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Behavior of a frustrated quantum spin chain with bond dimerization
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We clarified behavior of the excitation gap in a frustraBed1/2 quantum spin chain with bond dimerization
by using the numerical diagonalization of finite systems and a variational approach. The model interpolates
between the independent dimer model andSkel spin chain by changing a strength of the dimerization. The
energy gap is minimum at the fully frustrated point, where a localized kink and a freely mobile antikink govern
the low-lying excitations. Away from the point, a kink and an antikink form a bound state by an effective
triangular potential between them. They finally collapse to a local triplet at a sufficient value of the dimeriza-
tion. The wave function of the bound state, the consequential gap enhancement, and the localization length of
the bound state were obtained exactly in the continuous limit. The gap enhancement obeys a power law with
exponent 2/3. We also obtained the dispersion relation of the local triplet excitation for the entire phase space.
The method and the obtained results are common to other frustrated double spin-chain systems, such as the
one-dimensional;-J, model, or the frustrated ladder modg50163-18287)03021-X]

[. INTRODUCTION tions. Interpretation of the excited states by a kink and an
antikink was done at this stad&!? The existence of the
Recently, the interest in the field of the low-dimensionalfinite energy gap above the ground state was rigorously
quantum systems is concentrated on systems with a spin gaproven’* Analogy of the model to the kagonamtiferromag-
especially in connection with the high: cuprates upon net has been pointed otitthere are macroscopic local con-
doping? The ground state of such a system realizes the spitinuous degeneracy in the ground state in the classical limit,
disordered singlet state, favored by a quantum fluctuatiotow-lying excitation spectrum is consequently dispersionless,
and/or frustration. The excitation energy gap opens above thand there exists an additional peak of the specific heat at low
ground state. As typical models, we can consider the spitemperatures. The origin of the dispersionless mode and the
ladder modef™ the bond-alternation mod&l,and the double peak of the specific heat were recently clariffed.
Majumdar-Ghosh modél® Senet all’ also pointed out that the possible relevance of the
Syntheses of various new compouhdiso accelerate in- model to the newly synthesized compound, YGuO
vestigations on this field both theoretically and experimen- In this paper, we find that th& chain possesses common
tally. For example, magnetic susceptibility measurement orfieatures with other spin gap systems besides its unique prop-
KCuCl; (Ref. 8 indicates a spin gap behavior, and the ex-erties stated above. Concretely, we mean the “common fea-
perimental data are considered to be explained theoreticallyre” by the way the system reduces frustration by the bond
by the double spin-chain model with frustratib&Estimation  dimerization, which results in an asymmetticchain. This is
of the magnitude of the gap through the susceptibility data imn essence of this paper.
already established on the assumption of the dimer'§ap. The ground state in a fully frustrated system is generally
However, it is not sufficient to the thorough understanding ofunstable against a small perturbation that relaxes strong frus-
the system. We must investigate the origin of the gap and theation. It must have a strong influence on the low-lying ex-
physical picture of the excited states. This is a main purposeited states as well, and consequently to the low-temperature
of this paper. behavior of various physical quantities. We should take this
The A chain, the subject model in the present paper, is &ffect into account when we analyze the experimental data.
participant of double spin-chain systems, but has rather sp&Ve consider the bond dimerization as a perturbation, since
cial geometry of the interaction bonds. The triangles aréts energy stabilization is the strongest one, and it can be
aligned in one direction. If we connect the spins located atealized by a lattice distortion as in the spin-Peierls
the top of the triangles with the interaction bonds, it becomesystems?
the railroad-trestle model. Therefore, it may seem that the From a theoretical point of view, the frustrated double
interesting properties are peculiar to this special system. spin-chain systems with the bond dimerization are very at-
The early investigations on th& chain were directed in tractive. They have the dimer state and ®e1 Haldane
search for a system with the singlet dimer ground stat¥.  state in both extremes of the strength of the dimerization
They were restricted to a symmetric case where all the interparameter. In the midst is the fully frustrated point. As was
action bonds are set equal, and thus the system is fully frusshown in the F-AF bond-alternation modethere always
trated. In this case, the ground state is the singlet dimer staexist the string order of den Nijs and Romméfsand the
with twofold degeneracy under the periodic boundary condidimer order® The dimer state continuously changes to the
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FIG. 1. Shape of the dimerizefl chain. Bold lines indicate the
\ bonds.
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observable physical quantities? In this paper, we show by A

adopting theA chain for an example that the whole phase

space can be divided into three regions with respect to the )

nature of the first excited state relevant to the energy gap, F'G- 2. Thex dependence of the energy of the lowest state in

and that the differences affect the low-temperature depentbe subspace denoted try(wave numbey and R (spin reversal

dences of physical observables such as the specific heat afg"Metry in the system wittN=14 (28 spins. We also plot the

the susceptibility. \_/arlatlonal estimate for the ground state energy Xer1 (solid
Section Il describes the model and summarizes the ger{'-ne)'

eral remarks concerning the symmetficchain without the

dimerization, which will be the starting point of the discus-

sion in Sec. lll. In the first part of Sec. Ill, we do the same

variational analysis as was done in the symmetiic

chain®!This is valid only for positivelyantiferromagneti-

The understandings of the symmeticchain are already
established®” Here, we briefly summarize the results. The
ground state is the perfect singlet dimer state with twofolded
degeneracy in the case of the periodic boundary conditions.

