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Behavior of a frustrated quantum spin chain with bond dimerization
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We clarified behavior of the excitation gap in a frustratedS51/2 quantum spin chain with bond dimerization
by using the numerical diagonalization of finite systems and a variational approach. The model interpolates
between the independent dimer model and theS51 spin chain by changing a strength of the dimerization. The
energy gap is minimum at the fully frustrated point, where a localized kink and a freely mobile antikink govern
the low-lying excitations. Away from the point, a kink and an antikink form a bound state by an effective
triangular potential between them. They finally collapse to a local triplet at a sufficient value of the dimeriza-
tion. The wave function of the bound state, the consequential gap enhancement, and the localization length of
the bound state were obtained exactly in the continuous limit. The gap enhancement obeys a power law with
exponent 2/3. We also obtained the dispersion relation of the local triplet excitation for the entire phase space.
The method and the obtained results are common to other frustrated double spin-chain systems, such as the
one-dimensionalJ1-J2 model, or the frustrated ladder model.@S0163-1829~97!03021-X#
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I. INTRODUCTION

Recently, the interest in the field of the low-dimension
quantum systems is concentrated on systems with a spin
especially in connection with the high-Tc cuprates upon
doping.1 The ground state of such a system realizes the s
disordered singlet state, favored by a quantum fluctua
and/or frustration. The excitation energy gap opens above
ground state. As typical models, we can consider the s
ladder model,2–4 the bond-alternation model,3 and the
Majumdar-Ghosh model.5,6

Syntheses of various new compounds7 also accelerate in
vestigations on this field both theoretically and experim
tally. For example, magnetic susceptibility measurement
KCuCl3 ~Ref. 8! indicates a spin gap behavior, and the e
perimental data are considered to be explained theoretic
by the double spin-chain model with frustration.9 Estimation
of the magnitude of the gap through the susceptibility dat
already established on the assumption of the dimer ga10

However, it is not sufficient to the thorough understanding
the system. We must investigate the origin of the gap and
physical picture of the excited states. This is a main purp
of this paper.

TheD chain, the subject model in the present paper,
participant of double spin-chain systems, but has rather
cial geometry of the interaction bonds. The triangles
aligned in one direction. If we connect the spins located
the top of the triangles with the interaction bonds, it becom
the railroad-trestle model. Therefore, it may seem that
interesting properties are peculiar to this special system.

The early investigations on theD chain were directed in
search for a system with the singlet dimer ground state.11–14

They were restricted to a symmetric case where all the in
action bonds are set equal, and thus the system is fully f
trated. In this case, the ground state is the singlet dimer s
with twofold degeneracy under the periodic boundary con
550163-1829/97/55~21!/14413~10!/$10.00
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tions. Interpretation of the excited states by a kink and
antikink was done at this stage.11,12 The existence of the
finite energy gap above the ground state was rigorou
proven.14 Analogy of the model to the kagome´ antiferromag-
net has been pointed out:15 there are macroscopic local con
tinuous degeneracy in the ground state in the classical li
low-lying excitation spectrum is consequently dispersionle
and there exists an additional peak of the specific heat at
temperatures. The origin of the dispersionless mode and
double peak of the specific heat were recently clarified.16,17

Senet al.17 also pointed out that the possible relevance of
model to the newly synthesized compound, YCuO2.5.

In this paper, we find that theD chain possesses commo
features with other spin gap systems besides its unique p
erties stated above. Concretely, we mean the ‘‘common
ture’’ by the way the system reduces frustration by the bo
dimerization, which results in an asymmetricD chain. This is
an essence of this paper.

The ground state in a fully frustrated system is genera
unstable against a small perturbation that relaxes strong f
tration. It must have a strong influence on the low-lying e
cited states as well, and consequently to the low-tempera
behavior of various physical quantities. We should take t
effect into account when we analyze the experimental d
We consider the bond dimerization as a perturbation, si
its energy stabilization is the strongest one, and it can
realized by a lattice distortion as in the spin-Peie
systems.18

From a theoretical point of view, the frustrated doub
spin-chain systems with the bond dimerization are very
tractive. They have the dimer state and theS51 Haldane
state in both extremes of the strength of the dimerizat
parameter. In the midst is the fully frustrated point. As w
shown in the F-AF bond-alternation model,3 there always
exist the string order of den Nijs and Rommelse19 and the
dimer order.20 The dimer state continuously changes to t
14 413 © 1997 The American Physical Society
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14 414 55TOTA NAKAMURA AND SATOSHI TAKADA
S51 Haldane state with the increase of strength of the
romagnetic interaction bonds.21,22 Therefore, there is alway
a finite energy gap. Then questions arise. How do we id
tify these two phases? How do the differences manifest in
observable physical quantities? In this paper, we show
adopting theD chain for an example that the whole pha
space can be divided into three regions with respect to
nature of the first excited state relevant to the energy g
and that the differences affect the low-temperature dep
dences of physical observables such as the specific hea
the susceptibility.

