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Theory of finite-temperature crossovers near quantum critical points close to,
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A systematic method for the computation of finite-temperatiijecfossover functions near quantum-critical
points close to, or above, their upper-critical dimension is devised. We describe the physics of the various
regions in theT and critical tuning parametet)( plane. The quantum-critical point is @t=0, t=0, and in
many cases there is a line of finite-temperature transitiofs=aE.(t), t<0, with T,(0)=0. For the relativ-
istic, n-componentg¢* continuum quantum field theofwhich describes lattice quantum rotan2) and
transverse field Isingn=1) modelg the upper-critical dimension id=3, and ford<3, e=3—d is the
control parameter over the entire phase diagram. In the rég@ierT (t)|<T.(t), we obtain are expansion for
coupling constants which then are input as arguments of krobagsical, tricritical, crossover functions. In the
high-T region of the continuum theory, an expansion in integer powe&gofnodulo powers of lg, holds for
all thermodynamic observables, static correlators, and dynamic properties at all Matsubara frequencies; for the
imaginary part of correlators at real frequencies (the perturbative/e expansion describes quantum relax-
ation athw~kgT or larger, but fails fori w~ \/ekg T or smaller. An important principle, underlying the whole
calculation, is the analyticity of all observables as functionst oéit t=0, for T>0; indeed, analytic
continuation int is used to obtain results in a portion of the phase diagram. Our method also applies to a
large class of other quantum-critical points and their associated continuum quantum field theories.
[S0163-182607)00301-9

[. INTRODUCTION butions of fluctuations of different physical origins: critical
singularities of thel =0 quantum-critical point and those of

The study of finite-temperature crossovers in the vicinitythe finiteT classical phase transition are accounted for at
of quantum phase transitions is a subject with a longdistinct stages of the calculation.
history* =21 but many aspects of it remain poorly understood. We shall present most of our discussion in the context of
The structure of the crossovers is especially rich for the cas@ continuum quantum field theoryCQFT) of an
where the quantum-critical point extends into a line of finite-N-component bosonic fielgp, (a=1,... n; we will drop
temperature phase transitions, and there is a reasonalfée indexa except where needggith O(n) symmetry and
qualitative understanding of all the regimes. While thereWith the bare, imaginary timer} action
have been qggt?ati}glt%e calculations of crossover functions in
special cases;>°"“there is no complete, general theory i 1 2
of these crossovers, especially for the case when the S= fo de ddx{ E[(ﬁf¢)2+(v¢)2+(mOCHO)d’Z]
guantum-critical point is below its upper-critical dimension.

In this paper, we shall provide a systematic and controlled n Yo ¢4}
approach to the quantitative computation of these crossover 41 '
functions. Our method is quite general: It should apply to
essentially all quantum-critical points in the vicinity of, or We have sefi =kz=1, measured length scales) (in units
above, their upper-critical dimension. in which the velocity of excitations=1, and introduced the

Recently, O'Connor and Stephéfshave also studied bare massn3.+t, and the bare coupling, (the mass term
crossovers near relativistic quantum-critical points belowhas been separated so that The0 quantum-critical point is
their upper-critical dimension. They found it necessary toatt,=0). This field theory describes the low-energy physics
introduce a nonstandard extension of the field-theoretiin the vicinity of the quantum phase transition in the
renormalization group. We will comment on their results d-dimensional transverse-field Ising modfr n=1) or the
(and of othersin Sec. IV. O(n) quantum rotor modeffor n>1). The generalization of

In this paper, we will show that it is possible to devise aour method to other quantum field theories, like the dilute
simple strategy, completely within the framework of stan-Bose gas or models for the onset of antiferromagnetism in
dard field-theoretic methods, which provides a systemati¢ermi liquids, is straightforward and will also be discussed.
computation of the required crossovers. We shall describe We begin our discussion by reviewing the expected scal-
how our method can be extended to arbitrary orders in aing structure ofS for the case where the quantum-critical
expansion in powers of the interactions, but we shall onlypoint is below its upper-critical dimension. At=0, S de-
provide here explicit computations at low orders. One of thescribes the usuap* theory ind+ 1 dimensions, and its up-
main virtues of our method is that it clearly separates contriper critical dimension igl=3; for d<3, there is an essen-
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contained within universal quantum-critical crossover func-
tions, which we now briefly describe. We will consider the
behavior of the dynamic two-point susceptibilipfk, w) (k

