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Ising lattices with =J second-nearest-neighbor interactions
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Second-nearest-neighbor interactions are added to the usual nearest-neighbor Ising Hamiltonian for square
lattices in different ways. The starting point is a square lattice where half the nearest-neighbor interactions are
ferromagnetic and the other half of the bonds are antiferromagnetic. Then, second-nearest-neighbor interac-
tions can also be assigned randomly or in a variety of causal manners determined by the nearest-neighbor
interactions. In the present paper we consider three causal and three random ways of assigning second-nearest-
neighbor exchange interactions. Several ground-state properties are then calculated for each of these lattices:
energy per bond,, site correlation parametqr,, maximal magnetizatiop, and fraction of unfrustrated
bondshg . A set of 500 samples is considered for each 8lz@umber of spinsand array(way of distributing
the N sping. The properties of the original lattices with only nearest-neighbor interactions are already known,
which allows realizing the effect of the additional interactions. We also include cubic lattices to discuss the
distinction between coordination number and dimensionality. Comparison with results for triangular and hon-
eycomb lattices is done at specific poir{iS0163-18207)08721-3

[. INTRODUCTION by extending the interactions to neighbors beyond the closest
ones. Thus, for SL's we can go from=4 (when only
Ground state properties of Ising lattices with randomlyFNNI's are consideredto «=8 (when all SNNI's are
distributed +=J exchange interactiongbonds have been present For FNNI's in two dimensions it is usually ac-
studied from different points of viewUsually they consider cepted that a phase transition from a spin-glass phase to a
first-neighbor or nearest-neighbor interactioENNI's) ~ nonordered magnetic state would occurTat0.> Very re-
only. In the present paper we calculate and discuss groungently, evidence has been provided indicating that such a
state properties of square latticéSL’s) where second- phase transition could occur at>028 It is a legitimate ques-
nearest-neighbor interaction’SNNI's) are added to the tion to ask whether SNNI's would help to stabilize such a
Hamiltonian, restricting ourselves to the case of equal magspin glass phase.
nitude and equal number of ferromagnetic and antiferromag- If only half the SNNI's are present while the others are
netic interactions. vacant, thenc is 6 as in simple cubic lattices in three dimen-
The starting point is a previous work where 500 samplessions. However, these two systems are not equivalent from
(bond distributionswere prepared for 43 different arrays of the topological point of view and their results are quite dif-
SL’s with FNNI’s, increasing size from 4 to 64 spihsVe  ferent as shown in Sec. V. Then, by introducing interactions
use exactly those same individual lattices, defining SNNI'sto distant neighbors we are proposing a new way of ap-
on them according to several different procedures to be dgdroaching the spin-glass behavior fard Ising lattices.
fined below. On the other hand, 25 arrays with 500 samples Another reason for the present work is to extend the char-
each, were prepared in simple cubic lattices. acterization of the recently defined order parameggrand
The work done so far on this kind of problem dealshy, which have proven to be more drastic than previously
mostly or exclusively with FNNI's. On the other extreme, defined parameters available in the literatioth quanti-
mean-field approaches are not suitable for the systems dées are state-oriented parameters that are complementary
scribed above, where lack of homogeneity and local field¢and more computer demandjnthan calculations focused
are extremely important. As a way to make progress towar@n ground state energy and other related propetfiéEhe
a more realistic description of magnetic lattices with compet-microscopic approach used here can also be used to comple-
ing interactions we introduce here several ways of assigningient macroscopic treatments based on exact determination
SNNI's, calculate physical magnitudes and discuss the gersf the partition functiort**
eral trends. We also use this opportunity to study the shattered mag-
Other important motivation for this work is related to the netization of these systems; this is an idea closely related to
discussion concerning whether these lattices represent spiataggered magnetization in antiferromagnetic systems paying
glass behavior, with order parameters that do not vanish iattention to the absolute value of the average magnetization
the thermodynamic limit.It has been shown that increasing (mg) per site. It is known(and expectexthat the total mag-
the dimensionality such systems get closer to spin gldssesnetization should average to 0.0 for fairly large systéms.
When stepping from two to three dimensions the coordinaHowever, some ground states may have surprisingly large
tion numberk increases, but this can also be accomplishedghattered magnetizations, which backs the idea of a site or-
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dering. The maximum absolute value of such magnetization A computer program has been designed based on partial
will be called maximal magnetization of the ground state.enumeration of the configuration space. The idea is similar to
Usually two (or an even numbgiof states will possess such the branch and bounailgorithmt?*3but the present method
maximal magnetization in opposite directions canceling eaclets thresholds after considering rows rather than single
other when averaging over the ground manifold. However, ifspins. The ground manifold is obtained by finding the least
ergodicity is broken in such a way as to separate states witenergyE, that also corresponds to the minimal frustration. It
maximal magnetization, a net magnetization can remain ifis more convenient to deal with the ground state energy per

