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Oscillations with Co and Cu thickness of the current-perpendicular-to-plane giant
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The results of a rigorous quantum calculation of the current-perpendicular-to-plane giant magnetoresistance
(CPP GMR of a Co/Cu/C¢001) trilayer without impurity scattering are reported. The conductances per spin
in the ferromagneti€FM) and antiferromagnetiAF) configurations of the magnetic layers are computed from
the Kubo formula. The electronic structure of the Cu and Co layers is described by fully res]istit
tight-binding bands fitted t@b initio band structures of Cu and ferromagnetic fcc Co. Depending on Co
thickness, the CPP GMR ratio can be as high as 90%. The whole calculated effect is due solely to quantum
reflections of electrons from perfectly flat Co/Cu interfaces. The CPP GMR ratio is found to oscillate both with
Co and Cu thickness, the respective oscillation amplitudes being 12 and 6 % of the average GMR. The
resistances in each spin channel per unit cross-sectional area of the trilayer range fron{Band’dscillate
with an amplitude~ 0.5 f(0. An analytic asymptotic formula for resistance oscillations originating from the Cu
Fermi surface is applied to analyze the numerical results. It is found that the resistance oscillations for majority
electrons in the FM configuration have periods dominated by the extremal radii of the Cu Fermi surface. These
are the same periods as observed in the oscillatory exchange coupling. However, the amplitude of resistance
oscillations with the Fermi-surface periods is negligibly small for the minority electrons in the FM configura-
tion and for electrons of either spin orientation in the AF configuration. The resistance oscillations of these
electrons are dominated instead by periods determined by cutoffs of the conductance due to a mismatch
between the Co and Cu bands across the Co/Cu interfg8@$63-18207)05121-1

I. INTRODUCTION faces are perfectly flat. Scattering from perfectly flat inter-
faces is, of course, also spin dependent because up- and
Since the discovery of the giant magnetoresistance éffeclown-spin electrons see different exchange potentials in the
(GMR) and oscillatory exchange couplithe transport and ferromagnetic layers.
magnetic properties of magnetic multilayers have attracted If one accepts that interfacial roughness is relatively un-
much attention. The conventional explanation of the GMRIMportant in the CPP geometry and assumes that the total
effect is based on spin-dependent scattering of electrons froffiickness of the sample is smaller than the mean free path for
magnetic impurities located at the ferromagnet/spacer intelMPUrity scattering, which can be easily satisfied experimen-

faces (interfacial roughnegs However, a fully quantitative tally for a trilayer, a fully realistic calculation of _the CPP
theory of the GMR effect is still lacking. This is largely due GMR becomes feasible. One then has a well-defined system

to the fact that, in the most common current-in-plane geomfor which a quantitative comparison between theory and ex-

etry, the dimensions of the sample in the direction of thepenment is meaningful. A fundamental question that arises is

current are alwavs macrosconic. One is. therefore. in the Olif\!vhether scattering from perfectly flat interfaces in such an
. : ys pic. ' o ideal trilayer leads to a measurable CPP GMR. To answer
fusive regime, which means that a fully predictive theory

) . e this question, one has to calculate the absolute values of the
must treat interfacial roughness realistically. It must also bg) resistances of a specific trilayer in each of its magnetic
based on amb initio band structure and the transport prob- ¢,nigurations rigorously, i.e., without any adjustable param-
lem should be treated quantum mechanically. None of theters \We report here the results of such a calculation for a
existing theories satisfies all these requirements. Co/Cu/Cd001) trilayer sandwiched between two semi-
Realistic modeling of interfacial roughness combinedinfinite Cu leads. The calculation is based on an exact nu-
with a rigorous quantum evaluation of the GMR was mademerical evaluation of the real-space Kubo formula using
by Asanoet al? but only for a single-orbital tight-binding  tight-binding parametrization with,p,d bands and hopping
band and very small samples. Nevertheless, the results @b first and second neighbors of ah initio band structure of
their computer modeling of GMR are very interesting sinceCu and fcc ferromagnetic Co. Our calculations show that the
they show that there is a qualitative difference between th€PP GMR without impurity scattering can be as high as 90%
current-in-plane (CIP) and current-perpendicular-to-plane and the total resistance in each spin channel is large enough
(CPP geometries. Asanet al® found that spin-dependent to be measurable.
scattering from interfacial roughness is essential for the CIP We showed recentfyusing a single-orbital tight-binding
but is far less important in the CPP geometry. In fact, theymodel that, in the CPP geometry in which scattering from
showed that the CPP GMR is determined by scattering fronflat interfaces dominates the GMR, quantum interference ef-
potential steps at the interfaces between the magnetic arfdcts lead necessarily to oscillations of the CPP GMR with
nonmagnetic layers and has its largest value when the intethe spacer and ferromagnet thickness. The calculations re-
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ported here confirm that such quantum oscillations of theenclosed by a surfac8. The particle density operator is
CPP GMR occur in Co/Cu/G601) and have relatively large p==; ;3 scl.c; ¢!, 4,5 wherei,j label lattice sites con-
amplitudes. In the cases of a single-orbital tight-binding andained in the volumeV, a,B are orbital indices, anqtiTa

parabolic bands, we also predicted in Ref. 4 oscillation peri(c; ) is the creatiorfannihilatior) operator of a one-particle

ods that are not related to the spacer Fermi surface. Here Wgate in the atomic orbitat at a siter; . The rate of change,
demonstrate that such periods are also present in CO/CK‘b/&t)f\,pdV, can be evaluated from the equation of motion

