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Ising lattices with 6J second-nearest-neighbor interactions
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Second-nearest-neighbor interactions are added to the usual nearest-neighbor Ising Hamiltonian for square
lattices in different ways. The starting point is a square lattice where half the nearest-neighbor interactions are
ferromagnetic and the other half of the bonds are antiferromagnetic. Then, second-nearest-neighbor interac-
tions can also be assigned randomly or in a variety of causal manners determined by the nearest-neighbor
interactions. In the present paper we consider three causal and three random ways of assigning second-nearest-
neighbor exchange interactions. Several ground-state properties are then calculated for each of these lattices:
energy per bondeg , site correlation parameterpg , maximal magnetizationmg , and fraction of unfrustrated
bondshg . A set of 500 samples is considered for each sizeN ~number of spins! and array~way of distributing
theN spins!. The properties of the original lattices with only nearest-neighbor interactions are already known,
which allows realizing the effect of the additional interactions. We also include cubic lattices to discuss the
distinction between coordination number and dimensionality. Comparison with results for triangular and hon-
eycomb lattices is done at specific points.@S0163-1829~97!08721-3#
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I. INTRODUCTION

Ground state properties of Ising lattices with random
distributed 6J exchange interactions~bonds! have been
studied from different points of view.1 Usually they consider
first-neighbor or nearest-neighbor interactions~FNNI’s!
only. In the present paper we calculate and discuss grou
state properties of square lattices~SL’s! where second-
nearest-neighbor interactions~SNNI’s! are added to the
Hamiltonian, restricting ourselves to the case of equal m
nitude and equal number of ferromagnetic and antiferrom
netic interactions.

The starting point is a previous work where 500 samp
~bond distributions! were prepared for 43 different arrays
SL’s with FNNI’s, increasing size from 4 to 64 spins.2 We
use exactly those same individual lattices, defining SNN
on them according to several different procedures to be
fined below. On the other hand, 25 arrays with 500 samp
each, were prepared in simple cubic lattices.

The work done so far on this kind of problem dea
mostly or exclusively with FNNI’s. On the other extrem
mean-field approaches are not suitable for the systems
scribed above, where lack of homogeneity and local fie
are extremely important. As a way to make progress tow
a more realistic description of magnetic lattices with comp
ing interactions we introduce here several ways of assign
SNNI’s, calculate physical magnitudes and discuss the g
eral trends.

Other important motivation for this work is related to th
discussion concerning whether these lattices represent
glass behavior, with order parameters that do not vanis
the thermodynamic limit.3 It has been shown that increasin
the dimensionality such systems get closer to spin glass4

When stepping from two to three dimensions the coordi
tion numberk increases, but this can also be accomplish
550163-1829/97/55~21!/14323~7!/$10.00
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by extending the interactions to neighbors beyond the clo
ones. Thus, for SL’s we can go fromk54 ~when only
FNNI’s are considered! to k58 ~when all SNNI’s are
present!. For FNNI’s in two dimensions it is usually ac
cepted that a phase transition from a spin-glass phase
nonordered magnetic state would occur atT50.5 Very re-
cently, evidence has been provided indicating that suc
phase transition could occur atT.0.6 It is a legitimate ques-
tion to ask whether SNNI’s would help to stabilize such
spin glass phase.

If only half the SNNI’s are present while the others a
vacant, thenk is 6 as in simple cubic lattices in three dime
sions. However, these two systems are not equivalent f
the topological point of view and their results are quite d
ferent as shown in Sec. V. Then, by introducing interactio
to distant neighbors we are proposing a new way of
proaching the spin-glass behavior for6J Ising lattices.

Another reason for the present work is to extend the ch
acterization of the recently defined order parameterspg and
hg , which have proven to be more drastic than previou
defined parameters available in the literature.7 Both quanti-
ties are state-oriented parameters that are complemen
~and more computer demanding! than calculations focused
on ground state energy and other related properties.8,9 The
microscopic approach used here can also be used to com
ment macroscopic treatments based on exact determina
of the partition function.10,11

We also use this opportunity to study the shattered m
netization of these systems; this is an idea closely relate
staggered magnetization in antiferromagnetic systems pa
attention to the absolute value of the average magnetiza
^mg& per site. It is known~and expected! that the total mag-
netization should average to 0.0 for fairly large system1

However, some ground states may have surprisingly la
shattered magnetizations, which backs the idea of a site
14 323 © 1997 The American Physical Society
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14 324 55A. J. RAMÍREZ-PASTOR, F. NIETO, AND E. E. VOGEL
dering. The maximum absolute value of such magnetiza
will be called maximal magnetization of the ground sta
Usually two~or an even number! of states will possess suc
maximal magnetization in opposite directions canceling e
other when averaging over the ground manifold. Howeve
ergodicity is broken in such a way as to separate states
maximal magnetization, a net magnetization can remain
these systems as will be discussed below.