these systems as will be discussed below. bond:
To calculate exactly the microscopic parametgrs,
Mg, andhy based on all the states in the ground manifold, Ky
we had to pay the price of restricting ourselves to small €~ g 2

systems according to the computer facilities we can access.
However' some genera' tendencies toward the thermod)yyhereB is the total number of bonds in the Iattice, which
namic limit can be obtained since the reported values arflepends on the topology and the way to define the interac-
stable enough. tions to second-nearest neighbors. For exar@ple 2N for
Section Il defines the Hamiltonian and the magnitudes t>L's with FNNI's only and it is 3N for simple cubic lattices.
be calculated and studied later. In Sec. Ill we present differGenerally speaking, in SL’s we can write that
ent ways of assigning SNNI's. Section IV presents the results
for the properties for SL’s under the different ways of defin- B= NX « &)
ing SNNI's. Section V discusses such results comparing 2
among the different possibilities of defining SNNI's. When
possible, a comparison is made with results for simple lat- The minimal circuit defined by bonds is called plaguette,
tices calculated here and also with previously reported resultghich is said to be curved or frustrated when it is formed by
for triangular, square, and honeycomb lattices. At the samé&n odd number of AF bonds. Otherwise the plaquette is said
time several conclusions are obtained. to be flat or unfrustrated. A theorem shows that the frustrated
bonds in a ground state can be found when curved plaquettes
are joined in pairs by means &ustration segmentswhich
Il. THEORY AND DEFINITIONS are defined as imaginary lines joining the centers of two
curved plaquettes passing over frustrated bdfidsThe to-
tal energy can be calculated by weighting all satisfieds-
trated bonds with a negativépositive unit of energy. We
have made use of this theorem to check our computer pro-
grams based on enumeration of the low-energy portion of the
configuration space. However, these technical aspects are
N omitted for reasons of space and continuity. The interested
H=S J.sS @ reader is kindly referred to the literature for det&it1°
<= ' The site order parametgy has been introducédhspired
by the previously defined(0) order parameter due to Ed-

where the sums extend over all pairs of nearest neighbordards and Andersofl. Its expression is

The size of a lattice is the number of spiNs Each way
of regularly distributing theN spins is called an array. We
will consider distributions in two dimension($L’s) and in
three dimensiongsimple cubic lattices Spins interact by
means of the well-known Ising Hamiltonian:

(square and simple cubic lattigesnd second-nearest neigh- LN
bors(SL’s only), S; andS; represent the third component of _= sl div W 4
the spins at sites and j, respectively. The bond;; in be- Pe=N 2‘1 Zﬂz l— @