Co(00Y) trilayer. for p using the tight-binding kinetic energy operator
T=Zalﬁcﬁacjﬁtia,j3, wheret;, j; is the matrix of hopping
ll. KUBO FORMULA FOR MULTIORBITAL integrals. Since the atomic orbitals are localized, we assume
TIGHT-BINDING HAMILTONIAN the wave functions to be approximately orthogonal over the
IN TERMS OF GREEN'S FUNCTIONS volume V. The total current across the surfaBeis then

obtained from the equation of continuityd/¢t) fypdV
+1=0. Taking into account the fact that terms for which
bothr; andr; belong toV give zero contribution to the cur-
rent, we obtain

We calculate the CPP-GMR of a Co/Cul06)) trilayer
in the usual two-probe geomettyThe trilayer consists of
two ferromagnetic fcc Co layers dfl atomic planes each
separated byN atomic planes of Cu. It is sandwiched be-
tween two semi-infinite Cu lead wires assumed to have neg-
ligible resistance. Leads with a negligible resistance can be

realized experimentally by using a superconducting metal |=i_e t el cia—tin cl.c). 3
such as NB,or by making the trilayer in the form of a thin f rize:v azk (tais%1aCis™tipiaC)pCia) ®
pillar sandwiched between thick leatiBoth the trilayer and eV

the lead wires are described by fully realisi@,d tight-
binding bands with hopping to first- and second-neares
neighbors fitted taab initio band structures of Cu and fcc
ferromagnetic Co. A small lattice mismatch between Co an
Cu is neglected and the whole layer structure is taken to hav\c;v
the lattice parameter of bulk Cu. We also assume that th

Equation(s) gives the total current flowing across the sur-
JaceS enclosing an arbitrary volumé.
We can apply Egs(2) and (3) to any multilayer sample.
e assume the sample to be separated into two parts by an
aginary plane passed between any two neighboring atomic
do not change in going from the antiferromagne#d-) to ¥)Ianes. For convenience, we refer to the left and right parts
of the sample as left and right overlayers on the ideal leads.

the ferromagnetlo{FM) cor_n‘lguratlon of the magnetic MO~ 1t should be noted, however, that no real physical separation
ments in the Co layers. Finally, we assume an abrupt inter:

takes place at this stage. The voluvés then taken to be
face betweeq Co and C;u anq calculate _the GMR of the _struc[he volume enclosing, say, the left overlayer. Our aim is to
ture neglecting any impurity scatteringhe sample is

assumed 1o be smaller in all directions than the mean fredetermine the current flowing from the left to the right over-
path Fayer. Taking into account the layer geometry of the prob-

The GMR ratio is defined in terms of the conductances fodem’dwe writer; :I (R {) 1= (TH /), tvr\]/hertleRH ’R“f ?Le tlhe
up- and down-spin electrons in the ferromagnetic and anti-VO-dimensional position vectors in the plane of the layers

ferromagnetic configurations of the magnetic layers by and/,/" are site indices in the direction p_erpend|cula_r to
the layers. Because of the current conservation, the choice of

GMRZ(I‘TFM+ FlizM_ZFL,’:L)/ZFL,':i ' (1) the atomic planes between which the imaginary “cleavage”
plane is passed is arbitrary. For simplicity, we denote by
wherel'gy (ar is the conductance for a given spin channel/=0 the atomic plane on the left of the cleavage plane and
o in the FM (AF) configuration of the magnetic layers. Each by /' =1 that on the right of the cleavage plane. The current
of the conductances in E¢L) can be calculated using linear- across the cleavage plane is then given by
response theory. The starting point of such a calculation is
the Kubo formul&® for the frequency-dependent conduc-

tance at zero temperature ie

= ﬁ; > EB (t0a,1ﬁcgaclﬁ_tlB,OaCIBCOa)
| R @
I
r<w>=§f dEX, [(n[I|m)|?8(E+%w—Ey) S(E-E,), .
n,m e
7 7;” EB [toa,16(K)CoaC1p— tip.0a(K)Cl sCoul. (4)

where we have suppressed the spin index he quantityl
in Eqg. (2) is the total current operator and the sum over ) ) )
n,m is over all the energy eigenstates, |m) of the system We have trgnsfor_med in Egﬁ)z to a mlx.ed Bloch-Wannier
with energiesE,,,Ey, such thatE,<Eg<E,,, whereE is  representation usingR)) =Ny <, exp(-ik- R))|k;), where
the Fermi energy. k| is the wave vector antll is the number of atoms in the

