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Pairs of Bloch electrons and magnetic translation groups
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A. Mickiewicz University, Institute of Physics, ul. Matejki 48/49, 60-769 Poznan´, Poland

~Received 2 August 1996!

A product of irreducible representations of the magnetic translation group is considered. It leads to irreduc-
ible representations which were previously rejected as nonphysical. A very simple example indicates a possible
application of these representations. In particular, they are important in descriptions of pairs of electrons in a
magnetic field and a periodic potential. The periodicity of some properties with respect to the charge of a
particle is briefly discussed.@S0163-1829~97!02504-6#
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I. INTRODUCTION

The first attempts to describe the movement of electr
in the presence of a constant external magnetic field w
done by Landau1 and Peierls.2 In the 1950s many author
dealt with similar problems, but a crystalline~periodic! po-
tential was also included.3 Pioneering works by Brown4 and
Zak5,6 were preceded by Wannier’s paper.7 The first two au-
thors independently introduced and investigated the so-ca
magnetic translations, i.e., unitary, mutuallynoncommuting,
operators which commute with the Hamiltonian. For mo
than 30 years these operators have been applied in m
problems concerning the movement of electrons in a cry
lattice. Recently, much attention has been paid to tw
dimensional systems in an external magnetic field due t
relations with high-Tc superconductors, anyons, the Hall e
fect, etc.8

From the group-theoretical point of view, magnetic tran
lations can be considered as a projective~ray! representation
of the translation groupT of a crystal lattice~this is Brown’s
approach!. However, projective representations of any gro
can be found as vector representations of its covering gr
~the so-calledmagnetic translation groupMTG!. This latter
group can be constructed as a central extension of a g
group by the group of factors, in generalU(1),C* or its
subgroup. This construction is the basis of Zak’s consid
ations, and is very closely related to the MacLane method
a determination of all inequivalent~Abelian! extensions of
the two groups.9 In this paper irreducible representations~ir-
reps! of MTG’s are considered. In fact they were determin
by Brown and Zak,4,5 but both authors rejected most of the
as ‘‘nonphysical.’’ Here it is shown that all representatio
are ‘‘physical’’ and a very simple example of their applic
tions is presented. Moreover, the Clebsch-Gordan co
cients are calculated in this case.

II. MAGNETIC TRANSLATIONS

The MTG appears in a natural way when one considers
electron in a periodic potentialV(r ) and a uniform magnetic
field H determined by a vector potential~a gauge! A. This
system is described by the well-known Hamiltonian

H5
1

2m
~p1eA/c!21V~r !, ~1!
550163-1829/97/55~3!/1449~5!/$10.00
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which doesnot commute with the usual translation operato

T̂0~R!5exp~2 iR•p/\! ~2!

and

T̂0~R!c~r !5c~r2R! ~3!

~the subscript 0 corresponds toH50). However, the Hamil-
tonian ~1! commutes with unitary operators

T̂~R!5exp@2 i~p2eA/c!•R/\# ~4!

introduced by Brown.4 It is easy to check that in this way
projective representation of the translation group is defin
the corresponding factor system is given as

m~R,R8!5expF2
1

2

ie

c\
~R3R8!•HG . ~5!

It has to be stressed that these operators commute with
Hamiltonian~1! if the vector potentialA fulfills the condition

]Aj /]xk1]Ak /]xj5 0 for j ,k51,2,3. ~6!

This relation holds, for example, for the~global! gauge
A(r )5 1

2(H3r ), which was used by both authors.4,5 It is
worth noting that, introducing alocal gauge, one can con
sider any vector potentialA.10

Projectiverepresentations of a given group are related
vector representations of the covering group, which can
determined as a central extension. In the considered c
one deals with representations of the translation gro
T.Z3, and the magnetic translation groupT is its covering
group, i.e.,T is included in a central extension ofT by
U(1). LetT consist of pairs (u,R), uPU(1),RPT, with the
multiplication rule

~u,R!~u8,R8!5„uu8m~R,R8!,R1R8… ~7!

with m:T3T→U(1) being a factor system, and letJ be an
irrep of U(1). An irrep of T is given as a product

G~u,R!5J~u!L~R!, ~8!

whereL is a projective representation ofT with a factor
system

n~R,R8!5J„m~R,R8!…. ~9!
1449 © 1997 The American Physical Society
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Zak5,6 introduced such a covering group by attaching to e
vectorR a pathP drawn in the crystal lattice, i.e. consistin
of vectorsR1 ,R2 , . . . ,RkPT, such that( j51

k Rj5R. The
magnetic fluxF through the polygon enclosed by a loo
L5Pø$2R% determines a factoru(L)5exp(2ieF/c\)

PU(1). Pairs „u(L),T̂0(R)… form the magnetic translation

group in Zak’s approach@ T̂0 is defined in Eq.~2!#.
Zak showed that a factor system of the covering group

introduced is identical to the factor system~5!. Therefore,
both these approaches are equivalent ifJ(u)5u. Other rep-
resentations ofT were rejected by Zak, since they we
viewed as nonphysical.

