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This paper presents exact calculations of thermodynamic quantities for thé suittopic XY chain with
random Lorentzian intersite interaction and transverse field that depends linearly on the surrounding intersite
interactions[S0163-18207)06321-7

I. INTRODUCTION functions are used to calculate the thermodynamic proper-
ties, namely, entropy, specific heat, transverse magnetization,
Starting from the seminal paper by Lieb, Schultz, andand static transverse linear susceptibility. Some conclusions
Mattis the study of the one-dimensional sgirkY models are given in Sec. IV. A short report of these results was
has attracted much interest. A lot of exact results concerningresented in Ref. 21.
thermodynamics, spin correlations, and their dynamics were
found over the last 35 yeats® The analytical results ob- [l. JORDAN-WIGNER TRANSFORMATION AND
tained for random versions of such models are not so impres- AVERAGED ONE-FERMION GREEN FUNCTIONS
sive. Some results dealing with magnetic properties for spe-
cial cases ofXY models with random intersite interactions
were found by SmitHf, Barouch and McCo§,and Zaitse¥
using an approach developed by Dys8m somewhat dif-
ferent approach was suggested by Nishimibrivho pre-
sented exact calculations of thermodynamic quantities for the N N
is_otrppic)_(Y model in a_ranqlom Lorentzian transverse f_ield. H= 2 Q.sh+ 2 Jn(skst, +svsh
Nishimori's exact solution is based on the Jordan-Wigner n=1 n=1
transformation of the spin Hamiltonian to a tight-binding
model of noninteracting spinless fermions with diagonal
Lorentzian disorder. For the latter fermionic model the =

We consider a lineaX Y chain ofN spins3 in a transverse
field with periodical boundary conditions. The Hamiltonian
reads

M =

1
Qn(s:sn - 5)

random-averaged one-particle Green functigasd hence n=1

the density of states that yields thermodynamigsre found

exactly by Lloyd? with the help of contour integrals. Later N3,

on Nishimori’s work was generalized for models with alter- +2, 5 (ShSns1tSnSas1): Shen=Sn. (D

nating bonds® and additional intersite Dzyaloshinskii- i=1 2

Moriya interaction* The main results obtained in the paperswhere (), is the transverse field at site andJ, is the ex-
on models with a Lorentzian transverse field concern thehange interaction between the siteandn+1. TheJ,, are
changes in the temperature dependences of entropy, specifigken to be independent random variables with a Lorentzian
heat, and static transverse linear susceptibility as well as thgrobability distribution
ground-state transverse magnetization as a function of aver-
aged transverse field once the randomness is introduced.

The idea of the present paper is to study the thermody- 1 r
namics of a random spihXY chain exploiting an extended P(In)= P (Iy—Jo)%+T?% @
version of the Lloyd model with off-diagonal disord€rin . . . o
the late seventies in a series of papers this extended Lloyd®"®Jo iS the mean value anf is the width of the distri-
model was applied to disordered electron systems by one ¢tion (strength of disordgr In order to treat the modéL),
the author2®~2Similarly to Ref. 11 we present exact calcu- (2 In @n exact manner we assume the following relation
lations for various thermodynamic quantities. However, dud®€tween the transverse field at each $itg and the sur-
to the additional off-diagonal disorder our results concerning@Unding intersite interactionsee Refs. 15-30
the influence of disorder on thermodynamic functions differ
to some extent from those obtained by Nishindri. _ _

: : : ‘]nfl ‘]0 ‘]n ‘JO

The paper is organized as follows. In Sec. Il we describe ) —Q,=a ,
the Jordan-Wigner transformation from spins to noninteract- 2 2
ing spinless fermions and the evaluation of the averaged one- C)
fermion Green functions. In Sec. Ill the averaged Greerwhere(}, is the averaged transverse field at site.

a isreal, |a|=1,
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FIG. 1. The averaged density of statds3)
p(E) vs E—Q,.

