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Semiclassical magnetotransport theory for two-dimensional electron systems
in lateral superlattices
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Based on the correct single-electron energy spectra we calculate, within a semiclassical approach, the
conductivity of periodically modulated two-dimensional electron systems in a perpendicular magnetic field
B. ForB=0 we obtain, as a function of the Fermi energy, fluctuations of the conductivity, which result from
the energy gaps in a perfectly periodic modulation potential, but may easily be smeared out by disorder.
Introducing a smooth interpolation between the energy bands in the extended zone scheme and taking magnetic
breakdown effects properly into account, we calculate the magnetoresistance for a strong unidirectional modu-
lation and magnetic fields of arbitrary strengths, neglecting these quantum fluctuations.
[S0163-18207)07521-9

I. INTRODUCTION cell and the lattice constant is much larger than the Fermi

The modern techniques of microstructuring allow prepa_wavelength)\F defined by the average carrier density of

ration of a new class of materials, the lateral superlattices. 1€ two-dimensional electron gasg2\ = y2mns. Opposite

low magnetic fields applied perpendicularly to these two-to the natural single cr)istals, many Brillouin zones are occu-
dimensional systems peculiar transport properties arpied and the energfg(k) of most of the electrons will be
observed. Except for the well-known magnetoresistance os-close to the free electron one. The extended zone scheme
cillations due to the commensurability effeétS,a number thus seems to be convenient for the description of energy
of low field magnetoresistance anomalies appear at low tendispersions.

peratures. _ . The discontinuities of the energy dispersigfk) along a
A typical, often observed anomaly is a positive magne-,,icyjar direction, which appear at the Brillouin zone

toresistance followed by a resistance drop at higher magnet oundaries, are essentially of two distinct origins. First, in

fields. ~* Such behavior was observed on metallic Slnglethe energy range in which the classical motion is bounded

c_rystals?” It has bee’? successfully explained by the SUPPIESp . \veen the potential wells, wide gaps separate narrow en-
sion of Bragg reflections due to the Lorenz force md%ced byergy bands with eigenfunctions which are mainly localized
mrzggitr']igglc:; 1rt]i\?éfe;;kr:\zm?ezsisg?ggeﬂgsbrZIZ l;d b)ggﬁ vgi:[hin the wells and have exponentially decaying tails in the
P 9 9 ; . Bhrriers. These discontinuities are essentially due to the size
served, usually in strongly modulated two-dimensional sys-

tems, e.g., in the case of unidirectional modulatiand in a quanti_zatzion within the potential We"S. OT th_e pe_rioc_ji_c
lattice of antidots®1 To understand these low-field magne- potentiat® and affect the momentum distribution signifi-

- . : . o antly if the electron mean free path is larger than the lattice
toresistance anomalies a semiclassical description is usually._ . - ; :
- ) .period, a condition often reached in the experiment. The sec-
satisfactory. It is based on the knowledge of the velocit . L o -

oo ; - -~ -ond type of discontinuities originates in standard Bragg re-
distribution of Fermi electrons at zero magnetic field which . . . . . A
is controlled by parameters of the potential modulation flections in the energy range in which the classical motion is

= Dy p €p ; i not confined to a single period of the superlattice. Here the
The artificial crystals have quite a large lattice constant

interference of partial waves scattered from different reflec-
usually of the order of several hundreds of hanometers. Th
. ) ) ion planes leads to narrow gaps between broad energy bands
effect of the underlying natural crystalline potential may thus . ' : .
of extended wave functions with considerable amplitude be-

%?O'qzlgdzﬂe?% Iggg:jgl;/mnzgncghzir?;‘z?gl\/eitfcl)?tg?gp?rgi ar éween the wells. '_I'hese gaps dl_Je to interfer_ence can easily be
controlled by the HamiI'Eonian Smeared out by |mperfect periodicity, bgt_ in the ideal case
they may strongly influence the conductivity.
The characteristic features of one-dimensional energy dis-
(1) persion will be summarized in Sec. Il. The following Sec. Il
will be devoted to the description of Fermi surfaces for the
cases of the unidirectional modulations and bidirectional
where V(x,y) stands for a periodic potential modulation. modulations of square symmetry. For the sake of simplicity a
The eigenfunctions are of the Bloch type, with the waveseparable periodic potential has been considered. The calcu-
vectork being a good quantum number. In standard artificiallation has been performed for cosine and Kronig-Penney-like
superlattices there are usually many electrons within the uninodulations representing weak and strong Bragg reflection

2 2
p: P
2m* +2m* +V(X7y)7

H:
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effects, respectively. Both types of potentials lead to an eithe Fermi surface discontinuities, resulting from the interfer-
genvalue problem which scales with the prodaéV,, a ence effect and size quantization, will be described.
andV, being modulation period and amplitude, respectively, Low-field magnetoresistance for the case of a unidirec-

so that the value of the single parameger tional potential modulation has been studied by different ap-
proaches. Main attention has been paid to the explanation of

la —— the commensurability effeét****The above-described con-
h oo cept ofk-space electron trajectories has also been applied for

determi the effect of th tential. Th its of th the particular case of very weak potential modulafibie.,
etermines the efiect ot the potential. 1he results 0“ € P the case witlg<<1. Obtained results have been in quali-
cise numerical calculation will be compared with a “classi-

| b which thiv int lates bet h tative agreement with the experimental observation, i.e.,
cal approach, which smoothly interpoiates between the ene trong positive magnetoresistance approaching a maximum
ergy bands in the extended zone scheme and eliminates t

: - . e to the magnetic breakdown and commensurability oscil-
discontinuities of quantum origin.