Section II describes the model and summarizes the g
eral remarks concerning the symmetricD chain without the
dimerization, which will be the starting point of the discu
sion in Sec. III. In the first part of Sec. III, we do the sam
variational analysis as was done in the symmetricD
chain.16,17This is valid only for positively~antiferromagneti-
cally! small dimerization. Then, continuous limit of the e
fective Hamiltonian is derived and its exact solution is o
tained. The remaining part of Sec. III is devoted to the c
when the dimerization is negatively~ferromagnetically!
small. We use the nonlocal unitary transformation21–24 to
represent the ground state and the excited state. This tr
formation is equivalent to the Kennedy-Tasaki transform
tion of theS51 system, and is its adaptation to the doub
spin-chain systems. The transformation is powerful when
ground state is either in the Haldane state or in the state
strong dimer correlation. Almost equivalent results to t
positive dimerization case are obtained near the symme
point. We show how the system converges to the Hald
state and the dimer state in Sec. IV. Section V shows
differences of the observable quantities between two pha
We also propose a quantity to judge the phase in exp
ments. Section VI is devoted to summary and discussion

II. THE MODEL AND GENERAL REMARKS

We consider a system described by the following Ham
tonian:

H5 (
n51

N

lsn•tn1tn•sn111sn•sn11 . ~1!

Here,N is the number of the triangles in the system,l is a
parameter denoting the dimerization, andusu5utu51/2. Fig-
ure 1 shows the depicted lattice. At the point ofl51, the
system is the symmetricD chain and is fully frustrated. In
the limit of l51`, the system reduces to the independ
dimer model. In the other limit ofl52`, the system be-
comes equivalent to theS51 spin chain. Therefore, th
present model has the independent dimer ground state
the Haldane ground state in its extremes.

FIG. 1. Shape of the dimerizedD chain. Bold lines indicate the
l bonds.
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The understandings of the symmetricD chain are already
established.16,17Here, we briefly summarize the results. Th
ground state is the perfect singlet dimer state with twofold
degeneracy in the case of the periodic boundary conditio
The low-lying excited states approximately consist
(N21) singlet dimers and two free spins. The excitatio
are governed by sets of two free spins named a ‘‘kink’’ a
an ‘‘antikink.’’ A kink stays localized and works as a delim
iter to moving antikinks. Dispersionless aspects of the ex
tations originate in a localized kink. An antikink is consid
ered as a free particle moving between kinks with t
effective mass. An antikink is supposed to be one free s
only within the first approximation, since it is not an eige
state of the local Hamiltonian. It spreads out to an exten
reality. A detailed structure of an antikink is not revealed y
but it merely renormalizes the effective mass. Within the fi
approximation, the massm51. The second approximatio
that an antikink is distributed among five spin sites gives
massm51.158,17 and the numerical diagonalization data a
ter theN→` extrapolation shows the massm51.21.16 The
excitation gap is well expressed by a summation of a kine
energy of an antikink and the creation energy of a pair o
kink and an antikink,e050.215, as

DE5e01
1

mS 12cos
pk

N D , ~2!

wherek is the wave number of an antikink alone. The low
temperature peak of the specific heat can be reproduce
the Schottky specific heat with the gap expressed abov16

Susceptibility was also calculated.17

III. IN THE VICINITY OF l51

We numerically diagonalized the above Hamiltonian
to the systems with 28 spins (N514) under the periodic
boundary conditions. Thel dependence of the energy
shown in Fig. 2. The ground state energy is highest at
fully frustrated point (l51), which leads to the instability
due to the lattice dimerization.

FIG. 2. Thel dependence of the energy of the lowest state
the subspace denoted byk ~wave number!, andR ~spin reversal
symmetry! in the system withN514 ~28 spins!. We also plot the
variational estimate for the ground state energy forl,1 ~solid
line!.
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55 14 415BEHAVIOR OF A FRUSTRATED QUANTUM SPIN CHAIN . . .
For l.1, the ground state is always the pure dimer stat
which consists of the singlet dimers on everyl bond. Thus
the total ground state energy is exactly20.75lN. We refer
to this state as the left-dimer state hereafter in this paper.
this region, the spin correlation length vanishes. The excite
states also have nok dependence. Atl51, the ground states
are twofold degenerate under the periodic boundary cond
tions. They are the left-dimer state and the right-dimer stat
The first-order transition occurs at this point. Forl,1, the
correlation length gradually increases with decreasingl. The
right-dimer state smoothly reaches theS51 Haldane state in
the limit of l52` without any phase transition. Hereafter,
we simply call the regionl.1 as the dimer phase, and the
region l,1 as the Haldane phase. The degeneracy of th
excited states in the dimer phase is lifted in the Haldane an
a state withk5p becomes the first excitation.

A. l>1: The dimer phase

The results obtained in this subsection have already be
reported briefly.25 We discuss the method and the results in
detail in this paper.