It is convenient to express E(®) in terms of one-electron direction parallel to the layers. The sum is overiglin the
Green’s functions. We first require a general expression fotwo-dimensional Brillouin zone.
the current operator for a multiorbital tight-binding band To calculate the frequency-dependent conductance, we
structure. We start by calculating the rate of change of thdirst extend the sum oven,m in Eq. (2) to a sum over a
total number of particlesf,pdV, in an arbitrary volumé&/  complete set of eigenstates using the identity
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functions and hopping matrices in E¢/) are, therefore,

;ﬂ [(n[1]m)|? 18%x 18 matrices. With this qualification, Eq7) can be
E <Ep<Epn readily applied to a Co/Cu/Co trilayer with hopping to

second-nearest neighbors.

= > Knlmylimr_ o+ f(E)[1—f(Em],
{Im}{Imy}
(5)

where the curly brackets indicate complete sets of eigenstates To check the numerical accuracy of thg evaluation of the
andf(E) is the Fermi function. Using Ed4) for the current  conductance from the Kubo formula, we first use Eg.to
operator and inserting complete sets of one-electron states fiiculate the energy dependence of the ballistic conductance
the matrix elements in Eq5), we can rewrite Eq(2) in of pure Cu and pure Co. The input in E) are the matrix

terms of the advanced and retarded one-electron Greengements of the tight-binding Green's function for bulk Cu

Ill. TRANSMISSION COEFFICIENTS

functions, G ]-B(kH)=(i,kH,a|(E—Htie)*1|j,k” B), and Co. We determine the bulk Green’s functions in two
whereH is the Hamiltonian operator andis a small posi- Stages. In the first stage, we compute the surface matrix ele-
tive number. This is achieved by noting that ments of the Green'’s function for semi-infinite QDo) crys-

tals occupying the half-space to the left of the principal plane

G (k )=i.[G‘ Gt 0 an_d_ the_ half-space to the right of the plane 1_. The two
i ] SRV o LB Pianjp semi-infinite crystals are now assumed to be physically sepa-
rated and the cleavage plane between the planes 0 and 1 is,
=7 (AIn)(n|ByS(E—E,), 6) therefore, real. The corresponding surface matrix elements
M are denoted byy, andg,;. In the second stage, electron

where gothic letters have been used to label one-electro'ﬁc’pp'ng. b_etween the planes 0 and 11s turned on, i.e., the.two
states of the typé k| ,a). semi-infinite crystals are reconnected and the required

The total conductance then reduces to Green's-function element§q,, G1;, and Gy, for the con-
nected bulk crystal are obtained froggy andg,; using the
Dyson equation. This might seem a rather indirect method

e? _
[(w)= Wﬁz(uz lim J dEF(E)[1-f(Et+fo)] for computing the bulk Green’s function but we adopt it here

K
I because it can be very easily generalized to calculate the
~ ~ local Green'’s functions in an arbitrary layer structure.
Xm%y {t15,00t04,1:G11,15(E) Gou 0u(E+ T ) The only remaining problem is, therefore, the calculation
_ _ of the surface Green’s functions of the left and right semi-
+100,18111,0.C04,00(E)G151,(E+ frw) infinite crystals. In our previous calculatidisof the ex-
- - change coupling in Co/QQ01), we used an iterative deci-
~t00,18t04,15G 11,00 E)G1p 0, (E+ i ) mation techniqué? In this method, the surface Green's

= = function is approximated by that at the surface of a thick
~t15,0115,04C 01, 16(E) Coa 1 E+ )} stack of atorgiﬁ): planes. Ho)\:vever, to obtain a truly surface
The dc conductance is obtained in the limit-0". Restor- ~ Green’s function, it is necessary to add in the decimation
ing the spin indexe and making some trivial rearrange- method a small imaginary pae to the energy to disrupt

ments, we arrive at the following expression for the conducquantum interference effects between the two surfaces of the

tance in the spin channei: slab. Whene is small the convergence of the decimation
e? method becomes poor. This is not a problem in total-energy
F"ZFE (k) calculations since one integrates over a contour in the com-
K plex energy plane. However, there is no energy integral in