T o i iclassical th ._lations at higher magnetic fields. However, the predicted
ransport phenomena within semiclassical theory are Inécaling of the magnetoresistance peak positions with the pa-
terpreted in terms of the electron distribution function

o _ o ) o rameters of the potential modulation did not agree with the
f(r,k) which satisfies the Boltzmann equation. We limit our ayajlable experimental data. This suggests that in standard
consideration to low temperatures for which the electrons aystems the parametgr defined by Eq(2), is not much less
the Fermi energy determine the transport properties. We Wilhan 1 and the potential modulation cannot be treated as a
also assume that the equilibration length for electrons igyeak perturbation.
much larger than the lattice constant. In this case the electric The proper scaling of magnetoresistance breakdown
field, arising due to the energy dissipation from the currenpeaks has been derived by Betehal®'” Using classical
drawn through the sample, may be assumed as spatially Unirguments they have found a decreasing number of open
form and only thek dependence of the distribution function trajectories with increasing magnetic field strength. For the
needs to be taken into account. Note that in the opposite limitudied cosine modulation it vanishes if the maximum elec-
the transport properties are controlled by local Drude contric force 27Vy/a is equal to the magnetic forceBu .
ductivities and we are left with a periodic series of resistorsHowever, at the critical magnetic fieB;;, defined in this
which allows a simple calculation of the average resistanceway, their model predicts a very rapid fall in the magnetore-
To emphasize the effect of electron energy spectra on thsistance which is not seen in experiments.
conductivity we will assume that the relaxation processes Section VI will be devoted to the magnetoresistance for
may be described by a uniform relaxation time. In such ahe case of very strong unidirectional modulation for which
case the zero-temperature conductivity is exclusively conthe Weiss oscillations are usually not observed. For this rea-
trolled by velocity expectation values son and for the sake of simplicity, the commensurability ef-
fect has been excluded from our consideration. It will be
shown that the proper trajectory statistics gives not only the
observed scaling of breakdown peak positions but also a pro-

) ) o nounced positive magnetoresistance for magnetic fields well
of the Fermi edge electrons. The obtained conductivity dexpoyveB

pendences together with the “classical approach” will be

presented in Sec. IV.
P II. ONE-DIMENSIONAL ENERGY DISPERSION
In the presence of a weak magnetic fiéle=(0,0,B) ap- AND THE CLASSICAL LIMIT

plied perpendicular to the two-dimensional electron gas the

dynamics of the electron motion, when treated semiclassi- The energy spectrum of an electron moving in a one-

cally, is governed by the equation of motion: dimensional channel periodically modulated by a potential
V(x) of the perioda is one of the standard eigenvalue prob-

.. 1 R
v(k)=%V‘E(k) ©)

crit -

ok .. lems defined by the Hamiltonian
h—=—ev(k)XB. 4
ot p2
X
The time dependence of wave veckodescribes an electron H= 2m* +V(X). ®

motion along states having the same energy. Due to reflec-

tions at Brillouin zone boundaries there appears a number ofhe result of a numerical calculation for the Kronig-Penney-
different trajectories. Their topology, especially the ratio oflike potential

open and close trajectories, controls the main features of the

magnetotransport. The above scheme is applicable if the cy- 2mX

clotron energy is much less than the energy gaps. It can, V(KP)(X):VOSQ'{COST ©6)
however, be generalized so that it captures much of the ad-

ditional high-field physics in a physically appealing way. and for the cosine modulation

The generalizatidh'® is to acknowledge that electrons ap-

proaching Brillouin zone edges have a finite probability for (09w 27X

tunneling through the barrier and moving from one trajectory VIR (X) = Vocos—— )

to another. This effect, known as magnetic breakdown, will
be discussed in Sec. V. The distinct features of this effect agre shown in Fig. 1.
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— fined by Eq.(2), i.e., with the produca?V,,. Further, plotting

/ E(ky)-a? as a function ofk,a, the miniband positions are

/ approximately lying on the same curve representing the clas-
// ] sical limit a— + .

// For the case of the Kronig-Penney-like potential, ),

/! an explicit expression for the approximate miniband disper-
/// sion may be obtained. According to the Bohr-Sommerfeld
/ guantizing condition, eigenenergies well below V, coin-

/,// ] cide with eigenenergies of a box with hard walls and width
g al2

2
~V,. ®

2
i KP=g
> |

1 Zm*

i
a

-7 T There are approximately

a
- T NE;KP)E%\/m*—Vo =q 9

- narrow bands corresponding to well-localized states within
one particular potential well, i.e., below the eneigy.

