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Oscillations with Co and Cu thickness of the current-perpendicular-to-plane giant
magnetoresistance of a Co/Cu/Co„001… trilayer

J. Mathon, A. Umerski, and Murielle Villeret
Department of Mathematics, City University, London EC1V 0HB, United Kingdom

~Received 23 January 1997!

The results of a rigorous quantum calculation of the current-perpendicular-to-plane giant magnetoresistance
~CPP GMR! of a Co/Cu/Co~001! trilayer without impurity scattering are reported. The conductances per spin
in the ferromagnetic~FM! and antiferromagnetic~AF! configurations of the magnetic layers are computed from
the Kubo formula. The electronic structure of the Cu and Co layers is described by fully realistics,p,d
tight-binding bands fitted toab initio band structures of Cu and ferromagnetic fcc Co. Depending on Co
thickness, the CPP GMR ratio can be as high as 90%. The whole calculated effect is due solely to quantum
reflections of electrons from perfectly flat Co/Cu interfaces. The CPP GMR ratio is found to oscillate both with
Co and Cu thickness, the respective oscillation amplitudes being 12 and 6 % of the average GMR. The
resistances in each spin channel per unit cross-sectional area of the trilayer range from 3 to 7 fV and oscillate
with an amplitude; 0.5 fV. An analytic asymptotic formula for resistance oscillations originating from the Cu
Fermi surface is applied to analyze the numerical results. It is found that the resistance oscillations for majority
electrons in the FM configuration have periods dominated by the extremal radii of the Cu Fermi surface. These
are the same periods as observed in the oscillatory exchange coupling. However, the amplitude of resistance
oscillations with the Fermi-surface periods is negligibly small for the minority electrons in the FM configura-
tion and for electrons of either spin orientation in the AF configuration. The resistance oscillations of these
electrons are dominated instead by periods determined by cutoffs of the conductance due to a mismatch
between the Co and Cu bands across the Co/Cu interfaces.@S0163-1829~97!05121-7#
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I. INTRODUCTION

Since the discovery of the giant magnetoresistance eff1

~GMR! and oscillatory exchange coupling2 the transport and
magnetic properties of magnetic multilayers have attrac
much attention. The conventional explanation of the GM
effect is based on spin-dependent scattering of electrons
magnetic impurities located at the ferromagnet/spacer in
faces~interfacial roughness!. However, a fully quantitative
theory of the GMR effect is still lacking. This is largely du
to the fact that, in the most common current-in-plane geo
etry, the dimensions of the sample in the direction of
current are always macroscopic. One is, therefore, in the
fusive regime, which means that a fully predictive theo
must treat interfacial roughness realistically. It must also
based on anab initio band structure and the transport pro
lem should be treated quantum mechanically. None of
existing theories satisfies all these requirements.

Realistic modeling of interfacial roughness combin
with a rigorous quantum evaluation of the GMR was ma
by Asanoet al.3 but only for a single-orbital tight-binding
band and very small samples. Nevertheless, the result
their computer modeling of GMR are very interesting sin
they show that there is a qualitative difference between
current-in-plane ~CIP! and current-perpendicular-to-plan
~CPP! geometries. Asanoet al.3 found that spin-dependen
scattering from interfacial roughness is essential for the
but is far less important in the CPP geometry. In fact, th
showed that the CPP GMR is determined by scattering fr
potential steps at the interfaces between the magnetic
nonmagnetic layers and has its largest value when the in
550163-1829/97/55~21!/14378~9!/$10.00
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faces are perfectly flat. Scattering from perfectly flat inte
faces is, of course, also spin dependent because up-
down-spin electrons see different exchange potentials in
ferromagnetic layers.

If one accepts that interfacial roughness is relatively u
important in the CPP geometry and assumes that the
thickness of the sample is smaller than the mean free path
impurity scattering, which can be easily satisfied experim
tally for a trilayer, a fully realistic calculation of the CP
GMR becomes feasible. One then has a well-defined sys
for which a quantitative comparison between theory and
periment is meaningful. A fundamental question that arise
whether scattering from perfectly flat interfaces in such
ideal trilayer leads to a measurable CPP GMR. To ans
this question, one has to calculate the absolute values o
total resistances of a specific trilayer in each of its magn
configurations rigorously, i.e., without any adjustable para
eters. We report here the results of such a calculation fo
Co/Cu/Co~001! trilayer sandwiched between two sem
infinite Cu leads. The calculation is based on an exact
merical evaluation of the real-space Kubo formula us
tight-binding parametrization withs,p,d bands and hopping
to first and second neighbors of anab initio band structure of
Cu and fcc ferromagnetic Co. Our calculations show that
CPP GMR without impurity scattering can be as high as 9
and the total resistance in each spin channel is large eno
to be measurable.