MTG’s were considered central extensions in some pre
ous papers,9,11,12as an illustrative example of the MacLan
method for determination of all inequivalent extensions
given groups~the MacLane method is discussed in a revi
article by Lulek13!. This algebraic description allows dee
investigations of MTG’s and their representations.

III. IRREDUCIBLE REPRESENTATIONS

Let G1 and G2 be irreps ofT satisfying the condition
J(u)5u. Matrix elements of their Kronecker produc
G5G1

^ G2 can be found as

G jk,lm~u,R!5G j ,l
1 ~u,R!Gk,m

2 ~u,R!. ~10!

Taking into account the definition of an irrep~8!, one obtains

G jk,lm~u,R!5u2L j ,l
1 ~R!Lk,m

2 ~R!. ~11!

The last product in this formula determines a prod
L5L1

^ L2 of two projective representations, which is
projective representation itself. To determine its factor s
tem one has to calculate a productL(R1)L(R2):

„L~R1!L~R2!…jk,lm5(
n,p

L jk,np~R1!Lnp,lm~R2!

5m~R1 ,R2!
2L jk,lm~R11R2!.

Therefore, the representationL has the factor system
n(R,R8)5m(R,R8)2, which means that it corresponds
the irrepJ(u)5u2 @cf. Eq.~11!#. In the other words, a prod
uct of two physical representations gives a nonphysical o
However, there are noa priori rules to exclude~as nonphysi-
cal! a product of two~physical! representations. Therefore,
has to be assumed that alsoG is relevant for physics.

Zak rejected irreps withJ(u)Þu since ‘‘representations
with the correspondence e→en with nÞ1 are
nonphysical.’’14,15 However, the above-mentioned consta
contains the electric charge~of an electron!. If one assumes
that representations withJ(u)5u2 describe the movemen
of a particle ~or a system of particles! with a charge
Q522e, then all formulas will be consistent. The simple
interpretation says that such representations describe apair
of electrons. This agrees with the way in which they ha
been obtained:G describing a pair of electrons is a produ
of two one-electron representationsG1 and G2. Writing
Hamiltonian~1! in the form
h

e

i-

f

t

-

e.

t

e

H5
1

2bm
~p1aeA/c!21V~r !, ~12!

one can say that fora5b it describes the movement ofa
electrons in the magnetic field and the periodic potential
bÞa50, then this Hamiltonian corresponds to a particle
a massbm without electric charge. Sincea50, then both
factor systems~for the central extensionT and the projective
representationT̂) are trivial, and the original translation
groupT and its vector irreps are appropriate to describe
dynamics of the system.~The magnetic field is irrelevant i
one considers classical or spinless particles, of course.!

IV. FINITE TWO-DIMENSIONAL MTG’S

One can introduce finite representations of MTG’s impo
ing the periodic boundary conditions in the for

T̂(Naj )51, whereaj , j51,2,3, are the unit vectors of
crystal lattice.4 This is equivalent to considerations of a fini
translation groupT5ZN

3 ~identical periods in each directio
are assumed!. Both approaches yield that the magnetic fie
should be parallel to a lattice vector. It is convenient to
sume thatHia3 and is perpendicular toa1 anda2. This al-
lows us to considerT5ZN

2 and a factor group to beCN ~the
multiplicative group of theNth roots of 1!. Therefore, a finite
two-dimensional magnetic translation group is a central
tension of a direct productZN^ZN by the cyclic group
CN .

11 This group, denoted above byT, consists of elements
(v j ,@k,l #), where v5exp(2pi/N) and j ,k,l50,1, . . . ,N
21. The multiplication rule is given by the following for
mula ~all additions moduloN):

~v j ,@k,l # !~v j 8,@k8,l 8# !5~v j1 j 81hkl8,@k1k8,l1 l 8# !.

The parameterh50,1, . . . ,N21 labels inequivalent exten
sions, and corresponds to the magnetic fieldH in Eq. ~5!. It
is evident that algebraic properties of this group depend
h or, strictly speaking, on the greatest common divis
gcd(h,N) since for gcd(h,N)5gcd(h8,N) groups labeled by
h and h8 are isomorphic. In the further considerations w
assumeh51 in order to reduce a number of parameters a
of different cases. It is worthwhile to mention that fo
gcd(h,N).1 the extension ofZN^ZN by CN/gcd(h,N) with
the multiplication rule parametrized byh/gcd(h,N) should
be taken into account.