. Having in mind that the energy spectrum of a large box is
only weakly dependent on the applied boundary conditions,
the miniband dispersion for higher energies may easily be
obtained for large enough values @f In the regions of the
flat potential, electrons may be assumed as free with the
density of states per unit lengtfim* /2/(7%\E=V,). For
energiesE aboveV, the density is given as the sum of both
contributions and for the integrated density per one period
we get

b . N(E)= %\/m?( VE—Vo+VE+Vy). (10

A . Within each miniband there is one state per unit cell, so that
=T N(E) may be identified with the miniband index With
L4 1 ky,=mila=7N(E)/a, Eqg. (10) leads to the following ap-
=/ proximation for the miniband dispersion
-1r . i )
| ) ) ) ) a
' el

k. /K,

FIG. 1. Energy spectra for a one-dimensional periodically
modulated channel with the Kronig-Pennépp) and the cosine wherek, is the critical wave number
(bottom) potential. With increasing the modulation strength=4

12k
Aomx Vo

o( kE:KP)_ | kx|)

. 5h2K2 (V0>22m*

a2 %ﬁ?L”W”‘kgm* v
X

on the left, 6 on the right, respectivelthe exact calculatiofsolid) 1

yields a growing numbeN,, of states localized below the potential k(cKP)zg\/m* Vo (12
maxima. The dotted lines represent the classical approach and the

dashed lines correspond to zero modulation. and the functiond equals 1 or zero for positive or negative

argument, respectively. This defines our ‘“classical ap-

Due to the effect of Bragg reflections at Brillouin zone Proach” to the Kronig-Penney energy spectrum, which is a
boundaries energy gaps appear and the spectrum is corgontinuous function ok, , shown as dotted line in the upper
posed of minibands. They will be numbered by the indexpart of Fig. 1.
i=0,1,2, ... increasing with miniband energy. The low ly-  The above-described classical approach can be general-
ing minibands are flat due to the wide energy barriers sepdzed for an arbitrary form of the potential by dividing the
rating adjacent potential minima and preventing a significanperiod a into a number of narrow regions. For the cosine
overlap of wave functions. For energies well abagthe  modulation, Eq(7), we have obtained
energy gaps become smaller and the energy dispersion ap-
proaches the free electron quadratic dispersion law. The con- (oS = ﬂ k(cos):f i m vV (13)
sidered eigenvalue problem scales with the parantgteie- b~ Trq’ ¢ T h o
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As expected, in this case the energy of low lying flat mini-
bands increases linearly with miniband indiexiue to the
parabolic form of local potential minima. The energy disper-
sions obtained from the lima— + o quite well approximate 3
results of the precise calculation as shown in Fig. 1.

In both cases the critical wave numbler divides elec- I q=
tronic states into two regions of distinct properties. Values
[ky| <k, correspond to states well localized within the poten-  ~
tial wells and belonging to narrow bands. The corresponding &
expectation values of the velocity, E®), essentially vanish. =3
In the “classical approach” we shall take,=0 for states g
with |k,|<k.. All other states represent nearly free electrons ~
with vanishing velocity at Brillouin zone boundaries only, as e
shown in Fig. 2. The velocity maxima are close to the result
of the classical limit which neglects Bragg reflections. For 1r , .
energies well abov&/, they are approaching free electron y
values supporting the extended zone scheme as a relevan ‘ 7
view to the electron transport properties of lateral superlat- o
tices. In the “classical approach” we shall calculatg for 4
|k,|>k. from the approximate energy dispersion, e.g., from 0 K
Eq. (12).

Ill. FERMI SURFACES 3r / ]

The energy spectra for periodic modulation defined by a _ /
separable potential . q= /

2+ / -

N

~~

V(x,y)=V(x)+V(y) (14

AN

£
are given as the sum of one-dimensional dispersions of the g“
Hamiltonian, Eq.(5). For the sake of simplicity only the L)
same modulation along both directions will be considered. =~
The one-dimensional miniband structure is reflected in the >
topology of the Fermi surface. Within the extended zone
scheme it becomes split into a number of segments located 1r A
between Brillouin zone boundaries. In Fig. 3 the Fermi sur- i
faces for the case of the unidirectional Kronig-Penney-like I s
modulation, Eq(6), are shown. The cases of a bidirectional s
modulation are represented by Fermi surfaces shown in Fig. e
4 and Fig. 5. As discussed above, for the Fermi energies 0 -
Er aboveV,, the conditiona>\g allows one to divide 0 1 2
Fermi electrons into two distinct groups, bounded and nearly k /kc
free electrons. X

In the regions whergk,| or |k,| is less thark, there are
flat miniregions arising due to the size quantization within ~FIG. 2. Mean velocityy=(1/2) dE/dk for a one-dimensional
potential wells of which the modulation is composed. TheirPeriodically modulated channel with the Kronig-Penrieyp) and

positionskia (a=x,y) are defined by the following equality: the cosing(bottom potential. Th_e dotted lines represent the clas_si-
cal approach and the dashed lines correspond to zero modulation.

X
~
\

E(k,)=Er—€, (19 _ o .
happen in the case of bidirectional modulation and the cor-
wheree; denotes energy levels of the potential well. In realresponding flat minisegment disappears from the Fermi sur-
space, the amplitude of corresponding eigenfunctions varface, as may be seen in Fig. 4. The occurrence and/or ab-
ishes exponentially in a region around potential maximasence of individual segments of the Fermi lines, even for
Vo. The states for whichk,| as well as|k,| are less than very close values of the Fermi energy, is due to the interplay
k. are bound states. Those states, for which the only one aif the energy gaps in the one-dimensional energy spectra. In
the conditions |k,| <k or |k,|<k.) holds, are bound in one the case of a wide gap even several minisections may be
direction only. As the result, quasi-one-dimensional conductmissing as shown in Figs. 5 and 6. On the other side the
ing channels at the energies above the potential maxima amassical approach ignoring gap structure always leads to a
formed. continuous Fermi contour.
Note that for some values of the Fermi energy the equality The rest of the Fermi surface is segmented due to the
Eq. (15 need not be fulfilled for any value &, due to the Bragg reflections only, i.e., due to the interference effects.
existence of energy gaps in the disperskf(k,). This may Electrons in these states are called nearly free electrons since
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k, /k,
k, /K,
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k, /k,

FIG. 5. A series of Fermi lines for the Kronig-Penney bidirec-
tional modulation atEr/Vy,=0, 0.7, 1.4, 2.1, 2.8, 3.5, and 4.2.
Results of the classical approach are presented by dotted lines.

