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Pairs of Bloch electrons and magnetic translation groups
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A product of irreducible representations of the magnetic translation group is considered. It leads to irreduc-
ible representations which were previously rejected as nonphysical. A very simple example indicates a possible
application of these representations. In particular, they are important in descriptions of pairs of electrons in a
magnetic field and a periodic potential. The periodicity of some properties with respect to the charge of a
particle is briefly discussedS0163-18207)02504-4

I. INTRODUCTION which doesnot commute with the usual translation operators

The first attempts to describe the movement of electrons To(R)=exp(—iR-p/h) 2
in the presence of a constant external magnetic field werg
done by Landabiand Peierl$. In the 1950s many authors
dealt with similar problems, but a crystallifperiodig po- A _
tential was also includetiPioneering works by Browhand To(R)Y(r)=y(r=R) ©)
Zak®® were preceded by Wannier's pageFhe first two au-  (the subscript O correspondsltb=0). However, the Hamil-
thors independently introduced and investigated the so-callenian (1) commutes with unitary operators
magnetic translationd.e., unitary, mutuallljnoncommuting R
operators which commute with the Hamiltonian. For more T(R)=exd —i(p—eAl/c)-R/A] (4)

than 30 years these operators have been applied in man

problems concerning the movement of electrons in a cryst |¥trpdu_ced by Browrd. Itis easy to check that in this way a
lattice. Recently, much attention has been paid to twoprOJectlve representation of the translation group is defined,;

dimensional systems in an external magnetic field due theitrj1e corresponding factor system is given as

relations with high¥, superconductors, anyons, the Hall ef- 1 ie

fect, etc® m(R,R’)zex;{———(RxR’yH . (5)
From the group-theoretical point of view, magnetic trans- 2 ch

lations can be considered as a projectirgy) representation |t has to be stressed that these operators commute with the

of the translation grouf of a crystal latticgthis is Brown's  Hamiltonian(1) if the vector potentiah fulfills the condition

approach However, projective representations of any group

can be found as vector representations of its covering group IA;j 1 ax+ A Ioxj= 0  for j,k=1,2,3. (6)

(the so-calledmagnetic translation groupTG). This latter

group can be constructed as a central extension of a giveR(r)—l(er) which was used by both authdi&.It is
-2 ) .

. o .

group by the group of fa_ctor_s, in gene_rld(l)cb, or its, worth noting that, introducing #ocal gauge, one can con-

subgroup. This construction is the basis of Zak’s consider-_. T
sider any vector potentia.

ations, and is very closely related to the MacLane method for C . .
o . ) . . Projectiverepresentations of a given group are related to
a determination of all inequivalerfAbelian extensions of ; : i
. | X . vector representations of the covering group, which can be
the two groups.In this paper irreducible representatidirs . ; .
' ; . determined as a central extension. In the considered case,
rep9 of MTG'’s are considered. In fact they were determined . : .
5 . one deals with representations of the translation group
by Brown and ZaK:® but both authors rejected most of them T~73 and the maanetic translation arodris its coverin
as “nonphysical.” Here it is shown that all representations T c mag . groups 1t 9
group, i.e.,7 is included in a central extension df by

are “physical” and a very simple example of their applica- : : .
tions is presented. Moreover, the Clebsch-Gordan coeffiy(l)' LetTconsist of pairs§,R), u U(1),ReT, with the

. . . multiplication rul
cients are calculated in this case. ultiplication rule

This relation holds, for example, for thégloba) gauge

(u,R)(u’,R")=(@uu'MmR,R"),R+R") (7)

Il. MAGNETIC TRANSLATIONS . .
with m: TXT—U(1) being a factor system, and [€t be an

The MTG appears in a natural way when one considers aitrep of U(1). Anirrep of 7 is given as a product
electron in a periodic potentid(r) and a uniform magnetic _
field H determined by a vector potentiéd gauge A. This I'(u,R)=E(WA(R), (8)

system is described by the well-known Hamiltonian where A is a projective representation df with a factor

system

1
H= o (PHeAlC)*+V(r), @ WRR)=E(M(R,R")). ©)
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Zak>®introduced such a covering group by attaching to each 1

vectorR a pathP drawn in the crystal lattice, i.e. consisting H= 2,8_m(p+ aeAlc)?+V(r), (12

of vectorsRy,R,, ... ReeT, such that=|_;R;=R. The . .