cally) small dimerization. Then, continuous limit of the ef- T,Gi 1|0W7|y'Tgt dgxcned séa:es fapprox!mat(_erlz con;tlsi of
fective Hamiltonian is derived and its exact solution is ob-( ) singlet dimers and two free spins. € exciations

tained. The remaining part of Sec. Il is devoted to the cas&'® governed by sets of two free spins named a "kink” and

when the dimerization is negativelyferromagnetically an antlklnk. A k|_nl_< stays_locahz_ed and works as adel|m—.
small. We use the nonlocal unitary transformatiof? to iter to moving antikinks. Dispersionless aspects of the exci-

represent the ground state and the excited state. This tranigtions originate in a localized kink. An antikink is consid-

formation is equivalent to the Kennedy-Tasaki transforma-ered as a free particle moving between kinks with the

tion of the S=1 system, and is its adaptation to the doubleeﬁce‘:ti\.’e mass. An antikink Is s_uppo_sed t_o_be one fre_e spin
spin-chain systems. The transformation is powerful when th@tm%’ W'm'r? tlhe f||rs|_t| apﬁtrox_lmat:;)n, smc(:je It '? tnot an etlgetn.—

ground state is either in the Haldane state or in the state witRoare of the jocal ramittonian. 1t spreads out to an extent in
strong dimer correlation. Almost equivalent results to thereality. A detailed structure of an antikink is not revealed yet,

positive dimerization case are obtained near the symmetri@m it merely renormalizes the effective mass. Within the first

point. We show how the system converges to the Haldan pproximation, Fhe .me_lsm=1. The sepond approximation
state and the dimer state in Sec. IV. Section V shows thdhat an antikink is distributed among five spin sites gives the

- 17 ; ; At
differences of the observable quantities between two phase@.assm_ 1.158;" and the numerical diagonalization data af-

H 16
We also propose a quantity to judge the phase in experit-er theN— o extrapolation shows the mass=1.21:° The

ments. Section VI is devoted to summary and discussion. excitation gap is .W.e” expressed by a summation of a kinetic
energy of an antikink and the creation energy of a pair of a

kink and an antikinkey=0.215, as

Il. THE MODEL AND GENERAL REMARKS

We consider a system described by the following Hamil- AE= e+ 1 1_COS7T_k 2)
tonian: °'m N/’

wherek is the wave number of an antikink alone. The low-
temperature peak of the specific heat can be reproduced by
the Schottky specific heat with the gap expressed above.
Susceptibility was also calculatéd.

N
'H=n§_:1 NOy Tyt T O 1t O O 1 - (1)

Here,N is the number of the triangles in the systemis a
parameter denoting the dimerization, dd= |7 =1/2. Fig-
ure 1 shows the depicted lattice. At the pointdof1, the
system is the symmetrid chain and is fully frustrated. In We numerically diagonalized the above Hamiltonian up
the limit of A= +o0, the system reduces to the independento the systems with 28 spindNE 14) under the periodic
dimer model. In the other limit ok = —«, the system be- boundary conditions. Th& dependence of the energy is
comes equivalent to th&=1 spin chain. Therefore, the shown in Fig. 2. The ground state energy is highest at the
present model has the independent dimer ground state affidlly frustrated point f=1), which leads to the instability
the Haldane ground state in its extremes. due to the lattice dimerization.

lll. IN THE VICINITY OF A=1
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ForA>1, the ground state is always the pure dimer state 0.40 _ ' B

which consists of the singlet dimers on evernpond. Thus i o ]

i 0.35 A=1.000 E
the total ground state energy is exacthp.7S\N. We refer "4 | 7A~1.001 ]
to this state as the left-dimer state hereafter in this paper. In 0.30 —7»=1V010 E
this region, the spin correlation length vanishes. The excited y 025} : E
states also have rlodependence. At =1, the ground states > 020 i ]
are twofold degenerate under the periodic boundary condi- 0.15 3
tions. They are the left-dimer state and the right-dimer state. 0.10 e - 3
The first-order transition occurs at this point. Fox 1, the 005k | V-~ TSel
correlation length gradually increases with decreaginghe 0.00 & Nl R
right-dimer state smoothly reaches the 1 Haldane state in 0 100 200
the limit of A = — without any phase transition. Hereafter, n

we simply call the regiol\>1 as the dimer phase, and the

region A\<1 as the Haldane phase. The degeneracy of the FIG. 3. Variational wave function of an antikink in the lowest
excited states in the dimer phase is lifted in the Haldane anexcited state forn=1.00,1.001, and 1.01. Size of the system
a state withk= 7 becomes the first excitation. N=200.n stands for the location of an antikink.

