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Solvable model of a random spin-12 XY chain
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This paper presents exact calculations of thermodynamic quantities for the spin-1
2 isotropicXY chain with

random Lorentzian intersite interaction and transverse field that depends linearly on the surrounding intersite
interactions.@S0163-1829~97!06321-2#
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I. INTRODUCTION

Starting from the seminal paper by Lieb, Schultz, a
Mattis the study of the one-dimensional spin-1

2 XY models
has attracted much interest. A lot of exact results concern
thermodynamics, spin correlations, and their dynamics w
found over the last 35 years.1–6 The analytical results ob
tained for random versions of such models are not so imp
sive. Some results dealing with magnetic properties for s
cial cases ofXY models with random intersite interaction
were found by Smith,7 Barouch and McCoy,8 and Zaitsev9

using an approach developed by Dyson.10 A somewhat dif-
ferent approach was suggested by Nishimori,11 who pre-
sented exact calculations of thermodynamic quantities for
isotropicXY model in a random Lorentzian transverse fie
Nishimori’s exact solution is based on the Jordan-Wig
transformation of the spin Hamiltonian to a tight-bindin
model of noninteracting spinless fermions with diagon
Lorentzian disorder. For the latter fermionic model t
random-averaged one-particle Green functions~and hence
the density of states that yields thermodynamics! were found
exactly by Lloyd12 with the help of contour integrals. Late
on Nishimori’s work was generalized for models with alte
nating bonds13 and additional intersite Dzyaloshinski
Moriya interaction.14 The main results obtained in the pape
on models with a Lorentzian transverse field concern
changes in the temperature dependences of entropy, sp
heat, and static transverse linear susceptibility as well as
ground-state transverse magnetization as a function of a
aged transverse field once the randomness is introduced

The idea of the present paper is to study the thermo
namics of a random spin-12 XY chain exploiting an extende
version of the Lloyd model with off-diagonal disorder.15 In
the late seventies in a series of papers this extended L
model was applied to disordered electron systems by on
the authors.16–20Similarly to Ref. 11 we present exact calc
lations for various thermodynamic quantities. However, d
to the additional off-diagonal disorder our results concern
the influence of disorder on thermodynamic functions dif
to some extent from those obtained by Nishimori.11

The paper is organized as follows. In Sec. II we descr
the Jordan-Wigner transformation from spins to nonintera
ing spinless fermions and the evaluation of the averaged
fermion Green functions. In Sec. III the averaged Gre
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functions are used to calculate the thermodynamic prop
ties, namely, entropy, specific heat, transverse magnetiza
and static transverse linear susceptibility. Some conclus
are given in Sec. IV. A short report of these results w
presented in Ref. 21.

II. JORDAN-WIGNER TRANSFORMATION AND
AVERAGED ONE-FERMION GREEN FUNCTIONS

We consider a linearXY chain ofN spins12 in a transverse
field with periodical boundary conditions. The Hamiltonia
reads

H5 (
n51

N

Vnsn
z1 (

n51

N

Jn~sn
xsn11

x 1sn
ysn11

y !

5 (
n51

N

VnS sn1sn22
1

2D
1 (

n51

N
Jn
2

~sn
1sn11

2 1sn
2sn11

1 !, sn1N
a 5sn

a , ~1!

whereVn is the transverse field at siten and Jn is the ex-
change interaction between the sitesn andn11. TheJn are
taken to be independent random variables with a Lorentz
probability distribution

p~Jn!5
1

p

G

~Jn2J0!
21G2 . ~2!

HereJ0 is the mean value andG is the width of the distri-
bution ~strength of disorder!. In order to treat the model~1!,
~2! in an exact manner we assume the following relat
between the transverse field at each siteVn and the sur-
rounding intersite interactions~see Refs. 15–20!:

Vn2V05aS Jn212J0
2

1
Jn2J0
2 D , a is real, uau>1,

~3!

whereV0 is the averaged transverse field at site.
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FIG. 1. The averaged density of states~13!
r(E) vs E2V0.
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Next we transform the spin model to a fermionic mod
by Jordan-Wigner transformation:c15s1