42 the Kubo formulatransport takes place at the Fermi surface

= ; ReTH GGG 11t 1o~ t5:G1t5:GT0)-  (7)  ande has to be very small in order not to introduce a spuri-
[ ous resistance due to finite lifetime effects. We have, there-
Here, the trace is over all orbital indices that are containedore, used an entirely noniterative technique for generating
implicitly in the layer indices 0 and 1g,(k)) is the tight- the surface Green's functibhin which the convergence
binding hopping matrix between the layers 0,1, and all theproblem does not arise. A value=10"8 Ry, which was
Green's functions are evaluatedgt. It can be seen that the used in all our calculations, is so small that it has no effect
total conductance is the sum of partial conductarlc®s) on the conductance.
measured in units of the quantum conductaeté. Equa- The energy dependence of the ballistic conductance of
tion (7) is a multiband generalization of the result obtainedbulk Cu and Co determined from the Kubo formula is shown
by Lee and Fishéffor a single-orbital tight-binding model. It in Fig. 1. Note that the conductances for the majority and
is exact within the linear-response theory. minority-spin channels in ferromagnetic Co have been
For simplicity, we derived Eq(7) assuming hopping to shifted so that the Fermi energy of Co coincides with that of
nearest neighbors only. However, E@) holds also in the bulk Cu.
case of hopping to more distant neighbors provided atomic To calculate the conductance of a perfectly periodic infi-
planes are replaced by principal layé?sn the case of hop- nite sample, it is not really necessary to evaluate the one-
ping to second neighbors considered here, each princip&lectron Green’s functions required in Ed). It was noted
layer contains two atomi¢001) planes and all the Green’s by Schepet all*that, in this case, it is much easier to evalu-
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25—~ T should lead to oscillations of the CPP GMR with nonmag-
— Comejoity g | netic spacer layer thickness. In contrast to the oscillatory
20(—--- Cu || exchange coupling in magnetic multilayers, the CPP GMR
sl | was shown to oscillate not only with the expected Fermi-
c | surface(F9) periods but also with additional periods deter-
o 10— Pl mined by the potential steps between the magnetic and non-
F(.._).T , magnetic layers. The physical origin of the oscillation
Z 05— periods was explained in Ref. 4 but the single-orbital tight-
5 binding or parabolic band models used in Ref. 4 cannot pre-
g % dict the correct periods and amplitudes of CPP GMR oscil-
§ 0s lations in real systems. We now investigate these quantum
oscillations in a Co/Cu/Q601) trilayer using fully realistic
10 |- s,p,d tight-binding bands.
The conductance in a channé (o) vanishes in the CPP
5= geometry when the electrons of spinat Ex with that par-
20 | Co minority ticular value ofk; become totally reflected from either the
| left or right ferromagnet. Such cutoffs in the transmission
I T N I | probability of electrons dEg were shown in Ref. 4 to lead to

2.
-04 -02 00 02 04 06 08 1.0 it i i i i i i 1
ENERGY (Ry) additional oscillation periods. It is, therefore, interesting first

to examine the behavior of the transmission coefficients in
FIG. 1. Ballistic conductance per atom of bulk Cu and Co de-the k; plane for up- and down-spin electrons in the FM and
termined from the Kubo formula. The conductances for the majorityAF configurations of the magnetic layers.
and minority spin channels in Co have been shifted so that the The transmission coefficient$'“(k) for the Co/Cu/

Fermi energy of Co coincides with that of bulk Cu. Co(00Y) trilayer are calculated from Eq7). To evaluate the
matrix elements of the advanced and retarded Green'’s func-
ate the conductance from the Landauer forrtula tions required in Eq(7), we generalize the method that has

been applied to calculate the conductance of bulk(Co).
I‘"ze—zE To(ky) ®) We pass a real cleavage plane between the principal planes 0
h K I and 1 in the Cu spacer which separates the trilayer into in-
dependent left and right overlayers. The left overlayer con-
whereT?(k;) is the transmission coefficient in the channelsists of the semi-infinite Cu lead wire, tihé& atomic planes
(kj,o). Given that the transmission probability of eachof Co and one principal planéwo atomic planesof Cu.
propagatingband state at a given energy is equal to unity, The right overlayer contains the right semi-infinite Cu lead,
counting the number of such states yields the conductance M atomic planes of Co and—2 atomic planes of Cu. The
that energy®* Since it was shown by Fisher and L!8¢hat  surface Green’s functionggg,gy; for the isolated left and
the Kubo formula(7) is equivalent to the Landauer formula right overlayers are calculated recursively from the surface
(8), we have used this alternative method as an independefireen’s functions of the semi-infinite leads by the method
check on the accuracy of our evaluation of the conductancef adlayers® The calculation of the surface Green’s func-
from the Kubo formula(7). The conductance of a bulk Cu tions for the semi-infinite Cu leads has already been de-
(Co) crystal obtained from the Landauer formii& is iden-  scribed. The final step is to reconnect the left and right over-
tical with the results shown in Fig. 1 that were calculatedlayers using the Dyson equation. It is easy to show that the
from the Kubo formula(7). Our results also agree with the matrix elements of the Green’s functions for the connected
calculations of the ballistic conductance of @o) made by sample are given by Ggo=(1—Joctoi911t10 ‘Yoo
Tsymbal’ using the Landauer formul@ounting argument  G11=(1—diit1dodto) 1011 and G1o=011t10(1
Note that the actual ballistic conductance per unit area of- gogtoi911t10)  *doo- We stress that the method of adlayers
bulk Cu at the Fermi energy is 0.5410°0 ! m~2, which  involves no approximations and, therefore, all the local
is in excellent agreement with the result of Bati@ihe con- ~ Green’s functions are obtained with machine accuracy.
ductances(per unit area at E for the majority- and Figures 2a) and 2b) display thek; dependence of the
minority-spin channels in ferromagnetic fcc Co are 0.43partial conductance@ransmission coefficientdor up- and
X100~ m~2 and 1.1x10°Q ! m~2, respectively. It down-spin electrons in the FM configuration of the magnetic
follows that the conductance of Co in the majority spin chandayers. The results shown in Fig. 2 are for a system consist-
nel is close to that of pure Cu. It should be also noted that ing of six atomic planes of Cu sandwiched between thick
slight shift in the position of the Fermi enerdg.g., due to  (semi-infinite Co layers. Figure @) shows the transmission
temperature or lattice relaxation effectould lead to a dra- coefficients for electrons of either spin orientation in the an-
matic change in the conductance of Co in the majority-spirtiferromagnetic configuration. The valueslgffor which the
channel. transmission goes to zero lie on a boundary along which
Having tested the accuracy of our approach based on theutoffs occur and from which different periods may arise. It
Kubo formula for bulk Cu and Co, we now apply the methodcan be seen from Fig.(@ that the transmission coefficient is
to a Co/Cy001) trilayer. In Ref. 4 we predicted for a single- close to unity over a large region &f space for the up-spin
orbital tight-binding model that quantum interference effectselectrons in the FM configuration. This is due to the fact that