tween such a pair of spins can be eithed energy unit . )
(ferromagnetic ofF) or +1 energy unit(antiferromagnetic Where a is an index that runs over the/ ground states.
or AF). Symbol| | represents fch_e absolute value of the variable and
The original lattices used on a previous pdp@NNI's ~ div means integer division. _
only) were formed by randomly distributing these bonds = 1"€ magnetizationuq per site(or shattered magnetiza-
through the lattice, half and half AF. SNNI's will be speci- 1M can be calculated by means of
fied in several manners, all preserving the condition of equal N
proportion ofF and AF bonds. After bonds are allotted they =i 2 s
remain fixed at their positions. Ka NW =1 |7
A state is represented by an ordered set of spin orienta-
tions. Here we are interested in the properties of the ground A major inconvenience concerning [or g(0)] andug is
level of these systems, which is the reason to use igdex  that they are strongly dependent on the ergodic breaking of
characterize the properties calculated and discussed belowhe configuration space. In the present paper we calculate
Since the Hamiltonian of EqJ) is invariant under the si- them by determining in a first run the largest region or island
multaneous inversion of all spins, we need to consider halformed by bonds that do not frustrate in any of the states of
the configuration space only. Thu4/, represents the degen- the ground manifold. In a second run, the spins of this region
eracy of the ground manifold for such space, whil&/2 free of frustration are obtained in a deterministic unique way,
would be the degeneracy in the complete configuratiorwhile all the others are let free to flip, using the algorithm
space. mentioned above.
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FIG. 1. Notation for first-nearest-neighbor interacti¢RBINI's) H ' ’ HX || | |XH |
and second-nearest-neighbor interacti®¥NI’s) in one of the 16 O—0=0=0="", O—O0=0=—=0—=
possible square plaguettes. Spin at site denoted by, . FNNI's c) C1 d) c2
lie along the sides of the square, while SNNI's take place along the etz tziaits
diagonals of the square. \HX| H\ N |/H/
O—U=0=0—" O—0=0=0—"
Parameteihy represents the fraction of bonds t?(;at never (L\KQ\_\‘CLXCLX (L H_C')/ i)\l\
frustrate when scanning the entire ground manifolthe oINS T ST TN TN T
corresponding expression is JLZ(H)E_SCLZCL_,’{ (IDIZ(IJI>Z<(|)§<|>\_\{{
L0 s INEINDE INISIA
P D e e CUAVINC e
This parameter does not depend on the manner in which J)___“%(L:QX
ergodicity is broken. Among its very interesting properties | H><||X ><
we can mention the values close to 0.50, 0.50, and 0.75 for O —D=0—0==",
triangular, square, and honeycomb lattices, respectively. ||><H_’ 'X
Moreover, these three values remain constant independent of T‘)_(l)%‘ Xﬁ%
size and shapg/ 182! o>—<o:o= Zay
If we remove from the original lattice all bonds that frus- ‘ z S

trate in any of the ground states we get a diluted lattice

formed only by bonds that never frustrate. The ratio of the FIG. 2. (a) A particular 4x4 square lattice without SNNI's

number of bonds in the diluted lattice to the number of bondg«=4). (b) All SNNI's are defined randomly with the constraint

in the original lattice is preciself,. It has been recently that the number of ferromagnetic interactions equals the number of

shown that the diluted lattices present a typical percolatiorantiferromagnetic interactionsc&8). (c) Causal wayC1 illus-

curve with respect tChg as independent variabfé.Other trated in Fig. 3 is applied to this example6.5). (d) Causal way

characteristics of this percolation are presently under studg2 illustrated in Fig. 4 is applied to this exampla<£6.0). ()

and will be published later on. Same number of SNNI's as i€1 but distributed at randoms(
=6.5). (f) Same number of SNNI's as i€2 but distributed at

random (=6.0). (g) Superposition ofC1 to those cases where
[ll. SECOND-NEAREST-NEIGHBOR INTERACTIONS SNNI's defined byC2 vanish (=8.0).

Almost all of the papers written on the lattices that con-
cern us in the present study simply ignore long range interef random assignment while in the second one we will say
actions. On the other extreme, mean-field approximations argis is a causal assignment.
not suitable for systems where local fields are nontrivial. The The different situations are presented in Fig. 2, where we
introduction of SNNI's is one step further in the direction of use the same symbols that will be introduced in the text to
describing more realistic systems, where intermediate rangeharacterize different ways of assigning SNNI's. The con-
interactions play some role. centration of SNNI’s is different through the cases studied in
In square lattices, SNNI's occur naturally along the diag-Fig. 2, affecting average coordination numlagn a way that
onal of the square cell or plaquette, as schematically prewill be discussed below.
sented in Fig. 1. The spin at siteis designated bys;, the Random assignment:(R). Here the SNNI's are assigned
FNNI's are J15, Jos, Jas, andJq3, while the SNNI's are randomly in the same way as FNNI's. That is to say, the
denoted byJ,; andJq, (|Jij|=1 when different from zerpo number of antiferromagnetic SNNI's is equal to the number
The interactions to second-nearest neighbors can bef ferromagnetic SNNI's. However, the proportion in which
thought as either independent or as a consequence of tIBNNI's are present can be varied freely determining
nearest-neighbor interactions. In the first case we will spealvhich is an independent variable of interest in the present
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FIG. 3. lllustration of the way the causal wai works for each FIG. 4. lllustration of the way the causal w&? works for each