FIG. 3. Fermi lines for unidirectional Kronig-Penney modula-
tion, at Er/Vy=2.5, 2.7, 3.1. Missing states close kp=0 for  wherer is the uniform relaxation time. The contribution of
Er/Vo=2.7 lead to a dip in the conductivitef. Fig. 6. bound electrons in states represented by flat minisections of

the Fermi surface can be written as the sum of corresponding
they can overcome potential maxima of the modulationvelocities
Their effective mass is generally larger than .

e?r 2m* 1%

ol =— Z v (K, (17)

axm* wah
IV. CONDUCTIVITY

i
Assuming the elastic scattering as dominant, the IineanzaWherek is defined by Eq(15). It represents the average

. ) . Flectron drift.
tion of the Boltzmann equation with respect to an externa

L : . . In addition to the precise numerical calculation the results
electric field gives the following expression for the conduc-Of the classical limit which neglects ener Lantization are
tivity at zero temperature: 9 aya

also presented in Figs. 7 and 8. In this limit the gap structure
is smeared out, nevertheless the states for which<k,
remain bound, at least in one direction along which the ve-

locity remains zerasee Fig. 2 To evaluatelZ-space inte-

2

aa 27_[_2

f S Er—E(K) v (K)Tv,(K)d?k,  (16)

k, /K

0.0 04 0.8 1.2 1.6

00 05 10 15 20 n/ke
k. /k. FIG. 6. Detail of the Fermi line scheme for the Kronig-Penney

bidirectional modulation, & /V,=3.40("inner” thin solid), 3.63
FIG. 4. A series of Fermi lines for the bidirectional cosine (thick solid), 3.69 (thick dasheyl and 3.79(“outer” thin solid).
modulation aEg/V, = 0, 0.7, 1.4, 2.1, 2.8, 3.5, and 4.2. Results of The corresponding conductivity values are indicated by arrows in
the classical approach are presented by dotted lines. the inset.
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0.0 1.0 2.0 3.0 4.0 0.0 1.0 20 30 4.0

EF/V 0 ) EF/V 0

FIG. 7. The conductivityo,, for the case of unidirectional  FiG. 8. The conductivityo,, for the case of bidirectional
Kronig-Penney(top) and cosingbottom modulation. The classical  kronig-Penney(top) and cosingbottom) modulation. The classical
approximation is presented by dotted lines and the conductivityypproximation is presented by dotted lines.
representing a series of resistors by dashed lines. The arrows indi-

cate the three values of conductivity, corresponding to the Fermi ) .
lines depicted in Fig. 3. the Kronig-Penney model than for the case of the cosine

potential, corresponds to the more important role of the

grals like that in Eq(16) in the classical limit, we integrate Bragg reflections in the former case.

over energy and thk component along the lines of constant

energy, d*k=dedk/(h|v(k)]), with E(k)=e¢, and take A. Unidirectional modulation

v,(K)=0 anddk;=dk, in the region of bounded states, i.e., i o e

for [K,|<ke. Assuming a periodic modulatlonAln the direction the
As expected in all cases the classical conductivity isenergy of electron motion along the direction is purely

larger than that with the interference effects taken into ackinetic and the energy dispersion is given as

count. The conductivity resulting from modeling the periodic

potential as a series of resistors is even higher, as shown in o2

Fig. 7 by dashed lines. The fact that the difference between E(K)=E(k )+w (18)

the exact calculation and the classical approach is larger for *2m*
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The electrons bounded in tiedirection contribute to the ~but the total number of states beldv=V,, is the same as for
yy component of the conductivity only, and inserting explicit the unmodulated 2DEG. Fdtr>V,, one obtains

velocity values into Eq(17) we get () 1 5V
_ , > = | \2Vo(Eg— V) + (Eg+ Vp)arcsi °

b €7 o3 |k (Ep)| n® ns  7Eg o e Er+Vo’

ayy =W2i20 TEUOH_S' (19 (23

wheren,=EgD, is the total density of electrons, including
wheren{) is the areal density of bound electramumber of  those in unbounded states. FBrV, the total density of
bound states with energg<Eg, per arey ng is the total states isDg, as in the unmodulated 2DEG.
electron density, and,=e?rn,/m* is the free electron con-
ductivity. The second part of Eq19) is seen if in the B. Bidirectional modulation

k-space integral defining the integrated density of states The representative results of the numerical calculations
n{’)(Er) the energy integral is evaluated first. The rest ofare shown in Fig. 8. For both types of the potential there
electrons, which are nearly free, contributes to both COMpOzppear dips in the conductivity dependences on the Fermi
nents of the conductivity. Note that, since Ehere iS no effecbnergy_ For the cosine potential the pronounced dips are lim-
of the modulation on the electron mass in thdirection, it  ited to the antidot region, i.e., whels<2V,. These dips
can be generally proved that the total conductivity compo-always occur when some of the flat minisegments of the
nentoy, is just equal tooy,. Fermi surface are missing. This is demonstrated in Fig. 6