The excited states in this phase may have similar prope
ties to those at the symmetric point, because the ground st
is the same. Therefore, we do the same variational analys
as was successful atl51.16,17 The boundary conditions are
set open, though they do not influence the final results in th
thermodynamic limit. We define a variational basisc i so that
an antikink is located at thei th triangle

c i[ckink^ @4,5#•••@2i22,2i21#↑2i
3@2i11,2i12#•••@2N21,2N#, ~3!

where@ i , j # denotes a singlet dimer state connecting thei th
and the j th site, namely@ i , j #5(↑ i↓ j2↓ i↑ j )/A2 for ↑ i(↓ i)
denoting an up~down! spin located at thei th site. Here, we
numbered the site so thatsn is the (2n21)th, andtn is the
(2n)th as is shown in Fig. 1. The↑2i above is an antikink.
The wave function of a kink located at the leftmost edge i
known as

ckink5@↑1~↑2↓32↓2↑3!1↑2~↑1↓32↓1↑3!#/A6. ~4!

This state is an eigenstate of the edge triangle Hamiltonia
and therefore does not move. Its energy eigenvalue
l/421. Thus a kink contributes to the excitation energy by
(l21). The singlet dimers,$@2n,2n11#%, existing between
a kink and an antikink are not eigenstates of local triangl
Hamiltonians. They also contribute to the excitation energy

The variational basis is not orthogonal to each other
satisfies the following relations:

^c i uc j&5S 12D
u i2 j u

, ~5!

^c i uHuc j&5FEg1~l21!1
3

4
~l21!min~ i , j !G^c i uc j&

1
3

4
d i j . ~6!
e
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Here,d i j is the Kronecker delta, and min(i,j)5i if i< j . Our
task is to find a functionCvar[( iCic i that minimizes the
energy expectation,

VarE[
^CvaruHuCvar&

^CvaruCvar&
5

( i , jCiCj^c i uHuc j&
( i , jCiCj^c i uc j&

. ~7!

If we diagonalize the denominator and rewrite the n
merator with its eigenfunction, this variational problem
transformed into a simple eigenvalue problem. Then, the
lution of Eq. ~7! can be obtained by the numerical diagon
ization for a finite system size. We show the result
N5200 in Fig. 3 withl51.00, 1.001, and 1.01. In the cas
of the symmetricD chain (l51.00), the wave function is
the sine function indicating a free motion of an antikink. A
antikink is drastically attracted to a kink asl increases. The
wave function exhibits an antikink localized. We clarify th
wave function analytically by using the continuous limit.

We rewrite the above equation by the new ba
ufk&5(nexp@ikn#ucn&, since the denominator of Eq.~7! is
diagonalized by Fourier transformation in the largeN limit.
Note thatk is the wave number of an antikink alone, an
does not correspond to the total wave number. Then the b
relations become

^fkuf l&5
3

524cosk
dk,l1

4cos
l2k

2
25cos

l1k

2

S 2cosl2 5

2D S 2cosk2
5

2D
3
1222N

N
, ~8!

^fkuHuf l&5@Eg1~l21!#^fkuf l&1
3

4
dk,l1

3

4
~l21!Ak,l ,

~9!

with

Ak,l5
1

N(
n,m

exp@ i ~kn2 lm!#min~m,n!^cnucm&. ~10!

The diagonal elements ofAk,l dominate the off-diagonal el
ements. Then,Ak,k is written as

FIG. 3. Variational wave function of an antikink in the lowe
excited state forl51.00,1.001, and 1.01. Size of the syste
N5200.n stands for the location of an antikink.
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14 416 55TOTA NAKAMURA AND SATOSHI TAKADA
Ak,k5
1

N

6213cosk18cos2k

245

4
287cosk130cos2k14cos3k

1
425cosk

33

4
210cosk12cos2k

1
N11

2

3

524cosk
.

~11!

We find in this equation thatAk,k diverges in the limit
N→`. In order to avoid this divergence, we introduce
cutoff factor id to the momentum, namelyk→k1 id/2. This
should have no effect on physical results by taking the li
d→0 afterN→`. We rewrite the matrix element and pic
up only the leading term of the off-diagonal part and t
terms up to thek2 in the diagonal part. Then the continuou
limit, N→` andk→0, of the HamiltonianH̃k,l is given by

H̃k,l8SEg1~l21!1
1

4
1
k2

2 D dk,l

1
1

N

3

4
~l21!

1

~k2 l1 id!2
. ~12!

Apart from the constant terms, this Hamiltonian is equival
to the following in the real space representation:

HC52
1

2m

d2

dx2
1
3

4
~l21!xexp@2dx#. ~13!

Here,x is the distance between a kink and an antikink;m is
the effective mass of an antikink and is setm51 in the first
approximation. We take the limitd→0 at this stage. The firs
term is the kinetic energy of an antikink, and the second te
is the triangular potential attracted by a localized kink. W
rescalex by X5ux with u5„3m(l21)/2…21/3. Then the
eigenvalue equationHCC5ECC becomes

S 2
d2

dX2
1XDC5E8C, ~14!

where E85EC32mu2. Its solution is known as the Airy
function, C5Ai(X2E8) with the first eigenvalue
E8.(3p/230.7587)2/3.2.338.26 Accordingly, we can ob-
tain the energy eigenvalueEC , the average distance betwee
a kink and an antikink̂x&, and the localization length of th
wave functionj,

EC5
E8

2mu2
51.532m21/3~l21!2/3, ~15!