T RN 7 is a spatial momentum, anadl is a frequencyobtained after
AN II s analytic continuation of the susceptibility,
.’ 1 e
J X(kjam)=:ZJ~ddxf dre! K enn(p(x,7)$(0,0)),
0
/ I
LONG RANGE \/ 1.4
0 ORDER 0 > which is evaluated at the Matsubara frequengy=2n=T.
t We will consider the scaling behavior ¢of for t>0 and

t<0 separately, and then discuss the relationship between
FIG. 1. Finite-temperatureT() phase diagram, as a function of the two cases.

the tuning parametetr, of crossovers near a quantum-critical point (i) t>0. The susceptibilityy obeys the scaling forfn
(t=0, T=0) below its upper-critical dimension, for the case where
long-range order survives at nonzefo The dashed lines indicate fic \2[kgT\” fick o A,
smooth crossovers, while the solid line is the locus of finite- X(k,w)=A< ) (A_) +(ﬁ’ﬁ’ﬁ
temperature transitionsT=T,(t). All crossover and phase- + B B' "B
transition boundaries scale @s-|t|*”, wherez is the dynamic ex-

ponent andv is the correlation length exponent. For the acti®n  \yhere we have momentarily reinserted all factorgi pkg,

[Eg. (1.1)] this paper provides a systematic expansion of observypg c, n is the usual field anomalous dimension of the
ables withe=3—d the control parameter. In region Il the expan- T=0, (d+1)-dimensional theory, ant . is a fully univer-
sion is in powers ok/e (e=3—d), with additional factors of I in g5 “complex-valued, universal scaling function. Notice that
the shaded regiofdefined by|T—T,(t)| <T.(t)] we provide ane o0 are ng arbitrary scale factors, anis fully determined
expansioln Ef couplling cor;stants, Wlhich then be?ome argumlents %Iy two parametersh, and A WhiC,h are properties of the
previously knownclassical, tricritical, crossover functions. Else- T=0 theory. The first of the,SaJr, is the true energy gap

where, all observables can be obtained in an expansion in integer, . . .
powers ofe. For T#0, all observables are analytic as a function of above the ground state, while the secaddis the residue of

t att=0; in the regiont<0, T>T.(t), our results are obtained by the lowest quasiparticle excitation; they obey
analytic continuation from thé>0 results. All properties of the
phase diagram are described by the continuum quantum field theory
associated with the quantum-critical point, which is in its [dw-
limit in regions | and Ill, and in its highF limit in region Il. The
condition determining boundary of region Il is similar to that de-

A, ~t", A~t", t>0, (1.6

where v is the usual correlation length exponent of the
T=0 theory(all Greek letter exponents in this paper refer to
termining T, to within constants of order unity that we are free to thqse off =0 the qu.a.ntum-crltlcallpomt, and not t.o those the
choose, and we have chosen region Ill to extend to both sides Jlm'te'T phase transition We provide a CquUtat'on_ of the
T=T,(t). For more discussion on the regions see Sec. [IA2, ~ values of theT=0 parametera, and.A, in Appendix B.
The factors in front of¥" , in Eq. (1.5 have been chosen

tially complete understandif$?*of the critical properties of SO thatW is finite at A, /kgT=0. All scaling functions

We also emphasize that although the scaling anda%
e=3—d. (1.2 contains dynamic information, its form and content are quite