Next we transform the spin model to a fermionic modelwith anticyclic boundary conditions foH™ and cyclic
by Jordan-Wigner transformationc;=s; , c_fzsf, C| boundary conditions foH . For the calculation of thermo-
=P_1S[ , C-+=Pj713j+ L j=2,... N, PJEHanl(_ZSﬁ)- dynamic properties of modél) one can omit the boundary

The resulting Hamiltonian reads
H=H +BP"=H"P*+H P,

N

N
H*=- 2 Qn+2 QnCrJern
n=1 n=1

N| =

N
Jn
+ +
+ 2 ?(Cn Cn+1~CnCnt1),
n=1
— + +
B=—Jn(CnCi—CNCq )

1+P
2

I+

N
Pr= . P=]] (-2s)
n=1

termB,?2i.e., it is sufficient to study the thermodynamics of
spinless fermions described by thecyclic Hamiltonian
H=H". Thisc-cyclic fermionic Hamiltonian corresponds to
the one-dimensional version of Anderson’s model with off-
diagonal disorder considered by John and Schréiber.

Following Ref. 15 one introduces the retarded and ad-
vanced temperature double-time Green functions

Gam()=Fi (=) ({ca(t).Cn}),
Gim(t)=1/27[% dwe '“'G;, (w=*ie),

(4)

e—+0.
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__FIG. 2. The averaged density of stat@s)
p(E) (broken line$ and the density of states for
certain realization of random intersite interactions
obtained by exact finite-chain calculatiotsolid
lines) vs E— Q.

For G, (w=ie) one finds the following set of equations: has to be fulfilled. Using Eq(3) the inequalities6) can be
written as

‘Jn*l ¥

(0xie=Qn)Gap(wtis)~| "5 Gy s m(wis)

a
J. _ IMw=*ie)— =(ImJ,_;+ImJ,)— A\
+§nG§+l’m(wtls) = Snm- (5) 2
S35 lmy, = @)
< -|ImJ,_4|+=|ImJ,|, |a|=1.
Suppose that,...,J,, ..., (and hence,... Q,,...) 2 2 "

are complex variables. The singularities®f (w=*ie) are

given by the zeros of dei(+ie —H). det(w+ie—H) is dif-

ferent from zero if the eigenvaluesof Im(w*=ie—H) are Let us consider the retarded Green function

either all positive or all negative. From the Gershgorin[Im(w+ig)>0]. Then according to Eq(7) for a=1 all A

criteriorf>%*for the complex matrix Img+is—H) one gets must be positive if all Ind,<0, whereas fom<—1 all A

that for any eigenvalua at least one of the conditions must be positive if all Ind,,>0. Similarly, for the advanced
Green function[Im(w—ig)<0] according to Eq.(7) for
a=1 all A are negative if all Id,>0, and fora<—1 all

(6) A\ are negative if all Ind,<0.

1 1
|Im(wiis—Qn)—)\|s§‘lmJnl +§‘ImJn
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FIG. 3. The density of states(E) averaged
over 10 realizations fofa| <1 obtained by exact
0.2 1 1 finite-chain calculations V& — Q.

ool . Wy fhdok

p(E) '
=01
0.4 4 a=—0.01_

10 10 Y

Consequently, fora=1 (a<-1) the retarded Green planesJ,, one can close the contours of integration in Eq.
function G, (w+ie) cannot have a pole in the lowéup-  (8) in these half-planes. One obtains
pen half-planes of complex variable,, whereas the ad-

vanced Green functios, (w—ie) cannot have a pole in ~ F(....Qn.Jn, ... )=F(... Qo—ial',Jo—il', ...).

the upper(lower) half-planes of complex variable, for ©)
a=1 (a<—1). Using these properties one can perform theSimilarly, for the function without poles in upper half-planes
averaging of Eqst5), defined by J,, one gets by contour integration

F(.. . Qndn, .. )=F(... Q¢+ial Jo+il, ...).