2 , c1
15s1

1 , cj
5Pj21sj

2 , cj
15Pj21sj

1 , j52, . . . ,N, Pj[)n51
j (22sn

z).
The resulting Hamiltonian reads

H5H21BP15H1P11H2P2,

H6[2
1

2 (
n51

N

Vn1 (
n51

N

Vncn
1cn

1 (
n51

N
Jn
2

~cn
1cn112cncn11

1 !,

B[2JN~cN
1c12cNc1

1!,

P6[
16P

2
, P[ )

n51

N

~22sn
z! ~4!
lwith anticyclic boundary conditions forH1 and cyclic
boundary conditions forH2. For the calculation of thermo
dynamic properties of model~1! one can omit the boundar
termB,22 i.e., it is sufficient to study the thermodynamics
spinless fermions described by thec-cyclic Hamiltonian
H5H2. Thisc-cyclic fermionic Hamiltonian corresponds t
the one-dimensional version of Anderson’s model with o
diagonal disorder considered by John and Schreiber.15

Following Ref. 15 one introduces the retarded and
vanced temperature double-time Green functions

Gnm
7 ~ t ![7 iu~6t !^$cn~ t !,cm

1%&,

Gnm
7 ~ t !51/2p*2`

` dve2 ivtGnm
7 ~v6 i«!,

«→10.
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FIG. 2. The averaged density of states~13!
r(E) ~broken lines! and the density of states fo
certain realization of random intersite interactio
obtained by exact finite-chain calculations~solid
lines! vs E2V0.
rin
on
ForGnm
7 (v6 i«) one finds the following set of equations:

~v6 i«2Vn!Gnm
7 ~v6 i«!2FJn21

2
Gn21,m

7 ~v6 i«!

1
Jn
2
Gn11,m

7 ~v6 i«!G5dnm . ~5!

Suppose that,. . . ,Jn , . . . , ~and hence,. . . ,Vn , . . . )
are complex variables. The singularities ofGnm

7 (v6 i«) are
given by the zeros of det(v6 i«2H). det(v6 i«2H) is dif-
ferent from zero if the eigenvaluesl of Im(v6 i«2H) are
either all positive or all negative. From the Gershgo
criterion23,24for the complex matrix Im(v6 i«2H) one gets
that for any eigenvaluel at least one of the conditions

uIm~v6 i«2Vn!2lu<
1 UImJn21U11 UImJnU ~6!

2 2
has to be fulfilled. Using Eq.~3! the inequalities~6! can be
written as

UIm~v6 i«!2
a

2
~ ImJn211ImJn!2lU

<
1

2
uImJn21u1

1

2
uImJnu, uau>1. ~7!

Let us consider the retarded Green functi
@ Im(v1 i«).0#. Then according to Eq.~7! for a>1 all l
must be positive if all ImJn,0, whereas fora<21 all l
must be positive if all ImJn.0. Similarly, for the advanced
Green function@ Im(v2 i«),0# according to Eq.~7! for
a>1 all l are negative if all ImJn.0, and fora<21 all
l are negative if all ImJn,0.
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FIG. 3. The density of statesr(E) averaged
over 10 realizations foruau,1 obtained by exact
finite-chain calculations vsE2V0.
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Consequently, fora>1 (a<21) the retarded Green
functionGnm

2 (v1 i«) cannot have a pole in the lower~up-
per! half-planes of complex variablesJn , whereas the ad
vanced Green functionGnm

1 (v2 i«) cannot have a pole in
the upper~lower! half-planes of complex variablesJn for
a>1 (a<21). Using these properties one can perform
averaging of Eqs.~5!, defined by

~ . . . ![ )
n51

N E
2`

`

dJn
1

p

G

~Jn2J0!
21G2 ~••• !

5 )
n51

N E
2`

`

dJn
1

p

G

~Jn2J01 iG!~Jn2J02 iG!
~••• !,

~8!

by means of contour integrals. For the averaging of a fu
tion F( . . . ,Vn ,Jn , . . . ) that has no poles in lower half
e

-

planesJn , one can close the contours of integration in E
~8! in these half-planes. One obtains

F~ . . . ,Vn ,Jn , . . . !5F~ . . . ,V02 iaG,J02 iG, . . . !.
~9!