^x&5
2

3
E8u51.362m21/3~l21!21/3, ~16!

j;53u54.368m21/3~l21!21/3. ~17!

The localization length,j, is obtained from a rough estima
tion of the localization length of the Airy function;5. The
estimation ofj is quite consistent with the wave functio
shown in Fig. 3: j;40 for l51.001, and j;20 for
it

t

m

l51.01. It should be noticed that34(l21)Ak,k /^fkufk& of
Eqs. ~8! and ~9! becomes equivalent toEC , if we replace
N by j above.

Now, the total gap behavior can be obtained from the k
contribution, (l21), and the antikink contribution,EC . The
gap enhancement defined byDGap5Egap(l)2Egap(1) is

DGap5~l21!11.53193m21/3~l21!2/3. ~18!

The gap increases in a power law with its exponent 2/3. A
consequence, the gap rapidly increases withl, and is
doubled atl51.06. Figure 4 shows the behavior of the g
enhancement,DGap, compared with the numerical results o
the periodic system ofN514. We used a value of the mas
m51.21, estimated atl51 ~Ref. 16! for better comparison.
For l21.0.01, the numerical data agree with the analyti
estimation. In this region, the localization length is within t
finite system size,j,14.

The relevant excitation in this region is governed by
competition between the kinetic energy and the triangu
potential energy of an antikink. When the dimerization
small, an antikink gains energy by the kinetic motion. As t
dimerization becomes large, an antikink is bound by a ki
and finally they collapse to a local triplet. The expone
2/3 is a general outcome of this competition.

B. l<1: The Haldane phase

In this region, the ground state cannot be known trivial
although we can expect the right-dimer state continuou
changes to theS51 Haldane state in the limit o
l→2`.20–22 We make use of the nonlocal unitary~NLU!
transformation for the double spin-chain systems,21–24 the
second-order perturbation, and the numerical diagonaliza
to clarify the ground state first. Then we proceed to inve
gate the excited state by using the variational method and
numerical diagonalization. We clarify how the physical pi
tures of the lowest excitation changes withl. Recently, Bre-
hmeret al.have investigated the phase diagram and the h
den order for generalized spin-ladder models.4 They have
used the matrix product states for the variational calculat
of the ground state, which was shown to be equivalent to
present variational method.4,27

We transform the HamiltonianH with U defined in Ap-
pendix A. We obtain

FIG. 4. Log-log plot of the gap enhancement for the exact re
in the continuous limit with the massm51.21, and the numerica
results of the periodic system withN514.
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U21HU5 (
n51

N

lsn•tn2~sn
x1tn

x!tn11
x 2~sn

z1tn
z!sn11

z

24~sn
ztn

x1sn
xtn

z!sn11
z tn11

x , ~19!

from Eq. ~A8! in the Appendix. According to this transfor
mation, string order parameters are transformed into lo
parameters such as^sn

x&, ^sn
z&, ^sn

ztn
x&, as will be found in

Eqs. ~31! and ~32!. It makes possible that we employ
single-site approximation like the molecular-field one. Th
we consider the following variational trial function for th
ground state:

uC0&5 )
n51

N

un~b!&5 )
n51

N

~buTn&1A12b2uSn&), ~20!

uSn&5~ u↑,↓&2u↓,↑&)/A2, ~21!

uTn&5au↑,↑&1b~ u↑,↓&1u↓,↑&)/A21gu↓,↓&. ~22!

u↑,↑& ’s are the state ofusn
z ,tn

z&. b,a,b,g are the variational
parameter and satisfy the normalization conditio
a21b21g251. These parameters are supposed to be
variant ofn. The analysis is variational in this sense. A sta
with b50 is the left-dimer state on thel bonds, a state with
b5A3/2 is the right-dimer state, and a state withb51 cor-
responds to the pure valence bond solid~VBS! state in this
representation. The energy expectation value is calculate

^C0uHuC0&5FlS b22 3

4D2b4S ~a22g2!2

2
12b2~a21g2! D

23b3A12b2b~a22g2!GN. ~23!

We can easily find this minimum value and the variation
parameter set by using the Lagrange multiplier. The ene
valuee0 is

lS b22 3

4D2
2

3
b42

2b3A3~12b2!

3
[e0 , ~24!

with four possible choices of the parameters (a,b,g) as

~a,b,g!5~6A2/3,A1/3,0!,~0,2A1/3,6A2/3!, ~25!

andb determined through

l5
4

3
b22

b~4b223!

A3~12b2!
, ~26!

or

b50. ~27!

The fourfold degeneracy in the choice ofa,b,g corresponds
to the degeneracy of the edge states.21,24,28 A state with
b50 is the singlet dimer ground state forl.1. The other
one, Eq.~26!, corresponds to the ground state forl,1. If we
solve Eq.~26! up to the second order of (12l),

b5
A3
2 F11

12l

4
2

5

16
~12l!2G . ~28!
al

s

,
n-

as

l
y

Then the energy expectation per triangle is

E/N52
3

4
2

3

16
~12l!2. ~29!