To calculate exactly the microscopic parameterspg ,
mg , andhg based on all the states in the ground manifo
we had to pay the price of restricting ourselves to sm
systems according to the computer facilities we can acc
However, some general tendencies toward the thermo
namic limit can be obtained since the reported values
stable enough.

Section II defines the Hamiltonian and the magnitudes
be calculated and studied later. In Sec. III we present dif
ent ways of assigning SNNI’s. Section IV presents the res
for the properties for SL’s under the different ways of defi
ing SNNI’s. Section V discusses such results compar
among the different possibilities of defining SNNI’s. Whe
possible, a comparison is made with results for simple
tices calculated here and also with previously reported res
for triangular, square, and honeycomb lattices. At the sa
time several conclusions are obtained.

II. THEORY AND DEFINITIONS

The size of a lattice is the number of spinsN. Each way
of regularly distributing theN spins is called an array. W
will consider distributions in two dimensions~SL’s! and in
three dimensions~simple cubic lattices!. Spins interact by
means of the well-known Ising Hamiltonian:

H5(
i, j

N

Ji j SiSj , ~1!

where the sums extend over all pairs of nearest neigh
~square and simple cubic lattices! and second-nearest neig
bors~SL’s only!, Si andSj represent the third component o
the spins at sitesi and j , respectively. The bondJi j in be-
tween such a pair of spins can be either21 energy unit
~ferromagnetic orF! or 11 energy unit~antiferromagnetic
or AF!.

The original lattices used on a previous paper2 ~FNNI’s
only! were formed by randomly distributing these bon
through the lattice, halfF and half AF. SNNI’s will be speci-
fied in several manners, all preserving the condition of eq
proportion ofF and AF bonds. After bonds are allotted the
remain fixed at their positions.

A state is represented by an ordered set of spin orie
tions. Here we are interested in the properties of the gro
level of these systems, which is the reason to use indexg to
characterize the properties calculated and discussed be
Since the Hamiltonian of Eq.~1! is invariant under the si-
multaneous inversion of all spins, we need to consider h
the configuration space only. Thus,W represents the degen
eracy of the ground manifold for such space, while 2W
would be the degeneracy in the complete configurat
space.
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A computer program has been designed based on pa
enumeration of the configuration space. The idea is simila
the branch and boundalgorithm12,13 but the present method
sets thresholds after considering rows rather than sin
spins. The ground manifold is obtained by finding the le
energyEg that also corresponds to the minimal frustration.
is more convenient to deal with the ground state energy
bond:

eg5
Eg

B
, ~2!

whereB is the total number of bonds in the lattice, whic
depends on the topology and the way to define the inte
tions to second-nearest neighbors. For exampleB is 2N for
SL’s with FNNI’s only and it is 3N for simple cubic lattices.
Generally speaking, in SL’s we can write that

B5
N3k

2
. ~3!

The minimal circuit defined by bonds is called plaquet
which is said to be curved or frustrated when it is formed
an odd number of AF bonds. Otherwise the plaquette is s
to be flat or unfrustrated. A theorem shows that the frustra
bonds in a ground state can be found when curved plaque
are joined in pairs by means offrustration segments, which
are defined as imaginary lines joining the centers of t
curved plaquettes passing over frustrated bonds.14,15 The to-
tal energy can be calculated by weighting all satisfied~frus-
trated! bonds with a negative~positive! unit of energy. We
have made use of this theorem to check our computer
grams based on enumeration of the low-energy portion of
configuration space. However, these technical aspects
omitted for reasons of space and continuity. The interes
reader is kindly referred to the literature for details.2,14–16

The site order parameterpg has been introduced
2 inspired

by the previously definedq(0) order parameter due to Ed
wards and Anderson.17 Its expression is

pg5
1

N (
i51

N U(
a

Si
aUdiv W, ~4!

where a is an index that runs over theW ground states.
Symbol u u represents the absolute value of the variable a
div means integer division.