of the 16 plaquettes. FNNI's are previously defined along the sidesf the 16 plaquettes following the same presentation of Fig. 3.
of the square plaquette, while SNNI's arise along the diagonals of

the square plaquette as defined in the textGar The multiplicity  As in previous case, null bonds do not count. This is pictured

of each case is given underneath. for all plaquette configurations in Fig. 4, and it is applied to
] o . the example in Fig. @)).
work. This way of defining SNNI's is denoted (). So Among the differences betwedl andC2 there is one

R(4) corresponds to the original SL where only FNNI's arethat deserves special attention. If we make use of the multi-
present with coordination number 4, whiR¢8) corresponds plicity of the configurations given in Figs. 3 and 4 we realize

to the fully saturated lattice where all possible SNNI's havethat « is different in these two cases. From the 16 possible
been defined randomly, with coordination number 8. Bothpjaquettes 10 have SNNI's f&1 (Fig. 3 and only 8 have

extreme cases are presented on the top of Fig. 2. them for C2 (Fig. 4). This essentially means that in the av-
Causal assignmenfhe general idea here is that FNNI's grage

are a consequence of internal fields that automatically define
all remaining interactions, in particular SNNI's. However, x(C1)=6.5, x(C2)=6.0 )
there is not a unique way in which this can happen. So we ' e
will now present two of such possibilities. . . o

CL In this procedure both SNNI's of a plaquette are It follows _that for an appropriate comparison it is conve-
given the same sign as most of the adjacent FNNI's. WheRient to define random concentrations for these values of

there is no net majority, such SNNI's are taken to be vacangVeérage coordmatuzjn numltl)erg. o d
and they do not contribute te. This is illustrated in Fig. 3 . Elh It correspon hS toha otting SNNII S mgagan om way
for all possible plaquettes, while the application of the W/t the constraint that the average value<ab the same as

method to a particular example is realized in Fi¢g)2 in C1. Namely,R(6.5)=RL1. This is illustrated in Fig. @).

The signs of the nonvanishing SNNI's are obtained as R2 It corresponds to assigning SNNI's in a random way,

follows: so to havex=6.0 as inC2. Namely,R(6.0)=R2, as illus-
trated in Fig. Zf).
Sigr(J%)=sigr(ij)=sigr[J12+J24+Jg4+Jlg]. @ It follows from Figs. 3 and 4 that1 andC2 coincide in

assigning SNNI's for plaquettes with multiplicity 1, while

When the sum vanishes, théfi}=J$1=0, and such bonds they are complementary for all other plaguettes. That is to
are taken as nonexistent, so they are not considered in t&Y, all SNNI's are different from zero invokinG2 first,
calculations. then invokingC1 for those still nonexistent SNNI's. Then

C2.There are always two paths connecting the same paif/€ can define a last (_:ausal way of realizing the interactions
of second-nearest neighbors via two steps over first neigH© Second-nearest neighbors. N
bors. In assignmen€2, SNNI's are determined as to rein- S It is defined as the superposition 6 to C2, when-
force the effective interaction reached by simultaneously fol€ver C2 fails to assign SNNI's. This is a saturated lattice,
lowing these two paths. Namely, a diagonal interaction in théVith «=8.0, so it can be compared ®(8). This is pre-
square plaquette is obtained as the normalized overlap of tr€nted in the last picture of Fig. 2.
two ways that connect the same points following the sides of L€t us stress the fact that for each of the 500 samples, for
the square. If these two ways lead to different results, thé& given array, in each size of SL's, we assign all SNNI's and
superposition yields a null result. This manner of definingthen proceed to calculate the physical parameters. We veri-
SNNI's does not bring additional frustration to the system. fied that the distributions of the causal ways are centered at