14 382 J. MATHON, A. UMERSKI, AND MURIELLE VILLERET 55

L

T(ke, k)
0 02 04 06 08

L

a82

0.6 08 10

T(ke, k,)
0.4

'%.0 0.2

(b)

1.0

/

/

0.6 08

T(ke k)
/

/

/

0 02 04

ob?

FIG. 2. Partial conductancégansmission coefficientof a Cu

% T T

CPP GMR (%)
1

80 1 I 1 I 1 I 1
0 5 10 15 20
Cu thickness (atomic planes)

FIG. 3. CPP GMR ratio versus Cu thickness for a trilayer with
seven atomic planes of Co in each magnetic layer.

the band structures of Cu and of majority-spin Co are very
well matched and, therefore, electrons propagate across the
whole structure with virtually no scattering and make a large
contribution to the conductance. For the minority electrons,
there is a large band mismatch between Co and Cu bands
which means that the transmission is poor. Similarly, trans-
mission of electrons of either spin orientation is poor in the
antiferromagnetic configuration. We shall see later that this
contrast between the minority electrons in the FM configu-
ration and electrons of either spin configuration in the AF
configuration leads to a large value of the CPP GMR.

IV. CPP RESISTANCES AND GMR

Using the results of Sec. lll, it is easy to calculate the CPP
GMR by simply summing the partial conductande$ for
each spin channel over & in the two-dimensional(2D)
Brillouin zone (BZ). The nonoscillatory component of the
GMR ratio is obtained relatively easily but to study GMR
oscillations requires a far greater accuracy in the evaluation
of the BZ sum. It is, therefore, very important to ensure that
convergence has been achieved in the summation lquver
For a trilayer having a thickness of about 10 nm (50
atomic planes we have used 810 K points in the 2D
Brillouin zone. The results differ from those obtained with
4x 104k|| points by less than 0.5% and are, therefore, deemed
to be converged.

Figure 3 shows the dependence of the CPP-GMR ratio on
the Cu spacer layer thickness for a trilayer with seven atomic
planes of Co in each magnetic layer. A GMR ratio of about
90% is obtained. Since we neglect impurity scattering, this
large ratio is due entirely to reflections of electrons from
perfectly flat Co/Cu interfaces. Superimposed on the con-
stant value of the CPP GMR are oscillations whose ampli-
tudes are about 6% of the total GMR. These oscillations are
due to quantum interference effects and have, therefore, the
same origin as the oscillatory exchange coupfinthe ex-
change coupling has been shown to oscillate also as a func-
tion of the ferromagnetic layer thickne¥s.22 Therefore, we

layer sandwiched between two semi-infinite Co layers as a functiogxpect the CPP GMR to oscillate also with Co layer thick-

of (ky,ky) (in units of 7r/d) for (a) up- and(b) down-spin electrons

ness. This is indeed the case, and the cobalt-thickness depen-

in the FM configuration andc) for electrons of either spin in the dence of the GMR ratio at the first antiferromagnetic peak

AF configuration.