In Fig. 7 the results of the numerical calculation arewhere Fermi surfaces corresponding to different conductivity
shown. Deep local minima in the energy dependence ofalues are shown. The average period of the conductivity
oxx appear whenever there exists a discontinuity of thefluctuation thus scales with the paramegeas in the case of
Fermi surface just at thk, axis where maximum velocity unidirectional modulation, Eq20).

expectation values, (k) are expected. The distance between The conductivity contribution due to one of the flat mini-
adjacent dips thus approximately scales with the paramet&ections may be estimated with the help of Etp), and we
q as get

ABe V2 [Ec A7u V2, Vo 24)

(20) (O)) q EF.

Vo q Vo
It gives an estimate for scaling of the fluctuation amplitude
For the Kronig-Penney model with the classical approxi-with the parameter. This scaling relation, which may be
mation (11), the integral(16) can be evaluated analytically not quite well seen from the presented results, has been con-

with the result firmed by a calculation performed fag=6 (not shown
here.
olglasy =1_3EF—V0 [Ee—Vo 3EE—2EpVo—5V;
oo mEg 2V 27EEV, V. MAGNETIC BREAKDOWN
Er—Vo In the presence of a weak magnetic fi@®derpendicular
X arcco E vy (21 to the two-dimensional electron gas the dynamics of the elec-

tron motion, when treated semiclassically, is governed by the

which is plotted as dotted line in the upper part of Fig. 7 toequation of motion, Eq(4). Electrons move along-space
indicate the scaling of the conductivity with the modulation trajectories defined by constant-energy contours. For the

amplitude. In the limitV,<Eg, Eq.(21) yields transport properties at low temperatures only trajectories at
energies close to the Fermi energy are decisive. Their topol-
orldlass V2 32 V0>3’2 oy O dominates the magnetoresistance effects.
oo~ m 15\Ef (22 Energy spectreE;(k) are periodic ink space with the

, . . period of the reciprocal lattice and at Brillouin zone edges
The same result can also be obtained from a strictly classic@liectrons suffer Bragg reflection, i.e., the electron moves

calculation evaluatingr,, from the average drift velocity gjong states belonging to one particular miniband. This is the
along the classical trajectoriédNote that, forVo<Eg, the origin of open trajectories for nearly free electron minibands.

V, dependence ob5** is very different from the result A special type of open trajectory, quasi-one-dimensional

Uisxe”eshfozl—(Vo/EF)z obtained in the local limit for a channels, appears due to flat Fermi surface minisegments. It
series of resistors with density(x) =ng[ 1— V&I (x)/Eg] is well knowr? that the existence of open trajectories leads to

(dashed line in the upper part of Fig\. 7 a positive magnetoresistanpe,,~ B2.

The integrated density of stateg’)(EF) can also be cal- However, the applied magnetic field does not only change
culated analytically for the Kronig-Penney model in the clas-the electron dynamics, but electron energy spectra are af-
sical limit. For —Vo<Eg<V, the result isn{’(Er) fected as well. The wave vectéris no longer a good quan-
=(Eg+Vo)Do/2, with Dg=m*/(w#?) the density of states tum number. To include this fact, at least partly, the concept
of the unmodulated two-dimensional electron gas. Thus, thef electron trajectories has to be improved by allowing the
density of states in the region of bound states is dy2,  electron approaching a Brillouin zone edge to have a finite
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probability P to tunnel through the relevant Fermi contour rection within the particular strip of width/2, between right
discontinuities. The resulting suppression of electron reflecand left reflection points akg and x, , respectively. The
tions by magnetic fields, known as magnetic breakdownslope of the trajectory with respect to thexis is defined by
changes the topology of electron trajectories and has a dragie value Ofv'y. In the presence of the magnetic force
tic.effec_t on the electronic tra_nsport. Break.d.own of OPeNgBx 4, the electron path between reflection pointxaand
trajectories leads to a suppression of the positive magnetor;—R becomes circular with the raditR, controlled by the

sistance. _ v o . (b) :

The idea outlined above has been applied in order to dec:‘yclotron frequencyuf—gB/rTw ’ RC_UF /_wc ..The velocity
scribe low-field magnetoresistance of metallic single crysCOmPonent along thg direction is changing its value along
tals. It has been found that the tunneling probability, oftent"® trajectory. In wea|b< magnetic fields, wheg>a, the ve-
called the breakdown probability, increases with magnetidoCity range AUy_:‘)(F)(XL/RC_XR/RC) is just equal to
field strengthP=exp(~Bg;/B). The critical magnetic field awc/2. The obtained value\k,=m*Av,/fi=m*w.a/2h
Bt i the field for which the reflection is substantially sup- ¢&n be identified with the effective wave packet width.
pressed and the corresponding discontinuity of the Fermi TO allow an electron in theth quasi-one-dimensional
contour becomes effectively closed. It has been calculate@hannel to overcome the potential barrier, the enesgy
using perturbation theory by several authdt3lt has been entering Eq.(26) has to be replaced by,. The resulting
done in the low-field limit, where it essentially reduces to thecfitical magnetic field is given as follows:

theory of Zener electric breakdown, in the high-field limit,

where the lattice potential can be treated as a perturbation, B(C)(i)zi Vo~ € 27
and at intermediate fields. In all cases the same formula is erit ea [vy|
obtained o . . .
This simple geometrical consideration leads to the conclu-
T EXi) sion thatB(S)(i) is the magnetic field for which approxi-
B (i)= Z%’ (25 mately half of the originally bound electrons with
efifv’(i)] |k,|<|ky| may enter the nearly free electron part of the

rmi contour.
The scaling of critical magnetic fields defined by E2p)
nd Eq.(27) with the parameters of the periodic potential

wherev'(i) denotes the free electron velocity at the point':e
where theith Brillouin zone edge crosses the Fermi surface.
All these derivations were based on the assumption that the . ;
corresponding energy galBy(i) is much smaller than the iffers substantially. In the case of the magnetic t_)reakdown
width of surrounding energy bands. Expressi@b) is thus In Qghe nzearly free elgctron part of the .Ferm| contour
applicable to the nearly free electron part of the Fermi conBerit ~@Vs, With Vg being the relevant Fourier component
tour and the breakdown effect describes a quantum tunnelingf the potential. The proportionality to the square\ is
induced by the magnetic field. typical for perturbation theories. For quasi-one dimensional

The above result is, however, not applicable to the FermghannelsB( scales with the rati¥/,/a as has already been
contour region composed of flat minisections. Wave funcshown by using slightly different definition of the critical
tions of these states are quite well localized within regions ofmagnetic field:” Obviously B{S)(i =0)=(2/evg)(V,/a) for
potential wells and one of the velocity components vanishesvy<Eg, i.e., the Lorentz forceavFB(Cﬁt) becomes compa-
Quantum tunneling through a barrier between adjacent paable with the mean electric forcev4/a.
tential minima is forbidden. Assuming an unidirectional po- In general, the magnetic breakdown effects describe a
tential modulation along the& direction, the energy gap at gradual transition of the zero-field velocity distribution of
the particular Brillouin zone edge is just equal to the differ-Fermi electrons into the distribution given by the classical
ence of kinetic energies of Fermi electrons belonging to adapproach, which neglects interference effe¢@sagg reflec-
jacent minisections, tions) and the size quantization within local potential

. . ‘ . minima.
Eq(i)= €41~ =3 muj(ky) —vi(k, ") ]=vifiAk,,
(26) VI. MAGNETORESISTANCE OF UNIDIRECTIONALLY
where vy (ki) =vy=%k,/m*. In the presence of magnetic MODULATED SYSTEMS
fields eigenfunctions can .be vjewed as a wave packet com- Assuming a uniform relaxation time, we can generalize
posed of plane waves with different momeritl, . If the  the expression for the conductivity, E4L6), following
effective wave packet widtidk(B) becomes comparable Chamberd? to the case of nonzero magnetic field,
with Ak'y defined by Eq(26) the corresponding discontinuity
may be assumed as closed. Their equality will be used to e? _ _
define the critical magnetic field. Uaﬁzﬁf A Er—E(K)Jva(kito)

To estimate the effective wave packet width let us adopt
the classical view to the simplest case of the unidirectional
Kronig-Penney-like modulation. In the zero-field limit the
bounded electron of the velocity expectation valn';e:an be
characterized by the classical electron moving along straighﬁhereJ(E,t) is the time dependent velocity for the trajectory
lines with the velocityy (Fb)= V2(Eg+Vo)/m* . Itis reflected of an electron which at timg, is in the state defined by wave

by potential walls which ensure its localization in thedi- vectork.

to -
xf_ v (K, t)exd (t—to)/ r]dtd?k, (28)
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Expression(28) together with the magnetic breakdown
concept outlined in the preceding section has already been
used to describe magnetoresistance for the case of very weak
periodic potential modulatiotf To describe the main fea-
tures of the low-field magnetoresistance for the case of a
strong modulationg=1, we consider the Kronig-Penney-

like periodic potential applied along thedirection. We ne-
glect all interference effects and size quantization, i.e., we
use the “classical approach” to the energy dispersion as de-
scribed in Sec. Il. The corresponding Fermi contour is shown
in Fig. 3 by a dotted line. Contour segments of states
bounded irx direction, |k,| <k, with ko= \m*V/#, are de-
fined by the equality

R APk
EF_4W+W_VO (29

Xo Xr

as follows from Eq.11). Note that the corresponding elec-
tron states are localized within a single potential well of the

considered Kronig-Penney _modulatlon. This |mp||€§ that thEfines. The dashed lines represent the average real-space paths cor-
average value of the velocity component must vanish as responding to the Fermi contour segments with|>k,. They

well as the expectation valuey(k) in the quantum case haye been obtained by multiplyirigspace trajectories by a square

while v, =7k, /m*. of the magnetic length and rotated by2. Full lines represent
To determine the conductivity, the time integration alongpaths of the classical electron within the potential well region.

the Fermi contour entering E(R8) has to be evaluated first. Shadowy areas represent local potential barriers of the Kronig-

For contour segments witlk,| >k, the time dependence of Penney modulation.