The magnetizationmg per site ~or shattered magnetiza
tion! can be calculated by means of

mg5
1

NW (
i51

N U(
a

Si
aU. ~5!

A major inconvenience concerningpg @or q(0)# andmg is
that they are strongly dependent on the ergodic breaking
the configuration space. In the present paper we calcu
them by determining in a first run the largest region or isla
formed by bonds that do not frustrate in any of the states
the ground manifold. In a second run, the spins of this reg
free of frustration are obtained in a deterministic unique w
while all the others are let free to flip, using the algorith
mentioned above.
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55 14 325ISING LATTICES WITH 6J SECOND-NEAREST- . . .
Parameterhg represents the fraction of bonds that nev
frustrate when scanning the entire ground manifold.2 The
corresponding expression is

hg5
1

2N (
i, j

N F(
a

W uSi
aSj

a2Ji j u
2 Gdiv W, ~6!

This parameter does not depend on the manner in w
ergodicity is broken. Among its very interesting properti
we can mention the values close to 0.50, 0.50, and 0.75
triangular, square, and honeycomb lattices, respectiv
Moreover, these three values remain constant independe
size and shape.2,7,18–21

If we remove from the original lattice all bonds that fru
trate in any of the ground states we get a diluted latt
formed only by bonds that never frustrate. The ratio of
number of bonds in the diluted lattice to the number of bon
in the original lattice is preciselyhg . It has been recently
shown that the diluted lattices present a typical percola
curve with respect tohg as independent variable.22 Other
characteristics of this percolation are presently under st
and will be published later on.

III. SECOND-NEAREST-NEIGHBOR INTERACTIONS

Almost all of the papers written on the lattices that co
cern us in the present study simply ignore long range in
actions. On the other extreme, mean-field approximations
not suitable for systems where local fields are nontrivial. T
introduction of SNNI’s is one step further in the direction
describing more realistic systems, where intermediate ra
interactions play some role.

In square lattices, SNNI’s occur naturally along the dia
onal of the square cell or plaquette, as schematically p
sented in Fig. 1. The spin at sitei is designated bySi , the
FNNI’s are J12, J24, J34, and J13, while the SNNI’s are
denoted byJ23 andJ14 ~uJi j u51 when different from zero!.

The interactions to second-nearest neighbors can
thought as either independent or as a consequence o
nearest-neighbor interactions. In the first case we will sp

FIG. 1. Notation for first-nearest-neighbor interactions~FNNI’s!
and second-nearest-neighbor interactions~SNNI’s! in one of the 16
possible square plaquettes. Spin at sitei is denoted bySi . FNNI’s
lie along the sides of the square, while SNNI’s take place along
diagonals of the square.
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of random assignment while in the second one we will s
this is a causal assignment.

The different situations are presented in Fig. 2, where
use the same symbols that will be introduced in the tex
characterize different ways of assigning SNNI’s. The co
centration of SNNI’s is different through the cases studied
Fig. 2, affecting average coordination numberk in a way that
will be discussed below.

Random assignment: R(k). Here the SNNI’s are assigne
randomly in the same way as FNNI’s. That is to say, t
number of antiferromagnetic SNNI’s is equal to the numb
of ferromagnetic SNNI’s. However, the proportion in whic
SNNI’s are present can be varied freely determiningk,
which is an independent variable of interest in the pres

e

FIG. 2. ~a! A particular 434 square lattice without SNNI’s
(k54). ~b! All SNNI’s are defined randomly with the constrain
that the number of ferromagnetic interactions equals the numbe
antiferromagnetic interactions (k58). ~c! Causal wayC1 illus-
trated in Fig. 3 is applied to this example (k56.5). ~d! Causal way
C2 illustrated in Fig. 4 is applied to this example (k56.0). ~e!
Same number of SNNI’s as inC1 but distributed at random (k
56.5). ~f! Same number of SNNI’s as inC2 but distributed at
random (k56.0). ~g! Superposition ofC1 to those cases wher
SNNI’s defined byC2 vanish (k58.0).
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14 326 55A. J. RAMÍREZ-PASTOR, F. NIETO, AND E. E. VOGEL
work. This way of defining SNNI’s is denoted byR(k). So
R(4) corresponds to the original SL where only FNNI’s a
present with coordination number 4, whileR(8) corresponds
to the fully saturated lattice where all possible SNNI’s ha
been defined randomly, with coordination number 8. B
extreme cases are presented on the top of Fig. 2.