Similarly, for the function without poles in upper half-plane
Jn one gets by contour integration

F~ . . . ,Vn ,Jn , . . . !5F~ . . . ,V01 iaG,J01 iG, . . . !.
~10!

Then the averaged equations for Green functions~5! due to
Eqs.~9!, ~10! read

@v6 i«2~V07 i uauG!#Gnm
7 ~v6 i e!2

J07 isgn~a!G

2

3@Gn21,m
7 ~v6 i«!1Gn11,m

7 ~v6 i«!#5dnm . ~11!

Equations~11! possess translational symmetry and the
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FIG. 4. The entropys̄ ~14! vs temperature
1/b, G50.25.
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fore they can be solved in a standard way. The resul
averaged Green functions read

Gnm
7 ~v!5

1

2pE2p

p

dk ei ~n2m!k

3
1

v2@V07 i uauG1@J07 isgn~a!G#cosk#

5
@~Ax22y22x!/y# un2mu

Ax22y2
~12!

with x[v2V06 i uauG, y[J07 isgn(a)G.
g III. ENTROPY, SPECIFIC HEAT,
TRANSVERSE MAGNETIZATION, AND STATIC

TRANSVERSE LINEAR SUSCEPTIBILITY

The obtained averaged Green functions~12! allow us to
study the thermodynamics of the spin model~1!–~3!. For this
we diagonalize the bilinear in Fermi operators formH2 ~4!
by the canonical transformation hk5(n51

N gkncn ,

Lkgkn5( i51
N gkiAin , Ai j5V id i j1

1
2Jid j ,i111

1
2Ji21d j ,i21,

( i51
N gkigpi5dkp , (p51

N gpigp j5d i j with the result
(p51
N Lp(hp

1hp2
1
2). The thermodynamics for certai

realizations of random intersite interactions is th
determined by the spectrum of elementary excitatio
Lp or its density r(E)[(1/N)(p51

N d(E2Lp). For
example, the Helmholtz free energy per site is given
f 5 (1/N)„2(1/b)ln)p51

N $exp@2 (bLp/2)#1exp(bLp/2)%…5
2(1/b)*dEr(E)ln@2 cosh(bE/2)#. The result of averaging
over realizations of random variables is given
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FIG. 5. The entropys̄ ~14! vs temperature
1/b, G51.
o

al-
f̄52(1/b)*dEr(E)ln@2 cosh(bE/2)#. The required aver-
aged density of states is then calculated by the averaged
particle Green functions~12!

r~E!52
1

p
ImGnn

2 ~E!5
1

p
ImGnn

1 ~E!

57
1

p
Im

1

A~E2V06 i uauG!22@J07 isgn~a!G#2

5
1

p
AAA21B22A

2~A21B2!
,

A[~E2V0!
21~12uau2!G22J0

2 ,

B[2G@ uau~E2V0!1sgn~a!J0#. ~13!
ne-

Really, r(E)5(1/N)(p51
N @2(1/p)ImGpp

2 (E1 i«)]
5(1/N)(p51

N @(1/p)ImGpp
1 (E2 i«)#, where Gpq

7 (t)
[7 iu(6t)^$hp(t),hq

1%&5( i51
N ( j51

N gpigq jGi j
7(t), and

therefore r(E)5(1/N)( j51
N @2(1/p)ImGj j

2(E1 i«)]
5(1/N)( j51

N [(1/p)ImGj j
1(E2 i«)]; the averaging yields the

first two equalities in the left-hand side of Eq.~13!.
Knowing the averaged Helmholtz free energy we can c

culate the entropy and specific heat by the formulas

s̄5b2
] f̄

]b
5E dEr~E!F lnS 2coshbE2 D2

bE

2
tanh

bE

2 G ,
~14!

c̄52b
] s̄

]b
5E dEr~E!S bE/2

cosh~bE/2! D
2

. ~15!

Due to the magic property of~13! (]/]V0)r(E)52
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FIG. 6. The entropys̄ ~14! vs transverse field
V0, 1/b50.1.
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(]/]E)r(E) one can express transverse magnetization
static transverse linear susceptibility through the density
states

mz[K 1N(
n51

N

sn
zL 5

] f̄

]V0
52

1

2E dEr~E!tanh
bE

2
,

~16!

xzz5
]mz

]V0
52bE dEr~E!

