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Ground-state properties of the two-dimensionalt-J model
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The two-dimensionat-J model in the ground state is investigated by the power Lanczos method. The
pairing-pairing correlation function fod,>_,>-wave symmetry is enhanced in the realistic parameter regime
for high-T. superconductors. The charge susceptibijty shows divergent behavior gg= & ! near half
filling for the doping concentratiod, indicating that the value of the dynamical exponeis four under the
assumption of hyperscaling. The peak height of the spin structure f8gifQ) also behaves aS,,,(Q)

« &~ near half filling, which leads to the divergence of the antiferromagnetic correlation I€pg#s £,
«6~%2 The boundary of phase separation is estimated on the basis of the Maxwell construction. Numerical
results are compared with experimental features observed inThigyprates[S0163-1827)01403-3

I. INTRODUCTION insulator is a first order transition. In the region &ft
slightly smaller than the phase-separation boundary, it is ex-
Since the discovery of higfi; cuprate superconductots, pected that electron®r holes form bound states due to the
many microscopic models have been proposed in order téffective attractive forces that lead to phase separation. It is
explain the pairing mechanism. The best way to understantiiteresting to investigate the critical phenomena toward half
the essential feature of the pairing mechanism would be t§lling in this parameter regime. Hence, in this paper, we
find the simplest and most realistic model that describes th#vestigate the Mott transition of the two-dimensioria)
low-energy properties of the copper-oxide planes. The twomModel in the ground state near half filling.
dimensionat-J model is one of the candidates for the effec- S€veral obstacles to numerical calculations have pre-
tive model for the copper-oxide plan&.As far as super- vented us from getting the low-energy properties of the two-

conductivity is concerned, Dagotto and Riera have obtaineg'mh.ens'gn;‘I tt-r? modetl.d_For elxar?ple,_ the tSYtS‘jT 5|bze i
indications of superconductivity by an unbiased diagonalizaf’iC ieved by the exact dlagonalization 1S restricted to abou

tion approach in the region af/t=<3 near quarter fillind. 26 sites near half filling. On the other hand, quantum Monte

More i Hiqation i 1 th listi ) ¢ Carlo algorithms have a serious sign problem. Recent
ore investigation 1S necessary In the realistic region o Cou'progress of a Green’s function Monte Carlo algorithm
plings and densities in order to confirm that the two-

) , ; (power Lanczos methd®) makes it possible for us to inves-
dimensionalt-J model can really be an effective model for tigate the ground-state properties of thd model in rela-

high-T. superconductors. One of the purposes of this papefely |arge systems. In this paper, we use the usual Lanczos

is to investigate the relevancy of the two-dimensiotdl  zigorithm for clusters up to 20 sites and the power Lanczos

model as a low-temperature effective model for higheu-  method for larger clusters.

prates. In Sec. Il, thet-J model is defined and the power Lanczos
Also, strong electron correlation in low-dimensional sys-method is briefly reviewed. In Sec. IlI, we show the ground-

tems is one of the central issues in condensed matter physicstate energy as a function of filling and discuss phase sepa-

The Mott transition is one of the remarkable consequences oftion on the basis of the Maxwell construction. In Sec. IV,

strong correlation. In general, there are two types of the Mothumerical results on the pairing-pairing correlation function

transitions for electron system®ne is characterized by the are presented. In Sec. V, the Mott transitionJ&t=0.5 in

vanishment of the carrier density, the other is characterizethe two-dimensionat-J model is discussed on the basis of

by the divergence of the carrier mass. A typical examplethe hyperscaling hypothesis. Section VI is devoted to the

which shows the first type of transition is the free-fermionsummary.

