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Susceptibility of superconductor disks and rings with and without flux creep
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First some consequences of the Bean assumption of constant critical currentJc in type-II superconductors
are listed and the Bean ac susceptibility of narrow rings is derived. Then flux creep is described by a nonlinear

current-voltage lawE}Jn, from which the saturated magnetic moment at constant ramp rateḢa(t) is derived
for rings with general hole radiusa1 and general creep exponentn. Next the exact formulation for rings in a
perpendicular applied fieldHa(t) is presented in the form of an equation of motion for the current density in
thick rings and disks or the sheet current in thin rings and disks. This method is used to compute general
magnetization curvesm(Ha) and ac susceptibilitiesx of rings with and without creep, accounting also for
nonconstantJc(B). Typical current and field (B) profiles are depicted. The initial slope ofm(Ha) ~the ideal
diamagnetic moment! and the field of full penetration are expressed as functions of the inner and outer ring
radii a1 anda. A scaling law is derived which states that for arbitrary creep exponentn the complex nonlinear
ac susceptibilityx(H0 ,v) depends only on the combinationH0

n21/v of the ac amplitudeH0 and the ac
frequencyv/2p. This scaling law thus connects the known dependenciesx5x(v) in the ohmic limit
(n51) andx5x(H0) in the Bean limit (n→`). @S0163-1829~97!01921-8#
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I. INTRODUCTION

The magnetic momentm5 1
2*r3J(r )d3r of a type-II su-

perconductor is often calculated within the Bean mode1,2

which assumes that the current densityJ„r … cannot exceed a
critical valueJc , J5uJu<Jc . If J locally exceedsJc , the
flux lines will rearrange such thatJ<Jc again holds in the
entire superconductor. An additional assumption disrega
the reversible magnetization, or the finite lower critical fie
Hc1, by writing B5m0H inside ~and outside! the material.
Within this model,m depends only on the applied magne
field Ha and on the geometry, i.e., on the sample shape
on the orientation of the applied fieldHa . Being irreversible,
m depends on the history ofHa(t), but it does not depend
explicitly on the timet. This means the rateḢa(t) at which
the external field is increased or decreased does not ente
Bean model.

In experiments on high-Tc superconductors~HTSC’s! the
effects of flux creep often are not negligible. For examp
whenHa(t) is held constant, the magnetization may rel
and will thus depend on the timet. As a consequence, whe
Ha(t) is cycled, the predictions of the static Bean model m
be observed at very slow sweep rates, while at high sw
frequencies deviations occur due to flux creep. This find
may appear counterintuitive since creep effects are expe
to be more visible after longer time, i.e., at slow sweep ra
Our quanitative theory below explains this observation
terms of a scaling law which states that the same ac sus
tibility is obtained at higher sweep frequency if the swe
amplitude is increased accordingly. Within continuu
theory, flux creep effects originate from the nonzero resis
ity of HTSC’s occurring at sufficiently high temperature
and fields.

In this paper I investigate the influence of flux creep
the magnetization curves and nonlinear ac susceptibilitie
superconducting disks and rings in a perpendicular field
550163-1829/97/55~21!/14513~14!/$10.00
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Sec. II some general features of the static Bean model
listed. The magnetization curves following from the Be
model for some basic longitudinal and transverse geome
are compiled in Sec. III. The nonlinear ac susceptibility o
narrow ring is given in Sec. IV. Flux creep effects and t
saturation magnetization are discussed in Sec. V. Section
presents exact equations of motion for the current densit
thick disks and rings and for the sheet current in thin dis
and rings; it is shown how these equations can be solved
matrix inversion and time integration; numerical results a
approximate formulas are given for thin rings with arbitra
hole radius, namely, the initial slope of the magnetizat
curve and the field of full penetration in the Bean limit, fro
which approximate magnetization curves may be c
structed. The exact magnetization curves for thin disks
rings are presented in Sec. VII, considering also flux cre
and nonconstant critical current densityJc(B) for sinusoidal
applied fieldHa(t). From these hysteresis loops the nonli
ear ac susceptibilityx(H0)5x82x9 for disks and rings is
calculated. The main results are summarized in Sec. VII

As a particularly useful result, a scaling law is derived
Sec. VI B, which applies to any power-law current-volta
curveE}Jn (E is the electric field! and which states that fo
arbitrary creep exponentn5] lnE/]lnJ the susceptibility
x(H0 ,v) depends only on the combinationH0 /v

1/(n21) of
the sweep amplitudeH0 and sweep frequencyv/2p. This
scaling connects the well-known facts that in the ohm
(n51) or Bean (n→`) limits x depends only onv or
H0, respectively.

II. FEATURES OF THE BEAN MODEL

Several general features follow from the Bean assump
of a static and field-independentJc .

~i! WhenHa is cycled between2H0 and1H0 the virgin
curvem(Ha) ~with Ha increased from zero! determines the
full hysteresis loop ofm. The branchesm↓ andm↑ in de-
14 513 © 1997 The American Physical Society
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14 514 55ERNST HELMUT BRANDT
creasing and increasingHa read

m↓~Ha ,H0!5m~H0!22mSH02Ha

2 D ,

m↑~Ha ,H0!52m~H0!12mSH01Ha

2 D . ~1!

~ii ! Only the ratiosHa /Jc , andH0 /Jc enter in Eq.~1!.
For general time-dependentHa(t) one may write

m@Ha~ t !#5Jc l
4 f @Ha~ t !/ lJc#, ~2!

wherel is a characteristic length of the specimen andf is a
dimensionless function, see the examples below.

~iii ! As noted recently,3 for the Bean model the energ
dissipated in the superconductorUdiss follows from m(Ha)
not only for a complete hysteresis cycle, where it is w
known to beUdiss5m0rHadm5m0rmdHa , but for any
point on the curve m(Ha). The dissipated powe
P5dUdiss/dt>0 is

P5E jE d3r52m0Ḣa@m~Ha!2Ham8~Ha!# , ~3!

wherem85dm/dHa . With ]/]t5Ḣa]/]Ha one finds the
dissipated energyUdiss along the virgin curve by time inte
gratingP5dUdiss/dt5 j c*E d3r ,

Udiss5m0E
0

m~Ha!

H dm2m0E
0

Ha
m dH

5m0Ham~Ha!22m0E
0

Ha
m~H ! dH . ~4!

Formula ~4! means thatUdiss is twice the area between th
curve m(H) and the straight line connecting the orig
m5H50 with the pointm(Ha). It appears that the relation
~3! and ~4! are restricted to the case of constantJc ; they
were shown3 to apply to all the basic Bean examples in lo
gitudinal and transverse geometries listed below, but they
not apply to ohmic conductors. So far, I do not know
general proof.

~iv! In the Bean model the influence of the history
Ha(t) is partly erased whenHa is cycled with increasing
amplitude. In particular, for perodicHa(t) with slowly in-
creasing amplitude, a Bean superconductor of arbitrary
ometry ‘‘remembers’’ only the last cycle. It will be shown i
Sec. VI that this property approximately holds even wh
strong creep occurs.