It follows from Eq. ~8! that irreps ofT are labeled by
j50,1, . . . ,N21 corresponding to the irreps ofCN , i.e., we
haveJ(v j )5vj j . For eachj we have to find all~inequiva-
lent! projective representationsLj of Zn^ZN . These repre-
sentations satisfy the following conditions:~i! a factor sys-
tem ofLj is given as@see Eq.~9!#

nj~@k,l #,@k8,l 8# !5vjkl8;

~ii ! for a given factor systemnj, we have

( uLju25N2

~the sum is taken over all inequivalent projective irreps w
the factor systemnj).16 It can be shown that for givenj that
there are gcd(j,N)2 projective representations, each of d
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mensionN/gcd(j,N). These representations are labeled
numbersk,l50,1, . . . ,gcd(j,N)21, corresponding to ir-
reps ofZgcd(j,N)^Zgcd(j,N) . @Thus for givenj the crystal lat-
tice is ‘‘scaled’’ N/gcd(j,N) times.# To make a long story
short, an actual form of matrix elements will not be d
cussed but only some general properties will be presen
~In fact irreps so used are similar to those considered
Brown4 and Zak.5,6!

It follows from previous considerations that the repres
tations ~vector ones ofT or projective ones ofT) with
j.1 describe the movement of a particle with a cha
2je. Note that the periodic boundary conditions imply th
particles with chargeq andq1N behave in the same way. I
particular, it also applies to products of irreps: a product
two representations labeled byj1 and j2, respectively, de-
composes into a sum of representations labeled byj11j2
~modulo N). Thus a system of two particles with charg
2j1e and2j2e has total charge2(j11j2)e. This relation
follows from the form of the first factor in Eq.~8!,

~J1^ J2!~v j !5v~j11j2! j .

In particular, a square of theN-dimensional representatio
G1 ~determined by the unique projective irrepL) corre-
sponds to a pair of electrons. A number of terms and
multiplicity coefficientsf (k,l) in the decomposition

Gk1 ,l1

j1 ^ Gk2 ,l2

j2 5 %

k,l
f ~k,l!Gk,l

j11j2

depend on the arithmetic relations betweenj1, j2, andN. In
the caseG1

^ G1 one obtains different results forN odd and
even. In the first case the product decomposes intoN copies
of the~unique! representationG2, since gcd(2,N)51. On the
other hand, forN52M one has gcd(2,2M )52, and the con-
sidered product decomposes into a direct sum
M -dimensional representations. There are four such
equivalent representations, and each of them appearM
times.

V. EXAMPLES

If N is a prime number then gcd(j,N)51 orN, and it is
easy to determine the decomposition of each product:

Gk,l
0

^ Gk8,l8
0

5Gk1k8,l1l8
0 ,

Gk,l
0

^ Gj5Gj for j51,2, . . . ,N21 ,

Gj
^ GN2j5 %

k,l50

N21

Gk,l
0 ,

Gj1^ Gj25NGj11j2 for j11j2ÞN.

The first nontrivial case corresponds toN54. However,
this case does not show all the richness of possible produ
since there is only one nontrivial divisorj52. The central
extension ofZ4^Z4 has 22 irreps:
y

d.
y

-

e
t

f

e

f
-

ts,

~i! 16 one-dimensional ones forj50 labeled by
k,l50,1,2,3; they are simply the ordinary vector represe
tations ofZ43Z4.

~ii ! Two four-dimensional ones forj51 andj53.
~iii ! Four two-dimensional ones forj52 labeled by

k,l50,1.
Two-electron states form a 16-dimensional space with

basis vectorsup1p2&, wherep1 ,p250,1,2,3 label vectors of
the representationG1. This space decomposes into eight tw
dimensional representationsGk,l

2 with f (k,l)52 for all
k,l50,1. Hence the irreducible basis can be denoted
uklvq&, wherev50,1 is the repetition index, andq50,1
labels vectors ofGk,l

2 . The relatively simple form of matrix
elements allows a determination of the Clebsch-Gordan
efficients. In the presented case they lead to the follow
formulas:

u0000&5
1

A2 ~ u00&1u22&),

u0001&5
1

A2
~ u11&1u33&),

u0010&5
1

A2
~ u13&1u31&),

u0011&5
1

A2 ~ u02&1u20&),

u0100&5
i

A2 ~ u00&2u22&),

u0101&5
1

A2
~ u11&2u33&),

u0110&5
1

A2
~ u13&2u31&),

u0111&5
i

A2
~ u02&2u20&),

u1000&5
1

A2 ~ u01&1u23&),

u1001&5
1

A2 ~ u12&1u30&),

u1010&5
1

A2
~ u10&1u32&),

u1011&5
1

A2
~ u03&1u21&),

u1100&5
i

A2 ~ u01&2u23&),
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1452 55WOJCIECH FLOREK
u1101&5
1

A2
~ u12&2u30&),

u1110&5
1

A2
~ u10&2u32&),

u1111&5
i

A2 ~ u03&2u21&).

