LBa(t) . (28)
/3 and the last factor becomes unity, i.e., the ramp rate Jo 2
B, and voltage criteriorE, do not enter. One then obtains Here r=(r,z), r=(x*>+y?2 f(r,t) is the electric field
the well-known exact Bean result which drives the currentthe emf induced by the varying
applied field, minus the voltage drpmndQ(r,r’) ! is the
- 312 inverse of thelnegative integral kernel
M= = J.d(ad—ad) = mR2 (1+—) (26)
saft 3 c 1 c 4R2 ’ Q(r,r,):q(r,r,,z_zl)+q(r,r,,Z+Z/) ;
cf. Eg. (13) and Fig. 1. When flux creep is considered q(r é,):f”d_‘P r'cosp 29
(n<wx), the saturation valu¢25) is reduced or enhanced ' 0 27 (LP+r%+r1'%+2rr 'cosp)

with respect to the Bean limit, depending on whether th

ramp rate B, is less than or larger than the value
[3+(1/n)]"2E./a. However, this criterion depends on the
vqltage criterion and th_us on the definition jq;‘zJ(_Ec). In curves for disks computed from E€28) look very similaf®
principle, J. may be defined such thats,/J. stays indepen- 4 the results for superconducting bars with the same rectan-
dent ofn or of B,. Moreover, | will show in Sec. VI B that  gular cross sectiod x 2a in a perpendicular field, which are
the basic equations of this problem and thus all its solutionsgepicted in Ref. 14.

are invariant with respect to the simultaneous change of the For thin disks and rings withd<a one may average
scales of time by a facto€, and of current and magnetic J(r,z) over the specimen thickness, defining the sheet cur-

field by a factorC("~ 1), rentJy(r)=J%3,,J(r,z)dz The equation of motiof28) then
As shown in Ref. 14, the magnetic saturation is reachegedyces to an equation fdg(r,t) in a ring,

exponentially in time,

eThe inversion of this kernel may be acieved by tabulating it
on a two-dimensional grid and inverting the resulting
matrix* The flux and field profiles and magnetization

) a
Js(r,t)=Mglf dr’ Q(r,r') Yy(r',t),
Mgar— [M[ocexp( —t/7) , a1

E. r

(3" 2

whereQ(r,r’') 1 is the inverse of the kerngR9) taken at
where const 1 follows from an eigenvalue problem. This z=7'=0,

means that in spite of creep the saturation typically is
reached quite fast when the ramp rate is constant. N 7de r'cosp

We will see in Sec. VII C that wheiB,(t) is cycled Q(r.r’)= o m (r2+r'2+2rr cosp) "
sinusoidally, the magnetic momeni(t) starts to decrease _ _ .
already before B(t) has reached its maximum. Thige-  The equations of motioK28) and (30) are very convenient
crease of |m(t)| during increasing applied field for the calculation of the penetration and exit of flux by
B, (t) = Bysinwt was ascribed to flux creep, which dominatesstarting withB,=0, J=0, and then increasinB,(t) either

when the ramp rat@,(t) = Bywcosst becomes sufficiently With constantB, or by cycling B,(t). If By(t) is held at a
small. However, a more appropriate quantitativeconstant value, genuine flux creep can be calculated from
interpretatiod® ascribes this decrease [ofi to the decreas- EdS.(28) and(30) over many decades in the tint€ Exact
ing ramp ratelB,|. Namely, when the current densiiyhas solutions have been obtained for flux cr&ep®and for the

al: )

nearly saturated, the electric field decreases like the ram ear ac response during flux creep in longitudifaind

El (1. thus alsold = JIE/E [ d ransvers& geometries.
rate, |E|~|(r/2)B,|, thus also|J|=JE/E.|*" decreases, Note that all these computations of the current density

and m=m(B,) is given by the ramp-rate-dependent satura-J(r,z,t) or sheet currend(r,t), and the calculation of the
tion value, Eq.(25). magnetic moment of the disk or ring,

f(r,t)=J4(r,t)" Ba(t) , (30)

r=const ueJ.a/nB,)(B,al/E.) ™, (27)