This agrees with the result due to the second-order pertu
tion of (l21)sn•tn . Details of the calculation are given i
Appendix B. The diagonalization result of a finite syste
with 14 triangles shown in Fig. 2 is fitted by the least-squa
method to

E/N52
3

4
2
3.0176

16
~12l!220.003~12l!. ~30!

Consistency between the analytic estimation and the num
cal result is excellent as is shown in Fig. 2.

We can also estimate the string order parameter of
Nijs and Rommelse,Ostr,

19 and the dimer order paramete
Odim .

20,21 The definitions and the expectation values are

Odim5 lim
um2nu→`

24KU21tm
z expF ip (

k5m11

n21

Sk
zGsn

zUL
5 lim

um2nu→`

4^sm
z sn

z&54^sm
z &^sn

z&54^sm
z &2

5
4

9
b41

4

3
b2~12b2!1

8

9
b3A3~12b2!, ~31!

Ostr5 lim
um2nu→`

2KU21Sm
z expF ip (

k5m11

n21

Sk
zGSnzUL

5 lim
um2nu→`

^Sm
z Sn

z&5^Sm
z &^Sn

z&5^Sm
z &25

4

9
b4. ~32!

At l51, Odim51 asb5A3/2. In the limit of l→2`, it
converges to the VBS valueOdim54/9 asb→1. On the other
hand, the string order parameter,Ostr takes a value of
Ostr51/4 at l51 and converges to the same value
Odim5Ostr54/9. It should be noted that the convergence
b→1 is very fast that it takes a valueb50.94 even at
l50.25. Therefore, the Haldane state can be realized eve
all the interaction bonds are antiferromagnetic.

Figure 5 shows the dimer and the string order param
of the ground state in the whole phase space. Numerical
are of the periodic system withN512. Quantitative agree
ment is excellent nearl51. The string order increases a
l decreases from 1. Therefore, we call the regionl,1 the
Haldane phase. It should be noted that the numerical d
converge to the value ofS51 (.0.37) ~Ref. 29! in the limit
of l→2`, not to the value of the pure VBS state. Th
contradiction becomes distinct atl;21, where the string
order parameter takes the maximum value. This is beca
we used the variation of the single-site approximation as
Eq. ~20!, besides the correlation length is rather large in
Haldane state.

A low-energy excitation is intrinsically of domain-wa
type in one dimension. Two perfect singlet dimer stat
un(A3/2)& andun(0)&, are degenerate atl51. Forl,1, the
latter state becomes the excited state and the former
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14 418 55TOTA NAKAMURA AND SATOSHI TAKADA
becomes the ground state by changing the value ofb. There-
fore, we consider the following wave function as a trial f
the excited state:

uC1&5(
i
Cic i5(

i
CiS )

n51

i

un~b!& )
n5 i11

N

un~0!& D . ~33!

Because the stateun(0)& becomes a higher excited state f
l,1, the validity of this trial wave function is restricted t
the very vicinity of l51. The domain wall located at th
i th triangle is essentially an antikink before the NLU tran
formation is done. Thus the analysis is for a kink-antiki
excitation. The basis relations ofc i are

^c i uc j&5~A12b2! u i2 j u, ~34!

^c i uHl uc j&5@Eg1E1„N2min~ i , j !…1E2d i , j #^c i uc j&,
~35!

with Eg5e0N, E1520.75l2e0, and E25l(b220.75)
2e0. These relations are equivalent to the ones in the pr
ous subsection, Eqs.~5! and~6!. Therefore, the problems ar
solved in the same way and we obtain

EC51.856m21/3E1
2/3, ~36!

^x&51.237m21/3E1
21/3, ~37!

j;3.969m21/3E1
21/3, ~38!

for the excitation ofk50. However, we remark that the low
est excitation is the state withk5p in this region. This state
is considered as that both a kink and an antikink are mo
with the total momentump. The analysis on the state o
k5p will be done in the next subsection. Three estimat
Eqs. ~36!, ~37!, and ~38! above, however, have quite goo
consistency with the second excited state withk50.

IV. AWAY FROM l51

Away from the fully frustrated point,l51, the excitation
is no longer of a kink-antikink type. They already collapse
a local triplet state. Therefore, we must consider another t
of a domain wall for a trial wave function.

