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Semiclassical magnetotransport theory for two-dimensional electron systems
in lateral superlattices

J. Kučera* and P. Strˇeda
Institute of Physics, CZ-162 00 Praha, Czech Republic

R. R. Gerhardts
Max-Planck-Institut fu¨r Festkörperforschung, D-7000 Stuttgart 80, Germany

~Received 9 August 1996!

Based on the correct single-electron energy spectra we calculate, within a semiclassical approach, the
conductivity of periodically modulated two-dimensional electron systems in a perpendicular magnetic field
B. ForB50 we obtain, as a function of the Fermi energy, fluctuations of the conductivity, which result from
the energy gaps in a perfectly periodic modulation potential, but may easily be smeared out by disorder.
Introducing a smooth interpolation between the energy bands in the extended zone scheme and taking magnetic
breakdown effects properly into account, we calculate the magnetoresistance for a strong unidirectional modu-
lation and magnetic fields of arbitrary strengths, neglecting these quantum fluctuations.
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I. INTRODUCTION

The modern techniques of microstructuring allow prep
ration of a new class of materials, the lateral superlattices
low magnetic fields applied perpendicularly to these tw
dimensional systems peculiar transport properties
observed.1 Except for the well-known magnetoresistance o
cillations due to the commensurability effects,2–5 a number
of low field magnetoresistance anomalies appear at low t
peratures.

A typical, often observed anomaly is a positive magn
toresistance followed by a resistance drop at higher magn
fields.2–5 Such behavior was observed on metallic sin
crystals.6,7 It has been successfully explained by the suppr
sion of Bragg reflections due to the Lorenz force induced
magnetic fields, an effect known as magnetic breakdown8 A
pronounced negative magnetoresistance has also been
served, usually in strongly modulated two-dimensional s
tems, e.g., in the case of unidirectional modulation9 and in a
lattice of antidots.10,11To understand these low-field magn
toresistance anomalies a semiclassical description is us
satisfactory. It is based on the knowledge of the veloc
distribution of Fermi electrons at zero magnetic field whi
is controlled by parameters of the potential modulation.

The artificial crystals have quite a large lattice consta
usually of the order of several hundreds of nanometers.
effect of the underlying natural crystalline potential may th
be included by introducing the effective electron massm*
into the kinetic energy, and single-electron properties
controlled by the Hamiltonian

H5
px
2

2m*
1

py
2

2m*
1V~x,y!, ~1!

where V(x,y) stands for a periodic potential modulatio
The eigenfunctions are of the Bloch type, with the wa
vectorkW being a good quantum number. In standard artific
superlattices there are usually many electrons within the
550163-1829/97/55~21!/14439~11!/$10.00
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cell and the lattice constant is much larger than the Fe
wavelengthlF defined by the average carrier densityns of
the two-dimensional electron gas, 2p/lF5A2pns. Opposite
to the natural single crystals, many Brillouin zones are oc

pied and the energyE(kW ) of most of the electrons will be
close to the free electron one. The extended zone sch
thus seems to be convenient for the description of ene
dispersions.

The discontinuities of the energy dispersionE(kW ) along a
particular direction, which appear at the Brillouin zon
boundaries, are essentially of two distinct origins. First,
the energy range in which the classical motion is bound
between the potential wells, wide gaps separate narrow
ergy bands with eigenfunctions which are mainly localiz
within the wells and have exponentially decaying tails in t
barriers. These discontinuities are essentially due to the
quantization within the potential wells of the period
potential12 and affect the momentum distribution signifi
cantly if the electron mean free path is larger than the lat
period, a condition often reached in the experiment. The s
ond type of discontinuities originates in standard Bragg
flections in the energy range in which the classical motion
not confined to a single period of the superlattice. Here
interference of partial waves scattered from different refl
tion planes leads to narrow gaps between broad energy b
of extended wave functions with considerable amplitude
tween the wells. These gaps due to interference can easi
smeared out by imperfect periodicity, but in the ideal ca
they may strongly influence the conductivity.

The characteristic features of one-dimensional energy
persion will be summarized in Sec. II. The following Sec.
will be devoted to the description of Fermi surfaces for t
cases of the unidirectional modulations and bidirectio
modulations of square symmetry. For the sake of simplicit
separable periodic potential has been considered. The ca
lation has been performed for cosine and Kronig-Penney-
modulations representing weak and strong Bragg reflec
14 439 © 1997 The American Physical Society
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14 440 55J. KUČERA, P. STŘEDA, AND R. R. GERHARDTS
effects, respectively. Both types of potentials lead to an
genvalue problem which scales with the producta2V0 , a
andV0 being modulation period and amplitude, respective
so that the value of the single parameterq,

q[
1

\

a

p
Am*V0, ~2!

determines the effect of the potential. The results of the p
cise numerical calculation will be compared with a ‘‘clas
cal approach,’’ which smoothly interpolates between the
ergy bands in the extended zone scheme and eliminate
discontinuities of quantum origin.