~v! The magnetic momentm does not depend explicitly
on the timet. Therefore,m does not depend on the swee
rate or, ifHa(t) is periodic, on the sweep frequency and a
not on the shape ofHa(t) ~whether sinusoidal, square, tra
ezoidal, etc.!. This property applies even whenJc depends
on the magnetic fieldB. It just means that one considers th
static response and neglects flux creep.

~vi! The static Bean model follows when a nonline
current-voltage lawE(J) with a sharp bend atJ5Jc is as-
sumed. A simple such model is to take the limitn→` in the
power law
l

o

e-

n

E„J…5Ec ~J/Jc!
nJ/J ~5!

with J5uJu. This useful and realistic power law with finit
creep exponentn will be used below to investigate cree
effects, i.e., effects of finite resistivity.

When the exponent in Eq.~5! is n,`, the Bean proper-
ties ~i! to ~v! no longer apply. For 1!n,` the material law
~5! leads to flux creep, i.e., a nonlinear, approximately log
rithmic relaxation ofm(t) caused by a nonlinear diffusion o
magnetic flux with J-dependent diffusivityD(J)5E(J)/
m0J. With decreasing exponentn the creep becomes mor
pronounced. In the limitn51, Eq. ~5! describes an ohmic
conductor, which exhibits linear diffusion of flux and exp
nential relaxation ofm(t). Note that for generaln only the
combinationEc /Jc

n enters in Eq.~5!, and thusEc ~the volt-
age criterion! and Jc have no independent meaning. How
ever, in the Bean limitn→` only Jc matters and the choice
of Ec is irrelevant, while in the Ohmic limit
E/J5Ec /Jc5r is the constant resistivity andD5r/m0 the
usual flux diffusivity in ohmic conductors.

III. BEAN MAGNETIZATION CURVES
FOR BASIC GEOMETRIES

A. Slab, cylinder, strip, disk

For later reference I list some basic examples for virg
magnetization curves. A large superconducting slab of wi
2a and areaA, and a long cylinder with radiusa and length
l , in a parallel field have the magnetic moments1,2

mslab52Jca
2A~2h2h2! , ~6!

mcyl52pJca
3l ~h2h21h3/3! ~7!

for 0<h<1 with h5Ha /Hp , whereHp5Jca is the field of
full penetration. ForHa>Hp , or h>1, m stays constant
since the current density has saturated toJ5Jc in the entire
sample.

A thin strip4–7 of width 2a and lengthl@a and a circular
disk8–10 of radiusa, both with thicknessd!a, in a trans-
verse fieldHa have the magnetic moments

mstrip~Ha!52Jcda
2l tanhh , ~8!

mdisk~Ha!52Jcda
3
2

3 S cos21
1

coshh
1
sinhuhu
cosh2h D ~9!

for 0<h,` with h5Ha /Hc , whereHc5Jcd/p for the
strip andHc5Jcd/2 for the disk. The two curves~8! and~9!
differ by less than 0.012 if normalized to the same init
slopem8(0) and same saturation valuem(`), cf. Fig. 1,
where we plot the universal functionsf (x)5mstrip/
(2Jcda

2l ) with x5pHa /Jcd and f (x)5mdisk/
(2pJcda

3/3) with x58Ha /pJcd, which both exhibit
f 8(0)5 f (`)51 and almost coincide. The computed no
malized Bean magnetic momentmsquare(Ha) for a thin super-
conducting square3,11,12 differs frommdisk(Ha) by less than
0.002.

In the considered limitd/a→0, the transverse moment
mstrip(Ha) andmdisk(Ha) saturate only at infinitely large field
Ha . With finite thicknessd the magnetic saturation i
reached when the flux and current front, which is position
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55 14 515SUSCEPTIBILITY OF SUPERCONDUCTOR DISKS AND . . .
at xp5r p5a/coshh, has penetrated to a distance'd/2 from
the centerx50 or r50, i.e., toxp5r p'd/2. More precisely,
one finds from analytical calculations13 the penetration
fields14 for d!a,

Hp
strip5Jc

d

p F11 ln
2a

d G , ~10!

Hp
disk5Jc

d

2 F21 ln
2a

d G . ~11!

The prefactors in Eqs.~10! and ~11! are the above define
critical fields of strips and disks,Hc5Jcd/p and
Hc5Jcd/2. Above the penetration fields~10! or ~11! the
magnetic moment saturates to the valuesmsat

strip5Jcda
2l and

msat
disk5Jcda

3p/3.

B. Narrow ring

The cutoff problem forHp does not arise if the centra
part of the strip or disk is removed. The magnetic momen
the resulting double strip~with connected ends! or ring then
saturates naturally, with the penetration fieldHp and the
saturated magnetic moment depending on the width or ra
of the cut-out slit or hole. For the thin double strip the Be
magnetic momentm(Ha) in principle may be calculated b
conformal mapping as suggested in Ref. 6. For both
double strip and the ring the numerical method of Re
15–20 may be used to compute the flux penetration and
magnetic moment, cf. Sec. VI.

First I discuss the limit of a thin narrow ring with widt
w much smaller than the mean radiusR,
a15R2w/2<r<R1w/25a. The virgin magnetization
curve of such a ring is composed of two straight lines,

FIG. 1. Bean magnetization curvesm(Ha) for a thin strip@Eq.
~8!# and disk@Eq. ~9!#, and for rings with radius ratiosa1 /a50.4,
0.6, 0.8, 0.9, and 0.95 in perpendicular fieldHa . The curves are
normalized to unity initial slope and unity saturation value by pl
ting m(Ha)/msat versus Ham8(0)/msat. Also shown is
m(Ha)/msat for long slabs@Eq. ~6!# and cylinders@Eq. ~7!# in par-
allel field, plotted versusHa /Hp to avoid crossing of curves. Th
inset showsm(Ha) for these rings and the disk in constant un
msat
disk5pJcda

3/3 form andJcd for Ha , which show how the mag-
netic saturation is reached earlier with increasing hole radiusa1.
The ring data were computed using a creep exponentn5101.
f

us

e
.
he

mring~Ha!52~Ha /Hp
ring!msat, Ha<Hp

ring ,

mring~Ha!52msat, Ha>Hp
ring . ~12!

This is so since the screening supercurrent in the ring
limited to a maximum valueI c5Jcdw. As long as the cur-
rent I induced in the ring by the applied fieldHa is
uI u,I c , no magnetic flux can penetrate through the ring in
the hole of the ring. WhenuI u5I c is reached, the ring be
comes transparent to magnetic flux. Therefore, when the
plied field is increased further, flux lines will move throug
the ring as described in Refs. 6 and 7, which treat the su
conducting strip with transport current in an applied fie
see also the flux profiles in Fig. 10 below. The flux lin
transport magnetic flux into the ring hole until the screen
current has decreased again to the valueI c . The magnetic
momentm5pR2I of the ring thus saturates to the value

umu<msat5pR2I c . ~13!

