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Ground-state properties of the two-dimensionalt-J model
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The two-dimensionalt-J model in the ground state is investigated by the power Lanczos method. The
pairing-pairing correlation function fordx22y2-wave symmetry is enhanced in the realistic parameter regime
for high-Tc superconductors. The charge susceptibilityxc shows divergent behavior asxc}d21 near half
filling for the doping concentrationd, indicating that the value of the dynamical exponentz is four under the
assumption of hyperscaling. The peak height of the spin structure factorSmax(Q) also behaves asSmax(Q)
}d21 near half filling, which leads to the divergence of the antiferromagnetic correlation lengthjm as jm
}d21/2. The boundary of phase separation is estimated on the basis of the Maxwell construction. Numerical
results are compared with experimental features observed in high-Tc cuprates.@S0163-1829~97!01403-3#
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I. INTRODUCTION

Since the discovery of high-Tc cuprate superconductors1

many microscopic models have been proposed in orde
explain the pairing mechanism. The best way to underst
the essential feature of the pairing mechanism would be
find the simplest and most realistic model that describes
low-energy properties of the copper-oxide planes. The tw
dimensionalt-J model is one of the candidates for the effe
tive model for the copper-oxide planes.2,3 As far as super-
conductivity is concerned, Dagotto and Riera have obtai
indications of superconductivity by an unbiased diagonali
tion approach in the region ofJ/t&3 near quarter filling.4

More investigation is necessary in the realistic region of c
plings and densities in order to confirm that the tw
dimensionalt-J model can really be an effective model fo
high-Tc superconductors. One of the purposes of this pa
is to investigate the relevancy of the two-dimensionalt-J
model as a low-temperature effective model for high-Tc cu-
prates.

Also, strong electron correlation in low-dimensional sy
tems is one of the central issues in condensed matter phy
The Mott transition is one of the remarkable consequence
strong correlation. In general, there are two types of the M
transitions for electron systems.5 One is characterized by th
vanishment of the carrier density, the other is characteri
by the divergence of the carrier mass. A typical exam
which shows the first type of transition is the free-fermi
model on a lattice. In this case, the dynamical exponentz is
two.6 A typical example which shows the second type of t
Mott transition is the two-dimensional Hubbard model.7,8 It
has been shown numerically that the value of the dynam
exponentz is four in the case of the two-dimensional Hu
bard model.6,9 A naive expectation is that the two
dimensionalt-J model shows the same type of the Mott tra
sition as that of the two-dimensional Hubbard mod
because thet-J model can be derived as an effective mod
for the Hubbard model in the limit ofU→`. However, in
the largeJ/t regime, thet-J model shows different proper
ties from those of the Hubbard model. For example, ifJ/t is
so large that phase separation occurs, the transition to
550163-1829/97/55~3!/1435~7!/$10.00
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insulator is a first order transition. In the region ofJ/t
slightly smaller than the phase-separation boundary, it is
pected that electrons~or holes! form bound states due to th
effective attractive forces that lead to phase separation.
interesting to investigate the critical phenomena toward h
filling in this parameter regime. Hence, in this paper, w
investigate the Mott transition of the two-dimensionalt-J
model in the ground state near half filling.

Several obstacles to numerical calculations have p
vented us from getting the low-energy properties of the tw
dimensional t-J model. For example, the system siz
achieved by the exact diagonalization is restricted to ab
26 sites near half filling. On the other hand, quantum Mo
Carlo algorithms have a serious sign problem. Rec
progress of a Green’s function Monte Carlo algorith
~power Lanczos method10! makes it possible for us to inves
tigate the ground-state properties of thet-J model in rela-
tively large systems. In this paper, we use the usual Lanc
algorithm for clusters up to 20 sites and the power Lanc
method for larger clusters.

In Sec. II, thet-J model is defined and the power Lancz
method is briefly reviewed. In Sec. III, we show the groun
state energy as a function of filling and discuss phase s
ration on the basis of the Maxwell construction. In Sec. I
numerical results on the pairing-pairing correlation functi
are presented. In Sec. V, the Mott transition atJ/t50.5 in
the two-dimensionalt-J model is discussed on the basis
the hyperscaling hypothesis. Section VI is devoted to
summary.