Causal assignment.The general idea here is that FNNI
are a consequence of internal fields that automatically de
all remaining interactions, in particular SNNI’s. Howeve
there is not a unique way in which this can happen. So
will now present two of such possibilities.

C1. In this procedure both SNNI’s of a plaquette a
given the same sign as most of the adjacent FNNI’s. W
there is no net majority, such SNNI’s are taken to be vac
and they do not contribute tok. This is illustrated in Fig. 3
for all possible plaquettes, while the application of t
method to a particular example is realized in Fig. 2~c!.

The signs of the nonvanishing SNNI’s are obtained
follows:

sign~J23
C1!5sign~J14

C1!5sign@J121J241J341J13#. ~7!

When the sum vanishes, thenJ23
C15J14

C150, and such bonds
are taken as nonexistent, so they are not considered in
calculations.

C2.There are always two paths connecting the same
of second-nearest neighbors via two steps over first ne
bors. In assignmentC2, SNNI’s are determined as to rein
force the effective interaction reached by simultaneously
lowing these two paths. Namely, a diagonal interaction in
square plaquette is obtained as the normalized overlap o
two ways that connect the same points following the side
the square. If these two ways lead to different results,
superposition yields a null result. This manner of defini
SNNI’s does not bring additional frustration to the system

The mathematical expressions for this assignment are

J14
C252

~J123J241J133J34!

2
;

J23
C252

~J133J121J343J24!

2
. ~8!

FIG. 3. Illustration of the way the causal wayC1 works for each
of the 16 plaquettes. FNNI’s are previously defined along the s
of the square plaquette, while SNNI’s arise along the diagonal
the square plaquette as defined in the text forC1. The multiplicity
of each case is given underneath.
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As in previous case, null bonds do not count. This is pictu
for all plaquette configurations in Fig. 4, and it is applied
the example in Fig. 2~d!.

Among the differences betweenC1 andC2 there is one
that deserves special attention. If we make use of the m
plicity of the configurations given in Figs. 3 and 4 we reali
that k is different in these two cases. From the 16 possi
plaquettes 10 have SNNI’s forC1 ~Fig. 3! and only 8 have
them forC2 ~Fig. 4!. This essentially means that in the a
erage

k~C1!56.5, k~C2!56.0. ~9!

It follows that for an appropriate comparison it is conv
nient to define random concentrations for these values
average coordination numbers.

R1. It corresponds to allotting SNNI’s in a random wa
with the constraint that the average value ofk is the same as
in C1. Namely,R(6.5)5R1. This is illustrated in Fig. 2~e!.

R2. It corresponds to assigning SNNI’s in a random wa
so to havek56.0 as inC2. Namely,R(6.0)5R2, as illus-
trated in Fig. 2~f!.

It follows from Figs. 3 and 4 thatC1 andC2 coincide in
assigning SNNI’s for plaquettes with multiplicity 1, whil
they are complementary for all other plaquettes. That is
say, all SNNI’s are different from zero invokingC2 first,
then invokingC1 for those still nonexistent SNNI’s. The
we can define a last causal way of realizing the interacti
to second-nearest neighbors.

S. It is defined as the superposition ofC1 to C2, when-
everC2 fails to assign SNNI’s. This is a saturated lattic
with k58.0, so it can be compared toR(8). This is pre-
sented in the last picture of Fig. 2.

Let us stress the fact that for each of the 500 samples
a given array, in each size of SL’s, we assign all SNNI’s a
then proceed to calculate the physical parameters. We v
fied that the distributions of the causal ways are centere
the expected values ofk.

It is also of interest to separate the roles of connectiv
and dimensionality in these Ising lattices. Consequently
also prepared sets of 500 samples in three-dimensional a
with cubic symmetry with FNNI’s only. Notice that the co
ordination number is 6 for simple cubic lattices, the same
in C2 andR2. A modified algorithm was used that applie
bounds to rows and planes.

s
of

FIG. 4. Illustration of the way the causal wayC2 works for each
of the 16 plaquettes following the same presentation of Fig. 3.
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IV. RESULTS

Results differ somewhat when going from one sample
another. We want to minimize fluctuation effects looking f
correspondence of our results with those that are valid in
thermodynamic limit. All results to be reported below corr
spond to arithmetic averages for 500 samples for each a
reported here.