The applied field valueHp at which this saturation is reache
follows from the inductivityL of the flat ring,21

L5m0RS ln8Rw 2cD ~14!

wherec51/2. For comparison, the inductivity of a ring mad
of a wire with diameterw!R is also given by formula~14!
but with c52.22,21Our computation in Sec. VII finds that fo
a flat superconducting ring one actually hasc50.614 in for-
mula ~14!. This is so because the resultc51/2 assumes uni-
form current density across the ring, while the real curr
distribution is peaked at the edges of the ring.6,7 In the limit
w!R the sheet currentJs in a superconducting ring behave
as in a straight thin strip,Js(r )5(I /p)(w2/42x2)21/2 with
x5r2R. Therefore, when flux penetrates the conductor o
flat ring, the constant decreases fromc50.614522 ln4 at
Ha50 to c51/2 ~or c50.307512 ln2, see Sec. VII B! at
Ha>Hp

ring . For simplicity one may putc'1/2 in the next
three formulas.

The magnetic flux generated in the ring hole by a ri
currentI is f5LI . As long asI,I c one has ideal screening
thusf52pR2m0Ha . Equating these two fluxes one obtain
for the flat ring

I5f/L52
pR

ln~8R/w!2c
Ha . ~15!

At Ha5Hp one has reacheduI u5I c5Jcwd, thus

Hp
ring5

ln~8R/w!2c

pR
I c . ~16!

The slope ofm(Ha) for Ha,Hp is therefore

mring8 ~0!52
msat

Hp
ring52

p2R3

ln~8R/w!2c
. ~17!

Comparing this with the ideal diamagnetic moment of t
disk obtained from Eq.~9!,

mdisk8 ~0!528a3/3 , ~18!

-
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14 516 55ERNST HELMUT BRANDT
one finds the remarkable result that a ring has a slig
smaller ideal diamagnetic moment than a disk of the sa
outer radiusa5R1w/2@w, although the flux expelled from
the ring and disk is the same,pa2m0Ha .

The initial slopemring8 (0) and the penetration fieldHp
ring

are computed below in Sec. VII for superconducting rin
with arbitrary inner radius 0<a1,a. The results, depicted in
Figs. 2 and 3, show that the expressions~16! with
c50.307512 ln2 and ~17! with c50.614522 ln4 are ex-
cellent approximations with a relative deviation of less th
2% for a1 /a.0.8. Figure 1 shows that the magnetizati
curves of wide rings are no longer straight lines but
slightly curved and merge with the curve for the disk wh
a1→0.

IV. SUSCEPTIBILITY OF NARROW RINGS

With the prescription~1! the virgin magnetization curve
~12! yields hysteresis loops in the shape

FIG. 2. The initial slopem8(0) of the magnetization curve of
nonlinear conductor or a superconductor ring versus the r
x5a1 /a of the inner and outer radius. This is also the magne
moment of an ideal diamagnet in unit applied field. The dots den
the computed values, see Table I. The dotted and dashed lines
the approximations~42! for small and largex.

FIG. 3. The field of full penetrationHp of thin superconductor
rings in the Bean model with constant critical current densityJc
plotted versus the ratiox5a1 /a of the inner and outer radius. Th
dots denote the computed values, see Table I. The dashed
show the approximations~48! for small and largex, and the solid
line the expression~49!.
ly
e

s

n

e

parallelograms.23–25 From these loops one obtains the com
plex susceptibilityx5x82 ix9 of a superconducting narrow
ring with constant Jc . For cycled magnetic field
Ha(t)5H0sin(vt) one may define26,27

x~H0!5
v

pH0
E
0

2p

m~ t ! e2 ivt dt . ~19!

Note that thisnonlinearsusceptibility does not depend on th
frequencyv/2p if m(t) is taken from the Bean model, but
depends on the sweep amplitudeH0. In contrast, thelinear
susceptibility of an ohmic conductor or of any conduct
with linear complex resistivity~e.g., a superconductor abov
the depinning line! depends onv but not onH0. One may
also consider the higher harmonic responsesxn ,
n52,3,4, . . . , by replacing in Eq. ~19! exp(2ivt) by
exp(2invt). Here I shall consider the fundamental respon
x5x1(H0) and the strongest harmonicsx3(H0). The sus-
ceptibilities xn(H0) for thin disks are given by Clem an
Sanchez.10

From Eqs.~1!, ~12!, and~19! one obtains the susceptibi
ity of the ring normalized to the initial valuex(0)521, i.e.,
to x→x/um8(0)u,

x8~h!521, x9~h!50, h<1,

x8~h!52
1

2
2
1

p
arcsins2

1

p
s A12s2 ,

x9~h!5
4

p

h21

h2
5
12s2

p
, h>1, ~20!

with h5H0 /Hp ands52/h21, see Fig. 4~top!.
Interestingly, with the ring susceptibility~20! the polar

plot x9 versusx8 with h as a parameter issymmetric, i.e.,
x9(x8) yields the same curve asx9(212x8). Figure 4~bot-
tom! shows these polar plots for the ring and for the disk a
strip. The maximum of the dissipative part of the ring su
ceptibility xmax9 51/p50.318 occurs ath52 ~at s50).
For large amplitudesh5H0 /Hp@1 one has x8(h)
'21.69/h3/2 andx9(h)'4/ph.

The x(H0) for disks and strips differ by less than 0.01
(x8) or 0.0043 (x9), andx(H0) for thin squares and disk
differ by less than 0.001. The maximumxmax9 50.240 771
~0.236 466! for the disk ~strip! occurs at x58H0 /
pJcd52.4738 orx5pH0 /Jcd52.4642; for these field units
see the discussion below Eq.~9!. For large amplitudes
x@1 one hasx8'1.910/x3/2 (1.930/x3/2) for disks ~strips!
andx9'4/px for both. This means that the large amplitud
behavior ofx(H0) is very similar for rings, disks, and strips
if the amplitudeH0 is expressed in the reduced units of Fi
1, which yield unity initial slope and unity saturation o
m(Ha).

A further remarkable property of the ac response o
narrow ring within the Bean model is that the absolute va
of x3 is related to the dissipative part ofx, Eq. ~20!, by
ux3(H0)u5

1
3x9(H0). This exact coincidence was also note

by Ishida and Mazaki,24 who proved it theoretically and
found nice agreement with experiments. For higher harm
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ics n55, 7,..., a similar relationship does not apply. We w
see in Sec. VIII below that this property is lost when flu
creep is allowed for.