different from the dynamic scaling hypotheses applied near
classical phase transitio%.In these classical systems, a
single diverging correlation length is used to set the scale
for k andw; the analog of Eq(1.5) is then a scaling function
of two argumentsk¢ and wé&*, where z. is the classical
t=t,Z/Zy; (1.3 dynamic critical exponent. In contrast, the quantum cross-
over result(1.5) is a function ofthree arguments, the extra
t is a measure of the deviation of the system fromTitsO  argument arising because the quantum-critical point has two
quantum-critical point. Precisely the same renormalizationselevant perturbationsT(andt). Further, the identification of
are also sufficient to define a finite theory at nonZereven universal scale factors, and indeed the conceptualization of
in the vicinity of the finite-T phase transition lings we shall  the physics, is much more transparent wheis used as the
explicitly see in this paper. primary energy setting the scale for other perturbations. Only
We show a sketch of the phase diagran$as a function  in the immediate vicnity of the finitd- phase transition at
of t and T in Fig 1% We have assumed in this figure and T(t), |T—T.(t)]<T.(t), does Eq(1.5) collapse into a scal-
throughout the remainder of the paper that the matislin ~ ing function of two arguments, as has been discussed in
its scaling limit; i.e., the couplingly is at its fixed-point Refs. 9 and 26.
value, and all ultraviolet cutoffs have been sent to infinity (i) t<0. Now theT=0 ground state breaks a symmetry
after an appropriate renormalization procedure. There is aith
finite-temperature phase transition lineTat T.(t), and all
other boundaries are smooth crossovers. All of the physics is (Po)=Npd,1, T=0, t<O0; 1.7

The definition of the renormalized theory requires a field
scale renormalizatiod, a coupling constant renormalization
Z,, and a renormalization of? insertions in the critical
theoryZ,. In terms of these, we define us usual
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hereNy~ (—t)# is the condensate, which we have arbitrarily the results of this paperan still be usefully applied to the
chosen to point in the a=1 direction, and remainder of the phase diagram of Fig. 1.

B=(d—1+n)v/2 is the magnetization exponent of the Although we have used two separate scaling forms to de-
T=0 theory. NowN, can serve as the parameter which de-scribe the behavior far<0 andt>0, there is a crucial con-
termined the field scalé&eplacing.4), and we need an en- nection between them. Notice that there is no thermody-
ergy scale which determines the deviation of the ground stateamic singularity at=0 providedT>0. This implies that
from thet=0, T=0 quantum-critical point. Fon=1, there the observabley(k,») (and indeed all other observables
is a gapA_ above the ground state which satisfies our re-must beanalytic as a function of t at+0 as long as

quirements; we have therefdre T>0. This principle will serve as an extremely important
) g constraint on the calculation in this paper; indeed, our
Ng(7ic) fick Ao A_ method is designed to ensure that analyticity holds at each
x(k w)= ATk T)Z 7\ kgT 'KgT 'KgT)’ order. Further, our results in the regibr 0, T>T(t), were

obtained by a process of analytic continuation from the
t<0, n=1. (1.8 t>0,T>0 region(see Fig. 1 The ground state fdr<0 has

Forn=2. there i b h q q a spontaneously broken symmetry, and hence cannot be used
orn=2, there Is no gap above the ground state, and We USg 5ccess the symmetrte<0, T>T,(t) region in perturba-

i i i ~(—t)(d=1) . . .

instead the spin stiffnegg~(—1)™ " as a measure of the 5, theory: instead it is more naturally accessed from the
deviation from the quantum-critical point; in this case We yisordered side withi>0. A similar procedure of analytic
have the scaling form continuation in coupling constants was used recently in exact

o) Ng( ﬁc)2< (kBT)d‘l)”/(d‘1> (cjie_tirgginations of quantum-critical scaling functions in
X Kw)= ==l 7—| | "7 d—2 T
ps |keT/) | (hi0)" 2ps Before turning to a description of our method in Sec. | A,

we highlight one of our results. A particularly interesting
), t<0, n=2. property of CQFT’s at finitd is the expected thermal relax-
ational behavior of their correlators in real time. This behav-

(1.9 ior cannot be characterized simply to a field theorist who
merely considers correlators o, defined as a CQFT in
imaginary time with a spacetime geomeR§x S, (the ten-
Sor product of infinited-dimensional flat space with a circle
Sf circumference ). In real frequency, the thermal relax-
ational behavior is characterized by the fact that
lim,_ o Imy(k,w)/w is expected to be finite, with the limit-
ing value proportional to a relaxation constant. In Ref. 21,
the quantity

v hck fo (hc)9 2pg
el koT ke T (kg T)® T

A computation of theT=0 parameterdNy, A_, andps is
provided in Appendix B. Thex dependence in Eq.1.9
accounts for the difference between fluctuations transver
and longitudinal to the condensate orientation. Agdin, is
finite at A_ /kgT=0, or atpd/ T4 =0, and all subsequent
scaling functions will share this property. The finite-
temperature phase transition Bf(t) is contained entirely
within the scaling function? _ : This transition appears as a
point of nonanalyticity of¥#_ as a function ofA_/T or
ps/T9" 1. An immediate consequence is that the value of ralzix(o,o)
T, can be determined precisely in terms of the 0 energy
scale; we found, in an expansion in powersepthat