The mathematical expressions for this assignment are the expected values af N
It is also of interest to separate the roles of connectivity

(J1oX Jogt J15X J20) and dimensionality in these Ising lattices. Consequently we

J(l:fz 5 ; also prepared sets of 500 samples in three-dimensional arrays
with cubic symmetry with FNNI's only. Notice that the co-
ordination number is 6 for simple cubic lattices, the same as

3G2— - (J13X J1p1 J34X J2g) ®) in C2 andR2. A modified algorithm was used that applies

2 bounds to rows and planes.
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FIG. 5. Saturated values ef; for the random and causal ways
of defining SNNI's presented in the text, corresponding to different 0.0 ' ; ' v
. y . 10 20 30 40 50
coordination number. Additionally, sets of 500 random lattices
were defined to cover the intermediate cases.of N
IV. RESULTS FIG. 6. Site correlation parametgy as function ofN for six

R its diff h h ing f | different lattices defined in the text. While the two-dimensional
esults arfrer Somew ,at,W en gomg rom one Samp e tc?attices decrease with different slopes as functions of kizehe
another. We want to minimize fluctuation effects looking for . \hic |attice shows a saturated value for.

correspondence of our results with those that are valid in the
thermodynamic limit. All results to be reported below corre-  The results for maximal shattered magnetization per
spond to arithmetic averages for 500 samples for each arrayample corresponding to>66 lattices with causal SNNI's
reported here. . . assignments are presented in the forms of histograms in Fig.

The least sensitive parametereg, which saturates very 7 average values over the 500 samples are given in the
fast with respect to sizh. Although not shown he.re, We can insert. C1 presents a more extended distribution ti@2
say that the different curves, vs N, corresponding to the  The remarkable fact is that for all distributions a net magne-
different way of assigning SNNI's, are clearly stabilized for tjzation remains in the lattices. One could say that at least
N=30. Such size independent result will be called saturate¢h ee spins out of five point in one direction while the re-
value of the paramete€2 exhibits the lowest ground-state majning two spins point in opposite direction. This observa-
energy at about-0.75. On the other extremB has the tjon is valid for the ergodic separation mentioned before.
highest value forey= —0.49. The results for the fraction of nonfrustrated borgsare

The saturated values ef; as function ofx are presented presented in Fig. 8. The tendencies of the results for each

in Fig. 5. The seven different assignments are denoted byay of assigning SNNI's do not show size dependence so
symbols that will be used in the remaining illustrations. In

addition to the seven lattices defined in Fig. 2, we prepared

samples with random assignments of SNNI's to cover the e —
interval 4.6=x=<8.0. The corresponding saturated average £
values are represented by diamonds in Fig. 5, showing thai I =m,7g=025
the cases of random assignment lay along a concave curwvt <p>,=026
containing all R(«x) points. Evidently the causal SNNI's

show lower values oty than the corresponding values for v
random assignments. In particul@2 leads to the lowest
value ofe; among all the cases reported in the present work.
A remarkable fact is that the cubic lattices show a saturation
value intermediate as compared to those of some randorr
ways of assigning SNNI's in two dimensions.

The results ofpy as functions of sizé\ are presented in
Fig. 6 for six different ways of assigning SNNI's. The causal A
ways show higher values and lower rate of decrease for two n
dimensions. The cubic case presents an apparently saturateu

value forpg at 0.6. Anyhow, it is important to remember that G, 7. Histograms showing the prevalence of shattered magne-
the value and tendency of this parameter are determined Rzation in the ground states of»66 lattices with causal ways of
the way the ergodic separation is done. The present calcul@efining SNNI's. For each of the 500 samples the maximal shat-
tions made use of the ergodic separation given by the largestred magnetization is found. The height of the histograrepre-
region that is free of frustration if the ground level as men-sents the number of samples with maximal shattered magnetization
tioned above. in the corresponding interval.