____ N (10
)= H f (J,—J )?+r?( ) Then the averaged equations for Green functidslue to
Egs.(9), (10) read
N
1 f r (), __ ,Fisgra)T
= — +
A=l (In=JoH+il)(In=Jo—il) [wiis—(QOIi|a|F)]G,Tm(wiie)—Of
8

. . X[Gn lm( ii‘g)—’—Gr;_f+1,m(wii8)]=6nm- (1D
by means of contour integrals. For the averaging of a func-
tion F(...,Q,,J,,...) that has no poles in lower half- Equations(11) possess translational symmetry and there-
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FIG. 4. The entropys (14) vs temperature
1/8, '=0.25.

fore they can be solved in a standard way. The resulting

averaged Green functions read

G* _1 T Ak dn-mx
) 2m)_ K

1
o—[QqFilalT+[JyFisgna)l]cos]

WE=yZ—x)/y]in—ml
_ LG yxz_szy] (12

X

with x=w—Qq*ila|l’, y=JyFisgn@)T'.

Ill. ENTROPY, SPECIFIC HEAT,
TRANSVERSE MAGNETIZATION, AND STATIC
TRANSVERSE LINEAR SUSCEPTIBILITY

The obtained averaged Green functidi®) allow us to
study the thermodynamics of the spin mo@BH(3). For this
we diagonalize the bilinear in Fermi operators form (4)
by the canonical transformation 7,=3N_,gCn,
AGin=Z10kAIn . Aj=Qi8+33,6) 41+ 3318 i1,
EiNzlgkigpi:b‘kpl Eg:lgpigpj:(sij with the result
E,’}'ZlAp(n; np—%). The thermodynamics for certain
realizations of random intersite interactions is then
determined by the spectrum of elementary excitations
A, or its density p(E)=(1/N)Z}_;8(E—Ap). For
example, the Helmholtz free energy per site is given by
f = (L/IN)(— (1/B)INTY_ {exif — (BAy/2)]+exp(BA,2)}) =
—(1/B8)JdEp(E)In[2 coshBE/2)]. The result of averaging
over realizations of random variables is given by
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7/ . FIG. 5. The entropys (14) vs temperature
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f=—(1/8) fdEp(E)IN[2 cosh@BE/2)]. The required aver- Really, p(E)= (1/N)2 —1l- (1/7r)lmep(E+ls)]
aged density of states is then calculated by the averaged ong{1/N) =} 1[(1/77)"“F p(E_'S)] where  T'j4(t)
particle Green function&L2) —+|9(+t)<{77p(t) 7q }> N 121 19pi94iGi; (1), and
therefore p(E)= (1/N)2 —1[ = (L/m)ImGj;(E+ie)]
1 1 —(1/N)2 1[(1/77)ImG (E—|s)] the averaglng yields the
p(E)=— ;ImG;n(E):;ImG:n(E) first two equalltles in the left-hand side of E@.3).

Knowing the averaged Helmholtz free energy we can cal-
culate the entropy and specific heat by the formulas

_1I 1
= —m -
™ E—Qq+ilaT)?—[JoFi r)? _ f
il ox1lall)*~[Joisgnar] =,82(j—B= dEp(E)| In(Zcosh’B—E)—'BZ—Eta h'BZ—E}
1 [JArB2-A (14
B 2(A2+BY) 2
. B
A=(E—Qq)?+(1—|al?)I'?-J3, B ﬂ /3' dEp(E)(COShBE/Z)) 19

B=2I[|a|(E— Q) +sgna)do]. (13 Due to the magic property of13) (d/9Qq)p(E)=—
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FIG. 6. The entropy (14) vs transverse field

0, 1/8=0.1.

(0l9E)p(E) one can express transverse magnetization anfh|I’=const=T"y,. The density of state&l3) in contrast to
static transverse linear susceptibility through the density ofhe case of diagonal disorder is not symmetric with respect to

states

N
— /1 of 1 — BE
= — Z = — = —
mz—< anl sn> 20 ZJ dEp(E)tanh?,

(16)

— om, —_— 1

Let us discuss the obtained results.