II. MODEL AND METHOD

The t-J model is defined by the following Hamiltonian:

HtJ5Ht1HJ , Ht52t (
^ i , j &s

~ c̃ is
† c̃ js1H.c.!,

HJ5J(
^ i , j &

SSi•Sj2 1

4
ninj D , ~2.1!

where c̃ is
† denotes a creation operator of an electron at

i with spin s(s5↑,↓) with the constraint that no site i
1435 © 1997 The American Physical Society
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1436 55MASANORI KOHNO
doubly occupied, which is defined asc̃ is
† [(12ni2s)cis

† .
The number operatornis is defined asnis[cis

† cis , using the
standard electron creation operatorcis

† . The spin operator a
site i is defined asSi[

1
2(abcia

† sabcib , wheresab is the
vector of Pauli matrices. The summation ((^ i , j &) is taken
over all nearest neighbor sites on a square lattice.

We adopt the power Lanczos method proposed by C
and Lee.10 In the framework of this method, the expectatio
value of an operatorO in the ground state of a Hamiltonia
H is evaluated by the following equation:

^O&5 limp→`^pL1uOupL1&/ limp8→`^p8L1up8L1&,
~2.2!

where upL1& is the wave function defined a
upL1&[HpuL1&. The wave functionuL1& is defined as
uL1&[utrial&1c1Hutrial&, whereutrial& is a trial wave func-
tion andc1 is a variational parameter. If we setc150, the
power Lanczos method reduces to the power method.

The variational wave function proposed by Valenti a
Gros11 is employed as the trial wave function:

uf&5)
i j

ur i2r j unPGPNud-wave&, ~2.3!

wheren is a variational parameter andr i represents the real
space coordinate at sitei . The Gutzwiller andN-particle pro-
jection operators are denoted byPG and PN , respectively.
The wave functionud-wave& represents the BCS wave fun
tion in which the order parameter hasdx22y2-wave symme-
try. It should be noted that the trial wave function is in t
subspace that both the total spinS and the total momentum
P are zero. Therefore the ground-state properties reporte
this paper are within this subspace.

One of the reasons why we use the above wave func
uf& as a trial wave function is that this wave function giv
the lowest energy among variational wave functions p
posed so far, as far as we know, in the parameter regime
we investigated. Another reason is that we can restrict
Hilbert space of simulation within the subspace ofS50 and
P50. This makes convergence faster. The applicability
the power Lanczos method depends on the negative-sig
tio r which is defined byr[(p2n)/(p1n), wherep and
n denote the number of positive and negative samples,
spectively. If the ratior is less than 0.1, it is difficult to
obtain reliable results. As a result, the applicability of t
power Lanczos method is restricted to the powerp,pr ,
wherepr denotes the power at which the ratior is about 0.1.
If the power required to reach convergence (pc) is larger
thanpr , the power Lanczos method is not applicable. If w
use a wave function which has a small overlap with
ground-state wave function, it requires a large power to re
the ground state. We compare the speed of convergenc
the power Lanczos method and the simple power met
using the Gutzwiller wave function anduf& as a trial wave
function. As shown in Fig. 1, the power Lanczos meth
requires smaller powerp than the simple power method, an
the wave functionuf& is superior to the Gutzwiller wave
function as a trial wave function. In this figure, the error
energy due to finite powerp is less than 0.2% forp.5 by
n

in

n
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the power Lanczos method usinguf&, althoughpc becomes
larger thanpr if we use the Gutzwiller wave function.

We have checked convergent behavior in each simula
usinguf& as a trial wave function. Thepc becomes larger as
the system size becomes larger. For 50-site clusters,pc is
about eight for the energy to converge. Thepr becomes
smaller asJ gets smaller. The most severepr in our simula-
tion is about eight near half filling forJ.0.3. As an ex-
ample, we show the convergence of energy in a 50-site c
ter with 42 electrons atJ50.3 in Fig. 2. We measure
physical quantities atp.8, where we have checked in eac
simulation that the energy converges within a required ac
racy. As a check of convergence of physical quantities,
show the pairing-pairing correlation function in a 20-s
cluster with 18 electrons atp58 in Fig. 3.

In the following sections, we show the numerical resu
in finite-size clusters up to 104 sites. The boundary con
tions are chosen for the momentum configuration to

FIG. 1. Energy per site as a function of powerp for the 20-site
system with 18 electrons atJ50.5. The percentage of the erro
from the ground-state energy corresponds to the vertical scal
the right. Open circles and open diamonds denote the data obta
by the power method and the power Lanczos method, respectiv
using the Gutzwiller wave function as a trial wave function. So
symbols denote the data by usinguf& as a trial wave function.