1

@2 cosh~bE/2!#2
. ~17!

Let us discuss the obtained results.
Note at first, that in the absence of randomness Eq.~13!

reduces to the well-known result

r~E!57
1

p
Im

1

A~E2V06 i«!22J0
2

5H 1

p

1

AJ022~E2V0!
2

if uE2V0u<uJ0u,

0, otherwise

~18!

as anticipated.
The considered model~1!–~3! essentially differs from the

one with diagonal disorder treated by Nishimori11 (Jn5J,
Vn are independent random variables with Lorentzian dis
butions!. However, Nishimori’s model can be obtained as
certain limit of the present model, namely,G→0,
d
f

i-

uauG5const5GN . The density of states~13! in contrast to
the case of diagonal disorder is not symmetric with respec
the changeE2V0→2(E2V0). However, it remains the
same after the replacementE2V0→2(E2V0), a→2a, or
E2V0→2(E2V0), J0→2J0, since the simultaneou
change of signs ofJ0 and a in Eq. ~13! does not affect
r(E). Without loss of generality we chooseV0 ,J0.0
throughout the rest of the paper. It is also convenient,
though by no means essential, to put hereafterJ051. The
above-mentioned symmetry of the density of states can
seen in Figs. 1–3, where the averaged density of states~13!
~Fig. 1!, the averaged density of states~13! in comparison
with histogramsr(E) calculated for a certain realization o
random intersite interactions using exact finite-chain calcu
tions25 ~Fig. 2!, and the histogramsr(E) obtained by the
latter approach foruau,1 ~Fig. 3! are displayed. The densit
of states for the nonrandom case~18! is depicted in Fig. 1 by
dashed lines. For largeuau the edges of the zone are com
pletely smeared out with increasing strength of disorderG;
for uau'1 the increase of disorder results in a smearing
of mainly one edge of the zone. A further decrease ofuau up
to 0 leads to a recovering of the symmetry with respect
E2V0→2(E2V0) and to transforming ofr(E) into
d(E2V0). Some consequences induced by this depende
of r(E) on G anda will be seen in the behavior of thermo
dynamic quantities.

The results of numerical calculations of thermodynam
quantities are presented in Figs. 4–13, namely, the temp
ture dependences of the entropy~14! ~Figs. 4,5!, the specific
heat~15! ~Figs. 7,8!, the transverse magnetization~16! ~Fig.
11! and the static transverse linear susceptibility~17! ~Fig.
13!, the dependence on averaged transverse field at low
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FIG. 7. The specific heatc̄ ~15! vs tempera-
ture 1/b, G50.25.
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peratures of the entropy~Fig. 6!, the specific heat~Fig. 9!,
the transverse magnetization~Fig. 10!, and the static trans
verse linear susceptibility~Fig. 12!; the curves that corre
spond to the nonrandom case are depicted in Figs. 4–1
dashed lines.

The influence of randomness on thermodynamics
mainly rather typical. It leads to~i! a weak deformation of
the entropy versus temperature curve with a decrease o
entropy at high temperatures~Figs. 4,5!, ~ii ! a broadening
and decreasing of the peak in the dependence of the spe
heat versus temperature~Figs. 7,8!, ~iii ! a smearing out of the
cast in themz versusV0 curve atT50 for V05J0 and a
nonsaturated transverse magnetization at any finite tr
verse field~Fig. 10!, ~iv! a decreasing and disappearing
the singularity~accompanying the saturation ofmz at T50
for V05J0) in the curvexzz versusV0 at T50 ~Fig. 12!,
and~v! a suppressing of static transverse linear susceptib
versus temperature curve~Fig. 13!.
by
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However, as can be seen in Figs. 4–13, the influence
disorder, especially for smalla, essentially depends on th
sign ofa. Particularly interesting is the case of strong asy
metry in the density of statesr(E) when uau'1. From a
mathematical point of view the dependence of the compu
quantities on temperature and averaged transverse field
the well-pronounced difference between the casesa'21
and a'1 can be understood keeping in mind that the
quantities according to Eqs.~14!–~17! are integrals overE of
products ofr(E) ~shown in Fig. 1! with functions with evi-
dent dependence onE at differentb. It is interesting to note
that for some Hamiltonian parameters and temperatures e
very large randomness~controlled byG) almost does not
affect the thermodynamic quantities. This can be nicely s
in Figs. 4–13.