Transport phenomena within semiclassical theory are
terpreted in terms of the electron distribution functi
f (rW,kW ) which satisfies the Boltzmann equation. We limit o
consideration to low temperatures for which the electron
the Fermi energy determine the transport properties. We
also assume that the equilibration length for electrons
much larger than the lattice constant. In this case the ele
field, arising due to the energy dissipation from the curr
drawn through the sample, may be assumed as spatially
form and only thekW dependence of the distribution functio
needs to be taken into account. Note that in the opposite l
the transport properties are controlled by local Drude c
ductivities and we are left with a periodic series of resisto
which allows a simple calculation of the average resistan

To emphasize the effect of electron energy spectra on
conductivity we will assume that the relaxation proces
may be described by a uniform relaxation time. In such
case the zero-temperature conductivity is exclusively c
trolled by velocity expectation values

vW ~kW !5
1

\
¹kWE~kW ! ~3!

of the Fermi edge electrons. The obtained conductivity
pendences together with the ‘‘classical approach’’ will
presented in Sec. IV.

In the presence of a weak magnetic fieldBW [(0,0,B) ap-
plied perpendicular to the two-dimensional electron gas
dynamics of the electron motion, when treated semicla
cally, is governed by the equation of motion:

\
]kW

]t
52evW ~kW !3BW . ~4!

The time dependence of wave vectorkW describes an electro
motion along states having the same energy. Due to re
tions at Brillouin zone boundaries there appears a numbe
different trajectories. Their topology, especially the ratio
open and close trajectories, controls the main features o
magnetotransport. The above scheme is applicable if the
clotron energy is much less than the energy gaps. It c
however, be generalized so that it captures much of the
ditional high-field physics in a physically appealing wa
The generalization8,13 is to acknowledge that electrons a
proaching Brillouin zone edges have a finite probability
tunneling through the barrier and moving from one traject
to another. This effect, known as magnetic breakdown, w
be discussed in Sec. V. The distinct features of this effec
i-
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the Fermi surface discontinuities, resulting from the interf
ence effect and size quantization, will be described.

Low-field magnetoresistance for the case of a unidir
tional potential modulation has been studied by different
proaches. Main attention has been paid to the explanatio
the commensurability effect.3,14,15The above-described con
cept ofkW -space electron trajectories has also been applied
the particular case of very weak potential modulation,16 i.e.,
to the case withq!1. Obtained results have been in qua
tative agreement with the experimental observation, i
strong positive magnetoresistance approaching a maxim
due to the magnetic breakdown and commensurability os
lations at higher magnetic fields. However, the predic
scaling of the magnetoresistance peak positions with the
rameters of the potential modulation did not agree with
available experimental data. This suggests that in stand
systems the parameterq, defined by Eq.~2!, is not much less
than 1 and the potential modulation cannot be treated a
weak perturbation.

The proper scaling of magnetoresistance breakdo
peaks has been derived by Betonet al.5,17 Using classical
arguments they have found a decreasing number of o
trajectories with increasing magnetic field strength. For
studied cosine modulation it vanishes if the maximum el
tric force 2pV0 /a is equal to the magnetic forceeBvF .
However, at the critical magnetic fieldBcrit , defined in this
way, their model predicts a very rapid fall in the magneto
sistance which is not seen in experiments.

Section VI will be devoted to the magnetoresistance
the case of very strong unidirectional modulation for whi
the Weiss oscillations are usually not observed. For this r
son and for the sake of simplicity, the commensurability
fect has been excluded from our consideration. It will
shown that the proper trajectory statistics gives not only
observed scaling of breakdown peak positions but also a
nounced positive magnetoresistance for magnetic fields
aboveBcrit .

II. ONE-DIMENSIONAL ENERGY DISPERSION
AND THE CLASSICAL LIMIT

The energy spectrum of an electron moving in a on
dimensional channel periodically modulated by a poten
V(x) of the perioda is one of the standard eigenvalue pro
lems defined by the Hamiltonian

H5
px
2

2m*
1V~x!. ~5!

The result of a numerical calculation for the Kronig-Penne
like potential

V~KP!~x!5V0sgnFcos2px

a G ~6!

and for the cosine modulation

V~cos!~x!5V0cos
2px

a
~7!

are shown in Fig. 1.
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Due to the effect of Bragg reflections at Brillouin zon
boundaries energy gaps appear and the spectrum is
posed of minibands. They will be numbered by the ind
i50,1,2, . . . increasing with miniband energy. The low l
ing minibands are flat due to the wide energy barriers se
rating adjacent potential minima and preventing a signific
overlap of wave functions. For energies well aboveV0 the
energy gaps become smaller and the energy dispersion
proaches the free electron quadratic dispersion law. The
sidered eigenvalue problem scales with the parameterq2 de-

FIG. 1. Energy spectra for a one-dimensional periodica
modulated channel with the Kronig-Penney~top! and the cosine
~bottom! potential. With increasing the modulation strength (q54
on the left, 6 on the right, respectively! the exact calculation~solid!
yields a growing numberNb of states localized below the potenti
maxima. The dotted lines represent the classical approach an
dashed lines correspond to zero modulation.
m-
x

a-
t

p-
n-

fined by Eq.~2!, i.e., with the producta2V0. Further, plotting
E(kx)•a

2 as a function ofkxa, the miniband positions are
approximately lying on the same curve representing the c
sical limit a→1`.

For the case of the Kronig-Penney-like potential, Eq.~6!,
an explicit expression for the approximate miniband disp
sion may be obtained. According to the Bohr-Sommerf
quantizing condition, eigenenergiese i well below V0 coin-
cide with eigenenergies of a box with hard walls and wid
a/2

e i
~KP!>4

\2

2m* S ipa D 22V0 . ~8!