FIG. 2. The same plot as in Fig. 1 but for the 50-site syst
with 42 electrons atJ50.3. The inset shows the negative-sign ra
r defined in the text. The dashed line representsr50.1.
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55 1437GROUND-STATE PROPERTIES OF THE TWO- . . .
closed shell. We have typically run 1000–2000 Monte Ca
steps. Several hundred branches are produced at each M
Carlo step in the evaluation of powers ofH.

The filling n is defined asn[Ne /Ns , whereNe is the
number of electrons andNs is the number of sites. The dop
ing concentrationd is defined asd[12n. The ground-state
energy per site at fillingn is denoted bye(n). Hereafter we
set t51 as the energy unit.

III. PHASE SEPARATION

Before investigating phase separation of the tw
dimensionalt-J model, we examine the finite-size effects o
the ground-state energy in the free-fermion model on
square lattice, in which we can calculate the exact grou
state energy with any size of systems. We calculate
ground-state energy per site of the free-fermion model in
same system sizes under the same boundary condition
those used in thet-J model. We fit them as a function o
filling by a polynomial up to third order. As shown in Fig. 4
the fitting curve~dotted line! almost coincides with the curv
in the thermodynamic limit~solid line!. The finite-size ef-
fects on the ground-state energy of the two-dimensionalt-J
model is probably not so different from those of the fre
fermion model on a square lattice. Actually, as shown in F
5, the data of the ground-state energy per site of the t
dimensionalt-J model in finite-size clusters are well fitte
by a polynomial as a function of filling with small deviatio
from the fit, indicating that the finite-size effects on th
ground-state energy are small.

Figure 5 shows the ground-state energy per site as a f
tion of filling in the two-dimensionalt-J model atJ50.5,
1.0, 1.5, 2.0, 2.5, and 3.0. In this figure, the tangent from
point atn51 to the fitting curve gives a lower energy tha
the fitting curve in the region ofnc,n,1 as represented b
the solid line. Herenc is the electron density at the point o
contact between the fitting curve and the tangent. Hence
can identify the region of phase separation asnc,n,1 on
the basis of the Maxwell construction.12 The energy and the

FIG. 3. Pairing-pairing correlation function fordx22y2-wave
symmetry in a 20-site cluster with 18 electrons atJ50.5. Crosses
denote the data byuf& without the power method. Solid diamond
denote the data by the power Lanczos method atp58, usinguf& as
a trial wave function. Open circles denote the exact data obta
by the exact diagonalization.
o
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chemical potential of the phase-separated state are give
the tangent and its slope, respectively. AtJ53.5, we find
that the critical densitync is zero. On the other hand, a
shown in Fig. 8, the chemical potential atJ50.5 shows a
monotonically increasing behavior as a function of filling
least in the region ofn&0.95, indicating that phase separ
tion does not occur atJ50.5. Hence, the phase-separati
boundary is obtained as in Fig. 12. The criticalJ above
which no stable homogeneous state exists is estimate
Jc153.460.1. The critical J below which no phase-

separated state exists is estimated asJc250.7560.25.

The critical value ofJc1 is obtained more accurately i

Ref. 13 as 3.436760.0001 by solving the equation of motio
of two electrons. The numerical result in this paper is co
sistent with it. The estimation ofJc2 is consistent with that in

ed

FIG. 4. Ground-state energy per site as a function of filling
the two-dimensional free-fermion model on a square lattice. T
dotted line denotes a polynomial fit. The solid line denotes
ground-state energy per site in the thermodynamic limit.

FIG. 5. Ground-state energy per site as a function of filling
the two-dimensionalt-J model atJ50.5, 1.0, 1.5, 2.0, 2.5, and 3.0
starting from above. The dotted line denotes the same fit as in
4, using data points fromn50 ton.0.7. The solid line denotes th
expected ground-state energy per site of the phase-separated
which is determined on the basis of the Maxwell construction. T
dashed line atJ50.5 is obtained by integrating the fit~dashed line!
in Fig. 8~b!.
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1438 55MASANORI KOHNO
Ref. 14 (Jc2.0.75). In the intermediate region ofn, the
phase-separation boundary estimated in this paper is qua
tively similar to those in Ref. 4 or Ref. 15, but quantitative
lower than them~Fig. 12!.