For comparison with the Bean limitn→` shown in Fig.
4, the complex susceptibility for disks and various rings
depicted in Fig. 5 for finite creep exponentsn53, 5, 11, 51,
and 201. These curves were computed by the method of
VI using the current-voltage power law~5! and
v52Ec /(m0Jcda). Note that with increasing hole radiu
a1, a bend develops in the curvesx8(H0), x9(H0), and
x9(2x8) atH0'Hp . This bend is sharpest in the Bean lim
n→` but it dissapears for strong creep,n<5. The tiny
wiggles ofx8 andx9 at H0!Hp are artifacts caused by th
spatial grid used for the computation, but the bends n
Hp are real. At small amplitudesH0,Hp , x8 and x9 for
rings with finite width deviate considerably from the narro
ring Bean limit (x8521, x950) even for largen.

V. EFFECTS OF FINITE RESISTIVITY

Within a continuum description the phenomenon of fl
creep is caused by the finite resistivity of the supercondu
or of any conductor with a nonlinear current-voltage cur

FIG. 4. Top: Real and imaginary parts of the complex susce
bility x(H0)5x82 ix9 of thin strips, disks, and rings with variou
radius ratiosa1 /a plotted versus the amplitudeH0 of the ac field in
the Bean model with constantJc . The unit ofH0 is Jcd/p for the
strip andpJcd/8 for the disk. For ringsH0 is in units of a penetra-
tion fieldHp8'Hp which gives best fit to the sharp rise in the ide
ring x9: Hp8/Jcd50.126 ~0.210! for a1 /a50.9 ~0.8!, while from
Table I one hasHp /Jcd50.136 ~0.239!. For a1 /a→1 one finds
Hp8/Hp→1. Bottom: Polar plots of the samex5x82 ix9. For the
narrow~not necessarily thin! ring x8 andx9 @Eq. ~20!# are discon-
tinuous atH05Hp and the polar plot is symmetric.
s

ec.

ar

or

E(J) with positive curvature. VariousE(J) laws were sug-
gested based on microscopic models. For example, the
lective creep28 and vortex glass pictures29 yield a current-
density-dependent activation energy for thermally activa
depinning,

U~J!5U0@~Jc /J!a21#/a ~21!

with a.0.28–30 Inserting this into the Arhennius law

E~J!5Ecexp@2U~J!/kT# ~22!

one obtains a highly nonlinear resistivityr(J)5E(J)/J. In
the limit a!1, Eq. ~21! becomesU(J)'U0ln(Jc /J), yield-
ing with Eq. ~22! E(J)5Ecexp@2U(J)/kT#5Ec(J/Jc)

U0 /kT.
This is the power law, Eq.~5!, with n5U0 /kT. Such a
power law, or a logarithmicU(J), or a small glass exponen
a!1, is often observed in experiments.

The power law ~5! is very convenient for analytica
calculations31–36and for computations.3,14–21In creep experi-
ments where the ramping ofHa(t) is stopped at timet50
one obtains after some transient timet the universal
relaxation33–36 E}(t/t)n/(n21)'t/t and m(t)}J
}(t/t)1/(n21)'12@1/(n21)# ln(t/t) if n@1. In the ohmic
limit n51 one hasm(t)}J}E}exp(2t/t).

In Eq. ~5! general dependencesJc5Jc(B) andn5n(B)
are allowed. Of course, further dependences on tempera
and on any other spatially constant parameter are also
lowed, as in the original Bean model. Static (n→`) exten-
sions of the Bean model toJc5Jc(B) have often been
considered,2,37 but also dynamic computations with cree
using Eq.~5! with n,`, present no difficulty.18,19Supercon-
ductors with inhomogeneous pinning, produced, e.g., by p
tial irradiation, are easily modeled by using a space dep
dentJc(r ).

19,20

One can easily calculate the fully penetrated state wh
is reached after sufficiently long timet→` during constant
ramp rateḢa . In this stationary state the current has sa
rated, thus the current-caused magnetic field does not ch
any more, and the electric fieldEsat follows from
¹3Esat52Ḃ52Ḃa , whereBa5m0Ha . This very general
law applies to any geometry and specimen shape. For d
and rings this means

Esat5ŵḂa

r

2
, ~23!

whereŵ is the azimuthal unit vector andBa5m0Ha . From
the current-voltage law ~5!, which inverted reads
J5Jc (E/Ec)

1/nE/E, one obtains with Eq.~23!

Jsat5ŵS Ḃaa

2Ec
D 1/nS r

a
D 1/n. ~24!

The saturated magnetic moment of a ring with outer rad
a, inner radiusa15a2w, and thicknessd is thus

umu<msat5dpE
a1

a

r 2J~r ! dr , ~25!

i-
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FIG. 5. ~a! Top: Real and imaginary parts of the nonlinear complex susceptibilityx(H0)5x82 ix9 of a thin disk plotted versus the a
amplitudeH0 for various creep exponentsn53, 5, 11, 51, and 201 inE5Ec(J/Jc)

n with constantJc . H0 is in unitsJcd. Bottom: Polar plots
of the samex5x82 ix9. The dashed line shows the Bean modeln→` for the disk.~b! Same as~a! but for a wide ring with radius ratio
a1 /a50.4. ~c! Ring with a1 /a50.6. ~d! Ring with a1 /a50.9. The dashed curves showx8 and x9 for the narrow Bean ring with
a1 /a→1 and for the disk; for the field units see the caption of Fig. 4.
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msat5
p n

3n11
Jca

3dF12S a1
a
D 31~1/n!G S Ḃaa

2Ec
D 1/n.

In the Bean limitn→` the first factor in Eq.~25! reduces to
p/3 and the last factor becomes unity, i.e., the ramp r
Ḃa and voltage criterionEc do not enter. One then obtain
the well-known exact Bean result

msat5
p

3
Jcd~a32a1

3!5pR2I cS 11
3w2

4R2D , ~26!

cf. Eq. ~13! and Fig. 1. When flux creep is considere
(n,`), the saturation value~25! is reduced or enhance
with respect to the Bean limit, depending on whether
ramp rate Ḃa is less than or larger than the valu
@31(1/n)#n2Ec /a. However, this criterion depends on th
voltage criterion and thus on the definition ofJc5J(Ec). In
principle,Jc may be defined such thatmsat/Jc stays indepen-
dent ofn or of Ḃa . Moreover, I will show in Sec. VI B that
the basic equations of this problem and thus all its solutio
are invariant with respect to the simultaneous change of
scales of time by a factorC, and of current and magneti
field by a factorC1/(n21).

As shown in Ref. 14, the magnetic saturation is reac
exponentially in time,

msat2umu}exp~2t/t! ,

t5const~m0Jca/nḂa!~Ḃaa/Ec!
1/n, ~27!

where const;1 follows from an eigenvalue problem. Th
means that in spite of creep the saturation typically
reached quite fast when the ramp rate is constant.

We will see in Sec. VII C that whenBa(t) is cycled
sinusoidally, the magnetic momentm(t) starts to decreas
already before Ba(t) has reached its maximum. Thisde-
crease of um(t)u during increasing applied field
Ba(t)5B0sinvt was ascribed to flux creep, which dominat
when the ramp rateḂa(t)5B0vcosvt becomes sufficiently
small. However, a more appropriate quantitati
interpretation38 ascribes this decrease ofumu to the decreas-
ing ramp rateuḂau. Namely, when the current densityJ has
nearly saturated, the electric field decreases like the ra
rate, uEu'u(r /2)Ḃau, thus alsouJu5JcuE/Ecu1/n decreases
andm5m(Ḃa) is given by the ramp-rate-dependent satu
tion value, Eq.~25!.