(~ six atomic planes of Quis displayed in Fig. 4. Oscilla-
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FIG. 4. Cobalt-thickness dependence of the CPP GMR ratio of a S - .
Co/Cul/Co trilayer at the first antiferromagnetic pe@ix atomic = 600 N ]
planes of Cu. g 5.50 |- —
< 5001 ®
tions having an amplitude- 12% of the total GMR of about o 4ol | v | | ]
80% are obtained. i) 5 10 15 20
To clarify the origin of the GMR oscillations, the indi- Co thickness (atomic planes)
vidual resistances for up- and down-spin electrons in the FM
and AF configurations are shown in Fig. 5. The lowest resis- . 800 — L L —
tance and smallest oscillation amplitude occur for the up- ‘:C. 750 B ]
spin electrons in the FM configuration. This is easily under- c 0 ]
stood in terms of the band structures of bulk Co and Cu. The g 700 -
bands of Co and Cu are very well matched for the majority = L. -
electrons and, therefore, there is virtually no interfacial scat- = 650 —
tering. This leads to a low resistance and weak quantum g 6.00 B T
interference effects. For the minority electrons, there are < L @
band offsets between Co and Cu and, therefore, interfacial X ggol [®, | T
scattering is important. It leads to a larger value of the resis- 0 5 10 15 20
Co thickness (atomic planes)

tance for the down-spin electrons. For the same reason, the
resistance in the AF configuration is also high for electrons
of either spin orientation. Quantum interference effects are FIG. 5. Resistances fdi) up- and(b) down-spin electrons in
more pronounced and are reflected in large-amplitude oscifh® FM configuration andc) for electrons of either spin in the AF
lations of the resistance in these two cases. For the up-spfiPnfiguration as a function of Co thickness.

electrons in the FM configuration, we find a nonoscillatorysma”er(~37%) but the oscillation periods and amplitudes
componentRiy=(2.849/A) fQ with superimposed oscilla- are unaffected by the thickness of the Co layers as long as it
tions of amplitude~(0.012/A) f(), whereA is the cross- s larger than about 5 or 6 atomic planes.
sectional area of the trilayer. The resistance for the down- As discussed in Ref. 4, we expect two types of oscillation
spin electrons is about twice as large687A) f(1 and the  of the CPP GMR as a function of Cu thickness. The first type
oscillations have an amplitude of abd0t585A) f(). Inthe  originates from extrema of the Cu Fermi surface. The second
antiferromagnetic configuratioR}¢ = (6.858/A) f) and the  type is due to cutoffs of the transmission coefficients which
oscillation amplitude is-(0.502/A) fQ). In samples of trans- occur when the electrons become confined and, therefore,
verse cross section 1 nfimthese resistances are of the ordercease to contribute to the conductance. In general, the two
of 107 °Q). Resistances as low as T¥Q can accurately be types of oscillation are always present but whether any par-
measured using a superconducting quantum interference deeular oscillation period is actually seen depends on its am-
vice (SQUID)-based measuring technigteThe resistances plitude. The amplitude and decay with spacer thickiéss
mentioned above should, therefore, be observable. The osciény given oscillation can be determined from the asymptotic
lations themselves would become accessible to experiment ixpansions of the resistan¢eonductancevalid for large
samples of transverse cross section 0.12mm spacer thicknesdl. We derived in Ref. 4 such asymptotic
Finally we analyze in more detail the CPP GMR oscilla- expansions for both types of oscillation but the asymptotic
tions as a function of Cu thickness. In order to determine thexpansion about a cutoff poirttvhich is much more diffi-
origin of the oscillation periods, we again examine the indi-cult) was obtained only in the simplest case of a parabolic
vidual resistances in each spin channel in the FM and Afband. It is, therefore, not directly applicable to a more real-
configurations. For simplicity, we only discuss the resistancéstic band structure. An extension of this work to a multi-
oscillations for a Cu spacer layer sandwiched between twarbital tight-binding model is currently under way and will
semi-infinite Co layers. The total GMR in this case is muchbe described elsewhere. On the other hand, the conductance
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oscillations arising from the point:ki ,k?,) in thek| plane at

—~ 15 r
which the perpendicular wave vector is stationary can be NE l ! '
obtained for an arbitrary band structure. The derivation of an & 10—
asymptotic formula in this case was described in Ref. 4 and * 05
we quote here merely the results. The oscillatory contribu- e
tion to the conductance in a spin chanweelt a stationary g ool
pointk ® is given by §
2 -05 —
1 NH . irk® § 1.0
7= RgSC:ERe; e, (kO)m*e? ™k iNN.  (9) E i D R Stationary phase
S A5 —— Numerical results
Here,cr(k”") are the coefficients of a Fourier series expan- § 20 . [ . [ .
sion of the partial conductancé”(k)) given by Eq.(7), 0 10 20 30
m*=|[9?(k, d)/d(kyd)?][#*(k,d)/d(k,d)?]|"*? is the cur- Cuthickness

vature of the FS at the stationary pok"?, d is the interpla-
nar distance, and=i when both derivatives im* are posi-
tive, 7= —1i when they are negative, andé=1 when the two
derivatives have opposite signs.