- (1.12

=0

was introduced as a convenient characterization of the relax-
ation rate. By Eq(1.5), 'r must obey a scaling form given

A_ |3
TC:k \/; E+O(6’6(1+6)/(175)161/(2V)) 1 n:11 by
B
(1.10 r KgT A, 11
and R YT+ kT (1.13
12 for t>0, and similarly fort<0. In particular, in the high-

limit of the CQFT Ref. 21(this is region Il of Fig. }, ' is

(kgT/#) times ¥, (0), which is expected to be a finite,
universal number. Unfortunately, we shall find that the per-

, n=2. (1.1 turbative expansion discussed in this paper cannot be used to
obtain a systematic expansion fbg. A self-consistent ap-

The various higher-order contributions are all universal, buproach, with damping of intermediate states, appears neces-

arise from very different physical effects; we will discuss sary and will not be discussed here. In the higlimit, we

their origin later in the paper. In the upper-critical dimensionshall show that the non-self-consistent approach fails for fre-

(e=0), these formulas are modified by replaciady 1/In:  quencies of orde/eT/#% or smaller. To avoid this difficulty,

So forn=1, T.~A_In"(1/A_), etc. For the cases=1, |t us define an alternative characterization of the damping at
d=1 andn=3, d=2 it is known that in factT.=0; i.e.,  frequencies of ordekgT/% by

long-range order is present only @t=0, and disappears at

any nonzeroT. For these cases, it is clear that the above x (0,w)

results forT,, and other results obtained in teeexpansion, I'rr=-x(0,0 Im——— : (1.14
cannot be used in the region labeled Il in Fig 1. However, w=kgT/h

. (ﬁC)(d_z)/(d_l)pé/(d_l) 3
¢ kg 2m2(n+2)

+O(E,E(1+E)/(1_E),Ell(2’}))
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This will obey a scaling form identical to that dfg. We 171 d% ~ )
found in the hight limit that Ser=1 Ef amy Gk k)|

4o ddklddkzddk36(k Ko ,Kg, —k;—k
keT 3 1, o Y 1] T amE Calkikake TKiTK
T €(ni8)m gt mte Li,(e ) |+ O(€¥?),

(1.19 —kg)® (Ky) D (ko) D (K3) D (—ky —Kp—kg)+ - - - |.

where L is the dilogarithm function defined in E¢R.36). (1.179
The result will be compared with an exact result Fog7 for

d=1. n=1 in Sec. Il B. Also in the exact result at=1, The couplingsC,, C,, ..., arecomputed in a power series

n=1 we find Tn/I'1=0.9817008. .. in the highT in €, with the coupling constants renormalized as in the

limit. and t a simil tio cl i ity in all T=0, (d+1)-dimensional critical theory. This procedure
ML, and we expect a simiiar ratio close to unity In all Cases, i remove all the ultraviolet divergences of the quantum-
in region Il of Fig. 1.

. . . - critical point. However, the ultraviolet divergences of the
The following subsection contains a description of OUlfinite-T, d-dimensionalg? theory remain; fortunately these
approach. Readers not interested in the details of its appllc%—re very simple as the* theory issuperrenormalizabléor

tion to 5 can read Sec. | A and skip ahead to Sec. IV wherey _ 3o, particular,d<<3, ultraviolet divergences are asso-

we give our unified perspective of this and earlier work. ; ; ) “ " . .
We will revert to setting — ks = c= 1 in the remainder of ciated only with one-loop “tadpole” graphs; so let us define

th : C
€ paper ddk]_ C4(k1_k1k11_kl)