magnetic flux® through the polygon enclosed by a loop one can say that fow= g it describes the movement of
L=PU{—R} determines a factou(L)=exp(—ied/ct) electrons in the r_nagneti_c figld and the periodic poteqtial. If
eU(1). Pairs(u(£),To(R)) form the magnetic translation g Tnczf\ss%n:hv(\a/ir;rfgti 2%@,{'28”;?;;3%?232isot,otﬁe%ag'c;lﬁ of

group in Zak's approachTy, is defined in Eq(2)]. factor systemsfor the central extensioff and the projective
Zak showed that a factor system of the covering group he

introduced is identical to the factor systef®). Therefore, representatian) are tlrivial, and the or'iginal translgtion
both these approaches are equivalei (1) = u. Other rep- groupT and its vector irreps are appropriate to describe the

resentations of7 were rejected by Zak, since they were dynamlcs_ dOf thel sys_tenlwifl'he m?gnet'c ft|_elld IS ':fel(;]/am i
viewed as nonphysical, one considers classical or spinless particles, of caurse.

MTG’s were considered central extensions in some previ- ,
ous paper$'**as an illustrative example of the MacLane IV. FINITE TWO-DIMENSIONAL MTG’S
method for determination of all inequivalent extensions of ne can introduce finite representations of MTG’s impos-

given groupgthe MacLane method is discussed in a reviewing the periodic boundary conditions in the form
article by Lulek®). This algebraic description allows deep -

investigations of MTG’s and their representations. T(Nai)zl.' vxher'e 4 J:.1’2’3’ are thg unit .vectors O.f a
crystal lattice: This is equivalent to considerations of a finite

translation groupTzZﬁ, (identical periods in each direction
IIl. IRREDUCIBLE REPRESENTATIONS are assumed Both approaches yield that the magnetic field
Let T and I'2 be irreps of T satisfying the condition should be parallel tq a lattice \_/ector. Itis convenie_nt to as-
E(u)=u. Matrix elements of their Kronecker product sume thatH|as gnd IS pzerpendlcular te; anda,. This al-
I'=T'®TI2 can be found as lows us to considel =7y and a factor group to b€y (the
multiplicative group of theNth roots of 3. Therefore, a finite
two-dimensional magnetic translation group is a central ex-
tension of a direct producty®Zy by the cyclic group
CN‘.ll This group, denoted above Wy consists of elements
(w',[k,1]), where w=exp(27i/N) and j,k,1=0,1,...,N
—1. The multiplication rule is given by the following for-
mula (all additions moduldN):

Ticim(U,R) =T (u,R)TE (u,R). (10)

Taking into account the definition of an irré®), one obtains
Tjicim(U.R)=U?AJ (R)AE n(R). (1D

The last product in this formula determines a product - i Tl 17T\ — (] +hkI / /
A=A'®A? of two projective representations, which is a (LI ID (el KD = (! Lkt kLI
projective representation itself. To determine its factor sysThe parameteh=0,1,... ,N—1 labels inequivalent exten-
tem one has to calculate a productR;)A(R,): sions, and corresponds to the magnetic fldlch Eq. (5). It
is evident that algebraic properties of this group depend on
h or, strictly speaking, on the greatest common divisor

(ARDAR)jkim= 2 Ajknp(RD) Anpim(R2) ged(h,N) since for gedh,N)=gcd(h’,N) groups labeled by
nP h andh’ are isomorphic. In the further considerations we
= m(RlvRZ)ZA]’k,Im(Rl+ R,). assumeh=1 in order to reduce a number of parameters and

of different cases. It is worthwhile to mention that for
Therefore, the representation has the factor system gcd(h,N)>1 the extension of\®Zy by Cyjgcap,ny With
»(R,R")=m(R,R’)?, which means that it corresponds to the multiplication rule parametrized Hy/gcd(h,N) should
the irrep= (u) =u? [cf. Eq.(11)]. In the other words, a prod- be taken into account.
uct of two physical representations gives a nonphysical one. It follows from Eq. (8) that irreps of7 are labeled by

However, there are na priori rules to excludéas nonphysi- £=0,1,... ,N—1 corresponding to the irreps G, i.e., we
cal) a product of two(physica) representations. Therefore, it haveZE (') = w*. For each¢ we have to find allinequiva-
hasto be assumed that alddis relevant for physics. lent) projective representations¢ of Z,®7Zy . These repre-