We showed recently4 using a single-orbital tight-binding
model that, in the CPP geometry in which scattering fro
flat interfaces dominates the GMR, quantum interference
fects lead necessarily to oscillations of the CPP GMR w
the spacer and ferromagnet thickness. The calculations
14 378 © 1997 The American Physical Society
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55 14 379OSCILLATIONS WITH Co AND Cu THICKNESS OF . . .
ported here confirm that such quantum oscillations of
CPP GMR occur in Co/Cu/Co~001! and have relatively large
amplitudes. In the cases of a single-orbital tight-binding a
parabolic bands, we also predicted in Ref. 4 oscillation p
ods that are not related to the spacer Fermi surface. Her
demonstrate that such periods are also present in Co
Co~001! trilayer.

II. KUBO FORMULA FOR MULTIORBITAL
TIGHT-BINDING HAMILTONIAN

IN TERMS OF GREEN’S FUNCTIONS

We calculate the CPP-GMR of a Co/Cu/Co~001! trilayer
in the usual two-probe geometry.5 The trilayer consists of
two ferromagnetic fcc Co layers ofM atomic planes each
separated byN atomic planes of Cu. It is sandwiched b
tween two semi-infinite Cu lead wires assumed to have n
ligible resistance. Leads with a negligible resistance can
realized experimentally by using a superconducting m
such as Nb,6 or by making the trilayer in the form of a thin
pillar sandwiched between thick leads.7 Both the trilayer and
the lead wires are described by fully realistics,p,d tight-
binding bands with hopping to first- and second-near
neighbors fitted toab initio band structures of Cu and fc
ferromagnetic Co. A small lattice mismatch between Co a
Cu is neglected and the whole layer structure is taken to h
the lattice parameter of bulk Cu. We also assume that
local potentials in the Cu and Co layers are frozen, i.e., t
do not change in going from the antiferromagnetic~AF! to
the ferromagnetic~FM! configuration of the magnetic mo
ments in the Co layers. Finally, we assume an abrupt in
face between Co and Cu and calculate the GMR of the st
ture neglecting any impurity scattering~the sample is
assumed to be smaller in all directions than the mean
path!.

The GMR ratio is defined in terms of the conductances
up- and down-spin electrons in the ferromagnetic and a
ferromagnetic configurations of the magnetic layers by

GMR5~GFM
↑ 1GFM

↓ 22GAF
↑,↓!/2GAF

↑,↓ , ~1!

whereGFM (AF)
s is the conductance for a given spin chann

s in the FM ~AF! configuration of the magnetic layers. Eac
of the conductances in Eq.~1! can be calculated using linea
response theory. The starting point of such a calculatio
the Kubo formula8,9 for the frequency-dependent condu
tance at zero temperature

G~v!5
p

vE dE(
n,m

u^nuI um&u2d~E1\v2Em!d~E2En!,

~2!

where we have suppressed the spin indexs. The quantityI
in Eq. ~2! is the total current operator and the sum ov
n,m is over all the energy eigenstatesun&,um& of the system
with energiesEn ,Em such thatEn,EF,Em , whereEF is
the Fermi energy.

It is convenient to express Eq.~2! in terms of one-electron
Green’s functions. We first require a general expression
the current operator for a multiorbital tight-binding ban
structure. We start by calculating the rate of change of
total number of particles,*VrdV, in an arbitrary volumeV
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enclosed by a surfaceS. The particle density operator i
r5( i , j(a,bcia

† cjbf ia
† f jb where i , j label lattice sites con-

tained in the volumeV, a,b are orbital indices, andcia
†

(cia) is the creation~annihilation! operator of a one-particle
state in the atomic orbitala at a siter i . The rate of change
(]/]t)*VrdV, can be evaluated from the equation of moti
for r using the tight-binding kinetic energy operat
T5(a,bcia

† cjbt ia, jb , where t ia, jb is the matrix of hopping
integrals. Since the atomic orbitals are localized, we assu
the wave functions to be approximately orthogonal over
volume V. The total current across the surfaceS is then
obtained from the equation of continuity (]/]t)*VrdV
1I50. Taking into account the fact that terms for whic
both r i and r j belong toV give zero contribution to the cur
rent, we obtain

I5
ie

\ (
riPV
r j¹V

(
a,b

~ t ia, jbcia
† cjb2t jb,iacjb

† cia!. ~3!

Equation~3! gives the total current flowing across the su
faceS enclosing an arbitrary volumeV.