Here, §j; is the Kronecker delta, and migj)=i if i<j. Our

task is to find a functionV,=3,C;¢; that minimizes the
The results obtained in this subsection have already beegnergy expectation,

reported briefly?> We discuss the method and the results in

detail in this paper. (Wl Hl Va2 CiCi(wil Ml yy)
The excited states in this phase may have similar proper- T (VW 3 CiCi(wil )

ties to those at the symmetric point, because the ground state '

is the same. Therefore, we do the same variational analysis If we diagonalize the denominator and rewrite the nu-

as was successful at=1."'" The boundary conditions are merator with its eigenfunction, this variational problem is

set open, though they do not influence the final results in th@ransformed into a simple eigenvalue problem. Then, the so-

thermodynamic limit. We define a variational bagisso that  |ution of Eq.(7) can be obtained by the numerical diagonal-

A. A>1: The dimer phase

VarkE

)

an antikink is located at thih triangle ization for a finite system size. We show the result of
N=200 in Fig. 3 with\ =1.00, 1.001, and 1.01. In the case
Ui=bimk®[4,5] - -[21—2,2—1]Ty of the symmetricA chain (\=1.00), the wave function is

the sine function indicating a free motion of an antikink. An
antikink is drastically attracted to a kink asincreases. The
wave function exhibits an antikink localized. We clarify the
wave function analytically by using the continuous limit.

We rewrite the above equation by the new basis
| ) = =,exdikn]|i,), since the denominator of Eq7) is
diagonalized by Fourier transformation in the lafgdimit.
SNote thatk is the wave number of an antikink alone, and
does not correspond to the total wave number. Then the basis

X[2i+1,2i+2]- - -[2N—1,2N], 3)

where[i,j] denotes a singlet dimer state connectingitthe
and thejth site, namely[i,j1=(1;1;— ;i1;)/2 for 1;(1;)
denoting an ugdown) spin located at théth site. Here, we
numbered the site so that, is the (2n—1)th, ands, is the
(2n)th as is shown in Fig. 1. Thé,; above is an antikink.
The wave function of a kink located at the leftmost edge i

known as relations become
Pank=[T1(T2la= 12Ta) + T2(T1la= L112) 16, (4) I—k I+k
40057—5c037

This state is an eigenstate of the edge triangle Hamiltonian, (bl )=
and therefore does not move. Its energy eigenvalue is 5—4coxk
NA4—1. Thus a kink contributes to the excitation energy by
(A—1). The singlet dimerg[2n,2n+ 1]}, existing between N
a kink and an antikink are not eigenstates of local triangle 1-2 ®
Hamiltonians. They also contribute to the excitation energy. N

The variational basis is not orthogonal to each other and

satisfies the following relations: 3 3
(Dl H| D) =[Egt (A=D1 pul )+ 1 Ok, ZO\ — DA,

1\ 1=l
wiw=[3) ® ©
with
3 o 1
(il H|j)=|Eg+ (A —1)+ Z()\_l)mln(l,J)}<lﬁi|(/fj> Aky|:NE exd i (kn—1Im)Imin(m,n){¢,| ¢m). (10
N Eb‘-- ) The diagonal elements &, ; dominate the off-diagonal el-
47" ements. Thend,  is written as
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A 1 6—13cok+8cosk 10" e . .
kKN 245 U
—~ —87cok+30cosk+4cosk g 10}
E 10
4—5cok N+1 3 2 .,
4+ . ] 10
33 2 5-—4co«k < o
— —10cok+2cosXk S 103 o % Periodic k=0 (A>1)]
4 = X e Cont. limit(A>1)
(11) O 107¢ O Periodic k=0 (A<1)4
0% ‘ Cont. limit(h<1)
We find in this equation thaf, , diverges in the limit 10° 10 107 10° 100 10°
N—o. In order to avoid this divergence, we introduce a A—

cutoff factori § to the momentum, namelk—k+i 6/2. This

should have no effect on physical results by taking the limit FIG. 4. Log-log plot of the gap enhancement for the exact result
5—0 afterN—. We rewrite the matrix element and pick in the continuous limit with the mass=1.21, and the numerical
up only the leading term of the off-diagonal part and theresults of the periodic system with=14.

terms up to theé? in the diagonal part. Then the continuous

limit, N— - andk—0, of the Hamiltoniar, , is given by ~ = 1.01. It should be noticed tha(\ — 1)Ay /{b| by of
' Egs. (8) and (9) becomes equivalent tB., if we replace

- k2 N by ¢ above.
Hy=| Egt(N=1)+ 27 7% Now, the total gap behavior can be obtained from the kink
contribution, f — 1), and the antikink contributior-. The
13 1 gap enhancement defined By,;=Egad\) —Egaf1) is
+t—=-AN-1)7——>. (12
N 4 (k—1+i5)? Aga=(A—1)+1.531%xm Y4\ ~1)28  (18)