Zak rejected irreps witlE (u) #u since “representations sentations satisfy the following conditiong) a factor sys-
with the correspondence e—e” with n#1 are tem of A¢is given agsee Eq(9)]
nonphysical.’**1> However, the above-mentioned constant ,
contains the electric chargef an electroi If one assumes vE([K,IT,[K 17 ]) = 0
that representations witE (u)=u? describe the movement
of a particle (or a system of particlgswith a charge
Q= —2e, then all formulas will be consistent. The simplest
interpretation says that such representations describara > |A¢2=N2
of electrons. This agrees with the way in which they have
been obtainedl” describing a pair of electrons is a product (the sum is taken over all inequivalent projective irreps with
of two one-electron representatiodd’ and I'2. Writing  the factor system»?).1® It can be shown that for givea that
Hamiltonian(1) in the form there are gcdf,N)? projective representations, each of di-

(i) for a given factor systeme?, we have
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mensionN/gcd(£,N). These representations are labeled by (i) 16 one-dimensional ones foE=0 labeled by

numbersx,A=0,1,...,gcd(¢,N)—1, corresponding to ir- K,)_\:O,1,2,3; they are simply the ordinary vector represen-
reps 0fZgeaee Ny ® Zgeage.ny - [Thus for givené the crystal lat-  tations ofZ, < Z,. _
tice is “scaled” N/gcd(¢,N) times] To make a long story (i) Two four-dimensional ones faf=1 and§=3.

short, an actual form of matrix elements will not be dis- (i) Four two-dimensional ones fog=2 labeled by
cussed but only some general properties will be presented,A=0,1.
(In fact irreps so used are similar to those considered by Two-electron states form a 16-dimensional space with the
Brown’* and Zak>®) basis vector$p,p,), wherep,,p,=0,1,2,3 label vectors of

It follows from previous considerations that the representhe representatiofi’. This space decomposes into eight two-
tations (vector ones of7 or projective ones oflT) with  dimensional represen'tatiori§iyA with f(x,\)=2 for all
&>1 describe the movement of a particle with a chargex,\=0,1. Hence the irreducible basis can be denoted as
— £e. Note that the periodic boundary conditions imply that|k\vq), wherev=0,1 is the repetition index, ang=0,1
particles with chargeg andg+ N behave in the same way. In labels vectors ofiyk. The relatively simple form of matrix
particular, it also applies to products of irreps: a product ofelements allows a determination of the Clebsch-Gordan co-
two representations labeled igy and &,, respectively, de- efficients. In the presented case they lead to the following
composes into a sum of representations labeledbyé,  formulas:
(modulo N). Thus a system of two particles with charges
—¢,e and — &,e has total charge-(&1+ &5)e. This relation 1
follows from the form of the first factor in E(8), 0000 = ﬁ(|00>+ 22),

(E,0E,) ()=t 1
. : : : |0003) = —=(|11) +|33)),
In particular, a square of thH-dimensional representation V2
I'! (determined by the unique projective irrep) corre-
sponds to a pair of electrons. A number of terms and the 1
multiplicity coefficientsf(x,\) in the decomposition |0010 = ﬁ(|13>+ 131)),

n

rg, ere, = @Af(K-MFi& & I

“ |0013>—ﬁ(|02>+|20>),

depend on the arithmetic relations betwegné,, andN. In
the casd™*®I'! one obtains different results fot odd and i
even. In the first case the product decomposeshhtmpies [0100 = —=(]00)—|22)),
of the (unique representatiol’?, since gcd(\)=1. On the V2
other hand, foN=2M one has gcd(2M) =2, and the con-

sidered product decomposes into a direct sum of 1
M-dimensional representations. There are four such in- |010]>_ﬁ(|11>_|33>)'
equivalent representations, and each of them appkars

times.