There are approximately

Nb
~KP!>

a

p\
Am*V05q ~9!

narrow bands corresponding to well-localized states wit
one particular potential well, i.e., below the energyV0.

Having in mind that the energy spectrum of a large box
only weakly dependent on the applied boundary conditio
the miniband dispersion for higher energies may easily
obtained for large enough values ofa. In the regions of the
flat potential, electrons may be assumed as free with
density of states per unit lengthAm* /2/(p\AE6V0). For
energiesE aboveV0 the density is given as the sum of bo
contributions and for the integrated density per one per
we get

N~E!5
a

p\
Am*

2
~AE2V01AE1V0!. ~10!

Within each miniband there is one state per unit cell, so t
N(E) may be identified with the miniband indexi . With
kx5p i /a5pN(E)/a, Eq. ~10! leads to the following ap-
proximation for the miniband dispersion

e i
~KP!>ES kx5p i

a D 5F4\2kx
2

2m*
2V0Gu~kc

~KP!2ukxu!

1F\2kx
2

2m*
1S V0

2 D 2 2m*\2kx
2Gu~ ukxu2kc

~KP!!, ~11!

wherekc is the critical wave number

kc
~KP!5

1

\
Am*V0 ~12!

and the functionu equals 1 or zero for positive or negativ
argument, respectively. This defines our ‘‘classical a
proach’’ to the Kronig-Penney energy spectrum, which is
continuous function ofkx , shown as dotted line in the uppe
part of Fig. 1.

The above-described classical approach can be gen
ized for an arbitrary form of the potential by dividing th
period a into a number of narrow regions. For the cosi
modulation, Eq.~7!, we have obtained

Nb
~cos!>

4

p
q, kc

~cos!5
4

p

1

\
Am*V0. ~13!

the
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14 442 55J. KUČERA, P. STŘEDA, AND R. R. GERHARDTS
As expected, in this case the energy of low lying flat mi
bands increases linearly with miniband indexi due to the
parabolic form of local potential minima. The energy disp
sions obtained from the limita→1` quite well approximate
results of the precise calculation as shown in Fig. 1.

In both cases the critical wave numberkc divides elec-
tronic states into two regions of distinct properties. Valu
ukxu,kc correspond to states well localized within the pote
tial wells and belonging to narrow bands. The correspond
expectation values of the velocity, Eq.~3!, essentially vanish
In the ‘‘classical approach’’ we shall takevx[0 for states
with ukxu,kc . All other states represent nearly free electro
with vanishing velocity at Brillouin zone boundaries only,
shown in Fig. 2. The velocity maxima are close to the res
of the classical limit which neglects Bragg reflections. F
energies well aboveV0 they are approaching free electro
values supporting the extended zone scheme as a rele
view to the electron transport properties of lateral super
tices. In the ‘‘classical approach’’ we shall calculatevx for
ukxu.kc from the approximate energy dispersion, e.g., fro
Eq. ~11!.

III. FERMI SURFACES

The energy spectra for periodic modulation defined b
separable potential

V~x,y!5V~x!1V~y! ~14!

are given as the sum of one-dimensional dispersions of
Hamiltonian, Eq.~5!. For the sake of simplicity only the
same modulation along both directions will be consider
The one-dimensional miniband structure is reflected in
topology of the Fermi surface. Within the extended zo
scheme it becomes split into a number of segments loc
between Brillouin zone boundaries. In Fig. 3 the Fermi s
faces for the case of the unidirectional Kronig-Penney-l
modulation, Eq.~6!, are shown. The cases of a bidirection
modulation are represented by Fermi surfaces shown in
4 and Fig. 5. As discussed above, for the Fermi energ
EF aboveV0, the conditiona@lF allows one to divide
Fermi electrons into two distinct groups, bounded and ne
free electrons.

In the regions whereukxu or ukyu is less thankc there are
flat miniregions arising due to the size quantization with
potential wells of which the modulation is composed. Th
positionska

i (a5x,y) are defined by the following equality

E~ka
i !5EF2e i , ~15!

wheree i denotes energy levels of the potential well. In re
space, the amplitude of corresponding eigenfunctions v
ishes exponentially in a region around potential maxi
V0. The states for whichukxu as well asukyu are less than
kc are bound states. Those states, for which the only on
the conditions (ukxu,kc or ukyu,kc) holds, are bound in one
direction only. As the result, quasi-one-dimensional condu
ing channels at the energies above the potential maxima
formed.

Note that for some values of the Fermi energy the equa
Eq. ~15! need not be fulfilled for any value ofka due to the
existence of energy gaps in the dispersionE(ka). This may
-
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happen in the case of bidirectional modulation and the c
responding flat minisegment disappears from the Fermi
face, as may be seen in Fig. 4. The occurrence and/or
sence of individual segments of the Fermi lines, even
very close values of the Fermi energy, is due to the interp
of the energy gaps in the one-dimensional energy spectra
the case of a wide gap even several minisections may
missing as shown in Figs. 5 and 6. On the other side
classical approach ignoring gap structure always leads
continuous Fermi contour.