Apart from the constant terms, this Hamiltonian is equivalentrpe gap increases in a power law with its exponent 2/3. As a
to the following in the real space representation: consequence, the gap rapidly increases with and is
1 2 3 doubled at\ =1.06. Figure 4 shows the behavior of the gap
He=— =— — + —(A—1)xex] — 5x]. (13) enhanc_emen'rAGap, compared with the numerical results of
2mdx® 4 the periodic system dfi=14. We used a value of the mass,
m=1.21, estimated at=1 (Ref. 16 for better comparison.
Forx—1>0.01, the numerical data agree with the analytical
estimation. In this region, the localization length is within the
rrginite system size¢<14.

The relevant excitation in this region is governed by a
competition between the kinetic energy and the triangular
potential energy of an antikink. When the dimerization is
small, an antikink gains energy by the kinetic motion. As the
d2 dimerization becomes large, an antikink is bound by a kink,
(—Wer)qf:E’qf, (14 and finally they collapse to a local triplet. The exponent

2/3 is a general outcome of this competition.

Here,x is the distance between a kink and an antikimkis
the effective mass of an antikink and is set 1 in the first
approximation. We take the limi— 0 at this stage. The first
term is the kinetic energy of an antikink, and the second ter
is the triangular potential attracted by a localized kink. We
rescalex by X=6x with #=Bm(A—1)/2)~ 3 Then the
eigenvalue equatiofi{c W =Ec¥ becomes

where E' =Ecx2mé2. Its solution is known as the Airy
function, ¥ =A;(X—E’) with the first eigenvalue B. A<1: The Haldane phase

[ /3 26 ;
E'=(3m/2X 0'7537)2 =2.338" Accordingly, we can ob- In this region, the ground state cannot be known trivially,
tain the energy eigenvallg:, the average distance between 4jihough we can expect the right-dimer state continuously
a kink and an antikinKx), and the localization length of the changes to theS=1 Haldane state in the limit of

wave functiong, A— —0.29-22\We make use of the nonlocal unitafyLU)
. transformation for the double spin-chain systéms? the
Ec= E 5= 1.53am~ Y3\ —1)28, (15) seconq-order perturbation, and the numerical diagonglizatipn
2mé to clarify the ground state first. Then we proceed to investi-
gate the excited state by using the variational method and the
numerical diagonalization. We clarify how the physical pic-
tures of the lowest excitation changes withRecently, Bre-
hmeret al. have investigated the phase diagram and the hid-
£~5X 9=4.368n" Y\ —1) 12 (17) den order for.generalized spin-ladder mpd‘.erﬁhey have _
used the matrix product states for the variational calculation
The localization length¢, is obtained from a rough estima- of the ground state, which was shown to be equivalent to our
tion of the localization length of the Airy function5. The  present variational methdi’
estimation of¢ is quite consistent with the wave function = We transform the Hamiltoniaf{ with U defined in Ap-
shown in Fig. 3: é~40 for A=1.001, and é~20 for pendix A. We obtain

2
(x)=3E'6=1.36am "*(r-1)"*", (16)
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Then the energy expectation per triangle is
E/N= 33 1-\)2 29
=77 16 )< (29

from Eg. (A8) in the Appendix. According to this transfor- This agrees with the result due to the second-order perturba-
mation, string order parameters are transformed into location of (A —1)o,,- 7,,. Details of the calculation are given in

parameters such dw)), (or), (oh7h), as will be found in

Appendix B. The diagonalization result of a finite system

Egs. (31) and (32). It makes possible that we employ a with 14 triangles shown in Fig. 2 is fitted by the least-square
single-site approximation like the molecular-field one. Thusmethod to

we consider the following variational trial function for the

ground state:
N N
(Woy=1I1 In(o)) =11 (bTo)+V1-b7Sy)), (20

1Sw=(1.1)=11.1)/V2,
IToy=al 1. 1)+ BT, )+ L ININ2+ 1. 1).

[T,1)’s are the state dfo?,7%). b,«, B,y are the variational
parameter and satisfy the normalization

(21)

(22)

b= /3/2 is the right-dimer state, and a state witk 1 cor-
responds to the pure valence bond s@WBS) state in this

representation. The energy expectation value is calculated as

(WolH|Vo)=

2_ 2\2
x( b2— ;) —b4(%+232m2+ )

—3b3J1-b?B(a®—v?) |N. (23

We can easily find this minimum value and the variational
parameter set by using the Lagrange multiplier. The energ

valuegg is
, 3 2, 2b3\3(1-b?)
A b —Z —gb ——3 =€, (24)

with four possible choices of the parametets 8,y) as

(@, B8,7)=(£/2/3,/1/3,0),(0,— \1/3,= /2/3), (25

andb determined through

)\_be_m (26)
37 3(1-b%)’
or
b=0. (27

The fourfold degeneracy in the choice @f3, vy corresponds
to the degeneracy of the edge state®'?® A state with

b=0 is the singlet dimer ground state fae>1. The other
one, Eq.{26), corresponds to the ground state fer 1. If we

solve Eq.(26) up to the second order of (),

(28)

condition,

a®+ B?+ y?>=1. These parameters are supposed to be in-
variant ofn. The analysis is variational in this sense. A state

with b=0 is the left-dimer state on the bonds, a state with

3 3.0176
E/N=——-————(1—-X\)2-0.0031—1\).