the velocity is quite well defined by the equation of motion,

Eq. (4). Let us consider an electron which appears in thene right ofx.) as shown in Fig. 9. Electrons overcoming
state withk,=—k. andk,>0, assuming clockwise motion p,piers of the potential modulation are exclusively forming
along the Fermi contour shown in Fig. 3. In the spirit of the ;56 orhits. In general, they are subjected to the quantum
magnetic breakdown concept this electron will not be di-congition expecting an integer number of flux quanta within

rectly reflected into the state with,=k. but it may move ihe area surrounded by the orbit, which determines the al-
along the Fermi segment of bound states and it may eventys\yed values oo

ally suffer the reflection k,——k, at a state with : L -
Electrons moving on close orbits inspace are periodi-

|k, =k;<k.. Note that the motion along bound states is . : . .
controlled by electron transitions between minibands, i.e., b&:ally returning back into the poinp,yo). This corresponds

the magnetic breakdown effect which, in our “classical ap-0 the k-space orbit with reflections,— —k, whenever
proach,” may occur at ang, with |k,|<k.. To describe |kx|=.I§X(B,x0.). The corresponding contribution to the con-
electron motion along this part of the Fermi contour, we shal@uctivity is given by the following contour integral:

use real-space trajectories of a classical electron within po-

FIG. 9. The close real-space electron orbit is sketched by thick

tential well regions. e? t
The Fermi electron at the state wikh= — k‘i andk,>0 oz'ffe:ﬁ< é rva(lz,to)f vB(IZ,t)
has zero expectation value of the velocity xndirection, lld >k o

while they component has a nonzero valué. It can be

) . . . kd
represented by a classical electron having Fermi velocity xex;ﬂt—to)/r]dt> ;ﬁ (30
v = 2(Ex+Vo)/m* and velocityv$ alongy direction. x| VRE(K)|

Together with its real-space coordinate, (y,) within a po-
tential well the subsequent classical motion is well defined
as shown in Fig. 9. The electron moves along the circula

path of the raq'UQCZU(Fb)(/,f)’C with gradually increasingy - gjactrons may exceed the critical velocit§ at any position

until a valuev(B,xo) =vi"cost reached at the potential , ' (x xy within the well region with the same probabil-

well boundary located ak . For given &o,¥o) the de- v This assumption excludes commensurability effects as

scribed real-space path uniquely defines the time evolutiofye|| a5 magnetic quantization effects from our consideration.

of the velocity component, =7k, /m* and via the identity  consequently, corresponding Weiss and Shubnikov—de Haas

Eq. (29) the reflection poink;(B,X) in k space. Note thatin oscillations will be averaged out.

zero magnetic field}(B,x,) equals tok. . The electrons which do not take part in any close orbit
It may be expected that, due to the quantum interferencegmain bounded within potential wells. Having zero average

the cIassicaF—space path, having a crossing pait splits  velocity along thex direction, they contribute to,, only. It

into two parts, the close orbit and a set of bounded stabes represents a drift velocity and from E@9) we get

where angular brackets denote averaging over all allowed
Values ofxy. For the sake of simplicity we have assumed that



14 448 J. KUéERA, P. STVFEDA, AND R. R. GERHARDTS 55

T T T
1 -

= S
b/ e
= =
~
—~ ~
@ 3
SN =

O " | " 1 L 1

0 1 2 3

B/B crit

FIG. 11. A relative number of bounded electrant¥(B) as a

| t.FIG‘ tlr? .thMagngt((:)ar(islllsotgnce Ior Ejh; casc: Oftun'glrlecnor;_?l(;nOdufunction of the magnetic field strength. The used parameters are the
ation wi € pernoa= hm for diierent potential ampiitudes. oo me as those for the magnetoresistance shown in Fig. 10.
From the topVy,=5, 4.5, 4, and 3 meV, respectively. The Fermi

energy is 8 meV and=8 ps. Dotted lines represent the approach ) o . )
done by Betoret al. (Ref. 5 for Vo=4 and 3 meV. peak is followed by a resistivity increase at higher magnetic

fields due to the formation of Landau levels.
e2r 2m* (ke Opposite to some previously presented restitsepre-
bound_~ _ = _ — sented in Fig. 10 by the approach of Betenal,® we have
Oyy m* w2 [1 p(ka)]Uy(kxaEF)dkx ee T
mhJo found that, for magnetic fields well abo®&,;;, instead of a

n®)(B) rapid fall a positive magnetoresistance appears. This differ-

=0p— ' (31)  ence originates in the correlation between subsequent break-

Ns down events which was completely ignored in the mentioned

where the explicit form of the velocity component fhrev'mrjr‘? prubl|c|flt|?r\1/s.rAls @x&ectﬁdtiboéhlgppxﬁf:hef rll?aﬁ Eo
v,(ke Er) is defined by Eq(29): e same result at very lo agnetic fields, e at highe