The rest of the Fermi surface is segmented due to
Bragg reflections only, i.e., due to the interference effec
Electrons in these states are called nearly free electrons s

FIG. 2. Mean velocityv5(1/\) dE/dk for a one-dimensional
periodically modulated channel with the Kronig-Penney~top! and
the cosine~bottom! potential. The dotted lines represent the clas
cal approach and the dashed lines correspond to zero modulat



on

iz
na
c

f
s of
ding

e

lts
are
ure

ve-

a-

e
of

c-
.
.

ey

in

55 14 443SEMICLASSICAL MAGNETOTRANSPORT THEORY FOR . . .
they can overcome potential maxima of the modulati
Their effective mass is generally larger thanm* .

IV. CONDUCTIVITY

Assuming the elastic scattering as dominant, the linear
tion of the Boltzmann equation with respect to an exter
electric field gives the following expression for the condu
tivity at zero temperature:

saa5
e2

2p2E d@EF2E~kW !#va~kW !tva~kW !d2k, ~16!

FIG. 3. Fermi lines for unidirectional Kronig-Penney modul
tion, at EF /V052.5, 2.7, 3.1. Missing states close toky50 for
EF /V052.7 lead to a dip in the conductivity~cf. Fig. 6!.

FIG. 4. A series of Fermi lines for the bidirectional cosin
modulation atEF /V0 5 0, 0.7, 1.4, 2.1, 2.8, 3.5, and 4.2. Results
the classical approach are presented by dotted lines.
.

a-
l
-

wheret is the uniform relaxation time. The contribution o
bound electrons in states represented by flat minisection
the Fermi surface can be written as the sum of correspon
velocities

saa
~b!5

e2t

m*
2m*

pa\ (
i50

imax

uva~ka
i !u, ~17!

whereka
i is defined by Eq.~15!. It represents the averag

electron drift.
In addition to the precise numerical calculation the resu

of the classical limit which neglects energy quantization
also presented in Figs. 7 and 8. In this limit the gap struct
is smeared out, nevertheless the states for whichukau,kc
remain bound, at least in one direction along which the
locity remains zero~see Fig. 2!. To evaluatekW -space inte-

FIG. 5. A series of Fermi lines for the Kronig-Penney bidire
tional modulation atEF /V050, 0.7, 1.4, 2.1, 2.8, 3.5, and 4.2
Results of the classical approach are presented by dotted lines

FIG. 6. Detail of the Fermi line scheme for the Kronig-Penn
bidirectional modulation, atEF /V053.40~‘‘inner’’ thin solid !, 3.63
~thick solid!, 3.69 ~thick dashed!, and 3.79~‘‘outer’’ thin solid!.
The corresponding conductivity values are indicated by arrows
the inset.
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14 444 55J. KUČERA, P. STŘEDA, AND R. R. GERHARDTS
grals like that in Eq.~16! in the classical limit, we integrate
over energy and thek component along the lines of consta
energy, d2k5dedki /(\uvW (kW )u), with E(kW )5e, and take

va(kW )50 anddki5dka in the region of bounded states, i.e
for ukau,kc .

As expected in all cases the classical conductivity
larger than that with the interference effects taken into
count. The conductivity resulting from modeling the period
potential as a series of resistors is even higher, as show
Fig. 7 by dashed lines. The fact that the difference betw
the exact calculation and the classical approach is large

FIG. 7. The conductivitysxx for the case of unidirectiona
Kronig-Penney~top! and cosine~bottom! modulation. The classica
approximation is presented by dotted lines and the conducti
representing a series of resistors by dashed lines. The arrows
cate the three values of conductivity, corresponding to the Fe
lines depicted in Fig. 3.
s
-

in
n
or

the Kronig-Penney model than for the case of the cos
potential, corresponds to the more important role of
Bragg reflections in the former case.

A. Unidirectional modulation

Assuming a periodic modulation in thex̂ direction the
energy of electron motion along theŷ direction is purely
kinetic and the energy dispersion is given as

E~kW !5E~kx!1
\2ky

2

2m*
. ~18!

ty
di-
i

FIG. 8. The conductivitysxx for the case of bidirectiona
Kronig-Penney~top! and cosine~bottom! modulation. The classica
approximation is presented by dotted lines.
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55 14 445SEMICLASSICAL MAGNETOTRANSPORT THEORY FOR . . .
The electrons bounded in thex̂ direction contribute to the
yy component of the conductivity only, and inserting expli
velocity values into Eq.~17! we get

syy
~b!5

e2t

m*
2(
i50

imax uky
i ~EF!u
pa

>s0

ns
~b!

ns
, ~19!

wherens
(b) is the areal density of bound electrons~number of

bound states with energyE<EF , per area!, ns is the total
electron density, ands05e2tns /m* is the free electron con
ductivity. The second part of Eq.~19! is seen if in the
kW -space integral defining the integrated density of sta
ns
(b)(EF) the energy integral is evaluated first. The rest
electrons, which are nearly free, contributes to both com
nents of the conductivity. Note that, since there is no eff
of the modulation on the electron mass in theŷ direction, it
can be generally proved that the total conductivity com
nentsyy is just equal tos0.

In Fig. 7 the results of the numerical calculation a
shown. Deep local minima in the energy dependence
sxx appear whenever there exists a discontinuity of
Fermi surface just at thekx axis where maximum velocity
expectation valuesvx(kW ) are expected. The distance betwe
adjacent dips thus approximately scales with the param
q as

DEF

V0
>

A2
q
AEF

V0
. ~20!