(30)
Consistency between the analytic estimation and the numeri-
cal result is excellent as is shown in Fig. 2.

We can also estimate the string order parameter of den
Nijs and RommelseQy,,'° and the dimer order parameter,
Ogim-2%?! The definitions and the expectation values are

a'ﬁU>

- |in|1 Komony =4 opXon) =4 om)?
m—n|—®

lim
[m—n|—o

Ogim=

n-1
—4<Ulrfnex;{i7r > &
k=m+1

=m+

=gb4+gb2(1—b2)+gbws(1——b2§, (31)
n—1
Og= lim —<Ulsfnex;{irrk > . SZ(}S?]U>
[m—n|—o =m+
. 4
= lm (SS)=(SASH=(SP=gb" @2

At A\=1, Og4,=1 asb=+3/2. In the limit of \— —oo, it
converges to the VBS valul@gy;,=4/9 asb— 1. On the other
hand, the string order parametdd, takes a value of
Os=1/4 at A\=1 and converges to the same value of
Ogim= Osy=4/9. 1t should be noted that the convergence of
b—1 is very fast that it takes a value=0.94 even at

A =0.25. Therefore, the Haldane state can be realized even if
all the interaction bonds are antiferromagnetic.

Figure 5 shows the dimer and the string order parameter
of the ground state in the whole phase space. Numerical data
are of the periodic system witN=12. Quantitative agree-
ment is excellent neax=1. The string order increases as
\ decreases from 1. Therefore, we call the regienl the
Haldane phase. It should be noted that the numerical data
converge to the value @=1 (=0.37) (Ref. 29 in the limit
of N\——o, not to the value of the pure VBS state. The
contradiction becomes distinct at~—1, where the string
order parameter takes the maximum value. This is because
we used the variation of the single-site approximation as in
Eq. (20), besides the correlation length is rather large in the
Haldane state.

A low-energy excitation is intrinsically of domain-wall
type in one dimension. Two perfect singlet dimer states,
In(y/3/2)) and|n(0)), are degenerate at=1. Forn<1, the
latter state becomes the excited state and the former state



14 418

TOTA NAKAMURA AND SATOSHI TAKADA 55

In the region ofA <1, the ground state has fourfold de-

100 ‘ T e ] generacy associated with the edge states. Within the scheme
0.90F i E of our variational analysis, it appears in the four possible
£ 0.80F e 3 choices of the variational parametes,{3,y) of Eq. (25).
o 0.70F Pt —string order(NLU) ] The most natural candidate for the domain wall is the one
T 060F T e dimer order(NLU) j between any two of the fourfold degenerate ground states. In
S 0.50 b T Suing gﬁgﬁﬁzg} fact, Fah and Séyom?® showed that the lowest excitation in
o 040 1 the AKLT modef°is of this type. The trial wave function we
' consider is then
0.30 | E
0205 05 0 05 1 i .
M) M [Wy)=2 Ciyi=2 C.(nljl In(o)) T1 In (b>>), (39

FIG. 5. The string order parameter and the dimer order param\-’\/here|n(b)> and|n (b)) only differ the choice of the set

eter are plotted againat/(1—\) for A<0, and againsk/(1+X\) (a,8,7). We use the set &,B,y)=(y2/3,1/3,0) ff)f
for A>0. Bold lines are the analytic estimate obtained by the nonIn(b)), and (@,B,)=(—+2/3,J1/3,0) for |n’(b)). b is
local unitary transformation. Thin lines are numerical diagonaliza-cOmmon and determined by E@6). The basis relations are
tion results of the lattice with 12 triangles. calculated in the same way as

. li=il

becomes the ground state by changing the value dhere- T :< _ f 2 =(_\li—il
fore, we consider the following wave function as a trial for (halyiy=|1 3b (=)™ %, (40
the excited state: o

: N ('//i|H|'/’j>:[Eg+(||_J|_1)E1+5i,j(E1+E2)]<l//i|lJ/j(>41)
W)= Cyi=2 G| I Intb)) IT [n0))|. @3

i i n=1 n=i+1 with

Because the staf@(0)) becomes a higher excited state for 5 3a
A <1, the validity of this trial wave function is restricted to E;=—=b%| b+3(1-b?)+ ———nor|,
the very vicinity of A=1. The domain wall located at the 3 (b++3(1-b%)3
ith triangle is essentially an antikink before the NLU trans- (42
formation is done. Thus the analysis is for a kink-antikink
excitation. The basis relations g are Ezngg(b+ 3(1-b?)). (43)