VI. EXACT FORMULATION FOR RINGS

A. Equation of motion for J

The equation of motion for the current densityJ(r ,t) in
disks and rings in an axial magnetic fieldBa(t) is obtained
by generalizing the expressions for disks of finite thicknes14

or for thin disks17–20 with d!a. For thick rings with
a1<r<a, 2d/2<z<d/2 this equation reads
te

e

s,
e

d

s

p

-

J̇~r ,t !5m0
21E

a1

a

dr8E
0

d/2

dz8 Q~r,r 8!21f ~r 8,t ! ,

f ~r ,t !5J~r ,t !n
Ec

Jc
n2

r

2
Ḃa~ t ! . ~28!

Here r5(r ,z), r5(x21y2)1/2, f (r ,t) is the electric field
which drives the current~the emf induced by the varying
applied field, minus the voltage drop!, andQ(r,r 8)21 is the
inverse of the~negative! integral kernel

Q~r,r 8!5q~r ,r 8,z2z8!1q~r ,r 8,z1z8! ,

q~r ,z!5E
0

pdw

2p

r 8cosw

~z21r 21r 8212rr 8cosw!1/2
. ~29!

The inversion of this kernel may be acieved by tabulating
on a two-dimensional grid and inverting the resultin
matrix.14 The flux and field profiles and magnetizatio
curves for disks computed from Eq.~28! look very similar39

to the results for superconducting bars with the same rec
gular cross sectiond32a in a perpendicular field, which are
depicted in Ref. 14.

For thin disks and rings withd!a one may average
J(r ,z) over the specimen thickness, defining the sheet c
rentJs(r )5*2d/2

d/2 J(r ,z)dz. The equation of motion~28! then
reduces to an equation forJs(r ,t) in a ring,

J̇s~r ,t !5m0
21E

a1

a

dr8 Q~r ,r 8!21f s~r 8,t ! ,

f s~r ,t !5Js~r ,t !
n

Ec

~Jcd!n
2
r

2
Ḃa~ t ! , ~30!

whereQ(r ,r 8)21 is the inverse of the kernel~29! taken at
z5z850,

Q~r ,r 8!5E
0

pdw

p

r 8cosw

~r 21r 8212rr 8cosw!1/2
. ~31!

The equations of motion~28! and ~30! are very convenient
for the calculation of the penetration and exit of flux b
starting withBa50, J50, and then increasingBa(t) either
with constantḂa or by cyclingBa(t). If Ba(t) is held at a
constant value, genuine flux creep can be calculated f
Eqs. ~28! and ~30! over many decades in the timet.3 Exact
solutions have been obtained for flux creep34–36 and for the
linear ac response during flux creep in longitudinal40 and
transverse41 geometries.

Note that all these computations of the current dens
J(r ,z,t) or sheet currentJs(r ,t), and the calculation of the
magnetic moment of the disk or ring,

m5pE
a1

a

dr r 2E
2d/2

d/2

dz J5pE
a1

a

dr r 2 Js , ~32!

did not require computation of the magnetic field. Th
means no spatial derivatives have to be computed, and fi
outside the specimen do not enter and thus do not have t
cut off or fit to some boundary conditions at some artific
far-away boundary. In our method all integrations are
stricted to the current-carrying specimen volume. T
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method is thus very effective both for numerical compu
tions and for analytical calculations, see Refs. 14,15,
34,36,41.

After the currents have been calculated from Eqs.~28! or
~30!, the magnetic field inside and outside the specimen
be obtained by the Biot-Savart law. WritingB5rotA1Ba

with A5ŵA(r ,z), one gets the componentsBz5]A/
]r1A/r1Ba andBr52]A/]z with

A~r !52m0E
a1

a

dr8E
0

d/2

dz8 Q~r,r 8!J~r 8! . ~33!

For a thin disk or ring one has at the surfacesz56d/2!a
the field componentsBz5]A(r ,0)/]r1A(r ,0)/r1Ba and
Br57Js(r )/2 ~since the jump of the parallel compone
Br equals the sheet currentJs) with

A~r !52m0E
a1

a

dr8 Q~r ,r 8!Js~r 8! . ~34!

B. Scaling of frequency and amplitude

When a power law is assumed for the current-volta
curve,E}Jn or r5E/J}Js with s5n21, cf. Eqs.~5! and
~22!, then the equations of motion~28! and~30! for the cur-
rents in thick and thin disks or rings~and in all other geom-
etries! possess a remarkable scaling property. Namely, w
one changes the time units by a constant factor ofC and the
current and field units by a factor ofC1/s, wheres5n21,
then these equations are invariant, i.e., the same solu
result for these scaled quantities. Explicitly, if the equat
for the current densityJ(r ,t) is expressed in terms o
t̃5t/C then the new functions

J̃~r , t̃ !5J~r ,t !C1/s, B̃a~ t̃ !5Ba~ t !C
1/s ~35!

satisfy the same equation of motion. The resulting magn
field B̃ and magnetic momentm̃ scale by the same factor a
J,

B̃„r , t̃ )5B„r ,t)C1/s, m̃~ t̃ !5m~ t !C1/s . ~36!

In particular, for periodicBa(t)5B0sinvt, the resulting com-
plex susceptibility x(B0 ,v) normalized to x(0,v)
5x(B0 ,`)521, i.e., to the ideal diamagnetic limit occu
ring at zero amplitude or infinite frequency, remainsun-
changedif one increases, e.g.,v by a factor of 10 andB0 by
a factor of 101/s. The resulting magnetic moment is the
larger by the same factor of 101/s as is also the applied field
Ba . Therefore, the shape of the hysteretic magnetiza
curve M (Ba) remains unchanged and also the polar pl
x9(x8) of x5x82 ix9.

For periodicBa(t) this scaling law states that the norma
ized x(B0 ,v) and the shape of the hysteresis loopm(Ba),
depend only on the combinationB0 /v

1/s or onv/B0
s . This

general statement connects the two limiting cases of oh
conductors, exhibitings50 and thusx5x(v), and of Bean
superconductors, exhibitings→` and thusx5x(B0).
-
7,

n

e

n

ns

ic

n
s

ic

C. Computational method

From Eqs.~30! to ~34! one may compute the sheet cu
rent, the irreversible magnetization curves, and the magn
field in and around thin disks and rings with material law
B5m0H and E5Ec uJ/JsunJ/J ~5! in a perpendicular
Ba(t). Since these equations are one dimensional in sp
the numerical program is very fast and accurate if the f
lowing tricks are considered

~i! For the spatial integration a nonequidistant gridr i may
be chosen which has vanishing spacing~or vanishing
weightswi5dri /di) at the inner and outer edgesr5a1 and
r5a, e.g., r i5a11(3ui

222ui
3)(a2a1), wi56 ui(1

2ui)(a2a1)/N, with ui5( i2 1
2)/N, i51,2, . . .N, N'10 to

100. For the computation ofJs(r ) only grid points inside the
ring are required,a1<r i<a. The subsequent computation o
Bz(r j ) may also use grid points in the ring hole and outs
the ring in the planez50. In principle, Bz(r ,z) and
Br(r ,z) may be calculated also outside the disk plane
using a two-dimensional gridr j5(r ,z) j and the kernel
Q(r,r 8) ~29!.