The least sensitive parameter iseg , which saturates very
fast with respect to sizeN. Although not shown here, we ca
say that the different curveseg vs N, corresponding to the
different way of assigning SNNI’s, are clearly stabilized f
N>30. Such size independent result will be called satura
value of the parameter.C2 exhibits the lowest ground-stat
energy at about20.75. On the other extremeR has the
highest value foreg520.49.

The saturated values ofeg as function ofk are presented
in Fig. 5. The seven different assignments are denoted
symbols that will be used in the remaining illustrations.
addition to the seven lattices defined in Fig. 2, we prepa
samples with random assignments of SNNI’s to cover
interval 4.0<k<8.0. The corresponding saturated avera
values are represented by diamonds in Fig. 5, showing
the cases of random assignment lay along a concave c
containing allR(k) points. Evidently the causal SNNI’
show lower values ofeg than the corresponding values fo
random assignments. In particularC2 leads to the lowes
value ofeg among all the cases reported in the present wo
A remarkable fact is that the cubic lattices show a satura
value intermediate as compared to those of some ran
ways of assigning SNNI’s in two dimensions.

The results ofpg as functions of sizeN are presented in
Fig. 6 for six different ways of assigning SNNI’s. The caus
ways show higher values and lower rate of decrease for
dimensions. The cubic case presents an apparently satu
value forpg at 0.6. Anyhow, it is important to remember th
the value and tendency of this parameter are determine
the way the ergodic separation is done. The present calc
tions made use of the ergodic separation given by the lar
region that is free of frustration if the ground level as me
tioned above.

FIG. 5. Saturated values ofeg for the random and causal way
of defining SNNI’s presented in the text, corresponding to differ
coordination numbersk. Additionally, sets of 500 random lattice
were defined to cover the intermediate cases ofk.
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The results for maximal shattered magnetization
sample corresponding to 636 lattices with causal SNNI’s
assignments are presented in the forms of histograms in
7. Average values over the 500 samples are given in
insert.C1 presents a more extended distribution thanC2.
The remarkable fact is that for all distributions a net mag
tization remains in the lattices. One could say that at le
three spins out of five point in one direction while the r
maining two spins point in opposite direction. This observ
tion is valid for the ergodic separation mentioned before.

The results for the fraction of nonfrustrated bondshg are
presented in Fig. 8. The tendencies of the results for e
way of assigning SNNI’s do not show size dependence

t

FIG. 6. Site correlation parameterpg as function ofN for six
different lattices defined in the text. While the two-dimension
lattices decrease with different slopes as functions of sizeN, the
cubic lattice shows a saturated value forpg .

FIG. 7. Histograms showing the prevalence of shattered mag
tization in the ground states of 636 lattices with causal ways o
defining SNNI’s. For each of the 500 samples the maximal sh
tered magnetization is found. The height of the histogramn repre-
sents the number of samples with maximal shattered magnetiza
in the corresponding interval.
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14 328 55A. J. RAMÍREZ-PASTOR, F. NIETO, AND E. E. VOGEL
they are already saturated for small samples. The ca
ways give higher values forhg beingC2 the one that gives
the highest value close to 0.77. It is interesting to remem
thathg is independent of ergodic separation.

V. DISCUSSION AND CONCLUSIONS

Generally speaking the random increase of the coord
tion numberk leads to an increase in the energy per bo
eg . It also affects the site correlation parameterpg , the
maximal shattered magnetizationmg and fraction of nonfrus-
trated bondshg . However, for these last three parameters
dependence is not direct as other characteristics such a
ometry and topology play important roles.

Frustration can be diminished to some extent wh
SNNI’s are determined causally by FNNI’s in a way that c
be optimized. A way to do this isC2, where SNNI’s are to
be chosen so they reinforce the action of FNNI’s. Then
ground-state energy is lower andhg increases. These com
ments apply in a moderated way for the case ofC1.

The energy per bond saturates very quickly with size
matter which way of assigning SNNI’s is chosen. The resu
for square lattices withR2 and simple cubic lattices are ba
sically the same. This shows that energy does not discr
nate whether the coordination number comes via dimens
ality or via SNNI’s, as far as these interactions are assig
randomly.