For the Kronig-Penney model with the classical appro
mation ~11!, the integral~16! can be evaluated analyticall
with the result

sxx
~class!

s0
512

3EF2V0

pEF
AEF2V0

2V0
1
3EF

222EFV025V0
2

2pEFV0

3arccosAEF2V0

EF1V0
, ~21!

which is plotted as dotted line in the upper part of Fig. 7
indicate the scaling of the conductivity with the modulati
amplitude. In the limitV0!EF , Eq. ~21! yields

sxx
~class!

s0
→12

A2
p

32

15S V0

EF
D 3/2. ~22!

The same result can also be obtained from a strictly class
calculation evaluatingsxx from the average drift velocity
along the classical trajectories.18 Note that, forV0!EF , the
V0 dependence ofsxx

(class) is very different from the resul
sxx
(series)/s0512(V0 /EF)

2 obtained in the local limit for a
series of resistors with densityn(x)5n0@12V(KP)(x)/EF#
~dashed line in the upper part of Fig. 7!.

The integrated density of statesns
(b)(EF) can also be cal-

culated analytically for the Kronig-Penney model in the cla
sical limit. For 2V0,EF,V0 the result is ns

(b)(EF)
5(EF1V0)D0/2, with D05m* /(p\2) the density of states
of the unmodulated two-dimensional electron gas. Thus,
density of states in the region of bound states is onlyD0/2,
s
f
-
t

-

of
e

er

-

al

-

e

but the total number of states belowE5V0 is the same as for
the unmodulated 2DEG. ForEF.V0, one obtains

ns
~b!

ns
>

1

pEF
FA2V0~EF2V0!1~EF1V0!arcsinA 2V0

EF1V0
G ,

~23!

wherens5EFD0 is the total density of electrons, includin
those in unbounded states. ForE.V0 the total density of
states isD0, as in the unmodulated 2DEG.

B. Bidirectional modulation

The representative results of the numerical calculati
are shown in Fig. 8. For both types of the potential the
appear dips in the conductivity dependences on the Fe
energy. For the cosine potential the pronounced dips are
ited to the antidot region, i.e., whenEF,2V0. These dips
always occur when some of the flat minisegments of
Fermi surface are missing. This is demonstrated in Fig
where Fermi surfaces corresponding to different conductiv
values are shown. The average period of the conducti
fluctuation thus scales with the parameterq, as in the case of
unidirectional modulation, Eq.~20!.

The conductivity contribution due to one of the flat min
sections may be estimated with the help of Eq.~19!, and we
get

Dsaa

s0
>

A2
q
AV0

EF
. ~24!

It gives an estimate for scaling of the fluctuation amplitu
with the parameterq. This scaling relation, which may b
not quite well seen from the presented results, has been
firmed by a calculation performed forq56 ~not shown
here!.

V. MAGNETIC BREAKDOWN

In the presence of a weak magnetic fieldB perpendicular
to the two-dimensional electron gas the dynamics of the e
tron motion, when treated semiclassically, is governed by
equation of motion, Eq.~4!. Electrons move alongkW -space
trajectories defined by constant-energy contours. For
transport properties at low temperatures only trajectorie
energies close to the Fermi energy are decisive. Their to
ogy dominates the magnetoresistance effects.

Energy spectraEi(kW ) are periodic inkW space with the
period of the reciprocal lattice and at Brillouin zone edg
electrons suffer Bragg reflection, i.e., the electron mo
along states belonging to one particular miniband. This is
origin of open trajectories for nearly free electron miniban
A special type of open trajectory, quasi-one-dimensio
channels, appears due to flat Fermi surface minisegmen
is well known8 that the existence of open trajectories leads
a positive magnetoresistanceraa;B2.

However, the applied magnetic field does not only chan
the electron dynamics, but electron energy spectra are
fected as well. The wave vectorkW is no longer a good quan
tum number. To include this fact, at least partly, the conc
of electron trajectories has to be improved by allowing t
electron approaching a Brillouin zone edge to have a fin
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probability P to tunnel through the relevant Fermi conto
discontinuities. The resulting suppression of electron refl
tions by magnetic fields, known as magnetic breakdo
changes the topology of electron trajectories and has a d
tic effect on the electronic transport. Breakdown of op
trajectories leads to a suppression of the positive magne
sistance.

The idea outlined above has been applied in order to
scribe low-field magnetoresistance of metallic single cr
tals. It has been found that the tunneling probability, of
called the breakdown probability, increases with magne
field strength,P>exp(2Bcrit /B). The critical magnetic field
Bcrit is the field for which the reflection is substantially su
pressed and the corresponding discontinuity of the Fe
contour becomes effectively closed. It has been calcula
using perturbation theory by several authors.8,13 It has been
done in the low-field limit, where it essentially reduces to t
theory of Zener electric breakdown, in the high-field lim
where the lattice potential can be treated as a perturba
and at intermediate fields. In all cases the same formul
obtained

Bcrit
~Q!~ i !5

p

4

Eg
2~ i !

e\uvW f~ i !u2
, ~25!

wherevW f( i ) denotes the free electron velocity at the po
where thei th Brillouin zone edge crosses the Fermi surfa
All these derivations were based on the assumption that
corresponding energy gapEg( i ) is much smaller than the
width of surrounding energy bands. Expression~25! is thus
applicable to the nearly free electron part of the Fermi c
tour and the breakdown effect describes a quantum tunne
induced by the magnetic field.