(ilgy)y= (V1= (34)
(il Hi| ) =[Eg+ E1(N—min(i,j))+ Eo 8 ;1{ il ¢;)

In the thermodynamic limit, the above matrices are diagonal-
ized by the Fourier transformation. An expectation value of

i35) the energy gap above the ground state is estimated as
with E;=€oN, E;=—-0.79\—¢;, and E,= A(b%2—0.75) (bl H| i)
— €o. These relations are equivalent to the ones in the previEed k):W —Ey4
ous subsection, Eg&5) and(6). Therefore, the problems are kI %k
solved in the same way and we obtain I 2a (1+a?)cok+2a
E.=1.856n" Y23 (36) -t 1-a? 1+2acok+a’
13 1+2acok+ a? 1+2acok+a?
(xy=1.23Mm e 5, (37) - . Eo—1 2 (44)
£~3.96am V313, (38)  E.(k) always takes minimum ak=. The energy gap

Ec () converges to 1/9 in the VBS limih, — —oo.
We can also discuss excited statea of 1 with this varia-
ional scheme, since the domain wall of E§9) can express

for the excitation ok=0. However, we remark that the low-
est excitation is the state witt= 7 in this region. This state
is considered as that both a kink and an antikink are mobil . . ) i
with the total momentumr. The analysis on the state of hg local triplet domain wall, if we c;ha_mge the nqtatlon of the
k= will be done in the next subsection. Three estimatesP&" Zn and 7,. Unless, the variational solution for the

; ground state only gives the state wiil+0, since the exact
Eg:éi(;?r’]saitgqgemiC%?]%V(;;(Q?evée;;rt’ehvéh-\;goqUIte good ground state is the left-dimer state anbonds. Then, the

variation withb=0 gives nothing at all. It should be noticed

that a basic recipe of the present variational method is that a

spin pair,S,= o,+ 7,, should be chosen so that it does not
Away from the fully frustrated pointy =1, the excitation take a singlet dimer state. Therefore, we shifpins by one

is no longer of a kink-antikink type. They already collapse tosite aso,— o, , 1. With this new definition ofo;, and,, the

a local triplet state. Therefore, we must consider another typkeft-dimer ground state is represented by V312, or in

of a domain wall for a trial wave function. other wordsa= 0. Expressions of; andE, become differ-

IV. AWAY FROM A=1
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FIG. 6.\ dependence of the energy gap obtained by the numeri- F|G. 7. Uniform susceptibility per spin calculated for
cal diagonalizatior(circles, the variation of a kink-antikink type \=—-5.0,1.0, and 3.0 by the exact diagonalization of the finite sys-
(broken ling, and the variation of a local triplet typeolid line).  tems with the periodic boundary conditions. The size of the system
The second excitation gap with=0 (triangles is also plottedx  js N=7. Each\ represents the Haldane phase, the fully frustrated
axis ish/(1—\) for A<0, and\/(1+X\) for A>0. point, and the dimer phase, respectively.

ent from Egs.(42) and (43), and areE,=—\/2-1/4 and  |imjt. The present model has only two interaction bonds,
E,=N\, respectively. The excitation is calculated dispersionyhich corresponds to half the effective interaction in the
less as S=1 system.

Eo(K)=\. 45
ex(K) (45 V. OBSERVABLES

This result is nothing but the local triplet excitation, where ~We calculated the magnetic susceptibility and the specific
one singlet dimer is replaced by a triplet in the ground stateheat of finite systemN=7) with periodic boundary condi-
This becomes the exact solution in the limits . tions in order to see the difference of observable physical

Figure 6 shows tha dependence of the energy gap ob-quantities between the dimer phase and the Haldane phase.
tained by the variation and the numerical diagonalization ofn other words, we try to determine the phase by these ob-
the periodic system with 24 spins. The numerical results arservables. Figure 7 shows the uniform magnetic susceptibil-
depicted by symbols. The variational results of a kink-ity for A=—5.0,1.00, and 3.0. These parameters correspond
antikink type excitation, Eqg15) and(36), are shown by a to the Haldane phase, fully frustrated point, and the dimer
broken line; those of a local triplet excitation, E444) and  phase, respectively. We rescale the temperature by each en-
(45), are shown by a solid line. We also plot the secondergy gap in order to see the qualitative differences, namely
excitation gap for the comparison with E@6). E—(E—Eg/Egap The peak width and the height among