model on a lattice. In this case, the dynamical exporzeist

two.® A typical example which shows the second type of the Il. MODEL AND METHOD

Mott transition is the two-dimensional Hubbard mo@2iit

has been shown numerically that the value of the dynamical Thet-J model is defined by the following Hamiltonian:

exponentz iSP gour in the case of the two-dimensional Hub-

bard modef® A naive expectation is that the two- _ _ ~t=

dimensionat-J model shows the same type of the Mott tran- To=Tt Ty, Th= t<i%(, (CioCjot He),

sition as that of the two-dimensional Hubbard model,

because thé-J model can be derived as an effective model

for the Hubbard model in the limit ofJ —. However, in HJ=J<Z>

the largeJ/t regime, thet-J model shows different proper- !

ties from those of the Hubbard model. For examplég/ffis whereC ! denotes a creation operator of an electron at site

so large that phase separation occurs, the transition to dnwith spin o(oc=1,|) with the constraint that no site is

1
S‘Sj_Zninj), (21)
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doubly occupied, which is defined @&, =(1—n;_,)c! .

The number operatar; , is defined asli,,zcit,ci(,, using the oes | ¢ $ power_Lanczos 10
standard electron creation operatgy. The spin operator at ' 2 ¢ power_method L
sitei is defineq aﬁ;%Eaﬂcfaaaﬁci B \{vhere Tup is the o gw ggv"::::l:(;i‘zozs & 8
vector of Pauli matrices. The summatioR (;,) is taken 068 - @ - - -Ground state energy(Eq) | s —
over all nearest neighbor sites on a square lattice. » ®s p *q—; x
We adopt the power Lanczos method proposed by Chen E ® o ©o4 1, N
and Lee' In the framework of this method, the expectation e TP0e0,3%000gq, |
value of an operato® in the ground state of a Hamiltonian °. *eo¥s%e *, b
‘H is evaluated by the following equation: 072 ®e¢ oo i @
9000033880000 000e,
(0y=lim,_..(pL1|O|pLL)/lim, _..(p'L1|p’L1), (n=18/20,J-0.5) j
( 2) >o.740 2 4 6 8 ‘ 'IIO I 1‘2 | 1‘4 ‘ 1‘6 ’ 18
power x 2

where |pL1l) is the wave function defined as

o . : ;
|pL1)_—H IL1). Th? wave funqtlon_|L1) 1S defined as FIG. 1. Energy per site as a function of powefor the 20-site
|L1)=|trial) +c,H]trial), whereltrial) is a trial wave func-  gystem with 18 electrons @=0.5. The percentage of the error
tion andc, is a variational parameter. If we se{=0, the  fom the ground-state energy corresponds to the vertical scale on

power Lanczos method reduces to the power method. the right. Open circles and open diamonds denote the data obtained
Thle_varlatlonal wave fun_ctlon propose_d by Valenti andpy the power method and the power Lanczos method, respectively,
Gros' is employed as the trial wave function: using the Gutzwiller wave function as a trial wave function. Solid

symbols denote the data by using) as a trial wave function.

|¢y=11 [ri—rj|"PPyld-wave, (2.3} the power Lanczos method usihg), althoughp, becomes
b larger thanp, if we use the Gutzwiller wave function.

We have checked convergent behavior in each simulation
using| ¢) as a trial wave function. Thp, becomes larger as
the system size becomes larger. For 50-site clusfgrss
about eight for the energy to converge. Thg becomes
smaller as] gets smaller. The most sevegugin our simula-
tion is about eight near half filling fod=0.3. As an ex-

wherev is a variational parameter amgdrepresents the real-
space coordinate at siteThe Gutzwiller andN-particle pro-
jection operators are denoted By and Py, respectively.
The wave functiorjd-wave represents the BCS wave func-
tion in which the order parameter hdg._,2-wave symme-

try. It should be noted that the trial wave function is in the ample, we show the convergence of energy in a 50-site clus
subspace that both the total sgBrand the total momentum - - 2 A )
P fBra r with 42 electrons at’l=0.3 in Fig. 2. We measure

P are zero. Therefore the ground-state properties reported 'ﬁ]ysical quantities gb~8, where we have checked in each

hi r are within thi . . . s .
this paper are within this subspace ﬁlmulatlon that the energy converges within a required accu-