The above result is, however, not applicable to the Fe
contour region composed of flat minisections. Wave fu
tions of these states are quite well localized within regions
potential wells and one of the velocity components vanish
Quantum tunneling through a barrier between adjacent
tential minima is forbidden. Assuming an unidirectional p
tential modulation along thex̂ direction, the energy gap a
the particular Brillouin zone edge is just equal to the diffe
ence of kinetic energies of Fermi electrons belonging to
jacent minisections,

Eg~ i !5e i112e i5
1
2 m@vy

2~ky
i !2vy

2~ky
i11!#>vy

i \Dky
i ,
~26!

where vy(ky
i )5vy

i 5\ky
i /m* . In the presence of magneti

fields eigenfunctions can be viewed as a wave packet c
posed of plane waves with different momenta\ky . If the
effective wave packet widthDky

i (B) becomes comparabl
with Dky

i defined by Eq.~26! the corresponding discontinuit
may be assumed as closed. Their equality will be used
define the critical magnetic field.

To estimate the effective wave packet width let us ad
the classical view to the simplest case of the unidirectio
Kronig-Penney-like modulation. In the zero-field limit th
bounded electron of the velocity expectation valuevy

i can be
characterized by the classical electron moving along stra
lines with the velocityvF

(b)5A2(EF1V0)/m* . It is reflected
by potential walls which ensure its localization in thex̂ di-
c-
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rection within the particular strip of widtha/2, between right
and left reflection points atxR and xL , respectively. The
slope of the trajectory with respect to thex axis is defined by
the value of vy

i . In the presence of the magnetic forc

eBW 3vW the electron path between reflection points atxL and
xR becomes circular with the radiusRc controlled by the
cyclotron frequencyvc5eB/m* , Rc5vF

(b)/vc . The velocity

component along theŷ direction is changing its value alon
the trajectory. In weak magnetic fields, whenRc.a, the ve-
locity range Dvy5vF

(b)(xL /Rc2xR /Rc) is just equal to
avc/2. The obtained valueDky5m*Dvy /\5m*vca/2\
can be identified with the effective wave packet width.

To allow an electron in thei th quasi-one-dimensiona
channel to overcome the potential barrier, the energye i11
entering Eq.~26! has to be replaced byV0. The resulting
critical magnetic field is given as follows:

Bcrit
~C!~ i !>

2

ea

V02e i
uvy

i u
. ~27!

This simple geometrical consideration leads to the conc
sion thatBcrit

(C)( i ) is the magnetic field for which approxi
mately half of the originally bound electrons wit
ukyu,uky

i u may enter the nearly free electron part of t
Fermi contour.

The scaling of critical magnetic fields defined by Eq.~25!
and Eq.~27! with the parameters of the periodic potenti
differs substantially. In the case of the magnetic breakdo
in the nearly free electron part of the Fermi conto
Bcrit
(Q);aVG

2 , with VG being the relevant Fourier compone
of the potential. The proportionality to the square ofVG is
typical for perturbation theories. For quasi-one dimensio
channelsBcrit

(C) scales with the ratioV0 /a as has already bee
shown by using slightly different definition of the critica
magnetic field.17 ObviouslyBcrit

(C)( i50)>(2/evF)(V0 /a) for
V0!EF , i.e., the Lorentz forceevFBcrit

(C) becomes compa
rable with the mean electric force 4V0 /a.

In general, the magnetic breakdown effects describ
gradual transition of the zero-field velocity distribution
Fermi electrons into the distribution given by the classi
approach, which neglects interference effects~Bragg reflec-
tions! and the size quantization within local potenti
minima.

VI. MAGNETORESISTANCE OF UNIDIRECTIONALLY
MODULATED SYSTEMS

Assuming a uniform relaxation time, we can general
the expression for the conductivity, Eq.~16!, following
Chambers,19 to the case of nonzero magnetic field,

sab5
e2

2p2E d@EF2E~kW !#va~kW ,t0!

3E
2`

t0
vb~kW ,t !exp@~ t2t0!/t#dtd2k, ~28!

wherevW (kW ,t) is the time dependent velocity for the trajecto
of an electron which at timet0 is in the state defined by wav
vectorkW .
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Expression~28! together with the magnetic breakdow
concept outlined in the preceding section has already b
used to describe magnetoresistance for the case of very w
periodic potential modulation.16 To describe the main fea
tures of the low-field magnetoresistance for the case o
strong modulation,q>1, we consider the Kronig-Penney
like periodic potential applied along thex̂ direction. We ne-
glect all interference effects and size quantization, i.e.,
use the ‘‘classical approach’’ to the energy dispersion as
scribed in Sec. II. The corresponding Fermi contour is sho
in Fig. 3 by a dotted line. Contour segments of sta
bounded inx̂ direction,ukxu,kc with kc5Am*V0/\, are de-
fined by the equality

EF54
\2kx

2

2m*
1

\2ky
2

2m*
2V0 ~29!

as follows from Eq.~11!. Note that the corresponding ele
tron states are localized within a single potential well of t
considered Kronig-Penney modulation. This implies that
average value of the velocity componentvx must vanish as
well as the expectation valuevx(kW ) in the quantum case
while vy5\ky /m* .