We can apply Eqs.~2! and ~3! to any multilayer sample.
We assume the sample to be separated into two parts b
imaginary plane passed between any two neighboring ato
planes. For convenience, we refer to the left and right p
of the sample as left and right overlayers on the ideal lea
It should be noted, however, that no real physical separa
takes place at this stage. The volumeV is then taken to be
the volume enclosing, say, the left overlayer. Our aim is
determine the current flowing from the left to the right ove
layer. Taking into account the layer geometry of the pro
lem, we writer i5(Ri ,l ),r j5(Ri8 ,l 8), whereRi ,Ri8 are the
two-dimensional position vectors in the plane of the lay
and l ,l 8 are site indices in the direction perpendicular
the layers. Because of the current conservation, the choic
the atomic planes between which the imaginary ‘‘cleavag
plane is passed is arbitrary. For simplicity, we denote
l 50 the atomic plane on the left of the cleavage plane a
by l 851 that on the right of the cleavage plane. The curr
across the cleavage plane is then given by

I5
ie

\ (
Ri

(
Ri8

(
a,b

~ t0a,1bc0a
† c1b2t1b,0ac1b

† c0a!

5
ie

\ (
ki

(
a,b

@ t0a,1b~ki!c0a
† c1b2t1b,0a~ki!c1b

† c0a#. ~4!

We have transformed in Eq.~4! to a mixed Bloch-Wannier
representation usinguRi&5Ni

21/2(ki
exp(2iki•Ri)uki&, where

ki is the wave vector andNi is the number of atoms in the
direction parallel to the layers. The sum is over allki in the
two-dimensional Brillouin zone.

To calculate the frequency-dependent conductance,
first extend the sum overn,m in Eq. ~2! to a sum over a
complete set of eigenstates using the identity
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(
n,m

En,EF,Em

u^nuI um&u2

5 (
$un&%,$um&%

u^nuI um&u2limT→01 f ~En!@12 f ~Em!#,

~5!

where the curly brackets indicate complete sets of eigens
and f (E) is the Fermi function. Using Eq.~4! for the current
operator and inserting complete sets of one-electron stat
the matrix elements in Eq.~5!, we can rewrite Eq.~2! in
terms of the advanced and retarded one-electron Gre
functions, Gia, jb

6 (ki)5^ i ,ki ,au(E2H6 i e)21u j ,ki ,b&,
whereH is the Hamiltonian operator ande is a small posi-
tive number. This is achieved by noting that

G̃ia, jb~ki!5
1

2i
@Gia, jb

2 2Gia, jb
1 #

5p(
M

^Aun&^nuB&d~E2En!, ~6!

where gothic letters have been used to label one-elec
states of the typeu i ,ki ,a&.

The total conductance then reduces to

G~v!5
e2

p\2v(
ki

lim
T→01

E dE f~E!@12 f ~E1\v!#

3 (
a,b,m,n

$t1b,0at0m,1nG̃1n,1b~E!G̃0a,0m~E1\v!

1t0a,1bt1n,0mG̃0m,0a~E!G̃1b,1n~E1\v!

2t0a,1bt0m,1nG̃1n,0a~E!G̃1b,0m~E1\v!

2t1b,0at1n,0mG̃0m,1b~E!G̃0a,1n~E1\v!%.

The dc conductance is obtained in the limitv→01. Restor-
ing the spin indexs and making some trivial rearrange
ments, we arrive at the following expression for the cond
tance in the spin channels:

Gs5
e2

h(
ki

Gs~ki!

5
4e2

h (
ki

ReTr~G̃00
s t01

s G̃11
s t10

s 2t01
s G̃10

s t01
s G̃10

s !. ~7!

Here, the trace is over all orbital indices that are contain
implicitly in the layer indices 0 and 1,t01

s (ki) is the tight-
binding hopping matrix between the layers 0,1, and all
Green’s functions are evaluated atEF . It can be seen that th
total conductance is the sum of partial conductancesGs(ki)
measured in units of the quantum conductancee2/h. Equa-
tion ~7! is a multiband generalization of the result obtain
by Lee and Fisher8 for a single-orbital tight-binding model. I
is exact within the linear-response theory.

For simplicity, we derived Eq.~7! assuming hopping to
nearest neighbors only. However, Eq.~7! holds also in the
case of hopping to more distant neighbors provided ato
planes are replaced by principal layers.10 In the case of hop-
ping to second neighbors considered here, each princ
layer contains two atomic~001! planes and all the Green’
tes
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functions and hopping matrices in Eq.~7! are, therefore,
18318 matrices. With this qualification, Eq.~7! can be
readily applied to a Co/Cu/Co trilayer with hopping
second-nearest neighbors.