It is worth emphasizing that the asymmetry ofr(E) leads
to the appearance of nonzero averaged transverse magn
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FIG. 8. The specific heatc̄ ~15! vs tempera-
ture 1/b, G51.
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tionmz at zero averaged transverse fieldV0. As can be seen
from Eq. ~16! mz50 at T50, V050 if *2`

0 dEr(E)
5*0

`dEr(E). This is evidently true for symmetric density o
statesr(E) ~as in the case considered by Nishimori! but is
not obvious in the considered case~13!. The difference be-
tween the integrals*2`

0 dEr(E) and *0
`dEr(E) can be

clearly demonstrated by numerical finite-chain calculatio
as a difference between the numbers of negative and pos
eigenvaluesLp of the N3N matrix uuAi j uu denoted byN2

andN1 , respectively. Examples for a certain realization
the random model~1!–~3! are given in Tables I and II. The
transverse magnetization for a certain realization atT50 is
given bymz5(N22N1)/2N and one finds a good agree
ment of these direct numerical finite-chain calculations
2mz with the results depicted in Fig. 10~e.g., forG50.25
2mz'0.051, 0.038, 0.011 ifa521.01, 22, 25, re-
spectively, for G51 2mz'0.095, 0.030, 0.003 if
a521.01, 22, 25, respectively!.
s
ve

f

r

IV. CONCLUSIONS

In conclusion, we present exact calculations of the th
modynamics of the spin-12 isotropicXY chain with random
Lorentzian intersite interaction and a transverse field that
pends linearly on the surrounding intersite interactions~1!–
~3!. The derived exact expressions for the averaged den
of states~13! and thermodynamic quantities~14!–~17! may
serve as a testing ground for approximate methods of s
systems with off-diagonal disorder that usually involve
unclear error. Aside from this they are interesting in th
own right, since experimentally accessible systems are
ways affected by randomness, and an understanding of
order effects even within such a simple model can help
comparing experimental observations and theoretical pre
tions.

Unfortunately, the obtained results do not permit us
calculate exactly the averaged spin correlation functio
since such calculation requires the knowledge of avera
many-particle fermion Green functions. Spin correlatio
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FIG. 9. The specific heatc̄ ~15! vs transverse
field V0, 1/b50.1.

FIG. 10. The transverse magnetization2mz

~16! vs transverse fieldV0 at low temperature
(1/b50.001).
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FIG. 11. The transverse magnetization2mz

~16! vs temperature 1/b at V050.5.

FIG. 12. The static transverse linear suscep
bility 2xzz ~17! vs transverse fieldV0 at low
temperature (1/b50.001).
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TABLE I. The numbers of negative and positiveLp , N2 andN1 , for three realizations of random
intersite interactions in a finite model~1!–~3! (N51000) withV050, J051, G50.25.

(1/N)( j51
N Jj a525 a522 a521.01 a51.01 a52 a55

N2 N1 N2 N1 N2 N1 N2 N1 N2 N1 N2 N1

0.997 491 509 458 542 454 546 546 454 542 458 509 491
0.984 490 510 464 536 442 558 558 442 536 464 510 490
1.008 487 513 463 537 452 548 548 452 537 463 513 487

TABLE II. The numbers of negative and positiveLp , N2 andN1 , for three realizations of random
intersite interactions in a finite model~1!–~3! (N51000) withV050, J051, G51.

(1/N)( j51
N Jj a525 a522 a521.01 a51.01 a52 a55

N2 N1 N2 N1 N2 N1 N2 N1 N2 N1 N2 N1

1.009 495 505 470 530 402 598 598 402 530 470 505 495
0.986 503 497 471 529 408 592 592 408 529 471 497 503
1.034 494 506 469 531 406 594 594 406 531 469 506 494

FIG. 13. The static transverse linear suscep
bility 2xzz ~17! vs temperature 1/b at V050.5.
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and their dynamics may be examined using the exact fin
chain calculations developed in Refs. 26 and 27.
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