(2m)8 kZ

cat=E:00+| "5

A. Method
. +-- (1.18
The origin of the approach we shall take here can be

traced to early work by Lusch®ron the quantum Q() non-  where the ellipsis refers to “tadpole” contributions from
linear o model in 1+1 dimensions. Subsequently, a relatedhigher-order vertices lik€g, Cg, ... . Similarly, there will

idea was employed by Brezin and Zinn-Justiand by Rud- 4155 pe tadpole renormalizations®f to C, by higher-order
nick, Guo, and JasndWwin their study of finite-size scaling

. ) : i vertices, and so on. These new vertic€s,, p integer, are
crossover functions in systems which are finite in all, or al now free of all ultraviolet divergence$or 3=<d<4 there is
but one, dimensiongalso referred to as thel—~0 and 5 gecond classical renormalization at the two-loop level
d—1 crossovers The quantum-critical Crossovers are ich must be accounted for; we will ignore this complica-
clearly related, but now involvel+1—d. We shall show ion here and deal with it later in the papeThey are also
here that the latter problem can be successfully analyzed by, iomatically free of infrared divergences as we are only

essentially the same method as that used for the formefyieqrating out modes with a finite frequency. Indeed, these
There are some new subtleties that arise in a limited regiofe tices must obey the scaling forms

of the phase diagram, and we will discuss below how they
can be dealt with. A7\P kA

We will describe the method here for the special case of Czp(ki):-|-d+1fp<dfl+ n)(_*> ‘I’Egpl<—|,—+),
the actionS [Eq. (1.1)] with d below its upper critical di- A T
mension, i.e.d<<3. The central idea is that at finifg, it is (119
safe to integrate out all modes ¢f(k,w,) with a non-zero
Matsubara frequency,# 0 to derive an effective action for
zero-frequency mode#&(k,w,=0). All modes being inte-
grated out are regulated in the infrared by thé term in

their propagator, and so the process is necessarily free ter. Similar scaling results hold for<0 and we will refrain

infrared divergences; further, the. renormallzatlons Of. t_h%rom explicitly displaying them. For our subsequent discus-
T=0 theory also control the ultraviolet divergences at f|n|teSion it is useful to define a set of couplings R, and U

T. To be specific, let us define which can be obtained from th€,,, and which play an
important role in our analysis:

for t>0, with the W) a set of quantum scaling functions;

the subscripQ emphasizes that these scaling functions are

properties of theT=0 quantum-critical point, and distin-
ishes them from classical crossover functions we shall use

dCa(k)

T rur
CD(X)EEJO dré(x,7) (1.16 R=C,(0), KE<1+W

k—O) , U=Cy(ki=0).
(1.20

and its transform in  momentum space® (k) It is clear thatR, K, andU obey scaling forms that can be

= [d9% "D (x). Then, fromS, we can deduce an effective easily deduced from Ed1.19.

action for ®(k) after completely integrating out the We also note that the couplinggand C,,(k;) are guar-
¢(k,w,#0) (we have set the coupling, at the fixed point anteed to be analytic as a function toht t=_0; this is be-

of its B function—see Appendix B cause only finite-frequency modes have been integrated out,
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and their propagator ¢+ wﬁ+t) is not singular at=0 in  in integer powers ok. Then, generate an expansion for the
the infrared k=0) as w,#0. This analyticity will be of physical observable of interest, temporarily treatRgs a
great use to us later. fixed constant independent ef this will again be a series in

Assume, for the rest of this section, that we know theinteger powers of, but strong infrared fluctuations of the
\Ifg’: functions (we will provide explicit computations of ®,=0 mode lead to a singular dependence of the latter series
some of them later in the papeiVe are now faced with the on R. Finally, insert the former series fa® into the latter
seemingly difficult problem of computing observables in theseries for the physical observable. In the quantum-disordered
® theory with the actiorS.. This is a theory in dimension region (Fig. 1), R is of order unity, and the final result re-
d close to 3(not d close to 4, and one might naively assume Mmains a series in integer powers ef However, in the
that this problem is intractable. We shall now argue that, inquantum-critical regionR is of ordere [Eq. (1.21)] and the
fact, it is not. The argument is contained in the following two result, by Eq(1.22), is a series in integer powers ¢&, with
simple, but important, observations. possibly a finite number of powers ofdmultiplying the