One of the reasons why we use the above wave funCtiOrac As a check of convergence of physical quantities, we
|$) as a trial wave function is that this wave function gives Y. - s 9 ot physical g '
show the pairing-pairing correlation function in a 20-site

the lowest energy among variational wave functions pro- i PN

posed so far, as far as we know, in the parameter regime thﬁlulsrﬁ:]év'g”? .ile(;{;%?(s)r?:_ 8elr;rl1:cl)g. ?He numerical results
we investigated. Another reason is that we can restrict the _ .~ = . wing lons, we show umer Uits
Hilbert space of simulation within the subspaceSef0 and In finite-size clusters up to 104 sites. The b.°””d"?“y condi-
P=0. This makes convergence faster. The applicability ofions are chosen for the momentum configuration to be
the power Lanczos method depends on the negative-sign ra-

tio r which is defined byr=(p—n)/(p+n), wherep and . : : —— . .

n denote the number of positive and negative samples, re- ¢ 0 power_Lanczos | }*, i
. . . L. e [ ] power_method .

spectively. If the ratior is less than 0.1, it is difficult to o é’w power_Lanczos | o[  *.

obtain reliable results. As a result, the applicability of the O GW power_method |« ‘e,

power Lanczos method is restricted to the powetp,, -0.6 N ... 1

wherep, denotes the power at which the ratigs about 0.1. " ® o e — 2o, ]

If the power required to reach convergengg)(is larger < e %o o2 4 6 8 w6

. . N -0.62 ® ® @ power x 2 g

thanp,, the power Lanczos method is not applicable. If we W 0. %9¢ ®00 4,

use a wave function which has a small overlap with the . ®o0c88g ®. X

ground-state wave function, it requires a large power to reach -0.64 0000, ‘e te 4 ¢

the ground state. We compare the speed of convergence of

the power Lanczos method and the simple power method (n=42/50, J=0.3)

using the Gutzwiller wave function arj@) as a trial wave O T T s 0 v e e

function. As shown in Fig. 1, the power Lanczos method power x 2

requires smaller powegy than the simple power method, and

the wave function ¢) is superior to the Gutzwiller wave FIG. 2. The same plot as in Fig. 1 but for the 50-site system
function as a trial wave function. In this figure, the error in with 42 electrons al=0.3. The inset shows the negative-sign ratio
energy due to finite powep is less than 0.2% fop>5 by r defined in the text. The dashed line represent®.1.
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FIG. 3. Pairing-pairing correlation function fad,._2-wave FIG. 4. Ground-state energy per site as a function of filling in

symmetry in a 20-site cluster with 18 electronsJat0.5. Crosses the two-dimensional free-fermion model on a square lattice. The
denote the data blyp) without the power method. Solid diamonds dotted line denotes a polynomial fit. The solid line denotes the
denote the data by the power Lanczos methquo=a8, using|¢) as  ground-state energy per site in the thermodynamic limit.

a trial wave function. Open circles denote the exact data obtained

by the exact diagonalization. chemical potential of the phase-separated state are given as

. the tangent and its slope, respectively. At 3.5, we find
closed shell. We have typically run 1000—-2000 Monte Carlothat the critical densityn, is zero. On the other hand, as

steps. Several hundred branches are produced at each Mogﬁown in Fig. 8, the chemical potential & 0.5 shows a

Carlo step in the evaluation of powers monotonically increasing behavior as a function of filling at

The filling n is defined am=Ng/Ng, whereN, is the | ; . o
. . east in the region oh=<0.95, indicating that phase separa-
number of electrons anll; is the number of sites. The dop- 4" oes not occur al=0.5, Hence, the phase-separation

ing concentration’ is defined asi=1-—n. The ground-state boundary is obtained as in Fig. 12. The critichlabove

entetrgylper tsr:te at filling I'St denoted bye(n). Hereafter we which no stable homogeneous state exists is estimated as
sett=21 as the energy unit. Je,=3.4+0.1. The critical J below which no phase-

separated state exists is estimatedl@zy 0.75+0.25.
The critical value ofJ. is obtained more accurately in