fields for whichw.7=1 the correlation between subsequent
1 reflections becomes important and results differ substan-
vy(ke,Ep)= Wsz*(EF+vo)—4ﬁZk§. (32 ftially.
The role of open trajectories is illustrated in Fig. 11 where
The quantityp(k, ,B) is the probability that the Fermi state the number of bound state§” (B) representing the conduc-
with wave numbetk,| <k takes part in any of the available tivity contribution of open trajectories, E(31), is plotted as
close orbits at given magnetic fieR] i.e., it has the meaning 2 function of the magnetic field strength. This dependence
of the magnetic breakdown probability. It has been deterfepresents the magnetic breakdown effect, i.e., the decreas-
mined numerically. Simultaneously with the calculation of ing number of open trajectories with increasing magnetic
o%%° the timesAt; spent by Fermi electrons within angle field strength. The quantity 2n{”(B)/n{®(0) may be in-
intervalsA ¢; have been established. The condition that thelerpreted as an effective breakdown probability, as seen from
ratios of these times has to be the same as tho&=a Eq. (31). For the Kronig-Penney model the fraction of bound
immediately leads to the probability values. This corre-states aB=0 is given byn®/ng of Eq. (23).
sponds to the condition that the local areal density as well as
velocity distribution are not changed by magnetic fields. Due
to the formation of close orbits subsequent reflection events

become correlated anpi(k,,B) depends onw.7. Some of The most pronounced effect of the periodic modulation is
the electrons having, in the classical sense large enough Mne formation of quasi-one-dimensional channels describing
mentum along th& direction to escape from the well region, electrons which are bound within a single potential well. The
remain bounded because of the limited density of open oranumber of these channels along the particular direction is
bits. approximately equal to the value of the parameter
The resulting magnetoresistangg, as a function of the g=2aym*V,. These states significantly influence the an-
magnetic field for several values of the modulation ampli-isotropy of the velocity distribution and consequently the
tude Vg is shown in Fig. 10. To stress the scaling of theelectronic transport. The perfect periodicity should lead to
breakdown peak positions with the parameters of the potersbservable fluctuations of the conductivity as a function of
tial modulation we have useBl.;;=4V,/(eavg) as the unit the Fermi energysee Fig. 7 and Fig.)8i.e., of the electron
of the magnetic field strengthyf=2Er/m*). The result- concentration. This effect originates in the ordinary Bragg
ing form of the magnetoresistance anomaly has the sammeflections due to the interference of electron waves scattered
qualitative features as that obtained in the limit of very weakon different reflection planes. Note that the presented ex-
modulatiort® where it has been argued that the breakdowramples are close to the situations reached in the fabricated

VIl. SUMMARY AND CONCLUDING REMARKS
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superlattices. For example in the case with 6 there are features have been found by Menne and Gerh¥rtissolv-
approximately 450 electrons per ared for Ef/V,=4. ing Boltzmann’'s equation for purely classical electrons.
However, these fluctuations may be easily washed out even The described form of the magnetoresistance anomaly
by weak inelastic scattering. Also, due to the sample nonunitnight be affected by Bragg reflections at very low magnetic
formity they can be averaged out. However, if such a type ofields. In the case of strong modulation they lead to a sub-
fluctuation forB=0 would be observed, it may be expected _stanltlal suppression of Fhe zero-field conductlvny, as shovyn
that in magnetic fields the effects due to the Hofstadter-typd" Fig. 7 and Fig. 8. This effect can be viewed as a special
energy spectrum should appear. type of localization. The resulting miniband structure has
Based on the knowledge of electron energy spectra, thény gaps,Eg, for which critical magnetic fields scale with

low-field magnetoresistance can be evaluated, including theEg. These gaps can be easily overcome by electrons at
effect of the magnetic field into the electron dynamics con-Substantially weaker magnetic fields th&g;; of bounded
trolled by the semiclassical equation of motion. To captureelectrons. Consequently it might be expected that the strong
much of the additional “high-field” physics, the magnetic Positive magnetoresistance due to the open trajectories lo-
breakdown effect allowing electron transitions between dif-cated within potential well regions will be partly suppressed.
ferentk-space trajectories, i.e., between minibands, has to bl Strongly modulated systems it can even be the origin of

taken into account. This effect gradually changes zero-field' ?dog?ﬂ observed negative magnetoresistance at the lowest
S!

velocity distribution towards the classical distribution, which /1€ _ _ _

ignores interference effectBragg reflectionsas well as the The low-field magnetoresistance anomalies can also be

size quantization within potential well regions. affected by the anisotropy of the relaxation time which can
be naturally expected in the case of the anisotropic velocity

For the case of a strong unidirectional modulation,~> """ X -
q=1, the basic features of the low-field magnetoresistancdistribution. In the systems with dominating small-angle
attering the electron scattering between flat Fermi contour

anomaly have been established, assuming classical velocg X _ .
distribution. It has been found that the typical strong positiveTliNiSections can be suppressed. As a result, the highly con-

magnetoresistance at very low fields is gradually suppressé#‘cung _qua5|-one—<j|men3|onal channels will dominate the
by a decreasing number of electrons bounded within poter Ctronic transport in strongly modulated systems. The mag-
tial well regions. The position of the resulting breakdown netic breakdown effect allowing electron transition between

peak, characterized b~ V,/a, is controlled by the pa- different Fermi contour segments smears out the relaxation
’ crl !

rameters of the potential modulation, the amplitiug and time anisotrppy. Thi_s can also be the origin of the negative
the lattice constana. The magnetoresistance peak is fol- magnetoresistance in strongly modulated systems.

lowed by a resistance increase at higher fields if the com-
mensurability oscillations as well as Shubnikov—de Haas os-
cillations are smeared out. This positive magnetoresistance This work was supported in part by the Grant Agency of
may be attributed to the nonvanishing number of bounded€zech Republic under Grant No. 202/94/1276 and by the
electrons due to the limited density of close orbits. The sam&ATO Collaborative Research Grant No. CRG921204.
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