(31)

a d/2 a
_ 2 — 2
VI. EXACT FORMULATION FOR RINGS m—WL drr f dlzdz J—WL drreJg, (32
1 - 1

A. Equation of motion for J did not require computation of the magnetic field. This

The equation of motion for the current densit{r,t) in means no spatial derivatives have to be computed, and fields
disks and rings in an axial magnetic fiel}(t) is obtained outside the specimen do not enter and thus do not have to be
by generalizing the expressions for disks of finite thickifess cut off or fit to some boundary conditions at some artificial
or for thin disk$’~?° with d<a. For thick rings with far-away boundary. In our method all integrations are re-
a;<r<a, —d/2=<z=<d/2 this equation reads stricted to the current-carrying specimen volume. This
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method is thus very effective both for numerical computa- C. Computational method
tions and for analytical calculations, see Refs. 14,15,17,
34,36,41. rent, the irreversible magnetization curves, and the magnetic

After the currents have been calculated from E@8) or  fie|q in and around thin disks and rings with material laws
(30), the magnetic field inside and outside the specimen CaB— , H and E=E, 13/3J"3/13 (5) in a perpendicular

be obtained by the Biot-Savart law. Writi§=rotA+Ba g _({) " since these equations are one dimensional in space,

with A=¢A(r,z), one gets the component8,=JA/  the numerical program is very fast and accurate if the fol-
ar+Alr+B, andB, = — dA/dz with lowing tricks are considered
(i) For the spatial integration a nonequidistant gridnay
a di2 be chosen which has vanishing spacifogr vanishing
A(f)=—Mof df'f dz' Q(r,r")J(r’) . (33 weightsw;=dr;/di) at the inner and outer edges a, and
a Y0 r=a, eg., ri=a;+@Bu’-2ud)(a—a;), w=6u(l

For a thin disk or ring one has at the surfages=d/2<a  —U)(@—ay)/N, withuj=(i—3)/N,i=12,...N,N~10to
the field component®,=dA(r,0)/dr +A(r,0)/r+B, and  100. For the computation df(r) only grid points inside the
B,= T J«(r)/2 (since the jump of the parallel component fing are requireda; <r;<a. The subsequent computation of
B, equals the sheet curreds) with B,(rj) may also use grid points in the ring hole and outside
the ring in the planez=0. In principle, B,(r,z) and
a B,(r,z) may be calculated also outside the disk plane by
A(r):—Mof dr’ Q(r,r")Jg(r’) . (34) using a two-dimensional grid;=(r,z); and the kernel
a Q(r,r’) (29.

(i) Integrals over any function defined in the interval
a;<r=<a may be evaluated as a weighted sum, e.g., writing
fi:f(ri) andFi:F(ri),

When a power law is assumed for the current-voltage
curve,ExJ" or p=E/J*J? with c=n—1, cf. Egs.(5) and a N
(22), then the equations of motid28) and (30) for the cur- f Q(ri,r")f(r") dr’wz Qijw;fj=F;. (37)
rents in thick and thin disks or ringsnd in all other geom- a =1
etrieg possess a remarkable scaling property. Namely, when ) ,
one changes the time units by a constant factc€ @nd the (iiil) When tabulated on the grig; the kernelQ(r,r’)
current and field units by a factor @, whereg=n—1, Pecomes a two-dllrrleln_smnal_ mati@; =Q(r;,r;). The in-
then these equations are invariant, i.e., the same solutioy§rse kermneR(r,r’) =~ is the inverse of this matrix if equi-
result for these scaled quantities. Explicitly, if the equationdistant grid pointsconstant weightsv;) are used. For a gen-
for the current densityJ(r,t) is expressed in terms of eral gI’IEj one has to_lnvert this matrix tlme§ the_welghts
T=t/C then the new functions ‘(’37) (Q"1ij=(Qijw;) " as can be seen by inverting Eq.