4



14 328 A.J. RAM]REZ-PASTOR, F. NIETO, AND E. E. VOGEL 55

TABLE |. Saturated values dif for the seven lattices defined

1.0 in Fig. 2 plus three other two-dimensional lattices informed in the
] literature. Hexagonal: Ref. 15; square: Ref. 2; triangular: Ref.
hg °e 2% 0 ;;; é ;;; : 2. The coordination numbex for each lattice is given in the second
column.
0.5- v vV VUV g WgV 8 Fow ¥
Lattice K hg
Hexagonal 3 0.75
0.0——— . . . Square 4 0.50
1.04 Triangular 6 0.50
h Cubic 6 0.50
] " . R2 6 0.70
RS Ry o . 079
051 2rmemtmemasmens R1 6.5 0.60
C1 6.5 0.70
R 8 0.50
0.0l . . . S 8 0.64
0 10 20 30 40 50
N ways of assigning SNNI's. Larger lattices should be used

FIG. 8. Parameteh, representing the fraction of the lattice that before drawing any firm conclusion in this respect. Values
remains free of frustration for the entire ground manifold as func-for C1 andC2 are not notoriously different, although the

tions ofN. For the seven different lattices this variable is essentiallytendency is thaC1 leads to slightly more size independent
results. On the other hand, the results for cubic lattices show-

ing a behavior close to a saturated valuedgr tells that this
they are already saturated for small samples. The causgRrameter is more sensitive to dimensionality than to coor-
ways give higher values fdr, beingC2 the one that gives dination number. _
the highest value close to 0.77. It is interesting to remember The *J Ising lattices with SNNI's defined in an opti-
thath, is independent of ergodic separation. mized causal way are still candidates for a spin-glass behav-
ior. At least the site order paramefg§ shows a more stable
value in these modified lattices than in the usual random
lattices with FNNI's only. It would be interesting to extend

Generally speaking the random increase of the coordinahe present analysis to increase both dimensionality and
tion numberx leads to an increase in the energy per bondrange of the interactions. An immediate example are cubic
€;. It also affects the site correlation paramefgy, the |attices with SNNI's added in a causal optimized way.
maximal shattered magnetizatipry and fraction of nonfrus- The ergodic separation done here considered fixing the
trated bonds, . However, for these last three parameters thespins in the largest region free of frustration. From all the
dependence is not direct as other characteristics such as ggound states, it is possible to isolate those states that provide
ometry and topology play important roles. the largest net magnetization in the lattice leading to the

Frustration can be diminished to some extent whemmaximal shattered magnetization. This can be realized in real
SNNI's are determined causally by FNNI's in a way that cansystems by means of a strong magnetic field applied during
be optimized. A way to do this i€2, where SNNI's are to quenching. States with maximal magnetization are always
be chosen so they reinforce the action of FNNI's. Then thepresent in the systems under study as shown by their spectral
ground-state energy is lower atg increases. These com- distributions presented in Fig. T2 shows a more homoge-
ments apply in a moderated way for the caseCaf neous response based on narrower maximal magnetization

The energy per bond saturates very quickly with size ndistribution as compared ©1. Different values are obtained
matter which way of assigning SNNI's is chosen. The resultgor this magnitude when different ways of breaking ergodic-
for square lattices witliR2 and simple cubic lattices are ba- ity are utilized. We have defined a definite way of carrying
sically the same. This shows that energy does not discrimien this process that leads to this relatively high value of
nate whether the coordination number comes via dimensiorshattered maximal magnetization. At the moment we cannot
ality or via SNNI's, as far as these interactions are assignegday if this is an artifact of the small sizes of the samples used
randomly. here.

As for the site correlation parametgy, both C1 and The fraction of nonfrustrated bonds is a very interesting
C2 yield an increase in the values. Even better, such highgsarameter in many respects. No matter which way of assign-
values decrease in a moderate wayNasicreases. It is not ing SNNI's is chosenh, saturates rather quickly with size.
clear from the results of the small samples that we couldrhere is a clear discrimination between causal and random
process until now, whethegy will go to zero in the thermo- mechanisms of assigning SNNI's as the former shows larger
dynamic limit. This argument is backed by the size indepenvalues for this parameter. A summary of the properties of
dence ofpg for cubic lattices as presented in Fig. 6. this parameter is given in Table I. The causal ways are

From the results presented above it follows that site corelearly different: C2 presents less frustration th@1. The
relation parametepy does not show saturation for any of the upper part of Fig. 8 shows that there is a drastic discrimina-

size independent.