In the dimer phase)\>1, consistency between the nu- three are quite different. Data of the dimer phase have a
merical and the variation is excellent. Estimations by thesnarp peak, while they become broad in the Haldane phase.
kink-antikink variation are better in the vicinity af=1,  Thjs reflects the structure and the density of the excited
Wh_|le those of the local triplet become better)amcregses. states, i.e., many continuum states of multiple-magnon exci-
This crossover occurs at~3, where the average distance y4tjons in the Haldane phase bring about a broad peak. Con-
between a kink and an antikingx) of Eq. (16) becomes oy the degeneracy in the excited states in the dimer phase
unity. On the o_ther. hand, Fhe. consistency In the région;is considered to be smaller compared with the Haldane
7\.<1’ only remains in a quallte_\tlve _Ievel. W'th'r.‘ the single- phase, which generates a rather narrow peak. Full width at
2g?n:ppar;)e)('meaqt{j)ica?en;?|Oiged ér;ct:: IS oﬁﬁg?’ SIF:):Jan 21(;:1p|ehalf maximum(FWHM) of the peak for each data in the unit

' bf T/Gap is~2 for A=3.0, ~4 for A\=1.0, and~6 for

(n(b)|o,- o4 1|n(b)) is equal to (n(b)|7,- 7 1/n(b)). _ ; ; e
Therefore, the approximation should be better for the systerh_ —5.0. The FWHM IS al_most three times as wide in the :
Haldane phase as in the dimer phase. We speculate that this

with a symmetry of exchangingr— 7. Since the present _ ; X
model does not possess this symmetry, the estimation is ny@!ue might be a judge to determine the phase. Recently, we

good. It should be excellent in the symmetric systems suchave also calculated the susceptibility of the frustrated ladder
as the Majumdar-Ghosh mod&lWe must go beyond the model, and thel;-J, model with bond dimerizationJg-Jo-
single-site approximation to improve the estimates in thels mode), and found that the FWHM take almost the same
Haldane phase of th& chain. The numerical data converge value as the present case. Details are reported elsewhere.
to the value,~0.24 consistent with th8= 1 system; half the Figure 8 shows the specific heat. Qualitative tendency is
gap of a typical diagonalization result 81 system with the same as the susceptibility, except for the data of
12 spins, 0.484% Only the number of interaction bonds \=1.00 showing the double peak structure, which is charac-
betweerS, andS, . ; determines the strength of the effective teristic of the kink-antikink excitatioh® Data of the dimer
interaction, sincer,, and 7,, become symmetric in th€=1  phase are explained by the Schottky type specific heat.
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B> : APPENDIX A: NONLOCAL UNITARY
é 0.20 [ TRANSFORMATION
é 0.10 In this appendix, we summarize the nonlocal unitary
; transformation for the doubl&=1/2 spin-chain systems.
0.000-~ e The transformation is defined Wy in the following:
N
u=[I u,, (A1)
FIG. 8. The specific heat per spin calculated Xor —5.0,1.0, n=1
and 3.0 by the exact diagonalization of the finite systems with the . _ .
U,=P, +P,exdiwS;], (A2)

periodic boundary conditions. The size of the systerNis7.

VI. SUMMARY AND DISCUSSION

L1
PE:E

n—-1
+ ; 4
We have investigated th& chain with the bond dimer- 1_ex+77k21 Sk} ) A3)
ization. The model interpolates the independent dimer model
and theS=1 spin chain model by changing. As for the S,=o,+7,, (A4)
ground state, the first order transition between the dimer o o )
phase and the Haldane phase occuis=at. To be strict, the WhereP, (P;) is the projection operator onto states with
ground state foh>1 is the perfect singlet dimer state, while the even(odd) number of S/=+*1 for i<n—1. The spin
that for A\<1 continuously changes from the dimer state atoperatorso), o, o7, are transformed as
A=1 to theS=1 Haldane state at= —o.
As for the excited state, we can distinguish the interme- ] N
diate region, in the vicinity oh =1, from the dimer region UoﬁU:ex+w > S,
and the Haldane region. This region is characterized by m=n+1
strong frustration. The energy gap is very small caused by

an, (A5)

n—1 N
the unstable ground state. The ground state has strong dimer _ : z : X
correlation. T?le excited state ig governed by two freg spin UG%U_eXF{'”g‘l S ex[{mm;nﬂ Su|om. (A6)
called a kink and an antikink. They become a local triplet in
the dimer and the Haldane region. We can conclude that the n-1
intermediate region serves as a buffer between the other two UoiU= exp{ i 71-'(21 S| ok (A7)

regions.

~ We clarified the wave function of the bound state of ajn the above derivation, the following relations are utilized:
kink and an antikink, and how they collapse to a local triplet.