The numbersp1 and p2 can be interpreted as quasimo

menta, since we haveT̂(a2)up1&5up121& @cf. Ref. 4 in Eq.
~25!#. The translation alonga2 is distinguished due to the
choice of the matrix form of the considered representation
In general, there is always one distinguished direction, a
the numberp labels the corresponding quasimomentum.17

Such an interpretation of the indicesp1 and p2 allows the
introduction of a Hamiltonian which commutes with all op
eratorsG1

^ G1(u,R) ~matrix elements are given!:

Hp1p2 ,p18p28
5dp11p2 ,p181p

28
ap11p2 ,p12p

18
,

where

a0,05a2,05a0 ,

a1,05a3,05a1 ,

ap,15ap,3 .

All these relations follow from the symmetry requirement
The termsap,0 correspond to the total quasimomentump and
describe the kinetic energy (ap,0.0); the condition
a0,05a2,0 is connected with a rescaling of the lattice, sinc
the representationsG2 are two dimensional. The termsap,q
for qÞ0 correspond to the interchange of a quasipartic
with the quasimomentumq or, in the other words, to the
interaction of electrons. In the simplest approximation on
can assume thatap,q for qÞ0 does not depend onp ~so it
will be hereafter denoted asbq ; recall thatb15b3) and is
negative. It is also natural to assume thata0,a1, and that the
probability of interaction withq52 is smaller than this one
for q51 ~to begin with, one can assumeb250).

In such an approximation one finds that levels corr
sponding toG01

2 andG11
2 are fourfold degenerated, with en

ergiesa02b2 and a12b2, respectively. The representation
G10
2 leads to two twofold-degenerated levels with energi

a11b262b1. Similarly, one obtains that two representation
s.
d

.

e

e

-

s

G00
2 describe levels with energiesa01b262b1, respectively.

In two later cases the following linear combinations of vec
tors take the form

1

A2 ~ uk000&6uk010&) for k5 0,1.

The ground-state energy isE5a01b212b1, and the corre-
sponding eigenvector is

1
2 ~ u00&1u22&1u13&1u31&),

i.e., it is the sum of statesup,2p&. Such a result resembles
the BCS state, but it is not antisymmetric. However, the pe
formed investigations are semiclassical and electrons ha
been considered as spinless particles.

VI. FINAL REMARKS

The algebraic analysis of the magnetic translation grou
~or, equivalently, of the projective irreducible representatio
of the translation group! gives us a deeper insight into their
structure. This relates to many physical problems: moveme
of charged particles in a magnetic~or an electromagnetic!
field and a periodic potential, high-Tc superconductors, the
Hall effects ~especially the fractional quantum Hall effect!,
anyons, finite phase spaces, etc. The above-presented con
erations indicate the importance of the product of represe
tations. The discussed examples are very simple, and
physical interpretation is a bit naı¨ve, but they have shown the
main ~mathematical! properties of the proposed picture.

Let w5hc/e be a fluxon andH5hw. Replacing the elec-
tron chargee by a chargeQ52je, the factor system~5!
determined by Brown can be written

m~R,R8!5exp@2p ij 1
2 ~R3R8!•h#.

This formula shows that physical properties, which depe
on this factor, are periodic with respect to the magnetic fie
lattice vectors, and the charge. The first case was pointed
by Azbel18 and also noted by Zak.6 The second is, in a sense
the basis of introduction of magnetic cells4,5,14,19~R andR8
are linear combinations with integer coefficients of basis ve
tors aj ). This work has shown that the periodicity with re
spect to the charge of a particle should also be taken in
account.

ACKNOWLEDGMENTS

The author is greatly indebted to Dr. M. Thomas and D
S. Wałcerz for helpful discussion of the above results.
*Electronic mail: florek@phys.amu.edu.pl
1L. Landau, Z. Phys.64, 629 ~1930!.
2R. Peierls, Z. Phys.80, 763 ~1933!.
3J. M. Luttinger, Phys. Rev.84, 814 ~1951!; L. Onsager, Philos.
Mag. 43, 1006 ~1952!; P. G. Harper, Proc. Phys. Soc. Londo
Sect. A 68, 874 ~1955!; 68, 879 ~1955!; A. M. Kosevich and
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