Note at first, that in the absence of randomness(E8).

reduces to the well-known result

1
Im
VE—Qo+ie)2—J3

p(E)=

+1
ale

1

1
=\ TV (E- Q)
O!

otherwise

it [E—Qol<|Jol,

(18

as anticipated.

The considered modé¢l)—(3) essentially differs from the

one with diagonal disorder treated by Nishimbr{J,=J,

the changeE—Qq¢— —(E—Qg). However, it remains the
same after the replacement- )y— — (E—Q,),a— —a, or
E-Q¢——(E—Qp), Jo——Jg, since the simultaneous
change of signs ofl, and a in Eqg. (13) does not affect
p(E). Without loss of generality we choos€,,Jy>0
throughout the rest of the paper. It is also convenient, al-
though by no means essential, to put herealtger 1. The
above-mentioned symmetry of the density of states can be
seen in Figs. 1-3, where the averaged density of stafs
(Fig. 1), the averaged density of stat€k3) in comparison
with histogramsp(E) calculated for a certain realization of
random intersite interactions using exact finite-chain calcula-
tions?® (Fig. 2), and the histogramg(E) obtained by the
latter approach fofa| <1 (Fig. 3) are displayed. The density
of states for the nonrandom cade) is depicted in Fig. 1 by
dashed lines. For larg@| the edges of the zone are com-
pletely smeared out with increasing strength of disodder
for |a]~1 the increase of disorder results in a smearing out
of mainly one edge of the zone. A further decreasgabiup
to O leads to a recovering of the symmetry with respect to
E-Q¢——(E—Qy) and to transforming ofp(E) into
S0(E—Qp). Some consequences induced by this dependence
of p(E) onT" anda will be seen in the behavior of thermo-
dynamic quantities.

The results of numerical calculations of thermodynamic
quantities are presented in Figs. 4—13, namely, the tempera-
ture dependences of the entrofdy) (Figs. 4,5, the specific

Q,, are independent random variables with Lorentzian distriheat(15) (Figs. 7,8, the transverse magnetizati¢h6) (Fig.
butiong. However, Nishimori's model can be obtained as all) and the static transverse linear susceptibility) (Fig.

certain limit of the present model, namelyl'—0,

13), the dependence on averaged transverse field at low tem-
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FIG. 7. The specific heat (15) vs tempera-
ture 13, I'=0.25.
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peratures of the entropfFig. 6), the specific heatFig. 9, However, as can be seen in Figs. 4—13, the influence of
the transverse magnetizati¢hig. 10, and the static trans- disorder, especially for small, essentially depends on the
verse linear susceptibilityFig. 12; the curves that corre- sign ofa. Particularly interesting is the case of strong asym-
spond to the nonrandom case are depicted in Figs. 4-13 Byetry in the density of states(E) when la|~1. From a
dashed lines. . mathematical point of view the dependence of the computed
The influence of randomness on thermodynamics g antities on temperature and averaged transverse field and
mainly rather typical. It leads tG) a weak deformation of the well-pronounced difference between the cases— 1

the entropy versus temperature curve with a decrease of ﬂ};\%d a~1 can be understood keeping in mind that these

entropy at high temperaturd&igs. 4,3, (ii) a broadening ", : :
and decreasing of the peak in the dependence of the speci antities according to Eqel4)—(17) are integrals oveE of

heat versus temperatufigigs. 7,8, (i) a smearing out of the Products ofp(E) (shown in Fig. 1 with functions with evi-
cast in them. versusQ, curve atT=0 for Qy=J, and a dent dependence dh at differentg. It is interesting to note
z . .
nonsaturated transverse magnetization at any finite tran&0@t for some Hamiltonian parameters and temperatures even
the singularity(accompanying the saturation of, at T=0 affect the thermodynamic quantities. This can be nicely seen

for Qy=Jp) in the curvey,, versusQ, at T=0 (Fig. 12, in Figs. 4-13.