III. TRANSMISSION COEFFICIENTS

To check the numerical accuracy of the evaluation of
conductance from the Kubo formula, we first use Eq.~7! to
calculate the energy dependence of the ballistic conducta
of pure Cu and pure Co. The input in Eq.~7! are the matrix
elements of the tight-binding Green’s function for bulk C
and Co. We determine the bulk Green’s functions in tw
stages. In the first stage, we compute the surface matrix
ments of the Green’s function for semi-infinite Cu~Co! crys-
tals occupying the half-space to the left of the principal pla
0 and the half-space to the right of the plane 1. The t
semi-infinite crystals are now assumed to be physically se
rated and the cleavage plane between the planes 0 and
therefore, real. The corresponding surface matrix eleme
are denoted byg00 and g11. In the second stage, electro
hopping between the planes 0 and 1 is turned on, i.e., the
semi-infinite crystals are reconnected and the requ
Green’s-function elementsG00

s , G11
s , andG10

s for the con-
nected bulk crystal are obtained fromg00 andg11 using the
Dyson equation. This might seem a rather indirect meth
for computing the bulk Green’s function but we adopt it he
because it can be very easily generalized to calculate
local Green’s functions in an arbitrary layer structure.

The only remaining problem is, therefore, the calculati
of the surface Green’s functions of the left and right sem
infinite crystals. In our previous calculations11 of the ex-
change coupling in Co/Cu~001!, we used an iterative deci
mation technique.12 In this method, the surface Green
function is approximated by that at the surface of a th
stack of atomic planes. However, to obtain a truly surfa
Green’s function, it is necessary to add in the decimat
method a small imaginary parte to the energy to disrup
quantum interference effects between the two surfaces o
slab. Whene is small the convergence of the decimatio
method becomes poor. This is not a problem in total-ene
calculations since one integrates over a contour in the c
plex energy plane. However, there is no energy integra
the Kubo formula~transport takes place at the Fermi surfac!
ande has to be very small in order not to introduce a spu
ous resistance due to finite lifetime effects. We have, the
fore, used an entirely noniterative technique for generat
the surface Green’s function13 in which the convergence
problem does not arise. A valuee51028 Ry, which was
used in all our calculations, is so small that it has no eff
on the conductance.

The energy dependence of the ballistic conductance
bulk Cu and Co determined from the Kubo formula is sho
in Fig. 1. Note that the conductances for the majority a
minority-spin channels in ferromagnetic Co have be
shifted so that the Fermi energy of Co coincides with that
bulk Cu.

To calculate the conductance of a perfectly periodic in
nite sample, it is not really necessary to evaluate the o
electron Green’s functions required in Eq.~7!. It was noted
by Schepet al.14 that, in this case, it is much easier to eval
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ate the conductance from the Landauer formula15

Gs5
e2

h(
ki

Ts~ki!, ~8!

whereTs(ki) is the transmission coefficient in the chann
(ki ,s). Given that the transmission probability of ea
propagating~band! state at a given energy is equal to unit
counting the number of such states yields the conductanc
that energy.14 Since it was shown by Fisher and Lee16 that
the Kubo formula~7! is equivalent to the Landauer formu
~8!, we have used this alternative method as an indepen
check on the accuracy of our evaluation of the conducta
from the Kubo formula~7!. The conductance of a bulk C
~Co! crystal obtained from the Landauer formula~8! is iden-
tical with the results shown in Fig. 1 that were calculat
from the Kubo formula~7!. Our results also agree with th
calculations of the ballistic conductance of Cu~Co! made by
Tsymbal17 using the Landauer formula~counting argument!.

Note that the actual ballistic conductance per unit area
bulk Cu at the Fermi energy is 0.5431015V21 m22, which
is in excellent agreement with the result of Bauer.5 The con-
ductances~per unit area! at EF for the majority- and
minority-spin channels in ferromagnetic fcc Co are 0.
31015V21 m22 and 1.131015V21 m22, respectively. It
follows that the conductance of Co in the majority spin cha
nel is close to that of pure Cu. It should be also noted th
slight shift in the position of the Fermi energy~e.g., due to
temperature or lattice relaxation effects! could lead to a dra-
matic change in the conductance of Co in the majority-s
channel.

Having tested the accuracy of our approach based on
Kubo formula for bulk Cu and Co, we now apply the meth
to a Co/Cu~001! trilayer. In Ref. 4 we predicted for a single
orbital tight-binding model that quantum interference effe

FIG. 1. Ballistic conductance per atom of bulk Cu and Co d
termined from the Kubo formula. The conductances for the majo
and minority spin channels in Co have been shifted so that
Fermi energy of Co coincides with that of bulk Cu.
l
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should lead to oscillations of the CPP GMR with nonma
netic spacer layer thickness. In contrast to the oscillat
exchange coupling in magnetic multilayers, the CPP GM
was shown to oscillate not only with the expected Ferm
surface~FS! periods but also with additional periods dete
mined by the potential steps between the magnetic and n
magnetic layers. The physical origin of the oscillatio
periods was explained in Ref. 4 but the single-orbital tig
binding or parabolic band models used in Ref. 4 cannot p
dict the correct periods and amplitudes of CPP GMR os
lations in real systems. We now investigate these quan
oscillations in a Co/Cu/Co~001! trilayer using fully realistic
s,p,d tight-binding bands.