_Before investigating phase separation of the tWO-Ret 13 a5 3.436%0.0001 by solving the equation of motion
dimensionat-J model, we examine the finite-size effects on ¢ w0 electrons. The numerical result in this paper is con-

the ground-state energy in the free-fermion model on &gient with it. The estimation o, is consistent with that in
square lattice, in which we can calculate the exact ground- 2
state energy with any size of systems. We calculate the

lll. PHASE SEPARATION

ground-state energy per site of the free-fermion model in the - .
same system sizes under the same boundary conditions as .
those used in thé-J model. We fit them as a function of o5t ™

filling by a polynomial up to third order. As shown in Fig. 4,
the fitting curve(dotted ling almost coincides with the curve
in the thermodynamic limi{solid line). The finite-size ef- »
fects on the ground-state energy of the two-dimensio+ial E

model is probably not so different from those of the free- 20 égf‘s'i?cge

fermion model on a square lattice. Actually, as shown in Fig. a5 | © 40-site

5, the data of the ground-state energy per site of the two- ' & 34-site

dimensionalt-J model in finite-size clusters are well fitted sl . ggz:tg

by a polynomial as a function of filling with small deviation + 18-site

from the fit, indicating that the finite-size effects on the 35 ¢ . ‘ ‘
ground-state energy are small. ° oz o4 08 08 !

Figure 5 shows the ground-state energy per site as a func-
tion of filling in the two-dimensionat-J model atJ=0.5, FIG. 5. Ground-state energy per site as a function of filling in
1.0, 1.5, 2.0, 2.5, and 3.0. In this figure, the tangent from they . 1vo-dimensional-J model atJ=0.5. 1.0. 1.5 2.0 2.5. and 3.0
point atn=1 to the fitting curve gives a lower energy than gtaring from above. The dotted line denotes the same fit as in Fig.
the fitting curve in the region ai.<n<1 as represented by 4 ysing data points from=0 ton=0.7. The solid line denotes the
the solid line. Heren, is the electron density at the point of expected ground-state energy per site of the phase-separated state
contact between the fitting curve and the tangent. Hence, Wghich is determined on the basis of the Maxwell construction. The
can identify the region of phase separationnas&n<<1 on  dashed line al=0.5 is obtained by integrating the fdashed ling
the basis of the Maxwell constructidhThe energy and the in Fig. 8b).
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FIG. 6. Pairing-pairing correlation function as a function of dis-  Fig. 7. Reduced pairing susceptibility per sifg (/NS) as a

tance for(a) n=0.20 and(b) n=0.84 atJ=0.5 in 50-site clusters. ynction of filling atJ=0.5 for (a) extendeds-wave symmetry and
Crosses and solid diamonds denote the pairing-pairing correlatlon)) d, j-wave symmetry, where X+_2\r\>2P (r) and

functions for extended-wave symmetry and,2_,.-wave symme- N=s 1
try, respectively. Irl>2

Ref. 14 002:0.75). In the intermediate region af, the TP= P.(1). 4.2
phase-separation boundary estimated in this paper is qualita- T o>z T

tively similar to those in Ref. 4 or Ref. 15, but quantitatively

lower than them(Fig. 12. Figure 7 shows the filling dependence P /Ng, where

In the following sections, we show the numerical resultsN
at J=0.5. At thisJ, phase separation does not occur as dis-
cussed in this section.

is defined asN =3;>21. If the superconducting long-
range order exists, the value ,Qip/N remains finite in the
thermodynamic limit. In Fig. 7 the pairing-pairing correla-
tion for d,2_,2-wave symmetry is enhanced in the region of
0.6=n=1, and that for extendestwave symmetry is a little