(1) Consider a perturbation theory & in which the terms. It is important to note that the final series in powers of
propagator is 1Kk?+R), and we expand in the nonlineari- \/e is obtained from the original series in powersebnly
ties Cpp(ki), p=2 in powers ofe. This expansion differs by a local rearrangement of terms; i.e., given all the terms up
from an ordinary expansion in powers efonly in that the to a certain order in the& series, we can obtain all terms
massR and couplingK itself contain corrections in powers below a related order in thée series.
of €; alternatively one could also tret—1 as an interac- Finally, let us turn our attention to the troublesome region
tion, and work with the propagator ¥{+R), but it is es- |T—T,(t)|<T.(t). We expect this region to be dominated
sential to keep the mad$® in the propagator. Such a proce- by the classical fluctuations characteristic of the finite-
dure is guaranteed to be finite in the ultraviolet. This followstemperature transition, and hence to be well described by the
immediately from the statement that the renormalization offollowing actionSc, which is a truncated form af.:
the T=0 theory(which we carried out while obtainings
from S) is sufficient to remove ultraviolet divergences even d
at nonzeradr . In other words, the momentum dependences in Scsz d"x
the C,,(kj) must be such that all ultraviolet divergences can-
cel out. The couplings above were defined in E4.20. We have

(2) The actionS, is weakly coupled over the bulk of the implicitly performed tadpole renormalizations where neces-
phase diagram in thgT plane, and so the procedure(y  Sary to remove ultraviolet divergences of the classical theory.
leads to accurate results for physical observables. Only in th&n immediate consequence of the superrenormalizability of
region|T—T¢(t)|<T.(t) (drawn shaded in Fig.)is a more the classical. is that all observables are universal functions
sophisticated analysis necessary, which will be describedf the “bare” coupling constant&, R, andU. So, for ex-
momentarily. To verify this claim, consider the values of theample, we have for the static susceptibility
low order couplings inSe; att=0, butT finite; we will find
later that

K , R U,
5 (V)24 S &2 m ), (1.23

(k,iw,=0) 1<|<I>(k)|2> 1‘1’ K s
X(Klw,=U)= = =p*cC VW ARR(A—d)2 | 1
- _ o T R R "K%R

R~eT2™ 7, K~T7 7, U~eT¢ 27, (1.21) (1.24
fort=0. (For the present purpose, we can neglecCa}f for

p>2 as they are all of ordes?.) A dimensionless measure
of the strength of nonlinearities i is

whereW ¢ is a universal crossover function with no arbitrary
scale factors. In fact, the crossover functighy has been
considered earlier in Ref. 32, where it was dubbedttlee
elne ritical crossover functiorfor entirely different physical rea-
(1-erz2 \/E( 1- —) <1 for t=0. sons (we emphasize that this terminology is purely
2 accidental—we are not dealing with any tricritical point
(1.22 here. The computation of tricritical crossover functions is a
The above dimensionless ratio is simply that appearing in théogically separate problem from those considered in this pa-
familiar Ginzburg criteriort* So a simple perturbative calcu- per, and we shall have relatively little to say about them here.
lation is adequate far=0. Fort>0, the behavior of pertur- We shall simply treat them as known, previously computed
bation theory can only improve as the maRsbecomes functions; for completeness, we tabulate some results on
larger, which decreases the value of the above dimensionle#gese functions in Appendix A. Notice that the arguments of
ratio; as a result the perturbative calculation describes ththe classical crossover functiobc in Eq. (1.24 are them-
crossover between the quantum-critical and quantumselves quantum-critical crossover functions, as follows from
disordered regimes of Fig. 1. Fdr<O the perturbation Eg. (1.19 and (1.20. Indeed, inserting Eqs(1.19 and
theory is initially adequate, but eventually becomes unreli{1.20 into Eq.(1.24), we get a scaling form completely con-
able in the regionT—T.(t)|<T.(t). sistent with Eq.(1.5). The critical temperaturd . is deter-