In the following sections, we show the numerical resu
at J50.5. At thisJ, phase separation does not occur as d
cussed in this section.

IV. PAIRING-PAIRING CORRELATION

In this section, we show numerical results on the pairin
pairing correlation functionsP6(r ) defined as

P6~r ![
1

Ns
(
r0

^D6~r 0!
†D6~r 01r !&. ~4.1!

Here, the singlet pairing operatorsD6(r ) are defined as
D(r )[cr↑(cr1 x̂↓1cr2 x̂↓6cr1 ŷ↓6cr2 ŷ↓), where1 and 2
correspond to extendeds-wave anddx22y2-wave symmetry,
respectively, and the unit vectors inx and y directions are
represented byx̂ and ŷ, respectively.

In Fig. 6, the pairing-pairing correlation function wit
dx22y2-wave symmetry decays very little forn50.84, while
the pairing-pairing correlation function withdx22y2-wave
symmetry quickly decays forn50.20.

We define here the reduced pairing susceptibility as

FIG. 6. Pairing-pairing correlation function as a function of d
tance for~a! n50.20 and~b! n50.84 atJ50.5 in 50-site clusters
Crosses and solid diamonds denote the pairing-pairing correla
functions for extendeds-wave symmetry anddx22y2-wave symme-
try, respectively.
ta-

s
-

-

x̃ 6
P[ (

ur u.2
P6~r !. ~4.2!

Figure 7 shows the filling dependence ofx̃ 6
P /Ñs , where

Ñs is defined asÑs[( ur u.21. If the superconducting long
range order exists, the value ofx̃ 6

P /Ñs remains finite in the
thermodynamic limit. In Fig. 7 the pairing-pairing correla
tion for dx22y2-wave symmetry is enhanced in the region
0.6&n&1, and that for extendeds-wave symmetry is a little
enhanced in the low-density regime. The numerical res
showing that thedx22y2-wave component of the pairing
pairing correlation is dominant near half filling are consiste
with experimental indications, for example, the measu
ments of the phase coherence in bimetallic YBCO-Pb
SQUID’s.16

V. MOTT TRANSITION

In Fig. 8, the filling dependence for the chemical potent
at J50.5 is shown. The data of the chemical potential
finite-size clusters are calculated as follows:

m̄~ n̄![
e~n1!2e~n2!

n12n2
, ~5.1!

on

FIG. 7. Reduced pairing susceptibility per site (x̃ 6
P /Ñs), as a

function of filling atJ50.5 for ~a! extendeds-wave symmetry and
~b! dx22y2-wave symmetry, where x̃6

P[( ur u.2P6(r ) and
Ñs[( ur u.21.
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55 1439GROUND-STATE PROPERTIES OF THE TWO- . . .
where n̄ is taken asn̄5(n11n2)/2. Here,n1 and n2 are
taken to be adjacent closed-shell filling with boundary co
ditions fixed. Here, boundary conditions at half filling a
regarded as those under which the momentum configurat
are closed shell in the free-fermion model on a square latt
In the thermodynamic limit, this definition of the chemic
potential reduces to the normal one:m(n)[]e(n)/]n.

We fit the data near half filling in Fig. 8 asm2mc}da

and estimatemc51.3160.03 anda51.7860.29, which is

FIG. 8. Chemical potential as a function of filling atJ50.5, ~a!
linear plot,~b! m vs d2 plot, and~c! log-log plot. The dotted line in
~a! is obtained by differentiating the fit atJ50.5 ~dotted line! in
Fig. 5. The dashed line in~a! and ~b! denotes a fit asum2mcu
}d2. The dashed and solid lines in~c! correspond to the cases of th
dynamical exponentz52 andz54, respectively.
-

ns
e.

close toa52 reported in the case of the two-dimension
Hubbard model atU54.7 This suggests that the charge su
ceptibility xc defined byxc[]n/]m diverges asxc}d21

toward half filling. Actually the chemical potential is fitte
well by the following form:

um2mcu}d2, ~5.2!

as denoted by the dashed line in Fig. 8~a! and~b!. In order to
check this divergent behavior of the charge susceptibility,
also investigate the doping dependence of chemical pote
for J50.3 andJ50.4. Figure 9 shows the same plot as
Fig. 8 for J50.3 andJ50.4. From the fit of the numerica
data in Fig. 9, we estimatemc51.8860.03,a51.8360.17
for J50.3 andmc51.5760.02, a51.9860.07 for J50.4.
The numerical results forJ50.3 andJ50.4 also suggest tha
the charge susceptibilityxc diverges asxc}d21. The diver-
gent behavior of the charge susceptibility is consistent w
recent photoemission measurements.17

If the hyperscaling relations are satisfied, the charge s
ceptibility xc near the transition point to an insulator is wri
ten asxc}d2(z2d)/d, wherez is the dynamical exponent an
d is the spatial dimensionality.6 Therefore the numerical re
sults suggest that the value of the dynamical exponentz is
four.