From Egs.(30) to (34) one may compute the sheet cur-

B. Scaling of frequency and amplitude

I, H=dr,Hc¥, By(T)=B,(1)CY" (35 N
fi=2 (Qyw)) 'Fj. (39)
satisfy the same equation of motion. The resulting magnetic =1

field B and magnetic momenm scale by the same factor as . . ] ] . .
J, (iv) The time stepdt used for the time integration af

should be chosen asdt=c,/[max(p)+c,], where
-~ o~ o p=ElJ=(E./J.) |33 ,|"* andc, andc, are constants. A
B(r,t)=B(r,t)C", m(T)=mt)C" .  (36) finite c, is required to limit the time step at the moment
_ o ) _ when the ramp rat8,(t) changes sign.
In particular, for periodiB,(t) = Bgsinet, the resulting com-
plex susceptibility x(Bg,w) normalized to x(0,w)
=x(Bg,»)=—1, i.e., to the ideal diamagnetic limit occur-
ring at zero amplitude or infinite frequency, remaias- Figures 6 to 9 show the sheet curréigr) and the cor-
changedf one increases, e.gy by a factor of 10 an®By by  responding magnetic field profil&(r) =B,(r) in the speci-
a factor of 18", The resulting magnetic moment is then men planez=0, computed for the thin diskag=0) and for
larger by the same factor of ¥0 as is also the applied field a wide @;/a=0.4) and a narrowd; /a=0.8) ring. Shown
B,. Therefore, the shape of the hysteretic magnetizatiomre the Bean limitif= 101, Fig. 6 with J.=const in increas-
curve M(B,) remains unchanged and also the polar plotsng (Fig. 6) and decreasingrig. 9) field B,. Also shown is

D. Current and field profiles

xX"'(x") of x=x"—ix". an example with field-dependent critical current
For periodicB,(t) this scaling law states that the normal- J.(B)=J.(0)/(0.8+|B|) (Kim model, Fig. 7,J5 and B/,
ized x(Bg,w) and the shape of the hysteresis laofB,), in unitsJ.d) and one case with strong creap-9 (Fig. 8.

depend only on the combinatidy/w* or on w/BJ. This  Note that in Fig. 9 in decreasiriy(t) the Js profiles(but not
general statement connects the two limiting cases of ohmithe B profiles nearly coincide with thel profiles of Fig. 6
conductors, exhibiting~=0 and thusy= y(w), and of Bean in increasingB,(t), multiplied by —2 and then shifted up by
superconductors, exhibiting— o and thusy= x(By). +J., as it should be in the Bean modet>® see also Eq.
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0 r/a 1 0 r/a 1

FIG. 6. Profiles of the sheet currehi(r) (top) and the perpen- FIG. 7. Same as Fig. 6 but for field-dependent critical sheet
dicular magnetic field=B,(r) in the specimen planéottom) in current Jy(B)=J4(0)/(0.8+|B|) (Kim mode) with Jg and
a disk and in rings with radius rati@s /a=0.4 and 0.8 during flux H=B/ug in units J.d.

penetration in an increasing applied figit(t). The ten depicted . . . .
curves are forH,/H,=0.1,0.2,.. .,1 with the penetration field Inserting this into Eq(32) one obtains the magnetic moment

H,=2Jd for the disk chosen arbitrarily anti,=0.6699.d of ideal superconducting thin rings and disks divided by

(0.2389.d) for the two rings taken from Table I. Bean model with Ha,
J.= const,n=101,Jg is in unitsJ.d andB in units xeJ.d. A grid

a a
of 40 nonequidistant points;<r;<a was used. Mfing(0) = — gj drf dr’ r2Q(r,r")"r’ . (40
ap a
(1) For Stronger Creeﬁ:ig_ 8) the corners of thés prof”es |n'tel’mS'O'f a discrete gridi with WeightSWi one may write
become rounded but not ti& profiles. this explicitly as
T
Ming(0)= = 5.2, 1EWi(Qyjw;) ;. (41)