To determine the conductivity, the time integration alo
the Fermi contour entering Eq.~28! has to be evaluated firs
For contour segments withukxu.kc the time dependence o
the velocity is quite well defined by the equation of motio
Eq. ~4!. Let us consider an electron which appears in
state withkx52kc and ky.0, assuming clockwise motion
along the Fermi contour shown in Fig. 3. In the spirit of t
magnetic breakdown concept this electron will not be
rectly reflected into the state withkx5kc but it may move
along the Fermi segment of bound states and it may eve
ally suffer the reflection kx→2kx at a state with
ukxu[kx

r,kc . Note that the motion along bound states
controlled by electron transitions between minibands, i.e.
the magnetic breakdown effect which, in our ‘‘classical a
proach,’’ may occur at anykx with ukxu,kc . To describe
electron motion along this part of the Fermi contour, we sh
use real-space trajectories of a classical electron within
tential well regions.

The Fermi electron at the state withkx52kc andky.0
has zero expectation value of the velocity inx̂ direction,
while the y component has a nonzero valuevy

c . It can be
represented by a classical electron having Fermi velo

vF
(b)5A2(EF1V0)/m* and velocityvy

c along ŷ direction.
Together with its real-space coordinate (x0 ,y0) within a po-
tential well the subsequent classical motion is well defin
as shown in Fig. 9. The electron moves along the circu
path of the radiusRc5vF

(b)/vc with gradually increasingvy
until a valuevy

r (B,x0)5vF
(b)cosur reached at the potentia

well boundary located atxL . For given (x0 ,y0) the de-
scribed real-space path uniquely defines the time evolu
of the velocity componentvy5\ky /m* and via the identity
Eq. ~29! the reflection pointkx

r (B,x0) in kW space. Note that in
zero magnetic fieldkx

r (B,x0) equals tokc .
It may be expected that, due to the quantum interferen

the classicalrW-space path, having a crossing pointxc , splits
into two parts, the close orbit and a set of bounded states~to
en
ak
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the right of xc) as shown in Fig. 9. Electrons overcomin
barriers of the potential modulation are exclusively formi
close orbits. In general, they are subjected to the quan
condition expecting an integer number of flux quanta with
the area surrounded by the orbit, which determines the
lowed values ofx0.

Electrons moving on close orbits inrW space are periodi-
cally returning back into the point (x0 ,y0). This corresponds
to the kW -space orbit with reflectionskx→2kx whenever
ukxu5kx

r (B,x0). The corresponding contribution to the co
ductivity is given by the following contour integral:

sab
close5

e2

2p2 K R
ukxu.kx

r
va~kW ,t0!E

2`

t0
vb~kW ,t !

3exp@~ t2t0!/t#dtL
x0

kdf

u¹kWE~kW !u
, ~30!

where angular brackets denote averaging over all allow
values ofx0. For the sake of simplicity we have assumed th
electrons may exceed the critical velocityvy

c at any position
x0P(xL ,xR) within the well region with the same probabi
ity. This assumption excludes commensurability effects
well as magnetic quantization effects from our considerati
Consequently, corresponding Weiss and Shubnikov–de H
oscillations will be averaged out.

The electrons which do not take part in any close or
remain bounded within potential wells. Having zero avera
velocity along thex̂ direction, they contribute tosyy only. It
represents a drift velocity and from Eq.~19! we get

FIG. 9. The close real-space electron orbit is sketched by th
lines. The dashed lines represent the average real-space path
responding to the Fermi contour segments withukxu.kc . They

have been obtained by multiplyingkW -space trajectories by a squa
of the magnetic length and rotated byp/2. Full lines represent
paths of the classical electron within the potential well regio
Shadowy areas represent local potential barriers of the Kro
Penney modulation.
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syy
bound5

e2t

m*
2m*

p2\ E0
kc

@12p~kx ,B!#vy~kx ,EF!dkx

[s0

ns
~b!~B!

ns
, ~31!

where the explicit form of the velocity compone
vy(kx ,EF) is defined by Eq.~29!:

vy~kx ,EF!5
1

m*
A2m* ~EF1V0!24\2kx

2. ~32!

The quantityp(kx ,B) is the probability that the Fermi stat
with wave numberukxu,kc takes part in any of the availabl
close orbits at given magnetic fieldB, i.e., it has the meaning
of the magnetic breakdown probability. It has been de
mined numerically. Simultaneously with the calculation
sab
close the timesDt i spent by Fermi electrons within ang

intervalsDf i have been established. The condition that
ratios of these times has to be the same as those atB50
immediately leads to the probability values. This cor
sponds to the condition that the local areal density as we
velocity distribution are not changed by magnetic fields. D
to the formation of close orbits subsequent reflection eve
become correlated andp(kx ,B) depends onvct. Some of
the electrons having, in the classical sense large enough
mentum along thex̂ direction to escape from the well region
remain bounded because of the limited density of open
bits.

The resulting magnetoresistancerxx as a function of the
magnetic field for several values of the modulation amp
tude V0 is shown in Fig. 10. To stress the scaling of t
breakdown peak positions with the parameters of the po
tial modulation we have usedBcrit54V0 /(eavF) as the unit
of the magnetic field strength (vF5A2EF /m* ). The result-
ing form of the magnetoresistance anomaly has the s
qualitative features as that obtained in the limit of very we
modulation16 where it has been argued that the breakdo

FIG. 10. Magnetoresistance for the case of unidirectional mo
lation with the perioda5400 nm for different potential amplitudes
From the topV055, 4.5, 4, and 3 meV, respectively. The Ferm
energy is 8 meV andt58 ps. Dotted lines represent the approa
done by Betonet al. ~Ref. 5! for V054 and 3 meV.
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peak is followed by a resistivity increase at higher magne
fields due to the formation of Landau levels.