In this section, we show numerical results on the pairing-€nhanced in the low-density regime. The numerical results

pairing correlation function®. (r) defined as showing that thed,2_y2-wave component of the pairing-
pairing correlation is dominant near half filling are consistent

with experimental indications, for example, the measure-
P (r)——E (As(ro)"AL(ro+r)). (4.0 ments of the phase coherence in bimetallic YBCO-Pb dc
Ns'rg SQUID’s

IV. PAIRING-PAIRING CORRELATION

Here, the singlet pairing operators. (r) are defined as
A(r)=c(Crix,TC -5, £Cry,=C_y), where+ and —
correspond to extendesiwave andd,2_2-wave symmetry, V. MOTT TRANSITION

respectively, and the unit vectors inandy directions are In Fig. 8, the filling dependence for the chemical potential

represented by andy, respectively. at J=0.5 is shown. The data of the chemical potential in
In Fig. 6, the pairing-pairing correlation function with finjte-size clusters are calculated as follows:
dy2_y2-wave symmetry decays very little for=0.84, while

the pairing-pairing correlation function witld,2_,2-wave e(ny)—e(n,)
symmetry quickly decays fan=0.20. a(n)= -y =2 (5.)
We define here the reduced pairing susceptibility as ni—n;
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close toa=2 reported in the case of the two-dimensional
Hubbard model at)=4." This suggests that the charge sus-
ceptibility y. defined byy.=dn/du diverges asy x5 !
toward half filling. Actually the chemical potential is fitted
well by the following form:

| = po| > 8%, (5.2

as denoted by the dashed line in Figg)8and(b). In order to
check this divergent behavior of the charge susceptibility, we
also investigate the doping dependence of chemical potential
for J=0.3 andJ=0.4. Figure 9 shows the same plot as in
Fig. 8 for J=0.3 andJ=0.4. From the fit of the numerical
data in Fig. 9, we estimatg.=1.88+0.03, «=1.83+0.17

for 3=0.3 andu.=1.57+0.02, «=1.98+0.07 for J=0.4.

The numerical results fa=0.3 andJ=0.4 also suggest that
the charge susceptibility.. diverges asy.>é 1. The diver-
gent behavior of the charge susceptibility is consistent with
recent photoemission measureméits.

If the hyperscaling relations are satisfied, the charge sus-
ceptibility x. near the transition point to an insulator is writ-
ten asy.x 8?99 wherez is the dynamical exponent and
d is the spatial dimensionalifyTherefore the numerical re-
sults suggest that the value of the dynamical exporest
four.

We define the spin structure factStk) as

1 _
S(=32 (S S)e". (5.3
Figure 1@a) shows the peak height of the spin structure fac-
tor S;,,,( Q) as a function of filling. The data near half filling
can be fitted well by the following form:

Smad Q)87 (5.4

as denoted by the dashed lifeg. 10(a), (b), and(c)]. We fit
the data near half filling a$,,{(Q) xé? and estimate
B=1.02+0.02. This suggests that the antiferromagnetic cor-
relation lengthé,, diverges toward half filling as

gmoc S5 1/2'

(5.5

under the assumption that the spin-spin correlation behaves
as (S-S )xe'Q.e "ém This behavior of the correlation
length has been reported on the two-dimensional Hubbard

model atU=4 (Ref. 7) and is consistent with the observa-
tion by neutron scattering experimenfs.

Under the assumption of the existence of the single char-
acteristic length scalé that is related to critical phenomena,
the hyperscaling theory has predicted that the length scale
¢ diverges asto 5~ toward the critical point, wherd is
the spatial dimensionaliy. The numerical results shown
_ _ above support the scaling hypothesis and suggest that the
wheren is taken asn=(ny+n,)/2. Here,n; andn, are  Mott transition in the two-dimension&lJ model atJ=0.5 is
taken to be adjacent closed-shell filling with boundary concharacterized by the dynamical exponert4, which is the

ditions fixed. Here, boundary conditions at half fiIIing are same as in the case of the two-dimensional Hubbard model
regarded as those under which the momentum configurationg y =4 8°

are closed shell in the free-fermion model on a square lattice.
In the thermodynamic limit, this definition of the chemical
potential reduces to the normal one{n)=gde(n)/an.