VII. MAGNETIZATION CURVES

Evaluating this double sum as a function of the radius ratio

a, /a of the ring one obtains the limi{d.8) for full disks and
The initial slope of the magnetization curwg,,(0) with  (17) for narrow rings, and the values between these limits.

the limits (17) (a;/a—1) and(18) (a;/a—0), for arbitrary ~ Denoting the ratio of the inner and outer radius by

radius ratioa; /a may be directly obtained from the inverted x=a,/a one gets the explicit formulas,

matrix Q(r,r') ! in the following way. Inverting Eq(34)

with the applied vector potentigh= —rB,/2 inserted, one

obtains the sheet current which idealy screens the applied

A. Initial slope

8
3(1- 1x5-0.21x19, x=<0.95

field B,= ugH, from the ring(more precisely, it shields the m’(0) ~! 72 (1+x)3 42
perpendiculaflux from the hole of the ring and the perpen- —a® — , x=0.9.
dicular field from the ring material 8 In4( 1+X) 0614
1-x '
1 a The expression$42) describe the correct limitg<1 and
Jifeal(r)=——Haf dr’ Q(r,r")" ' . (39 1—x<1; their relative error is<0.001 for x<0.9 and
2 ap <0.01(0.003, 0.001 for x>0.9(0.95, 0.975, cf. Fig. 2 and
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0 r/a 1 o r/a 1

~ FIG. 8. Same as Fig. 6 for constaif and constant ramp rate FIG. 9. Same as Fig. 6 but in applied field decreasing with
B,=2E./a but for finite creep exponem=9. constant ramp rate frod, to —H, in steps of 0.B,.

Table I. The excellent fit over many decades suggests thatsed in Ref. 14. Here | use a slightly different definition in
the factor +-0.11X° in Eq. (42) presents the exact limiting terms of the magnetization curve(H,). The computed
behavior forx<1, which should be derivable analytically. function f(H,)=In(¢ém/éH,) performs a rather sharp bend
Also it seems likely that the exact value of the constant 0.614rom a nearly horizontal line atH,<H,, where
should be 2-In4=0.614. A general interpolation formula dm/éH,~m’(0), to a steeply decreasing straight line at
with  relative error <2% for all radius ratios H,>H,, which reflects the exponentially decreasing slope
Osx=a;/a<l s of m(H,), Eq.(27). Here | defineH ;, as theH, value at this
bend.
(43) To obtain t_he Bean Iimiin—>_oc by this method | used
n=200 and B,=2E;/a, or B,=1 in units a=2E,
=J.d=1. The penetration fielt ;" computed in this way
is in good agreementelative error<1%) with the exact
value obtained directly from the integral kerr@(r,r’) in
the following way.

Looking at the profiles of the perpendicular magnetic field
B,(r) in the ring planez=0 during increase of the applied
field H,, Fig. 6, one notes that magnetic flux enters the ring
material from the outer and inner edges. As long as the pen-
_ etrating flux frontgwhich in this transverse geometry exhibit

The computation of the field of full penetratidty™ for  vertical slope$™® have not yet met, there is a field-free zone
rings with arbitrary radius ratio €x=a;/a<1 and finite  with B,=0 between these two fronts. Wheh, has reached
creep exponent requires time integration of EG30). Using  the valueH ", the flux fronts meet at=r, and the sheet
constant ramp ratB, and a large creep exponemt-1 one  currentJ saturates to the valukd. At this moment, there is
is still left with some arbitrariness in defining,, since for  still no flux in the circular zone<r,, thus,
finite n the magnetic saturation is reached only gradually, see
Eqg. (27). One possible definition ofi, by monitoring the J'
vanishing spatial variation of the current densify,t) was

Mfing(0)  2.064+5.351+2.456¢3°
—a® 1+x
Note that the initial slopen’(0) does not depend on the
creep exponenh as long asn>1: The nonlinearity ofE
o« J" guarantees that in the limit of smadl,, and thus small

J, any nonlinear conductor is an ideal conductor which
screens perfectly.