1
0110=—=(|13—|3D)),
0110 = 5 (|13~ |31)
V. EXAMPLES

If N is a prime number then gcd(N)=1 orN, and it is . L _
easy to determine the decomposition of each product: 0113 = \/§(|02> 120)),

0 0 _q0 1
FK,)\®FK’,)\’_FK+K’,)\+>\” |100Q:E(|Ol>+|23>)’

2, eré=Trt for ¢=1,2,... N-1, 1
|1001>=ﬁ(|12>+|30>),
N—1
IéerN-i= ?OFE'*’ 1
KA= 1010 = —=(|]10)+|32)),
11010 ﬁ(l )+(32))

Fagrle=Nr+é  for &+&#N. 1
|1017) = ﬁ(|03>+|21>),
The first nontrivial case corresponds o=4. However,

this case does not show all the richness of possible products, i
since there is only one nontrivial divisg=2. The central 11100 = L(|01>_|23>)
extension of/,®7, has 22 irreps: 2 ’
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1 rgo describe levels with energieg+b,*+ 2b4, respectively.
11100 = ﬁﬂlz)— 30)), In two later cases the following linear combinations of vec-
tors take the form

1
|111C>=ﬁ(|10>—|32>), %(lKOO@i|KOlO>) for k= 0,1.

i The ground-state energy i5=ay+b,+2b4, and the corre-
11111 = ﬁ(|03)— |21)). sponding eigenvector is

1

The numbersp, and p, can be interpreted as quasimo- 2(100+[22)+[13)+|31),
menta, since we hav%(a2)|p1>=|p1—1) [cf. Ref. 4in Eq. 1-€., itis the sum of _state|$),—_p). Such a result resembles
(25)]. The translation along, is distinguished due to the the BCS state, butitis not antisymmetric. However, the per-
choice of the matrix form of the considered representationsformed investigations are semiclassical and electrons have
In general, there is always one distinguished direction, an§€€n considered as spinless particles.
the numberp labels the corresponding quasimomenttm.
Such an interpretation of the indicgg and p, allows the
introduction of a Hamiltonian which commutes with all op-  The algebraic analysis of the magnetic translation groups

VI. FINAL REMARKS

eratorsI '@ T''(u,R) (matrix elements are given (or, equivalently, of the projective irreducible representations
_s of the translation groupgives us a deeper insight into their
Ho10,.005 = Opy+p,.05+pypy+ Py, Py~ ) structure. This relates to many physical problems: movement

of charged particles in a magnefior an electromagnetic
field and a periodic potential, highs superconductors, the
Hall effects(especially the fractional quantum Hall effict

where

80,0= 82,0~ 8o, anyons, finite phase spaces, etc. The above-presented consid-
erations indicate the importance of the product of represen-
a1 =a30=4ay, tations. The discussed examples are very simple, and a

physical interpretation is a bit nas, but they have shown the
B main (mathematical properties of the proposed picture.
4p1=8ap3- Let ¢=hc/e be a fluxon andH=he. Replacing the elec-

) ) tron chargee by a chargeQ= — e, the factor systent5)
All these relations follow from the symmetry requirements. getermined by Brown can be written

The termsa,, ; correspond to the total quasimomentprand

describe the kinetic energy af,>0); the condition _

ap0=4as is connected with a rescaling of the lattice, since m(R,R")=exg 27i¢z(RXR')-h].

the representations? are two dimensional. The terngs,

for q+0 correspond to the interchange of a quasiparticleThis formula shows that physical properties, which depend

with the quasimomentung or, in the other words, to the on this factor, are periodic with respect to the magnetic field,

interaction of electrons. In the simplest approximation ondattice vectors, and the charge. The first case was pointed out

can assume thap,q for g#0 does not depend op (so it by AZbel18 an_d also nc_)ted by ZaekThe second is, in a sense,

will be hereafter denoted ds, ; recall thatb;=bs) and is  the basis of introduction of magnetic céifs'**(R andR’

negative_ Itis also natural to assume th@( a, and thatthe are linear combinations with Integer coefficients of basis vec-

probability of interaction withg= 2 is smaller than this one tors a;). This work has shown that the periodicity with re-

for =1 (to begin with, one can assunbg=0). spect to the charge of a particle should also be taken into
In such an approximation one finds that levels corre-2ccount.

sponding tol'3, andT'%, are fourfold degenerated, with en-

ergiesag—b, anda; —b,, respectively. The representation

I'%, leads to two twofold-degenerated levels with energies The author is greatly indebted to Dr. M. Thomas and Dr.

a;+b,*2b,. Similarly, one obtains that two representationsS. Walcerz for helpful discussion of the above results.
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