The essential point is that a kink and an antikink is bound by ul=u, uUU,=U,U,,

the triangular potential and the competition between this at-

tractive potential and the kinetic energy causes the gap en- (exdiwS*))?=1, o P, =P o7,
hancement with exponent 2/3. The triangular potential is an

outcome of unfavored singlet dimers between a kink and an olexfinSt]=—exdinSElo?  (a#B),

antikink. This mechanism generally occurs when the frustra-
tion is relaxed by bond dimerization. For example, Chitra exdimSexd i wSElexd i wS)]=1(for cyclic a,8,7),
et al. investigated the one-dimensionglFJ, model with the ] ) ] ] P
bond alternation and found that the gap behaves with ~ Which are easily obtained by using ¢ipoy,|=2ioy, . Trans-
with the alternation parametet®® This might be explained formations forz, are obtained by replacing by 7. By using
in the same manner as in the present model. the above relations, exchange interactions become

We have also calculated the uniform susceptibility and the
specific heat to see how the phases are characterized by the
physical observables. We clarified the qualitative difference X _ 74 x s 7
between the Haldane phase and the dimer phase. The suscep> @’ @n+1U= TnTh+1T Tl 4U“ﬁ+1T“U”+%A8)
tibility data show a broad peak in the Haldane phase, accom-
panied by continuum multiple magnon excitations. Therefore
the FWHM of the peak may serve to judge which phase the
data belong to.

Uo, - mU=0, 7,

Ur- 0 U=~ Txn7{1+l_ 0'310'51+1_4Ti(17'§+10'?10'r21+1-
APPENDIX B: SECOND-ORDER PERTURBATION
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without knowing an excited state. We divide the Hamiltonian HSD:(0n+1+ Thi1) Onin. (B9)
‘H into the unperturbed part{; and the perturbation part . . o ob
H,: H="Hqy+H,, where A diagonal part is the rest of the Hamiltonialy—H,, .

The  eigenvalue of this  diagonal part is

N E?=E0+ 1=-3N/4+1. On the other hand, the operation

HO:nZl On Tnt On Oni gt Ty Oneg,y (BL)  of HOP to |1), generates a state with three triplets located
at the nth, the (+1)th, and the 1i+2)th triangles, and
N-1 these triplets form a singlet state. Namely,
Hi=(\=1) 2, 7 01 (B2)

1
|wﬁ>=HSD|wﬁ>=Ek¢nH 1S)ITS),  (B10)

Here, note that the location of, and 7, is different from Eq. n+1n+2

(19) and Fig. 1 so that the pa8,= o, + 7, takes the singlet
dimer state for the unperturbed Hamiltonian. The unper
turbed ground statpy,) is a direct product of singlet dimer
states|S,) on the spin paiio, and 7,, i.e.,

where the three-triplets state

1
N ITo)= JeL (12~ Dnsn) = 1= D)l nsa))
19)=11 Sy B3)
=1 X|0n>+(|ln+1>|(_1)n>_|(_1)n+1>|1n>)|0n+2>
Let us first examine the first order perturbatigg F (1) (= Dns ) = (= )i Lns2)) X |0ns 1)]
0 0 < 0,1 (Bll)
Ev=( Ml >:()\_1)Z‘1 (1), B4 forms a singlet state. Now we get
where
Hol ¢ =EX |vrm) +[47)- (B12)
V3 - .
= onaly==7 T |S9IT}). (85  Similarly, we find
#n,n+
|Tﬁ) denotes a singlet state formed by two triplet pairs of 2\ _pED| 2 3
Sn andsn+l, i.e., 7_(0|'r//n> E2|lv[/n>+|lrlln>' (813)

where ES denotes diagonal energy and thg) is a new
state with four triplets forming a singlet state located at the
IT2)=(10m)|0n+1) = 110/ (= Dns 1) = 1(= D)) 1n11))/V/3.  triangle site fromn to n+3. In general, we have
(B6)

[0n),]1,), and |(—1),) denote triplet states of a pair k+1

S,= o, + 7, with their eigenvalues o:= o2+ 7%. (Ho)yly=(ED)N g2+ >, C)|y), (B14)
It follows from Egs.(B4) and (B5) that I=2

where |4) contains |+1 triplets at triangle sites

_ n, ...,n+l forming a singlet state; an@, is a constant.

E,=0, (B7) Thus we obtain

since the singlet sta{&,) is orthogonal to the triplet state. It

is found in Eq.(B5) that the operationr,- o, on |4°)

1 Ky, 1\ Dyk/ .1 1
transforms the two singlets,) and|S,. ;) into triplets leav- (ml Mol ) = Sn,m(EL) | )
ing the other singlets unchanged. 3
The second-order perturbati@ is calculated as = 5“'”‘(E?)k1_6' (B15)
Finally, we get the energy correction of the second order
Ex=—( ¢y H H °>
2 <¢ lHO_EO 1¢ 3 ()\_1)2 Nfli (E?)k
2“‘231 < o1 1> 2716 Ey &£1E&0\Ey
=-(2—1
( ) nm=1 Yim Ho—Ep v 3 s
=——(A-1)*N-1)
()\_1)2 Nz—l i < . HO k 1> 16 E?—EO
= — . B8
Eo n,m=1 k=0 lﬂm Eo ¢n ( )

3
=— E()\—l)z(N—l). (B16)
To proceed further, we divid#, into a diagonal part and an
off-diagonal part when it operates @}). An off-diagonal  This agrees with the variational result given by E29) in
part HJ® is the text.
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