The conductance in a channel (ki ,s) vanishes in the CPP
geometry when the electrons of spins at EF with that par-
ticular value ofki become totally reflected from either th
left or right ferromagnet. Such cutoffs in the transmissi
probability of electrons atEF were shown in Ref. 4 to lead to
additional oscillation periods. It is, therefore, interesting fi
to examine the behavior of the transmission coefficients
the ki plane for up- and down-spin electrons in the FM a
AF configurations of the magnetic layers.

The transmission coefficientsGs(ki) for the Co/Cu/
Co~001! trilayer are calculated from Eq.~7!. To evaluate the
matrix elements of the advanced and retarded Green’s fu
tions required in Eq.~7!, we generalize the method that ha
been applied to calculate the conductance of bulk Cu~Co!.
We pass a real cleavage plane between the principal plan
and 1 in the Cu spacer which separates the trilayer into
dependent left and right overlayers. The left overlayer c
sists of the semi-infinite Cu lead wire, theM atomic planes
of Co and one principal plane~two atomic planes! of Cu.
The right overlayer contains the right semi-infinite Cu lea
M atomic planes of Co andN22 atomic planes of Cu. The
surface Green’s functionsg00,g11 for the isolated left and
right overlayers are calculated recursively from the surfa
Green’s functions of the semi-infinite leads by the meth
of adlayers.18 The calculation of the surface Green’s fun
tions for the semi-infinite Cu leads has already been
scribed. The final step is to reconnect the left and right ov
layers using the Dyson equation. It is easy to show that
matrix elements of the Green’s functions for the connec
sample are given by G005(12g00t01g11t10)

21g00,
G115(12g11t10g00t01)

21g11 and G105g11t10(1
2g00t01g11t10)

21g00. We stress that the method of adlaye
involves no approximations and, therefore, all the lo
Green’s functions are obtained with machine accuracy.

Figures 2~a! and 2~b! display theki dependence of the
partial conductances~transmission coefficients! for up- and
down-spin electrons in the FM configuration of the magne
layers. The results shown in Fig. 2 are for a system cons
ing of six atomic planes of Cu sandwiched between th
~semi-infinite! Co layers. Figure 2~c! shows the transmission
coefficients for electrons of either spin orientation in the a
tiferromagnetic configuration. The values ofki for which the
transmission goes to zero lie on a boundary along wh
cutoffs occur and from which different periods may arise
can be seen from Fig. 2~a! that the transmission coefficient i
close to unity over a large region ofki space for the up-spin
electrons in the FM configuration. This is due to the fact th
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FIG. 2. Partial conductances~transmission coefficients! of a Cu
layer sandwiched between two semi-infinite Co layers as a func
of (kx ,ky) ~in units ofp/d) for ~a! up- and~b! down-spin electrons
in the FM configuration and~c! for electrons of either spin in the
AF configuration.
the band structures of Cu and of majority-spin Co are v
well matched and, therefore, electrons propagate across
whole structure with virtually no scattering and make a lar
contribution to the conductance. For the minority electro
there is a large band mismatch between Co and Cu ba
which means that the transmission is poor. Similarly, tra
mission of electrons of either spin orientation is poor in t
antiferromagnetic configuration. We shall see later that t
contrast between the minority electrons in the FM config
ration and electrons of either spin configuration in the A
configuration leads to a large value of the CPP GMR.

IV. CPP RESISTANCES AND GMR

Using the results of Sec. III, it is easy to calculate the C
GMR by simply summing the partial conductancesGs for
each spin channel over allki in the two-dimensional~2D!
Brillouin zone ~BZ!. The nonoscillatory component of th
GMR ratio is obtained relatively easily but to study GM
oscillations requires a far greater accuracy in the evalua
of the BZ sum. It is, therefore, very important to ensure th
convergence has been achieved in the summation overki .
For a trilayer having a thickness of about 10 nm (; 50
atomic planes!, we have used 93104 ki points in the 2D
Brillouin zone. The results differ from those obtained wi
43104ki points by less than 0.5% and are, therefore, deem
to be converged.