~ii ! Integrals over any function defined in the interv
a1<r<a may be evaluated as a weighted sum, e.g., writ
f i5 f (r i) andFi5F(r i),

E
a1

a

Q~r i ,r 8! f ~r 8! dr8'(
j51

N

Qi jwj f j5Fi . ~37!

~iii ! When tabulated on the gridr i the kernelQ(r ,r 8)
becomes a two-dimensional matrixQi j5Q(r i ,r j ). The in-
verse kernelQ(r ,r 8)21 is the inverse of this matrix if equi-
distant grid points~constant weightswi) are used. For a gen
eral grid one has to invert this matrix times the weigh
wi , (Q

21) i j5(Qi jwj )
21 as can be seen by inverting Eq

~37!,

f i5(
j51

N

~Qi jwj !
21F j . ~38!

~iv! The time stepdt used for the time integration ofJ̇
should be chosen asdt5c1 /@max(r)1c2#, where
r5E/J5(Ec /Jc) uJ/Jcun21 andc1 andc2 are constants. A
finite c2 is required to limit the time step at the mome
when the ramp rateḂa(t) changes sign.

D. Current and field profiles

Figures 6 to 9 show the sheet currentJs(r ) and the cor-
responding magnetic field profilesB(r )5Bz(r ) in the speci-
men planez50, computed for the thin disk (a150) and for
a wide (a1 /a50.4) and a narrow (a1 /a50.8) ring. Shown
are the Bean limit (n5101, Fig. 6! with Jc5const in increas-
ing ~Fig. 6! and decreasing~Fig. 9! field Ba . Also shown is
an example with field-dependent critical curre
Jc(B)5Jc(0)/(0.81uBu) ~Kim model, Fig. 7,Js andB/m0
in units Jcd) and one case with strong creepn59 ~Fig. 8!.
Note that in Fig. 9 in decreasingBa(t) theJs profiles~but not
theB profiles! nearly coincide with theJs profiles of Fig. 6
in increasingBa(t), multiplied by22 and then shifted up by
1Jc , as it should be in the Bean model,1,2,5,9 see also Eq.
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~1!. For stronger creep~Fig. 8! the corners of theJs profiles
become rounded but not theB profiles.

VII. MAGNETIZATION CURVES

A. Initial slope

The initial slope of the magnetization curvemring8 (0) with
the limits ~17! (a1 /a→1) and~18! (a1 /a→0), for arbitrary
radius ratioa1 /a may be directly obtained from the inverte
matrix Q(r ,r 8)21 in the following way. Inverting Eq.~34!
with the applied vector potentialA52rBa/2 inserted, one
obtains the sheet current which idealy screens the app
field Ba5m0Ha from the ring~more precisely, it shields the
perpendicularflux from the hole of the ring and the perpe
dicular field from the ring material!,

Js
ideal~r !52

1

2
HaE

a1

a

dr8 Q~r ,r 8!21r 8 . ~39!

FIG. 6. Profiles of the sheet currentJs(r ) ~top! and the perpen-
dicular magnetic fieldB5Bz(r ) in the specimen plane~bottom! in
a disk and in rings with radius ratiosa1 /a50.4 and 0.8 during flux
penetration in an increasing applied fieldHa(t). The ten depicted
curves are forHa /Hp50.1,0.2,. . . ,1 with the penetration field
Hp52Jcd for the disk chosen arbitrarily andHp50.6699Jcd
(0.2389Jcd) for the two rings taken from Table I. Bean model wi
Jc5 const,n5101,Js is in unitsJcd andB in unitsm0Jcd. A grid
of 40 nonequidistant pointsa1,r i,a was used.
ed

Inserting this into Eq.~32! one obtains the magnetic mome
of ideal superconducting thin rings and disks divided
Ha ,

mring8 ~0!52
p

2Ea1
a

drE
a1

a

dr8 r 2Q~r ,r 8!21r 8 . ~40!

In terms of a discrete gridr i with weightswi one may write
this explicitly as

mring8 ~0!'2
p

2(i , j r i
2wi~Qi jwj !

21r j . ~41!

Evaluating this double sum as a function of the radius ra
a1 /a of the ring one obtains the limits~18! for full disks and
~17! for narrow rings, and the values between these lim
Denoting the ratio of the inner and outer radius
x5a1 /a one gets the explicit formulas,

m8~0!

2a3
'5

8

3
~12 1

9 x
520.21x10!, x<0.95

p2

8

~11x!3

ln4S 11x

12xD20.614

, x>0.9.
~42!

The expressions~42! describe the correct limitsx!1 and
12x!1; their relative error is,0.001 for x,0.9 and
,0.01~0.003, 0.001! for x.0.9 ~0.95, 0.975!, cf. Fig. 2 and

FIG. 7. Same as Fig. 6 but for field-dependent critical sh
current Js(B)5Js(0)/(0.81uBu) ~Kim model! with Js and
H5B/m0 in units Jcd.
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Table I. The excellent fit over many decades suggests
the factor 120.111x5 in Eq. ~42! presents the exact limiting
behavior forx!1, which should be derivable analytically
Also it seems likely that the exact value of the constant 0.6
should be 22 ln450.614. A general interpolation formul
with relative error ,2% for all radius ratios
0<x5a1 /a,1 is

mring8 ~0!

2a3
5
2.06415.351x12.456x3.5

lnF16S 11x

12x D G22

. ~43!

Note that the initial slopem8(0) does not depend on th
creep exponentn as long asn.1: The nonlinearity ofE
}Jn guarantees that in the limit of smallHa , and thus small
J, any nonlinear conductor is an ideal conductor wh
screens perfectly.

B. Field of full penetration

The computation of the field of full penetrationHp
ring for

rings with arbitrary radius ratio 0<x5a1 /a,1 and finite
creep exponentn requires time integration of Eq.~30!. Using
constant ramp rateḂa and a large creep exponentn@1 one
is still left with some arbitrariness in definingHp since for
finite n the magnetic saturation is reached only gradually,
Eq. ~27!. One possible definition ofHp by monitoring the
vanishing spatial variation of the current densityJ(r ,t) was

FIG. 8. Same as Fig. 6 for constantJc and constant ramp rat

Ḃa52Ec /a but for finite creep exponentn59.
at

4

e

used in Ref. 14. Here I use a slightly different definition
terms of the magnetization curvem(Ha). The computed
function f (Ha)5 ln(]m/]Ha) performs a rather sharp ben
from a nearly horizontal line atHa<Hp , where
]m/]Ha'm8(0), to a steeply decreasing straight line
Ha.Hp , which reflects the exponentially decreasing slo
of m(Ha), Eq. ~27!. Here I defineHp as theHa value at this
bend.