Comparison of the results obtained from E®). with the i o )
results of a full numerical calculation allows us to determinelToM EQ.(9) is shown in Fig. 8dashed curvetogether with

the relative importance of the FS oscillations. We recall that?€ numerical resultésolid curve. The physical values of
these are thenly oscillations that contribute to the oscilla- € conductance at discrete atomic plane positions are indi-

tory exchange couplindf In this case, as in the theory of the cated by circles; the Sondé%”‘_’e is calculated from EQ.
oscillatory exchange coupling, the oscillation periodsus'”g the method of UmersKidiscussed above. A constant

7/(k, d) are obtained from the Cu FS extremal radii in the bacf:kg_:pund Eas been subtracted flromfthe nu.meEr;iCﬁl re.:,]ults
[001] direction. There are two extremal radid=2.586 t© facilitate the comparison. It is clear from Fig. 6 that the
occurring  at k°=(0,0) (belly) and kod:l 931 at asymptotic formula at the stationary points of the Fermi sur-
kOa= +gz 53 +£ 53 fnecks) V\yherea is tfle Iat:[ice con- face leads to conductance oscillations in good overall agree-
Q t_(f_C. TE 'f )t o f' the bell dr=1 for th ment with the numerical results. Small discrepancies be-
stant of L.u. The tactor=1 for the belly andr=2 1orthe = yyeen the two sets of results are most likely due to
necks. The “effective masses” arem*=0.708 and

0538 for the bell q K tributi tivel contributions arising from cutoffs of the partial conductance.
m =9. or the betly and néck contribulions, respective y'Clearly, the main contribution to the oscillatory conductance
The last step required in the evaluation of E9). is the

Fouri vsis of th ial d BEKO) W comes from the extremal radii of the Cu FS.
ourier analysis of the partial conductan .( 1) ve In striking contrast are the results for the conductance of
used two different methods. The first method is a stralghtfor;[

ward adaptation of the approach we applied to determine th8he down-spin electrons in the FM configuration and the con-
oscillatory exchange coupling in Co/@1) X The partial uctance in the AF configuration. They are displayed in Figs.

0 S g _ 7 and 8. In both these cases, the only contribution from the
conductance™(k"), which is a periodic function of the gyrema of the FS come from the belly. The electrons with
spacer thickness, was first computed for dlsc(_pfeysma} k| at the neck are confined in the Cu layer and do not con-
values of the Cu thickness=Nd and then contlnoued ana- ripute to the conductance. The stationary phase results given
lytically to all realL. The computed values df”’(k;") were

by the dashed curves in Figs. 7 and 8 are obviously far too
then shifted to the first perioe{ w/2k, ,7/2k,) by subtract- y g y

ing from N the appropriate integral number of periqusnd
Fourier analyzed.

The second method is an extension of the approach pro-
posed by Umerski® It enables us to compute the local
Green'’s functions and, thereforE,"(k”O) directly for frac-
tional values of the interplanar distande Not only is the
Fourier analysis simplified when this technique is used but,
much more importantly, the total conductance can also be
computed numerically from Ed7) for fractional values of
d. When the conductance is a superposition of a humber of
oscillations with different periods, this method offers a
unique opportunity to deduce all the periods from the com-
puted continuouf"(k”") curves. This is virtually impossible
when values of the conductance are available only for dis- 0 0 2% 20
crete(physica) values of the spacer thicknelss-Nd, which Cu thickness
is the case in any other conventional calculation.

For the majority electrons in the FM configuration, both  FIG. 7. Oscillatory part of the conductance for down-spin elec-
belly and neck periods contribute to the oscillations of thetrons in the FM configuration. Solid curve: numerical results from
conductance. The total oscillatory contribution calculatedeq. (7); dashed curve: stationary phase results from (Bj.

FIG. 6. Oscillatory part of the conductance for up-spin electrons
in the FM configuration. Solid curve: numerical results from Eg.
(7); dashed curve: stationary phase results from(8y.

a=

2

Oscillatory conductance (10 2Q'm 2 )
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FM configuration are dominated by periods originating from
the extremal radii of the Cu Fermi surface in the direction
perpendicular to the layers. These are the same periods as
observed in the oscillatory exchange coupling. However, the
15 — . : A ) :
amplitude of resistance oscillations with the Fermi-surface
. periods is negligibly small for the minority electrons in the
00 I FM configuration and for electrons of either spin orientation
O ; in the AF configuration. The resistance oscillations of these
1 electrons are dominated instead by periods determined by
cutoffs of the conductance due to a mismatch between the
Co and Cu bands across the Co/Cu interféces.
Finally, we discuss briefly the conditions under which the
30 . [ , | ) calculated effects should be observable. First of all, the
) 0 20 30 thickness of the Co/Cu/Co trilayer should be smaller than the
Cu thickness mean free path for scattering from bulk impurities. This is
. _not difficult to satisfy experimentally. In fact, oscillations in
FIG. 8. .OSC'"atory part of th? Conduf:tame f(?r up- Or.down'Sp'nthe interlayer exchange coupling, which have been observed
electrons in the AF configuration. Solid curve: numerical results. 9
) g ; in a number of layer structurés? demonstrate clearly that
from Eq. (7); dashed curve: stationary phase results from(8g. : :
coherent propagation of electrons from one interface to an-
small and the oscillations do not have the right period tOOth.ﬁz takes pl(;’:lce in such st_rucr't]uresh. lead/ .
explain the numerical results. Therefore, we conclude that € second requirement is that the leadjcontact resistance
: ! Sshould be much lower than the resistance of the sample.