FIG. 5. The string order parameter and the dimer order par
eter are plotted againstl/(12l) for l,0, and againstl/(11l)
for l.0. Bold lines are the analytic estimate obtained by the n
local unitary transformation. Thin lines are numerical diagonali
tion results of the lattice with 12 triangles.
-
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In the region ofl,1, the ground state has fourfold de
generacy associated with the edge states. Within the sch
of our variational analysis, it appears in the four possi
choices of the variational parameter (a,b,g) of Eq. ~25!.
The most natural candidate for the domain wall is the o
between any two of the fourfold degenerate ground states
fact, Fáth and So´lyom28 showed that the lowest excitation i
the AKLT model30 is of this type. The trial wave function we
consider is then

uC1&5(
i
Cic i5(

i
CiS )

n51

i

un~b!& )
n5 i11

N

un8~b!& D , ~39!

where un(b)& and un8(b)& only differ the choice of the se
(a,b,g). We use the set (a,b,g)5(A2/3,A1/3,0) for
un(b)&, and (a,b,g)5(2A2/3,A1/3,0) for un8(b)&. b is
common and determined by Eq.~26!. The basis relations are
calculated in the same way as

^c i uc j&5S 12
4

3
b2D u i2 j u

[~2a! u i2 j u, ~40!

^c i uHuc j&5@Eg1~ u i2 j u21!E11d i , j~E11E2!#^c i uc j&,
~41!

with

E152
2

3
b3S b1A3~12b2!1

3a

„b1A3~12b2!…3
D ,

~42!

E25
8

9
b3„b1A3~12b2!…. ~43!

In the thermodynamic limit, the above matrices are diagon
ized by the Fourier transformation. An expectation value
the energy gap above the ground state is estimated as

Eex~k!5
^fkuHufk&

^fkufk&
2Eg

52E1S 11
2a

12a2
~11a2!cosk12a

112acosk1a2

2
112acosk1a2

12a2 D1E2

112acosk1a2

12a2
. ~44!

Eex(k) always takes minimum atk5p. The energy gap
Eex(p) converges to 1/9 in the VBS limit,l→2`.

We can also discuss excited states ofl.1 with this varia-
tional scheme, since the domain wall of Eq.~39! can express
the local triplet domain wall, if we change the notation of t
pair, sn and tn . Unless, the variational solution for th
ground state only gives the state withb50, since the exact
ground state is the left-dimer state onl bonds. Then, the
variation withb50 gives nothing at all. It should be notice
that a basic recipe of the present variational method is th
spin pair,Sn5sn1tn , should be chosen so that it does n
take a singlet dimer state. Therefore, we shifts spins by one
site assn→sn11. With this new definition ofsn andtn , the
left-dimer ground state is represented byb5A3/2, or in
other words,a50. Expressions ofE1 andE2 become differ-

-

-
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ent from Eqs.~42! and ~43!, and areE152l/221/4 and
E25l, respectively. The excitation is calculated dispersio
less as

Eex~k!5l. ~45!

This result is nothing but the local triplet excitation, whe
one singlet dimer is replaced by a triplet in the ground sta
This becomes the exact solution in the limitl→`.

Figure 6 shows thel dependence of the energy gap o
tained by the variation and the numerical diagonalization
the periodic system with 24 spins. The numerical results
depicted by symbols. The variational results of a kin
antikink type excitation, Eqs.~15! and ~36!, are shown by a
broken line; those of a local triplet excitation, Eqs.~44! and
~45!, are shown by a solid line. We also plot the seco
excitation gap for the comparison with Eq.~36!.

In the dimer phase,l.1, consistency between the nu
merical and the variation is excellent. Estimations by
kink-antikink variation are better in the vicinity ofl51,
while those of the local triplet become better asl increases.
This crossover occurs atl;3, where the average distanc
between a kink and an antikink̂x& of Eq. ~16! becomes
unity. On the other hand, the consistency in the regi
l,1, only remains in a qualitative level. Within the singl
site approximation employed in this paper,s spins andt
spins are equivalent to each other. For examp
^n(b)usn•sn11un(b)& is equal to ^n(b)utn•tn11un(b)&.
Therefore, the approximation should be better for the sys
with a symmetry of exchangings↔t. Since the presen
model does not possess this symmetry, the estimation is
good. It should be excellent in the symmetric systems s
as the Majumdar-Ghosh model.31 We must go beyond the
single-site approximation to improve the estimates in
Haldane phase of theD chain. The numerical data converg
to the value,;0.24 consistent with theS51 system; half the
gap of a typical diagonalization result ofS51 system with
12 spins, 0.4842.32 Only the number of interaction bond
betweenSn andSn11 determines the strength of the effectiv
interaction, sincesn andtn become symmetric in theS51

FIG. 6. l dependence of the energy gap obtained by the num
cal diagonalization~circles!, the variation of a kink-antikink type
~broken line!, and the variation of a local triplet type~solid line!.
The second excitation gap withk50 ~triangles! is also plotted.x
axis isl/(12l) for l,0, andl/(11l) for l.0.
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limit. The present model has only two interaction bond
which corresponds to half the effective interaction in t
S51 system.