In -2

B. Field of full penetration

r
p277rBzdr=27-rrpA(rp)+7-rr§Bp=0 . (44)
0
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TABLE I. The initial slopemy,(0) [Eq. (40)] of the magneti- Ha<H, and, since the current has saturated,
zation curve of a thin superconducting ring, the field of full pen-B,(r )=H,—H, for H,=H,. Using B,=(1/)(d/
etrationH, [Eq. (45)] of this ring in the Bean model, and the pen- gr)(rA)+B, and the expression(34) for A(r) with

etration radlus where the flux fronts meet in the ring, as functions J,=Jd atr—r when B, MoHp, one obtains the second

of the ratloalla of the inner and outer radius. Condltlon

2/a ~[m'(0)/a”) Hp/Jcd rp/a H—g ———rJ' Q(r,r’) dr” atr=rp. (46)
0.005 2.6667 2.8825 0.00583 Je ror

0.010 2.6667 2.5359 0.01166 Instead of calculatingd, andr, from Eqs.(45) and (46) |
0.025 2.6667 2.0777 0.02913 use a more elegant, accurate, and faster way of maximizing a
0.050 2.6667 1.7309 0.05830 function which has its maximum valude at r=rp.
0.100 26667 1.3833 0.11639 Namely, one can show that E¢46) is equivalent to the
0.150 2 6667 1.1790 017439 condition (@/dr)(1/r)fQ(r,r’)dr’=0 when Eq.(45) holds.

Therefore, one may obtain bokh, andr , for the ring in the

0.200 2.6666 1.0328 0.23210 . .

0.300 2 6659 0.8235 034617 Bean state in one step from the maximum problem

0.400 2.6634 0.6699 0.45782 ) 2 (a

0.500 2.6561 0.5452 0.56609 HB"g=ma>< - ;j Q(r,r') dr’ )ch : (47
0.600 2.6381 0.4365 0.66984 ) A ) )

0.700 2.5977 0.3365 0.76765 The resultingH, values(Table I, Fig. 3 agree well with the
0.800 25089 0.2389 0.85762 limiting expressions forx=a;/a<1, obtained by putting
0.850 2.4283 0.1888 0.89890  d=5a; in Eq. (11), and forx~1, Eq.(16).

0.900 2.2998 0.1360 0.93693 Very accurate fits with relative error< 1075 for
0.950 2 0682 0.0776 0.97112 a,/a=0.999 are obtained if in E¢16) the constant, which
0.980 1.7851 0.0365 0.98925 in the discussion following Eq(14) was chosen to equal
0.990 1.6030 0.0204 0.99479 1/2, is chosen as=0.307=1—1In2. The reason for this dif-
0.995 1.4488 0.0113 0.99744 ferentp 'value is theT ambiguity of the definitiop of thg self-
0.999 11770 0.0028 099950  inductivity L of a ring#? The constanc=1/2 is obtained

when one definek via the energyiL1? of the currents in a
flat ring with constant current densife=J,.; this yields for
Here | usedB,=d(rA)/dr +rB, andB,=B,=uoH,. The L a double inte.gral over t_he ring width since all circullar
current-caused vector potentiA(r) in the planez=0 is  current paths interact with each other. However, in the

given by Eq.(34) with J¢(r) =J.d=const inserted. Thus we Present problem of finding the field of full penetration, a
get the condition for flux conservation, different definition ofL is appropriate, namely, via the flux

¢=LI in the ring as mentioned before E{.5). The radius
p 2 . . of the circle inside which this flux is enclosed, depends on
Jd FJ'alQ(” )dr’ atr=rg. (45 the specific problem. Here it means the radiysat which
the two flux fronts meet. For narrow rings one has
In order to determine the two unknown variablég and  r,=R=a—w/2. This definition ofL requires a single inte-
ro, we need a second equation, e.g., the conditiogral over the ring width and yieldsL=¢(R)/I
B,(rp) =0, which is obvious when the flux fronts meet at = ug[ In(16R/w)—1], i.e., Eq.(14) with c=1-1In2.
r=r,. We note in passing that one h#(r,)=0 for Explicitly | find the limits