As for the site correlation parameterpg , both C1 and
C2 yield an increase in the values. Even better, such hig
values decrease in a moderate way asN increases. It is not
clear from the results of the small samples that we co
process until now, whetherpg will go to zero in the thermo-
dynamic limit. This argument is backed by the size indep
dence ofpg for cubic lattices as presented in Fig. 6.

From the results presented above it follows that site c
relation parameterpg does not show saturation for any of th

FIG. 8. Parameterhg representing the fraction of the lattice th
remains free of frustration for the entire ground manifold as fu
tions ofN. For the seven different lattices this variable is essentia
size independent.
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ways of assigning SNNI’s. Larger lattices should be us
before drawing any firm conclusion in this respect. Valu
for C1 andC2 are not notoriously different, although th
tendency is thatC1 leads to slightly more size independe
results. On the other hand, the results for cubic lattices sh
ing a behavior close to a saturated value forpg , tells that this
parameter is more sensitive to dimensionality than to co
dination number.

The 6J Ising lattices with SNNI’s defined in an opti
mized causal way are still candidates for a spin-glass beh
ior. At least the site order parameterpg shows a more stable
value in these modified lattices than in the usual rand
lattices with FNNI’s only. It would be interesting to exten
the present analysis to increase both dimensionality
range of the interactions. An immediate example are cu
lattices with SNNI’s added in a causal optimized way.

The ergodic separation done here considered fixing
spins in the largest region free of frustration. From all t
ground states, it is possible to isolate those states that pro
the largest net magnetization in the lattice leading to
maximal shattered magnetization. This can be realized in
systems by means of a strong magnetic field applied du
quenching. States with maximal magnetization are alw
present in the systems under study as shown by their spe
distributions presented in Fig. 7.C2 shows a more homoge
neous response based on narrower maximal magnetiza
distribution as compared toC1. Different values are obtaine
for this magnitude when different ways of breaking ergod
ity are utilized. We have defined a definite way of carryi
on this process that leads to this relatively high value
shattered maximal magnetization. At the moment we can
say if this is an artifact of the small sizes of the samples u
here.

The fraction of nonfrustrated bonds is a very interest
parameter in many respects. No matter which way of ass
ing SNNI’s is chosen,hg saturates rather quickly with size
There is a clear discrimination between causal and rand
mechanisms of assigning SNNI’s as the former shows lar
values for this parameter. A summary of the properties
this parameter is given in Table I. The causal ways
clearly different: C2 presents less frustration thanC1. The
upper part of Fig. 8 shows that there is a drastic discrimi

-
y

TABLE I. Saturated values ofhg for the seven lattices define
in Fig. 2 plus three other two-dimensional lattices informed in t
literature. Hexagonal: Ref. 15; square: Ref. 2; triangular: R
2. The coordination numberk for each lattice is given in the secon
column.

Lattice k hg

Hexagonal 3 0.75
Square 4 0.50
Triangular 6 0.50
Cubic 6 0.50
R2 6 0.70
C2 6 0.79
R1 6.5 0.60
C1 6.5 0.70
R 8 0.50
S 8 0.64
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tion among lattices with the samek56: The cubic lattices
present more frustration than SL’s with similar connectivi
Actually causal ways of assigning SNNI’s do not alwa
reduce frustration: Fig. 8 clearly shows that saturated v
ues forhg are larger forR2 than forC1 or S.

In a cubic lattice any bond is shared by four squa
plaquettes, any of which can frustrate. On the other hand
a SL withC2 any bond is shared by two square plaquet
and either 0, 2, or 4 triangular plaquettes. However, due
the way of constructingC2, none of the triangular plaquette
can be curved so the chances of frustrating the common b
are due to the two adjacent SL’s only.

In this wayC2 is built as to increase the connectivity
the lattice without bringing in more frustration. The origin
frustration remains local while it is diluted in several po
sible interactions, decreasingeg and increasinghg . This is
not so forC1 where half the triangular lattices brought in b
ga

o

g

.

l-

e
in
s
to

nd

SNNI’s frustrate. We notice that the latter happen only ins
frustrated square plaquettes while the random assignm
R1 can take place in any square plaquette thus sprea
frustration through the lattice.
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