To obtain the Bean limitn→` by this method I used
n5200 and Ḃa52Ec /a, or Ḃa51 in units a52Ec

5Jcd51. The penetration fieldHp
ring computed in this way

is in good agreement~relative error,1%) with the exact
value obtained directly from the integral kernelQ(r ,r 8) in
the following way.

Looking at the profiles of the perpendicular magnetic fie
Bz(r ) in the ring planez50 during increase of the applie
field Ha , Fig. 6, one notes that magnetic flux enters the r
material from the outer and inner edges. As long as the p
etrating flux fronts~which in this transverse geometry exhib
vertical slopes4–8! have not yet met, there is a field-free zon
with Bz50 between these two fronts. WhenHa has reached
the valueHp

ring , the flux fronts meet atr5r p and the sheet
currentJs saturates to the valueJcd. At this moment, there is
still no flux in the circular zoner<r p , thus,

E
0

r p
2prBzdr52pr pA~r p!1pr p

2Bp50 . ~44!

FIG. 9. Same as Fig. 6 but in applied field decreasing w
constant ramp rate fromHp to 2Hp in steps of 0.2Hp .
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Here I usedrBz5](rA)/]r1rBa andBa5Bp5m0Hp . The
current-caused vector potentialA(r ) in the planez50 is
given by Eq.~34! with Js(r )5Jcd5const inserted. Thus we
get the condition for flux conservation,

Hp

Jcd
52

2

r Ea1
a

Q~r ,r 8! dr8 at r5r p . ~45!

In order to determine the two unknown variablesHp and
r p we need a second equation, e.g., the condit
Bz(r p)50, which is obvious when the flux fronts meet
r5r p . We note in passing that one hasBz(r p)50 for

TABLE I. The initial slopemring8 (0) @Eq. ~40!# of the magneti-
zation curve of a thin superconducting ring, the field of full pe
etrationHp @Eq. ~45!# of this ring in the Bean model, and the pe
etration radiusr p where the flux fronts meet in the ring, as functio
of the ratioa1 /a of the inner and outer radius.

a1 /a 2@m8(0)/a3# Hp /Jcd rp /a

0.005 2.6667 2.8825 0.00583
0.010 2.6667 2.5359 0.01166
0.025 2.6667 2.0777 0.02913
0.050 2.6667 1.7309 0.05830
0.100 2.6667 1.3833 0.11639
0.150 2.6667 1.1790 0.17439
0.200 2.6666 1.0328 0.23210
0.300 2.6659 0.8235 0.34617
0.400 2.6634 0.6699 0.45782
0.500 2.6561 0.5452 0.56609
0.600 2.6381 0.4365 0.66984
0.700 2.5977 0.3365 0.76765
0.800 2.5089 0.2389 0.85762
0.850 2.4283 0.1888 0.89890
0.900 2.2998 0.1360 0.93693
0.950 2.0682 0.0776 0.97112
0.980 1.7851 0.0365 0.98925
0.990 1.6030 0.0204 0.99479
0.995 1.4488 0.0113 0.99744
0.999 1.1770 0.0028 0.99950
e

n

Ha<Hp and, since the current has saturate
Bz(r p)5Ha2Hp for Ha>Hp . Using Bz5(1/r )(]/
]r )(rA)1Ba and the expression~34! for A(r ) with
Js5Jcd at r5r p whenBa5m0Hp , one obtains the secon
condition,

Hp

Jcd
52

1

r

]

]r
r E

a1

a

Q~r ,r 8! dr8 at r5r p . ~46!

Instead of calculatingHp and r p from Eqs.~45! and ~46! I
use a more elegant, accurate, and faster way of maximizi
function which has its maximum valueHp at r5r p .
Namely, one can show that Eq.~46! is equivalent to the
condition (]/]r )(1/r )*Q(r ,r 8)dr850 when Eq.~45! holds.
Therefore, one may obtain bothHp andr p for the ring in the
Bean state in one step from the maximum problem

Hp
ring5maxS 2

2

r Ea1
a

Q~r ,r 8! dr8 D Jcd . ~47!

The resultingHp values~Table I, Fig. 3! agree well with the
limiting expressions forx5a1 /a!1, obtained by putting
d'5a1 in Eq. ~11!, and forx'1, Eq. ~16!.

Very accurate fits with relative error,1025 for
a1 /a>0.999 are obtained if in Eq.~16! the constantc, which
in the discussion following Eq.~14! was chosen to equa
1/2, is chosen asc50.307512 ln2. The reason for this dif-
ferentc value is the ambiguity of the definition of the sel
inductivity L of a ring:42 The constantc51/2 is obtained
when one definesL via the energy12LI

2 of the currents in a
flat ring with constant current densityJ5Jc ; this yields for
L a double integral over the ring widthw since all circular
current paths interact with each other. However, in
present problem of finding the field of full penetration,
different definition ofL is appropriate, namely, via the flu
f5LI in the ring as mentioned before Eq.~15!. The radius
of the circle inside which this flux is enclosed, depends
the specific problem. Here it means the radiusr p at which
the two flux fronts meet. For narrow rings one h
r p5R5a2w/2. This definition ofL requires a single inte-
gral over the ring width and yieldsL5f(R)/I
5m0@ ln(16R/w)21 #, i.e., Eq.~14! with c512 ln2.

Explicitly I find the limits
Hp
ring

Jcd
'H 1

2
~2 lnx10.467!, x<0.6

~2/p!S 12x

11x D S ln4S 11x

12x D20.307D , x>0.8,

~48!
gs

-
e
za-
with relative error,1%. A good interpolation to the entir
range 0<x,1 with relative deviation,2% is

Hp
ring

Jcd
'
2p

p S ln8p21D2
1

2
~ lnx112x! ~49!

with p5(12x)/(11x)5w/(2R), x5a1 /a5(2R2w)/(2R
1w). Note that expresssion~49! containsno fit parameter
and yields the correct limits for bothx→0 andx→1.
C. Computed magnetization curves

Approximate Bean magnetization curves for thin rin
with arbitrary inner and outer radiia1 and a may be con-
structed from the initial slope~43!, the penetration field~49!,
and the saturation moment~26!, using them(Ha) expres-
sions ~9! and ~12! for disks and narrow rings and the pre
scription ~1! to generate the full hysteresis loop from th
virgin curve. Alternatively, one can compute the magneti
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tion curves directly from Eqs.~30! to ~32!, considering also
creep and a field dependentJc(B).