We define the spin structure factorS(k) as

S~k![
1

3(r ^S0•Sr&e
ikr . ~5.3!

Figure 10~a! shows the peak height of the spin structure fa
tor Smax(Q) as a function of filling. The data near half filling
can be fitted well by the following form:

Smax~Q!}d21, ~5.4!

as denoted by the dashed line@Fig. 10~a!, ~b!, and~c!#. We fit
the data near half filling asSmax(Q)

21}db and estimate
b51.0260.02. This suggests that the antiferromagnetic c
relation lengthjm diverges toward half filling as

jm}d21/2, ~5.5!

under the assumption that the spin-spin correlation beha
as ^S0•Sr&}e

iQr
•e2r /jm.7 This behavior of the correlation

length has been reported on the two-dimensional Hubb
model atU54 ~Ref. 7! and is consistent with the observa
tion by neutron scattering experiments.18

Under the assumption of the existence of the single ch
acteristic length scalej that is related to critical phenomena
the hyperscaling theory has predicted that the length s
j diverges asj}d21/d toward the critical point, whered is
the spatial dimensionality.6 The numerical results show
above support the scaling hypothesis and suggest that
Mott transition in the two-dimensionalt-J model atJ50.5 is
characterized by the dynamical exponentz54, which is the
same as in the case of the two-dimensional Hubbard mo
at U54.6,9

VI. SUMMARY

Numerical results presented in this paper are consis
with the following experimental features found in the hig
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1440 55MASANORI KOHNO
Tc oxides: ~i! the dx22y2-wave symmetry of the supercon
ducting order parameter in the region of moderate dop
which is suggested by the measurements of the phase c
ence in bimetallic YBCO-Pb dc SQUID’s~Ref. 16! ~Sec.
IV !, ~ii ! the doping dependence of the antiferromagnetic c
relation length near half filling (jm}d21/2) observed in neu-
tron scattering experiments18 ~Sec. V!, ~iii ! the large Fermi
surface behavior in the region of moderate doping19 ~Fig.

FIG. 9. Chemical potential as a function of filling atJ50.3,
0.4, and 0.5 starting from above,~a! linear plot,~b! m vs d2 plot. ~c!
Log-log plot forJ50.3 ~open symbols! andJ50.4 ~solid symbols!.
The dashed line in~a! and ~b! denotes a fit asum2mcu}d2. The
point denoted by a cross is obtained by a Green’s function Mo
Carlo in a 10310-site cluster with two holes taken from Ref. 2
The dashed and solid lines in~c! correspond to the cases of th
dynamical exponentz52 andz54, respectively.
g,
er-

r-

11!, and~iv! divergent behavior of the charge susceptibil
suggested by photoemission experiments17 ~Sec. V!.

In summary, numerical results on the two-dimensionat-
J model have been reported. The boundary of phase sep
tion is estimated on the basis of the Maxwell construct
~Fig. 12!. The pairing-pairing correlation fordx22y2-wave
symmetry is enhanced in the region of 0.6&n&1 at J50.5
~Fig. 7!. The charge susceptibilityxc shows divergent behav
ior asxc}d21 toward half filling, indicating that the value o
the dynamical exponentz is 4 ~Figs. 8 and 9!. The peak
height of the spin structure factorSmax(Q) diverges toward
half filling asSmax(Q)}d21 ~Fig. 10!. This leads to the di-

te

FIG. 10. Peak height of the spin structure factorSmax(Q) as a
function of filling atJ50.5,~a! linear plot,~b! Smax(Q)

21 vsd plot,
and~c! log-log plot. The dashed line in~a!, ~b!, and~c! denotes a fit
in the form ofSmax(Q)}d21.
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vergence of the antiferromagnetic correlation length asjm
}d21/2.
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