Figure 3 shows the dependence of the CPP-GMR ratio
the Cu spacer layer thickness for a trilayer with seven ato
planes of Co in each magnetic layer. A GMR ratio of abo
90% is obtained. Since we neglect impurity scattering, t
large ratio is due entirely to reflections of electrons fro
perfectly flat Co/Cu interfaces. Superimposed on the c
stant value of the CPP GMR are oscillations whose am
tudes are about 6% of the total GMR. These oscillations
due to quantum interference effects and have, therefore
same origin as the oscillatory exchange coupling.4 The ex-
change coupling has been shown to oscillate also as a f
tion of the ferromagnetic layer thickness.19–22Therefore, we
expect the CPP GMR to oscillate also with Co layer thic
ness. This is indeed the case, and the cobalt-thickness de
dence of the GMR ratio at the first antiferromagnetic pe
(; six atomic planes of Cu! is displayed in Fig. 4. Oscilla-

n

FIG. 3. CPP GMR ratio versus Cu thickness for a trilayer w
seven atomic planes of Co in each magnetic layer.
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tions having an amplitude; 12% of the total GMR of abou
80% are obtained.

To clarify the origin of the GMR oscillations, the indi
vidual resistances for up- and down-spin electrons in the
and AF configurations are shown in Fig. 5. The lowest re
tance and smallest oscillation amplitude occur for the
spin electrons in the FM configuration. This is easily und
stood in terms of the band structures of bulk Co and Cu. T
bands of Co and Cu are very well matched for the majo
electrons and, therefore, there is virtually no interfacial sc
tering. This leads to a low resistance and weak quan
interference effects. For the minority electrons, there
band offsets between Co and Cu and, therefore, interfa
scattering is important. It leads to a larger value of the re
tance for the down-spin electrons. For the same reason
resistance in the AF configuration is also high for electro
of either spin orientation. Quantum interference effects
more pronounced and are reflected in large-amplitude o
lations of the resistance in these two cases. For the up-
electrons in the FM configuration, we find a nonoscillato
componentRFM

↑ 5(2.849/A! fV with superimposed oscilla
tions of amplitude;(0.012/A) fV, whereA is the cross-
sectional area of the trilayer. The resistance for the do
spin electrons is about twice as large~5.687/A! fV and the
oscillations have an amplitude of about~0.585/A! fV. In the
antiferromagnetic configuration,RAF

↑,↓5(6.858/A! fV and the
oscillation amplitude is;(0.502/A! fV. In samples of trans-
verse cross section 1 mm2, these resistances are of the ord
of 1029V. Resistances as low as 10212V can accurately be
measured using a superconducting quantum interference
vice ~SQUID!-based measuring technique.23 The resistances
mentioned above should, therefore, be observable. The o
lations themselves would become accessible to experime
samples of transverse cross section 0.1 mm2.

Finally we analyze in more detail the CPP GMR oscil
tions as a function of Cu thickness. In order to determine
origin of the oscillation periods, we again examine the in
vidual resistances in each spin channel in the FM and
configurations. For simplicity, we only discuss the resista
oscillations for a Cu spacer layer sandwiched between
semi-infinite Co layers. The total GMR in this case is mu

FIG. 4. Cobalt-thickness dependence of the CPP GMR ratio
Co/Cu/Co trilayer at the first antiferromagnetic peak~six atomic
planes! of Cu.
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smaller ~;37%! but the oscillation periods and amplitude
are unaffected by the thickness of the Co layers as long
is larger than about 5 or 6 atomic planes.

As discussed in Ref. 4, we expect two types of oscillat
of the CPP GMR as a function of Cu thickness. The first ty
originates from extrema of the Cu Fermi surface. The sec
type is due to cutoffs of the transmission coefficients wh
occur when the electrons become confined and, theref
cease to contribute to the conductance. In general, the
types of oscillation are always present but whether any p
ticular oscillation period is actually seen depends on its a
plitude. The amplitude and decay with spacer thicknessN of
any given oscillation can be determined from the asympto
expansions of the resistance~conductance! valid for large
spacer thicknessN. We derived in Ref. 4 such asymptot
expansions for both types of oscillation but the asympto
expansion about a cutoff point~which is much more diffi-
cult! was obtained only in the simplest case of a parabo
band. It is, therefore, not directly applicable to a more re
istic band structure. An extension of this work to a mul
orbital tight-binding model is currently under way and w
be described elsewhere. On the other hand, the conduct

FIG. 5. Resistances for~a! up- and~b! down-spin electrons in
the FM configuration and~c! for electrons of either spin in the AF
configuration as a function of Co thickness.
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oscillations arising from the points (kx
0 ,ky

0) in theki plane at
which the perpendicular wave vectork' is stationary can be
obtained for an arbitrary band structure. The derivation of
asymptotic formula in this case was described in Ref. 4
we quote here merely the results. The oscillatory contri
tion to the conductance in a spin channels at a stationary
point ki

0 is given by

Gosc
s 5

1

Rosc
s 5

Ni

4p
Re(

r51

`

tcr~ki
0!m!e2irk'

0 dN/rN. ~9!