V. DISCUSSION AND CONCLUSIONS
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tion among lattices with the same=6: The cubic lattices SNNI's frustrate. We notice that the latter happen only inside
present more frustration than SL’s with similar connectivity. frustrated square plaquettes while the random assignment
Actually causal ways of assigning SNNI's do not alwaysR1 can take place in any square plaquette thus spreading
reduce frustration: Fig. 8 clearly shows that saturated valfrustration through the lattice.

ues forhg are larger forR2 than forC1 or S.

In a cubic lattice any bond is shared by four square
plaquettes, any of which can frustrate. On the other hand, in
a SL with C2 any bond is shared by two square plaquettes
and either 0, 2, or 4 triangular plaquettes. However, due to The first two authors were partially funded by CONICET,
the way of constructin€2, none of the triangular plaquettes Fundacim Antorchas(Argenting and the European Eco-
can be curved so the chances of frustrating the common bombmic Community through project ITDC-240. The last au-
are due to the two adjacent SL’s only. thor was partially supported by FONDECY(Chile) under

In this way C2 is built as to increase the connectivity in Contract No. 1960972, and Direcaide Investigacio y De-
the lattice without bringing in more frustration. The original sarrollo (Universidad de La Fronteraunder Contract No.
frustration remains local while it is diluted in several pos-9408. The three authors thank Instituto de Verano de Fisica
sible interactions, decreasing and increasindyy. This is  of Universidad Austral de Chile for providing the opportu-
not so forC1 where half the triangular lattices brought in by nity to begin this collaboration.

ACKNOWLEDGMENTS

1K. Binder and A. P. Young, Rev. Mod. Phys8, 801 (1986. 135, Kobe and A. Hartwig, Comput. Phys. Commus, 1 (1978.
2E. E. Vogel, J. Cartes, S. Contreras, W. Lebrecht, and J. Villegas:*G. Toulouse, Commun. Phy, 115 (1977.
Phys. Rev. B49, 6018(1994. 153, vannimenus and G. Toulouse, J. Physl@C537 (1977.
%1. Morgenstern, Phys. Rev. B5, 6071(1982. 18F. Barahona, R. Maynard, R. Rammal, and J. P. Uhry, J. Phys. A

4R. N. Bhatt and A. P. Young, iHeidelberg Colloquium on 15, 673(1982.

Glassy Dynamics, Proceedings, Heidelberg, 19&dited by J. 175 F Edwards and P. W. Anderson, J. Phy§, B65 (1975.

L. Hemmen and I. Morgenstern, Lecture Notes in Physics Vol.1sp 5 Ramrez, Magister thesis, Universidad Austral de Chile,
275 (Springer-Verlag, Heidelberg, 1986

5 . Valdivia, 1996.

sll Morgenstern and K. Binder, Phys. Rev.28, 288 (1980. 19F. Nieto, Magister thesis, Universidad Austral de Chile, Valdivia,
T. Shirakura and F. Matsubara, J. Phys. Soc. J.2338 1996

7E(1§9?/' | s. Cont W. Lebrecht. and J. Cartes. J. M 20 E. Vogel and W. Lebrecht, Z. Phys. B2, 145(1997).

I;/Ia. n Ol\?lzt’er .140?24{4??7853@99% recht, and J. Lartes, J. Madibyy, | eprecht and E. E. Vogel, iMagnetism, Magnetic Materials

8 gn. . ' and their Applicationsedited by F. Leccabue and V. Sagredo
H. Freund and Peter Grassberger, J. Phy22A4045(1989. (World Scientific, Singapore, 1996p. 304

°J. A. Blackman and J. Poulter, Phys. Rev4& 4374(199). i » SINQapore, PP .

10| Saul and M. Kardar, Phys. Rev. 48, R3221(1993. E. E.. Vogel, S. C?ontrerag, J. Cartes,_ and M A. Osoridylag-

11 . saul and M. Kardar, Nucl. Phys. 832 641 (1994). netism, Magnetic Materials and their Applicatio(Ref. 2J), p.

24, A. Taha,Integer ProgrammingAcademic, New York, 1966 152.