1
E( —Inx+0.467), x<0.6

ring
e (48)
Ied 21| X na 2| ~0.307 0.8
- =0.
(2/m)| 3% )| In4| 7= ~0:307], x=038,
with relative error<1%. A good interpolation to the entire C. Computed magnetization curves
range G=x<1 with relative deviation<2% is

Approximate Bean magnetization curves for thin rings
with arbitrary inner and outer radd; anda may be con-
|n5 - 1) — 5 (Inx+1-x) (49 structed from the initial slop&43), the penetration fiel¢49),
and the saturation momei(®6), using them(H,) expres-
with p=(1—x)/(1+x)=w/(2R), x=a,/a=(2R—w)/(2R sions(9) and (12) for disks and narrow rings and the pre-
+w). Note that expresssiof9) containsno fit parameter scription (1) to generate the full hysteresis loop from the
and yields the correct limits for botk—0 andx—1. virgin curve. Alternatively, one can compute the magnetiza-

H[j”g 2
J.d
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a,/a=0.6. The upper plots show the Bean model
J.=const, and the Ilower plots the Kim model
Jo(B)=J.(0)/(0.8+|B|) with B in units uqJ.d. The applied
field is cycled sinusoidally, H,(t)=Hgsinwt with
w=2E./(unol.da). Shown are the virgin curves and hyster-
esis loops for amplitudebly/J.d=0.2, 0.6, 1, 1.5, and 2.
Note that even this wide ring exhibits almost parallelogram-
shaped hysteresis loops, which are typical for a narrow ring,
cf. Egs.(1) and(2).

With decreasing creep exponent the magnetization
curves become more rounded, and for1 they become
ellipses, as expected for an ohmic conductor with constant
resistivity. The computed magnetization curves and suscep-
tibilities exactly satisfy the scaling law of Sec. VI B.
Namely, the same curves result, e.g., if we increase the fre-
guency by a factor of 1000 and increase our field and current
units by a factor of 100"~ 1).

Forn>1 the upper and lower slightly curved parts of the
hysteresis loops can be calculated by assuming that the cur-
rent has saturated tJ|~J., see Sec. V. This yields
VXE%—Ba=2w,LLOHOCOSwt=i2w,u0(H§—Hg)llz, thus

FIG. 10. Theoretical magnetization curve¢H,) of a thin disk  |E(r,t)|=(r/2)|B4 =(r/2)opme(H5—H2Y2 With |J(r,t)]
(radiusa) with J;= const(top) and J.=J.(B)=J(0)/(0.8+|B|) =J.|E(r,t)/E.|*" one then obtains the magnetic moment of
(bottom), B is in units ueJ.d, m in units J.da®. Solid lines: Weak  the upper and lower branches m{H,),
creep,n=>51 (Bean and Kim mode)s Dashed lines: Strong creep,
n=5 in E(J,B)=E[J/J.(B)]". The curves fon=11 would lie in M(H,) =~ * Mgy 1—H2/HZ) MM (50)
the middle between the curvas=5 andn=51. The applied field is . . .
cycled sinusoidally, H,(t) =Hosinwt with w=2E./(uedda), With the saturation valuemg, from Eg. (25 with
starting at timet=0. The stationary hysteresis loop is reached be-B,=wugH, inserted. This approximation indeed fits the
fore the first cycle is completed. computed curves within line thickness in the interval

0<H_sgnH,)<H,. Its derivation shows that the slight de-
tion curves directly from Eqd9.30) to (32), considering also crease of the magnetic momem(H_,) following the steep
creep and a field dependei(B). increase of the virgin curve, is not an indication of flux creep
Such computed magnetization curves are depicted in Figgut is due to the decrease of the ramp Be= uoH, after
10 and 11 for the Bean limitn(=51) and for strong creep H_(t) has reached its maximutf.
(n=5) for the thin disk and a ring with radius ratio