Such computed magnetization curves are depicted in F
10 and 11 for the Bean limit (n551) and for strong creep
(n55) for the thin disk and a ring with radius rati

FIG. 10. Theoretical magnetization curvesm(Ha) of a thin disk
~radiusa) with Jc5 const~top! andJc5Jc(B)5Jc(0)/(0.81uBu)
~bottom!, B is in unitsm0Jcd, m in unitsJcda

3. Solid lines: Weak
creep,n551 ~Bean and Kim models!. Dashed lines: Strong creep
n55 in E(J,B)5Ec@J/Jc(B)#

n. The curves forn511 would lie in
the middle between the curvesn55 andn551. The applied field is
cycled sinusoidally,Ha(t)5H0sinvt with v52Ec /(m0Jcda),
starting at timet50. The stationary hysteresis loop is reached
fore the first cycle is completed.

FIG. 11. Same as Fig. 10 but for a thin ring with radius ra
a1 /a50.6.
s.

a1 /a50.6. The upper plots show the Bean mod
Jc5const, and the lower plots the Kim mode
Jc(B)5Jc(0)/(0.81uBu) with B in unitsm0Jcd. The applied
field is cycled sinusoidally, Ha(t)5H0sinvt with
v52Ec /(m0Jcda). Shown are the virgin curves and hyste
esis loops for amplitudesH0 /Jcd50.2, 0.6, 1, 1.5, and 2
Note that even this wide ring exhibits almost parallelogra
shaped hysteresis loops, which are typical for a narrow r
cf. Eqs.~1! and ~2!.

With decreasing creep exponentn the magnetization
curves become more rounded, and forn51 they become
ellipses, as expected for an ohmic conductor with cons
resistivity. The computed magnetization curves and susc
tibilities exactly satisfy the scaling law of Sec. VI B
Namely, the same curves result, e.g., if we increase the
quency by a factor of 1000 and increase our field and cur
units by a factor of 10001/(n21).

For n@1 the upper and lower slightly curved parts of th
hysteresis loops can be calculated by assuming that the
rent has saturated touJu'Jc , see Sec. V. This yields
¹3E'2Ḃa5 ẑvm0H0cosvt56ẑvm0(H0

22Ha
2)1/2, thus

uE(r ,t)u'(r /2)uḂau5(r /2)vm0(H0
22Ha

2)1/2. With uJ(r ,t)u
5JcuE(r ,t)/Ecu1/n one then obtains the magnetic moment
the upper and lower branches ofm(Ha),

m~Ha!'6msat~12Ha
2/H0

2!1/~2n! ~50!

with the saturation valuemsat from Eq. ~25! with
Ḃa5vm0H0 inserted. This approximation indeed fits th
computed curves within line thickness in the interv
0<Hasgn(Ḣa)<H0. Its derivation shows that the slight de
crease of the magnetic momentm(Ha) following the steep
increase of the virgin curve, is not an indication of flux cre
but is due to the decrease of the ramp rateḂa5m0Ḣa after
Ha(t) has reached its maximum.38

D. Nonlinear susceptibilities

Figures 12 and 13 show the nonlinear susceptibilit
x(H0)5x82 ix9 obtained from the magnetization loops
Figs. 10 and 11 for the disk and a ring for creep expone
n53, 5, 11, and 51 in the current-voltage lawE(J,B)
5Ec@J/Jc(B)#

n. With decreasing n ~increasing creep!
x8(H0) is reduced andx9(H0) enhanced at all ac amplitude
H0, and the maximum ofx9(H0) increases and is shifted t
lower H0. Accounting for the decrease ofJc(B) with in-
creasing local fieldB, also modifies the susceptibility, cf. th
dashed curves in Figs. 12 and 13: At large amplitud
H0@Hp both x8 andx9 are reduced, while nearHp , x8 is
reduced butx9 enhanced, and the maximum ofx9 ~the dis-
sipation maximum! is shifted to lower ac amplitudes.

VIII. SUMMARY AND CONCLUSIONS

The magnetization curve and nonlinear ac susceptib
of narrow type-II superconductor rings in a perpendicu
field are derived for constant critical current densityJc ~Bean
model!, Eq. ~20!. This result is then generalized~a! to rings
of arbitrary hole diameter,~b! to finite resistivity causing flux
creep,~c! to nonconstantJc(B) ~e.g., the Kim model!, and
~d! to thick rings and disks. The exact formulation of th

-
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general problem is given in terms of an integral equation
the current densityJ(r ,z,t) in thick rings ~or disks, tubes,
cylinders! in axial applied fieldHa(t), Eq. ~28!, and for the
sheet currentJs(r ,t) in thin rings, Eq.~30!. As examples, the
current and field profiles, magnetization curves, and non
ear susceptbilities of thin disks and rings in cycledHa(t) are
computed, accounting also for flux creep and for field dep
dent Jc(B). Explicit expressions are given for the initia
slope~42!, penetration field~48!, and saturation value~25! of
the magnetization curve as functions of the hole radiusa1
and creep exponentn.

Inspection of the equation forJ(r ,z,t) reveals a scaling
law which states that for any current-voltage power-lawE
}Jn the solutions for currents, fields, and magnetic mome
remain the same when the time unit and the amplitude of
applied magnetic field are changed simultaneously. In p
ticular, the nonlinear susceptibility in a periodic fie
Ha(t)5H0sinvt may be written as x(v,H0)5 f (H0 /

FIG. 12. Nonlinear susceptibilityx(H0)5x82 ix9 of a disk.
Same case as in Fig. 10, but for creep exponentsn53, 5, 11, and
51. H0 is in units Jcd. Solid lines: Jc5const. Dashed lines
Jc(B)5Jc(0)/(0.81uBu) with B in units m0Jcd. Top: x8 and x9
versus the ac amplitude H0 of Ha(t)5H0sinvt,
v52Ec /(m0Jcda). Bottom: Polar plotx9 versus2x8. The dashed
lines show the Bean limit for thin disks and narrow rings.
r

-

-

ts
e
r-

v1/s1v/H0
s), wheres5n21 and f is a universal function

depending only on the geometry. This means thatx5x(v)
for n→1 ~Ohm! andx5x(H0) for n→` ~Bean!.

The distribution ofB„r ,t) andJ„r ,t) inside a real, three-
dimensional type-II superconductor calculated from Eq.~28!,
may be used to compute the observed ‘‘gia
magnetostriction’’43 or ‘‘suprastriction.’’44 This magnetome-
chanical effect is caused by surface screening currents
the Lorentz force densityB3J exerted by the local curren
densityJ on the flux lines and then transferred to the atom
lattice via flux-line pinning. The method may also be used
calculate the levitation force on cylindrical~or any rotation-
ally symmetric! superconductors above or below a magne45

and the frequency shift and damping of vibrating superc
ductors in a magnetic field.46 The ac susceptibility of narrow
rings has recently been measured in detail47,48and closely fits
formula ~20!.
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FIG. 13. Same as Fig. 12 but for a thin ring with radius ra
a1 /a50.6.
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