As the above results contain some of the key points whictmined by the conditiony(0,0)=c<; in general, this is not
allowed the computations of this paper, it is useful to reiter-equivalent to the requireme®=0 (although this does turn
ate them. We describe the nature of our expansion, excludingut to be the case at the one-loop lgyélit is instead given
the shaded regiofT — T(t)|<T.(t) of Fig. 1. The first step by the point where the scaling functioki diverges. This
is to obtain an expansion for the ‘mas® of the w,=0  condition leads to equatiohU/(K¥?R(“~9/2) = const where
mode: We outlined above a procedure which yields a seriethe constant is determined by the point wh#re diverges as

TU
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a function of its second argument; it is the solution of thistions appear in the appendixes. The tricritical crossover

equation which leads to th@(e*™9/(1-9) corrections to  functions appearing in Eq1.24 are in Appendix A. In Ap-

the result forT, reported in Eq(1.10. pendix B we compute th€=0 parameters that appear in the
To summarize, in the regio — T.(t)|<T.(t), the phys-  scaling forms. Details of the finit& two-loop computations

ics is described by universal crossover functidhswhich  of various quantities are in Appendix C.

are ‘“crossover functions W) of crossover functions

(¥g).” The ¥4 functions are properties of the quantum-

critical point, and it is the burden of this paper to compute Il. CROSSOVER FUNCTIONS OF &
them; these functions then serve as arguments of known clas- BELOW THREE DIMENSIONS
sical, tricritical crossover functionsi{(¢).
Finally, we note that fod just below 3, it is also neces- A number of crossover functions for the modglwere

sary to include a coupling®® in S to get the correct infra- introduced in Sec. |. We give formal expressions, valid to
red behavior; we have ignored this complication for simplic-two-loop order, for all of these quantities in Appendix C. In
ity; moreover, asV~ €2 and this effect is present only at a this section we will evaluate these expressions and show that
rather high order. they obey the required scaling forms order by ordet.ikiVe
The outline of the remainder of the paper is as follows. Inwill discuss the behavior for general valuestainly to one-
Sec. Il we will compute properties & for d<3. The dis- loop order in Sec. Il A. We will limit our explicit two-loop
cussion is divided into a one-loop computation of static ob+esults to a few important quantities at the critical coupling
servables in Sec. Il A and a two-loop computation of dy-t=0; these will appear in Sec. Il B.
namic observables in Sec. Il B. Section Il will present a The same basic trick will be repeatedly used to evaluate
general discussion of the properties of models above theihe frequency summations in Appendix C: We will always
upper-critical dimension: the modifications necessary in theubtract from the summation of a function ef,, the inte-
scaling forms and the explicit computation of crossovergration over frequency of precisely the same function. The
functions. Finally Sec. IV will review the main results, dis- resulting difference will always turn out to be strongly con-
cuss their relationship to previous works, and point out di-vergent as a function of momentum in dllSo, for example,
rections for future work. A number of details of the calcula- we have

dd+lp 1
f(zw)d 62+q2+a f f(277 +q2+a f( e2+qg°+a’ f(zw)d p’+a®
ddq 1 1
(277 \/q2+a \/q2+a2/T_1'

(2.9

Notice that the integrand on the right-hand side of the last equation falls off exponentially forglaegel the integral is
therefore convergent for atl.

A. One-loop results

We will begin (Sec. Il A1 by determining the coupling constari®s K, andU of Sy which are the arguments of the
tricritical crossover functions. Subsequently, we will present results for observahfeshef susceptibilityy (Sec. Il A2 and
the response of the system to a field that couples to the conservedcOdrge(Sec. Il A 3.

1. Coupling constants ofS

We begin by using Eq4C7) and(1.20 to obtain an expression fdR, valid to one-loop order:

R=ty+ n+2 f—d TY, ! +T f—d—ddﬂp ! 2.2
~loT ol g 2m Ho e+q’+ty o (2m)9+L p?|’ 22

We have seZ=1 at this order, and will implicitly do so in the remainder of this section. We now apply the idé¢atityand
perform the momentum integrals ovey expressed in terms of the renormalizedsing Eq.(1.3). Finally we expressig is
terms of a renormalized couplirg defined by

22

g=/.f€Sd+1Z—uo, 2.3
4

where u is a renormalization momentum scalg;=2/[T'(d/2)(4m)¥?] is a phase space factor, and the values of the
renormalization constants are tabulated in &1). This gives fort>0
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In the second equation, we have evaluated at the fixed-point wpiug* [Eq. (B2)], and then expanded to order The
function F is given by