V. OBSERVABLES

We calculated the magnetic susceptibility and the spec
heat of finite system (N57) with periodic boundary condi-
tions in order to see the difference of observable phys
quantities between the dimer phase and the Haldane ph
In other words, we try to determine the phase by these
servables. Figure 7 shows the uniform magnetic suscept
ity for l525.0,1.00, and 3.0. These parameters corresp
to the Haldane phase, fully frustrated point, and the dim
phase, respectively. We rescale the temperature by each
ergy gap in order to see the qualitative differences, nam
E→(E2Eg)/Egap. The peak width and the height amon
three are quite different. Data of the dimer phase hav
sharp peak, while they become broad in the Haldane ph
This reflects the structure and the density of the exci
states, i.e., many continuum states of multiple-magnon e
tations in the Haldane phase bring about a broad peak. C
trary, the degeneracy in the excited states in the dimer ph
is considered to be smaller compared with the Halda
phase, which generates a rather narrow peak. Full widt
half maximum~FWHM! of the peak for each data in the un
of T/Gap is;2 for l53.0, ;4 for l51.0, and;6 for
l525.0. The FWHM is almost three times as wide in t
Haldane phase as in the dimer phase. We speculate tha
value might be a judge to determine the phase. Recently
have also calculated the susceptibility of the frustrated lad
model, and theJ1-J2 model with bond dimerization (J1-J2-
J3 model!, and found that the FWHM take almost the sam
value as the present case. Details are reported elsewher31

Figure 8 shows the specific heat. Qualitative tendenc
the same as the susceptibility, except for the data
l51.00 showing the double peak structure, which is char
teristic of the kink-antikink excitation.16 Data of the dimer
phase are explained by the Schottky type specific heat.

ri- FIG. 7. Uniform susceptibility per spin calculated fo
l525.0,1.0, and 3.0 by the exact diagonalization of the finite s
tems with the periodic boundary conditions. The size of the sys
is N57. Eachl represents the Haldane phase, the fully frustra
point, and the dimer phase, respectively.
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VI. SUMMARY AND DISCUSSION

We have investigated theD chain with the bond dimer-
ization. The model interpolates the independent dimer mo
and theS51 spin chain model by changingl. As for the
ground state, the first order transition between the dim
phase and the Haldane phase occurs atl51. To be strict, the
ground state forl.1 is the perfect singlet dimer state, whi
that for l,1 continuously changes from the dimer state
l51 to theS51 Haldane state atl52`.

As for the excited state, we can distinguish the interm
diate region, in the vicinity ofl51, from the dimer region
and the Haldane region. This region is characterized
strong frustration. The energy gap is very small caused
the unstable ground state. The ground state has strong d
correlation. The excited state is governed by two free s
called a kink and an antikink. They become a local triplet
the dimer and the Haldane region. We can conclude that
intermediate region serves as a buffer between the other
regions.

We clarified the wave function of the bound state of
kink and an antikink, and how they collapse to a local tripl
The essential point is that a kink and an antikink is bound
the triangular potential and the competition between this
tractive potential and the kinetic energy causes the gap
hancement with exponent 2/3. The triangular potential is
outcome of unfavored singlet dimers between a kink and
antikink. This mechanism generally occurs when the frus
tion is relaxed by bond dimerization. For example, Chi
et al. investigated the one-dimensionalJ1-J2 model with the
bond alternation and found that the gap behaves withd2/3

with the alternation parameterd.33 This might be explained
in the same manner as in the present model.

We have also calculated the uniform susceptibility and
specific heat to see how the phases are characterized b
physical observables. We clarified the qualitative differen
between the Haldane phase and the dimer phase. The su
tibility data show a broad peak in the Haldane phase, acc
panied by continuum multiple magnon excitations. Theref
the FWHM of the peak may serve to judge which phase
data belong to.

ACKNOWLEDGMENTS

The authors would like to thank Professor K. Kubo a
Professor A. Oshiyama for valuable discussions. They a

FIG. 8. The specific heat per spin calculated forl525.0,1.0,
and 3.0 by the exact diagonalization of the finite systems with
periodic boundary conditions. The size of the system isN57.
el

r

t

-

y
y
er
in

he
o

.
y
t-
n-
n
n
-

e
the
e
ep-
-
e
e

o

acknowledge thanks to Professor H. Nishimori for his diag
nalization package, Titpack Ver. 2. Computations were p
formed partly on Facom VPP500 at the ISSP, University
Tokyo.

APPENDIX A: NONLOCAL UNITARY
TRANSFORMATION

In this appendix, we summarize the nonlocal unita
transformation for the doubleS51/2 spin-chain systems
The transformation is defined byU in the following:

U5 )
n51

N

Un , ~A1!

Un5Pn
11Pn

2exp@ ipSn
x#, ~A2!

Pn
65

1

2S 16expF ip (
k51

n21

Sk
zG D , ~A3!

Sn5sn1tn , ~A4!

wherePn
1 (Pn

2) is the projection operator onto states wi
the even~odd! number ofSi

z561 for i<n21. The spin
operators,sn

x , sn
y , sn

z , are transformed as

Usn
xU5expF ip (

m5n11

N

Sm
x Gsn

x , ~A5!

Usn
yU5expF ip (

k51

n21

Sk
zGexpF ip (

m5n11

N

Sm
x Gsn

y , ~A6!

Usn
zU5expF ip (

k51

n21

Sk
zGsn

z . ~A7!