Here,cr(ki
0) are the coefficients of a Fourier series expa

sion of the partial conductanceGs(ki) given by Eq. ~7!,
m!5u@]2(k'd)/](kxd)

2#@]2(k'd)/](kyd)
2#u21/2 is the cur-

vature of the FS at the stationary pointki
0, d is the interpla-

nar distance, andt5 i when both derivatives inm! are posi-
tive, t52 i when they are negative, andt51 when the two
derivatives have opposite signs.

Comparison of the results obtained from Eq.~9! with the
results of a full numerical calculation allows us to determ
the relative importance of the FS oscillations. We recall t
these are theonly oscillations that contribute to the oscilla
tory exchange coupling.11 In this case, as in the theory of th
oscillatory exchange coupling, the oscillation perio
p/(k'd) are obtained from the Cu FS extremal radii in t
@001# direction. There are two extremal radiik'

0d52.586
occurring at ki

05(0,0) ~belly! and k'
0d51.931 at

ki
0a5(62.53,62.53) ~necks!, wherea is the lattice con-

stant of Cu. The factort5 i for the belly andt51 for the
necks. The ‘‘effective masses’’ arem!50.708 and
m!50.538 for the belly and neck contributions, respective

The last step required in the evaluation of Eq.~9! is the
Fourier analysis of the partial conductancesGs(ki

0). We
used two different methods. The first method is a straight
ward adaptation of the approach we applied to determine
oscillatory exchange coupling in Co/Cu~001!.11 The partial
conductanceGs(ki

0), which is a periodic function of the
spacer thickness, was first computed for discrete~physical!
values of the Cu thicknessL5Nd and then continued ana
lytically to all realL. The computed values ofGs(ki

0) were
then shifted to the first period(2p/2k' ,p/2k') by subtract-
ing fromN the appropriate integral number of periodsp and
Fourier analyzed.

The second method is an extension of the approach
posed by Umerski.13 It enables us to compute the loc
Green’s functions and, therefore,Gs(ki

0) directly for frac-
tional values of the interplanar distanced. Not only is the
Fourier analysis simplified when this technique is used b
much more importantly, the total conductance can also
computed numerically from Eq.~7! for fractional values of
d. When the conductance is a superposition of a numbe
oscillations with different periods, this method offers
unique opportunity to deduce all the periods from the co
puted continuousGs(ki

0) curves. This is virtually impossible
when values of the conductance are available only for
crete~physical! values of the spacer thicknessL5Nd, which
is the case in any other conventional calculation.

For the majority electrons in the FM configuration, bo
belly and neck periods contribute to the oscillations of
conductance. The total oscillatory contribution calcula
n
d
-

-

t

.

r-
e

o-

t,
e

of

-

s-

e
d

from Eq. ~9! is shown in Fig. 6~dashed curve! together with
the numerical results~solid curve!. The physical values of
the conductance at discrete atomic plane positions are i
cated by circles; the solid curve is calculated from Eq.~7!
using the method of Umerski13 discussed above. A constan
background has been subtracted from the numerical res
to facilitate the comparison. It is clear from Fig. 6 that t
asymptotic formula at the stationary points of the Fermi s
face leads to conductance oscillations in good overall ag
ment with the numerical results. Small discrepancies
tween the two sets of results are most likely due
contributions arising from cutoffs of the partial conductanc
Clearly, the main contribution to the oscillatory conductan
comes from the extremal radii of the Cu FS.

In striking contrast are the results for the conductance
the down-spin electrons in the FM configuration and the c
ductance in the AF configuration. They are displayed in Fi
7 and 8. In both these cases, the only contribution from
extrema of the FS come from the belly. The electrons w
ki at the neck are confined in the Cu layer and do not c
tribute to the conductance. The stationary phase results g
by the dashed curves in Figs. 7 and 8 are obviously far

FIG. 6. Oscillatory part of the conductance for up-spin electro
in the FM configuration. Solid curve: numerical results from E
~7!; dashed curve: stationary phase results from Eq.~9!.

FIG. 7. Oscillatory part of the conductance for down-spin ele
trons in the FM configuration. Solid curve: numerical results fro
Eq. ~7!; dashed curve: stationary phase results from Eq.~9!.
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small and the oscillations do not have the right period
explain the numerical results. Therefore, we conclude
the conductance oscillations of the minority electrons in
FM configuration and those of electrons of either spin ori
tation in the AF configuration are totally dominated by t
periods predicted in Ref. 4 which are determined by the c
ductance cutoffs due to band mismatch.