We fit the data near half filling in Fig. 8 g8 — p.x< 8%
and estimateu,=1.31+0.03 anda=1.78+0.29, which is

FIG. 8. Chemical potential as a function of filling && 0.5, (a)
linear plot,(b) u vs 6 plot, and(c) log-log plot. The dotted line in
(a) is obtained by differentiating the fit at=0.5 (dotted ling in
Fig. 5. The dashed line ifa) and (b) denotes a fit agu— u
= 2. The dashed and solid lines (o) correspond to the cases of the
dynamical exponerz=2 andz=4, respectively.

VI. SUMMARY

Numerical results presented in this paper are consistent
with the following experimental features found in the high-
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FIG. 9. Chemical potential as a function of filling at&0.3,
0.4, and 0.5 starting from abov@) linear plot,(b) « vs &2 plot. (c)
Log-log plot forJ= 0.3 (open symbolsandJ=0.4 (solid symbols.
The dashed line ia) and (b) denotes a fit asu— uc|< 8% The
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in the form of

point denoted by a cross is obtained by a Green'’s function Monte . . ) o
Carlo in a 10< 10-site cluster with two holes taken from Ref. 20. 11), and(iv) divergent behavior of the %:harge susceptibility
The dashed and solid lines i) correspond to the cases of the Suggested by photoemission experim&h¢Sec. V). .

In summary, numerical results on the two-dimensidnal

dynamical exponerz=2 andz=4, respectively.

ence in bimetallic YBCO-Pb dc SQUID'sRef. 16 (Sec.
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FIG. 10. Peak height of the spin structure facBy,(Q) as a
function of filling atJ=0.5, (a) linear plot,(b) Sy (Q) ~* vs & plot,
and(c) log-log plot. The dashed line if@), (b), and(c) denotes a fit

J model have been reported. The boundary of phase separa-
T, oxides: (i) the dy2_,2-wave symmetry of the supercon- tion is estimated on the basis of the Maxwell construction
ducting order parameter in the region of moderate doping(Fig. 12. The pairing-pairing correlation fod,2_2-wave
which is suggested by the measurements of the phase coheymmetry is enhanced in the region of &6=<1 atJ=0.5

(Fig. 7). The charge susceptibility. shows divergent behav-

IV), (i) the doping dependence of the antiferromagnetic corior asy.>= 6~ * toward half filling, indicating that the value of
relation length near half filling 4, 6~/ observed in neu- the dynamical exponert is 4 (Figs. 8 and ® The peak

tron scattering experimertfs(Sec. V), (iii) the large Fermi
surface behavior in the region of moderate dopingrig.

height of the spin structure fact&,,(Q) diverges toward
half filling as Sy Q)= 6! (Fig. 10. This leads to the di-
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Je,

FIG. 12. Schematic phase diagram of the two-dimensioial
model in the ground state. Solid diamonds denote the phase-
separation boundary obtained in Sec. Ill. In the higher-density re-
gion than the open diamond, the pairing-paring correlation for
dy2_y2-wave symmetry is enhanced. It should be noted that a fer-

FIG. 11. Momentum distribution function fon=0.84 at romagnetic phase may exist in the smalregion J=<0.1) sug-
J=0.5 in a 50-site cluster. In the inset, solid and dashed lines degested in Refs. 15 and 21. This ferromagnetic phase is beyond the
note the Fermi surface and the Brillouin zone boundary, respecscope of this paper.
tively. The center is th&" point.

Ino for sending me the experimental data for the charge sus-
vergence of the antiferromagnetic correlation lengthé@s ceptibility. The exact diagonalization program is partly based
x5 12 on the subroutine packageTffPACK VER.2" coded by H.

Nishimori and partly on the subroutines coded by K. Kusak-
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