the cond_uctance oscillations of the minority _electrons 'n.thqndeed, this is the physical situation to which the Kubo for-
FM configuration and those of electrons of either spin orien-

.o : ; . mula (7) applies. This can be achieved experimentally either
tation in the AF configuration are totally dominated by the by using superconducting leddsr by making the trilayer in

Sﬁggiigrggt'g;ﬁsdégsg'tf'a\r’]\/glg;sﬁztgﬁtermmed by the €OMhe form of a thin pillar sandwiched between thick le4ds.
’ For a pillar of transverse cross section 1 fmrthe calculated
CPP resistances of a Co/Cul060)) trilayer are of the order
V. CONCLUSIONS of 10 °Q. Since resistances as low as 1) can accu-

We have investigated comprehensively the perpendicularlately_ be3 measured _by a SQUID-based measuring
giant magnetoresistance of a Co/Cu(@a{) trilayer in the techmq_uez, the above resistances should be measurable. The
case when a rigorous quantum calculation of the CPP GMI’-‘?.SC'"""“O”S Of CPP.GMR we predict would become acces-
without any adjustable parameters is feasible. Such a calc@—'blg to experiment in samples of transverse cross section 0.1
lation is possible provided the dimensions of the trilayer ard"M .
smaller than the mean free path for scattering from impuri- .In the.case of su_perconductlng .co.ntacts, one problem that
ties or inhomogeneities of the layer structure other than thgVight arise for a trilayer are proximity effects However,
interfaces themselves. The CPP GMR was determined bi'® resistance€CPP GMR due to scattering from the inter-
numerical evaluation of the real-space Kubo formula ex- aces are independent of the Iayerthlcknesses.as long as they
pressed in terms of one-electron Green’s functions. This for[emaln_smallgr than the mean free pétie on_ly inhomoge-
mulation, which is exact in the linear-response theory, ig'€lly giving rise to a resistance are the interfaces them-
applicable to any layer structuf@omogeneous or inhomo- selyeg}. That means t'hr.:\t one could use relatively thick high-
geneousas long as translational invariance in the directionPurity Cu layers to minimize the proximity effects a’Fd hence
parallel to the layers is preserved. measure the calculated average CPP_ GMR. Osc_lllatlons _of

We find that, depending on the thicknesses of the Co la the GMR could not_be studied by this method since their
ers, the calculated CPP GMR ratio can be as high as 900/63‘.mp|'tUd.es deqay with the spacer layer th|ckn¢ss.

Since we assume that the mean free path is longer than the The fmal point that needs. to be.a'ddressed IS the effect of
sample dimensions, the whole GMR effect is due solely tdnterfacial roughnes¢Co/Cu intermixing at the interfacks
guantum reflections of electrons from perfectly flat Co/Cuou_r calculations are fgf perfectl_y flat mtgrfacgs. The <_:a|cu-
interfaces. In Ref. 4, we predicted that quantum reflection tions of Asanoetal.” for a single-orbital tght-binding
from ferromagnet/spacer interfaces should lead to oscillaf and, which include a realistic modelllng of the interfacial
tions of the CPP GMR with the spacéferromagnet thick- roughness, show that the CPP GMR is largest for perfectly
ness. The present calculation, based on a tight-binding pE;I_at interfaces. OL_Jr results should, therefore, be regarded as
rametrization of ab initio band structures of Cu and &n upper theoretical bound on the CPP GMR of a Co/Cu/
ferromagnetic fcc Co, confirms that the CPP GMR ratio of aCo(00]) trilayer.
Co/Cu/Cd00)) trilayer oscillates with Co and Cu thickness

and the oscillation amplitudes are large. In fact, we find that

the CPP GMR can change by as much as 24% (12%) when The support of the Engineering and Physical Sciences Re-
the thicknesses of the Q&€u) layers are varied. search Counci(EPSRC UK and North Atlantic Treaty Or-

We have also investigated the physical origin of resis-ganization(NATO Grant No. CRG 950800s gratefully ac-
tance oscillations as a function of Cu thickness. We find thaknowledged. M.V. would also like to thank the Nuffield
oscillations of the resistance of the majority electrons in theFoundation(UK) for financial support.
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