Opposite to some previously presented results,5,12 repre-
sented in Fig. 10 by the approach of Betonet al.,5 we have
found that, for magnetic fields well aboveBcrit , instead of a
rapid fall a positive magnetoresistance appears. This dif
ence originates in the correlation between subsequent br
down events which was completely ignored in the mention
previous publications. As expected both approaches lea
the same result at very low magnetic fields, while at high
fields for whichvct>1 the correlation between subseque
reflections becomes important and results differ subs
tially.

The role of open trajectories is illustrated in Fig. 11 whe
the number of bound statesns

(b)(B) representing the conduc
tivity contribution of open trajectories, Eq.~31!, is plotted as
a function of the magnetic field strength. This depende
represents the magnetic breakdown effect, i.e., the decr
ing number of open trajectories with increasing magne
field strength. The quantity 12ns

(b)(B)/ns
(b)(0) may be in-

terpreted as an effective breakdown probability, as seen f
Eq. ~31!. For the Kronig-Penney model the fraction of boun
states atB50 is given byns

(b)/ns of Eq. ~23!.

VII. SUMMARY AND CONCLUDING REMARKS

The most pronounced effect of the periodic modulation
the formation of quasi-one-dimensional channels describ
electrons which are bound within a single potential well. T
number of these channels along the particular direction
approximately equal to the value of the parame
q52aAm*V0. These states significantly influence the a
isotropy of the velocity distribution and consequently t
electronic transport. The perfect periodicity should lead
observable fluctuations of the conductivity as a function
the Fermi energy~see Fig. 7 and Fig. 8!, i.e., of the electron
concentration. This effect originates in the ordinary Bra
reflections due to the interference of electron waves scatt
on different reflection planes. Note that the presented
amples are close to the situations reached in the fabric

-
FIG. 11. A relative number of bounded electronsns

(b)(B) as a
function of the magnetic field strength. The used parameters are
same as those for the magnetoresistance shown in Fig. 10.
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superlattices. For example in the case withq56 there are
approximately 450 electrons per areaa2 for EF /V054.
However, these fluctuations may be easily washed out ev
by weak inelastic scattering. Also, due to the sample nonun
formity they can be averaged out. However, if such a type
fluctuation forB50 would be observed, it may be expected
that in magnetic fields the effects due to the Hofstadter-typ
energy spectrum should appear.

Based on the knowledge of electron energy spectra, t
low-field magnetoresistance can be evaluated, including t
effect of the magnetic field into the electron dynamics con
trolled by the semiclassical equation of motion. To captu
much of the additional ‘‘high-field’’ physics, the magnetic
breakdown effect allowing electron transitions between di
ferentkW -space trajectories, i.e., between minibands, has to
taken into account. This effect gradually changes zero-fie
velocity distribution towards the classical distribution, which
ignores interference effects~Bragg reflections! as well as the
size quantization within potential well regions.

For the case of a strong unidirectional modulation
q>1, the basic features of the low-field magnetoresistan
anomaly have been established, assuming classical velo
distribution. It has been found that the typical strong positiv
magnetoresistance at very low fields is gradually suppress
by a decreasing number of electrons bounded within pote
tial well regions. The position of the resulting breakdown
peak, characterized byBcrit;V0 /a, is controlled by the pa-
rameters of the potential modulation, the amplitudeV0, and
the lattice constanta. The magnetoresistance peak is fol
lowed by a resistance increase at higher fields if the com
mensurability oscillations as well as Shubnikov–de Haas o
cillations are smeared out. This positive magnetoresistan
may be attributed to the nonvanishing number of bounde
electrons due to the limited density of close orbits. The sam
e
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features have been found by Menne and Gerhardts18 by solv-
ing Boltzmann’s equation for purely classical electrons.

The described form of the magnetoresistance anom
might be affected by Bragg reflections at very low magne
fields. In the case of strong modulation they lead to a s
stantial suppression of the zero-field conductivity, as sho
in Fig. 7 and Fig. 8. This effect can be viewed as a spe
type of localization. The resulting miniband structure h
tiny gaps,Eg , for which critical magnetic fields scale with
aEg

2 . These gaps can be easily overcome by electron
substantially weaker magnetic fields thanBcrit of bounded
electrons. Consequently it might be expected that the str
positive magnetoresistance due to the open trajectories
cated within potential well regions will be partly suppresse
In strongly modulated systems it can even be the origin
the often observed negative magnetoresistance at the lo
fields.9–11

The low-field magnetoresistance anomalies can also
affected by the anisotropy of the relaxation time which c
be naturally expected in the case of the anisotropic velo
distribution. In the systems with dominating small-ang
scattering the electron scattering between flat Fermi con
minisections can be suppressed. As a result, the highly c
ducting quasi-one-dimensional channels will dominate
electronic transport in strongly modulated systems. The m
netic breakdown effect allowing electron transition betwe
different Fermi contour segments smears out the relaxa
time anisotropy. This can also be the origin of the negat
magnetoresistance in strongly modulated systems.9
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