V. CONCLUSIONS

We have investigated comprehensively the perpendic
giant magnetoresistance of a Co/Cu/Co~001! trilayer in the
case when a rigorous quantum calculation of the CPP G
without any adjustable parameters is feasible. Such a ca
lation is possible provided the dimensions of the trilayer
smaller than the mean free path for scattering from imp
ties or inhomogeneities of the layer structure other than
interfaces themselves. The CPP GMR was determined
numerical evaluation of the real-space Kubo formula
pressed in terms of one-electron Green’s functions. This
mulation, which is exact in the linear-response theory,
applicable to any layer structure~homogeneous or inhomo
geneous! as long as translational invariance in the directi
parallel to the layers is preserved.

We find that, depending on the thicknesses of the Co
ers, the calculated CPP GMR ratio can be as high as 9
Since we assume that the mean free path is longer than
sample dimensions, the whole GMR effect is due solely
quantum reflections of electrons from perfectly flat Co/
interfaces. In Ref. 4, we predicted that quantum reflecti
from ferromagnet/spacer interfaces should lead to osc
tions of the CPP GMR with the spacer~ferromagnet! thick-
ness. The present calculation, based on a tight-binding
rametrization of ab initio band structures of Cu an
ferromagnetic fcc Co, confirms that the CPP GMR ratio o
Co/Cu/Co~001! trilayer oscillates with Co and Cu thicknes
and the oscillation amplitudes are large. In fact, we find t
the CPP GMR can change by as much as 24% (12%) w
the thicknesses of the Co~Cu! layers are varied.

We have also investigated the physical origin of res
tance oscillations as a function of Cu thickness. We find t
oscillations of the resistance of the majority electrons in

FIG. 8. Oscillatory part of the conductance for up- or down-s
electrons in the AF configuration. Solid curve: numerical resu
from Eq. ~7!; dashed curve: stationary phase results from Eq.~9!.
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FM configuration are dominated by periods originating fro
the extremal radii of the Cu Fermi surface in the directi
perpendicular to the layers. These are the same period
observed in the oscillatory exchange coupling. However,
amplitude of resistance oscillations with the Fermi-surfa
periods is negligibly small for the minority electrons in th
FM configuration and for electrons of either spin orientati
in the AF configuration. The resistance oscillations of the
electrons are dominated instead by periods determined
cutoffs of the conductance due to a mismatch between
Co and Cu bands across the Co/Cu interfaces.4

Finally, we discuss briefly the conditions under which t
calculated effects should be observable. First of all,
thickness of the Co/Cu/Co trilayer should be smaller than
mean free path for scattering from bulk impurities. This
not difficult to satisfy experimentally. In fact, oscillations i
the interlayer exchange coupling, which have been obser
in a number of layer structures,2,19 demonstrate clearly tha
coherent propagation of electrons from one interface to
other takes place in such structures.

The second requirement is that the lead/contact resista
should be much lower than the resistance of the sam
Indeed, this is the physical situation to which the Kubo fo
mula ~7! applies. This can be achieved experimentally eith
by using superconducting leads6 or by making the trilayer in
the form of a thin pillar sandwiched between thick lead7

For a pillar of transverse cross section 1 mm2, the calculated
CPP resistances of a Co/Cu/Co~001! trilayer are of the order
of 1029V. Since resistances as low as 10212V can accu-
rately be measured by a SQUID-based measur
technique,23 the above resistances should be measurable.
oscillations of CPP GMR we predict would become acc
sible to experiment in samples of transverse cross section
mm2.

In the case of superconducting contacts, one problem
might arise for a trilayer are proximity effects.24 However,
the resistances~CPP GMR! due to scattering from the inter
faces are independent of the layer thicknesses as long as
remain smaller than the mean free path~the only inhomoge-
neity giving rise to a resistance are the interfaces the
selves!. That means that one could use relatively thick hig
purity Cu layers to minimize the proximity effects and hen
measure the calculated average CPP GMR. Oscillation
the GMR could not be studied by this method since th
amplitudes decay with the spacer layer thickness.

The final point that needs to be addressed is the effec
interfacial roughness~Co/Cu intermixing at the interfaces!.
Our calculations are for perfectly flat interfaces. The calc
lations of Asanoet al.3 for a single-orbital tight-binding
band, which include a realistic modeling of the interfac
roughness, show that the CPP GMR is largest for perfe
flat interfaces. Our results should, therefore, be regarde
an upper theoretical bound on the CPP GMR of a Co/C
Co~001! trilayer.
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