D. Nonlinear susceptibilities

Figures 12 and 13 show the nonlinear susceptibilities
x(Hp)=x'—ix" obtained from the magnetization loops of
Figs. 10 and 11 for the disk and a ring for creep exponents
n=3, 5, 11, and 51 in the current-voltage la(J,B)
=EJJ/J(B)]". With decreasingn (increasing creep
x' (Hp) is reduced ang”(H,) enhanced at all ac amplitudes
Ho, and the maximum of”(H,) increases and is shifted to
lower Hy. Accounting for the decrease df(B) with in-
creasing local fieldB, also modifies the susceptibility, cf. the
dashed curves in Figs. 12 and 13: At large amplitudes
Ho>H, both x’ and " are reduced, while ned,, x' is
reduced bufy” enhanced, and the maximum pf (the dis-
sipation maximunis shifted to lower ac amplitudes.

VIIl. SUMMARY AND CONCLUSIONS

The magnetization curve and nonlinear ac susceptibility
of narrow type-ll superconductor rings in a perpendicular
field are derived for constant critical current densifyBean
mode), Eq. (20). This result is then generalizdd) to rings
of arbitrary hole diamete(b) to finite resistivity causing flux

FIG. 11. Same as Fig. 10 but for a thin ring with radius ratio creep,(c) to nonconstand.(B) (e.g., the Kim modeg| and
a,/a=0.6. (d) to thick rings and disks. The exact formulation of this
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FIG. 12. Nonlinear susceptibility(Hg)=x'—ix" of a disk.
Same case as in Fig. 10, but for creep exponert8, 5, 11, and
51. Hy is in units J.d. Solid lines: J.=const. Dashed lines:
Jo(B)=J,(0)/(0.8+|B|) with B in units uoJ.d. Top: x’ and x”
versus the ac amplitude Hy of  H,(t)=Hgsinwt,
w=2E_./(uoJ.da). Bottom: Polar ploty” versus— x'. The dashed
lines show the Bean limit for thin disks and narrow rings.

general problem is given in terms of an integral equation fol &y be

the current densityl(r,z,t) in thick rings (or disks, tubes,
cylinderg in axial applied fieldH 4(t), Eq. (28), and for the
sheet currend((r,t) in thin rings, Eq(30). As examples, the

current and field profiles, magnetization curves, and nonlins

ear susceptbilities of thin disks and rings in cyclég(t) are

computed, accounting also for flux creep and for field depen-

dent J.(B). Explicit expressions are given for the initial
slope(42), penetration field48), and saturation valu@5) of
the magnetization curve as functions of the hole radiys
and creep exponermt.

Inspection of the equation fal(r,z,t) reveals a scaling
law which states that for any current-voltage power-lBw
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FIG. 13. Same as Fig. 12 but for a thin ring with radius ratio
a,/a=0.6.

o'+ w/H), wherec=n—1 andf is a universal function
depending only on the geometry. This means thaty ()
for n—1 (Ohm) and y= x(Hy) for n—oo (Bearn).

The distribution ofB(r,t) andJ(r,t) inside a real, three-
dimensional type-Il superconductor calculated from 28),
used to compute the observed ‘“giant
magnetostriction*® or “suprastriction.”** This magnetome-
chanical effect is caused by surface screening currents and
the Lorentz force densiti3xJ exerted by the local current
densityJ on the flux lines and then transferred to the atomic
lattice via flux-line pinning. The method may also be used to
calculate the levitation force on cylindricédr any rotation-
ally symmetri¢ superconductors above or below a madhet,
and the frequency shift and damping of vibrating supercon-
ductors in a magnetic fieltf. The ac susceptibility of narrow
rings has recently been measured in d&t4fland closely fits
formula (20).
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