In the above derivation, the following relations are utilize

U215U, UnUm5UmUn ,

~exp@ ipSa#!251, sn
xPn

65Pn
7sn

x ,

sn
aexp@ ipSn

b#52exp@ ipSn
b#sn

a ~aÞb!,

exp@ ipSn
a#exp@ ipSn

b#exp@ ipSn
g#51~ for cyclic a,b,g!,

which are easily obtained by using exp@ipsn
a#52isn

a . Trans-
formations fortn are obtained by replacings by t. By using
the above relations, exchange interactions become

Usn•tnU5sn•tn ,

Usn•sn11U52sn
xtn11

x 2tn
zsn11

z 24sn
xtn11

x tn
zsn11

z ,
~A8!

Utn•sn11U52tn
xtn11

x 2sn
zsn11

z 24tn
xtn11

x sn
zsn11

z .

APPENDIX B: SECOND-ORDER PERTURBATION
OF THE GROUND STATE ENERGY FOR l<1

In this appendix, we show that the second-order pertur
tion of the ground state energy can be done in this c

e
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without knowing an excited state. We divide the Hamiltoni
H into the unperturbed partH0 and the perturbation par
H1: H5H01H1, where

H05 (
n51

N

sn•tn1sn•sn111tn•sn11 , ~B1!

H15~l21! (
n51

N21

tn•sn11 . ~B2!

Here, note that the location ofsn andtn is different from Eq.
~19! and Fig. 1 so that the pairSn5sn1tn takes the singlet
dimer state for the unperturbed Hamiltonian. The unp
turbed ground stateuc0& is a direct product of singlet dime
statesuSn& on the spin pairsn andtn , i.e.,

uc0&5 )
n51

N

uSn&. ~B3!

Let us first examine the first order perturbationE1:

E15^c0uH1uc0&5~l21! (
n51

N21

^c0ucn
1&, ~B4!

where

ucn
1&5tn•sn11uc0&52

A3
4 )

kÞn,n11

N

uSk&uTn
2&. ~B5!

uTn
2& denotes a singlet state formed by two triplet pairs

Sn andSn11, i.e.,

uTn
2&5„u0n&u0n11&2u1n&u~21!n11&2u~21!n&u1n11&…/A3.

~B6!

u0n&,u1n&, and u(21)n& denote triplet states of a pa
Sn5sn1tn with their eigenvalues ofSn

z5sn
z1tn

z .
It follows from Eqs.~B4! and ~B5! that

E150, ~B7!

since the singlet stateuSn& is orthogonal to the triplet state. I
is found in Eq. ~B5! that the operationtn•sn11 on uc0&
transforms the two singletsuSn& anduSn11& into triplets leav-
ing the other singlets unchanged.

The second-order perturbationE2 is calculated as

E252 K c0UH1

1

H02E0
H1Uc0L

52~l21!2 (
n,m51

N21 K cm
1 U 1

H02E0
Ucn

1L
5

~l21!2

E0
(

n,m51

N21

(
k50

` K cm
1 USH0

E0
D kUcn

1L . ~B8!

To proceed further, we divideH0 into a diagonal part and a
off-diagonal part when it operates toucn

1&. An off-diagonal
partHn

OD is
r-

f

Hn
OD5~sn111tn11!•sn12 . ~B9!

A diagonal part is the rest of the Hamiltonian,H02Hn
OD.

The eigenvalue of this diagonal part
E1
D5E011523N/411. On the other hand, the operatio

of Hn
OD to uc1&n generates a state with three triplets locat

at the nth, the (n11)th, and the (n12)th triangles, and
these triplets form a singlet state. Namely,

ucn
2&5Hn

ODucn
1&5

1

A2 )
kÞn,n11,n12

uSk&uTn
3&, ~B10!

where the three-triplets state

uTn
3&5

1

A6
@„u1n12&u~21!n11&2u~21!n12&u1n11&…

3u0n&1„u1n11&u~21!n&2u~21!n11&u1n&…u0n12&

1„u1n&u~21!n12&2u~21!n&u1n12&…3u0n11&]

~B11!

forms a singlet state. Now we get

H0ucn
1&5E1

Ducn
1&1ucn

2&. ~B12!

Similarly, we find

H0ucn
2&5E2

Ducn
2&1ucn

3&, ~B13!

whereE2
D denotes diagonal energy and theucn

3& is a new
state with four triplets forming a singlet state located at
triangle site fromn to n13. In general, we have

~H0!
kucn

1&5~E1
D!kucn

1&1 (
l52

k11

Cl ucn
l &, ~B14!

where ucn
l & contains l11 triplets at triangle sites

n, . . . ,n1 l forming a singlet state; andCl is a constant.
Thus we obtain

^cm
1 uH0

kucn
1&5dn,m~E1

D!k^cm
1 ucn

1&

5dn,m~E1
D!k

3

16
. ~B15!

Finally, we get the energy correction of the second order

E25
3

16

~l21!2

E0
(
n51

N21

(
k50

` SE1
D

E0
D k

52
3

16
~l21!2~N21!

1

E1
D2E0

52
3

16
~l21!2~N21!. ~B16!

This agrees with the variational result given by Eq.~29! in
the text.
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