and(v) a suppressing of static transverse linear susceptibility !t iS worth emphasizing that the asymmetrydE) leads
versus temperature Cur\(éig' 13 to the appearance of nonzero averaged transverse magnetlza—
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tion m, at zero averaged transverse fi€lg. As can be seen IV. CONCLUSIONS

- — —0 if (O PaT=1} . :
from Eq. (16) m,=0 at T=0, Q=0 if [Z..dEp(E) In conclusion, we present exact calculations of the ther-
= [odEp(E). This is evidently true for symmetric density of modynamics of the spig-isotropic XY chain with random
statesp(E) (as in the case considered by Nishimdsiit is  Lorentzian intersite interaction and a transverse field that de-

not obvious in the considered cagk8). The difference be- pends linearly on the surrounding intersite interacti@hs-
(3). The derived exact expressions for the averaged density

tween the integrals/® . dEp(E) and JodEp(E) can be : o

clearly demonstrated by numerical finite-chain calculation®f states(13)t ar;q thermo%yrfwamlc quapt|t|i{s4)—(&]7) dma)]: .
as a difference between the numbers of negative and positi sy;\t/eema}ss vr:/li tr?i);g%iggr;%lﬁlgl d(i)sro?ggrrotﬁar\?augug?y i(r)wcs)l\(/)e ze:n
eigenvaluesi , Of. the NX N matrix ||A;|| de'f““ed pyN_ unclear error. Aside from this they are interesting in their
and.\, , respectively. Exampl_es fo_r a certain realization Ofown right, since experimentally accessible systems are al-
the random mode(1)—(3) are given in Tables | and Il. The 4 ¢ affected by randomness, and an understanding of dis-
transverse magnetization for a certain realizatioma0 is . qar effects even within such a simple model can help in
given by m,=(N_—N.)/2N and one finds a good agree- .o mnaring experimental observations and theoretical predic-
ment of these direct numerical finite-chain calculations fory s

—m, with the results depicted in Fig. 1@.g., for'=0.25 Unfortunately, the obtained results do not permit us to
—m,~0.051, 0.038, 0.011 ifa=-1.01, -2, =5, re- calculate exactly the averaged spin correlation functions
spectively, for I'=1 —m,~0.095, 0.030, 0.003 if since such calculation requires the knowledge of averaged
a=-1.01, —2, —5, respectively. many-particle fermion Green functions. Spin correlations
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FIG. 9. The specific heat (15) vs transverse
field Qq, 1/3=0.1.

FIG. 10. The transverse magnetizatierr?Z
(16) vs transverse field), at low temperature
-7 | r=1 r=1 (1/8=0.001).
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FIG. 11. The transverse magnetizatien?Z
(16) vs temperature B at Q),=0.5.

FIG. 12. The static transverse linear suscepti-
bility — x,, (17) vs transverse field), at low
temperature (33=0.001).
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TABLE I. The numbers of negative and positive,, N_ and \V, , for three realizations of random
intersite interactions in a finite modél)—(3) (N=1000) withQ),=0, J,=1, ' =0.25.

(IN) =L, a=-5 a=-2 a=-1.01 a=1.01 a=2 a=5
NN NN, NN NN NN NN
0.997 491 509 458 542 454 546 546 454 542 458 509 491
0.984 490 510 464 536 442 558 558 442 536 464 510 490
1.008 487 513 463 537 452 548 548 452 537 463 513 487

TABLE Il. The numbers of negative and positive, N_ and N, for three realizations of random
intersite interactions in a finite modél)—(3) (N=1000) withQ,=0, Jy=1,T'=1.

(LN)ZL 43, a=-5 a=-2 a=-1.01 a=1.01 a=2 a=5

N_ N, NN, NN, NN NN, NN,
1.009 495 505 470 530 402 598 598 402 530 470 505 495
0.986 503 497 471 529 408 592 592 408 529 471 497 503

1.034 494 506 469 531 406 594 594 406 531 469 506 494

14 309

FIG. 13. The static transverse linear suscepti-
bility — x,, (17) vs temperature B at {;,=0.5.
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