. di% | 1 1 11 X
d(y)_sd+1 (27T)d /—k2+ye/k2+y_1_k2+y+F . ( 5)
Let us also note here the values
(4m)Y ((d+1)/2T(d—1)¢(d—1) 27
It is now easy to see, using E@6) that the resulf2.4) for R can be written in the scaling form
T277A7[ A2 n+2 A2
== a4 |72 telnrs/Fel T2 | @

This result is consistent with the scaling postulated in @dl9. At this order, the exponeni=0, and verifying the powers
of # in front requires a higher-order computation.

We now wish to extend this result fét to t<<0 by analytic continuation from thie>0 result. First, we need to verify that
thet>0 result forR is analytic att=0. To do this, we first rewrite Eq2.4) in the form

T
In—
73

2n+2 t
+eT——=G, , (2.8

1 n+2
te n+8 T2

R=t n+8

where

In »
G+(y)=¥+4f k2dk +2m\y. 2.9

1 1
0" KBty gly_q
The first term in Eq(2.8) is clearly a smooth function df, if we can now show thaG, (y) is a smooth function oy near

y=0, we will have established the analyticity Bfat t=0. Performing an integration by parts of the integral in Ej9),
followed by an elementary re-arrangement of terms, we can manipulate the redBlf fgy into the following form:

In ®
G.(y)= ¥+2w[y—4f dkin[1—e~ VK]
0

ylny fw k?+y y foc ( sinhVk?+y/2)| k y
=22 2nfy+2| dk VKFy—k—In - —4| dk| In|ke———— |- s ———= ]|
2 Yy 0 Y { k| 2k%+1 0 NS 2 4k*+1

(2.10

The first integral can be done analytically, and we find that all the potentially singular terms cancel. Our final expression for
G, (y), valid fory>0, is

° sinh(Vk?+y/2)| k
G+(y)=X—4J dk{ In kM Y (2.10)
2 0 JKZ+y/2 2 4k’+1

It should now be evident that E¢2.11) is a smooth function ofy at y=0; the integrand involves only even powers of
Jk?+y, and its integral is a smooth function f Indeed, it is not difficult to explicitly extend the above result to
z=—y<0. Divide the integral into the regiors< \z andk> \/z; the integrand remains unchanged in the second region, while
in the first region the sinh function becomes a sin function—this gives us the fur@tign) as the analytic continuation of
G.(y) toz=-y<0:

z 7z sin(yz— k312 % sinh(Vk?—z/2)| k z
G (z2)=5—zsinh?! z—4j “dkin kn(—) —4f dk| In| k il ) — =+ . (212
2 0 Vz—K?/2 N VKk?—2z/2 2 4k*+1
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We can now combine the above results to obtain an expressioR faalid for both signs oft and which is smooth at
t=0:

R=t| 1+ —n+2| T + T2—n+2G
- “h+8 n; “ h+s8

t
?z> G(y)=0(y)G+(y)+0(—y)G_(—V). (2.13

A plot of the functionG(y) is shown in Fig 2. As expected, the resultg1.10, (1.12 for T.. We will discuss the physical
the plot is smooth ay=0. However, the alert reader will significance of the limiting behavior & and G in various
notice that there is in fact a logarithmic singularity @  regimes in Sec. Il A 2.

(R) aty=—2m (t=—4x°T?) where the argument of the Next, we turn to the computation &f. First, we obtain
logarithm in Eqg.(2.12 can first change sign. However, this from Egs.(C5) and(1.20 the expression

singularity is of no physical consequence as it occurs when

the system is already in the ordered phésig. 1), and the diq 1

above expressions can no longer be2 used; the transition to the U=uo—u 6 | o) 2m (Erqiri)?
ordered phase happens whien—eT“. More precisely, we (2.14
see from the tricritical function in Appendix A that the value

of T.(t) is determined by the conditioR=0; applying this As in the computation oR, we can seZ=1, =0 in the
to Eqg.(2.12 and using Eqs(B13), (B11), and(B17) we get  one-loop approximation. Now note that

’ n+8

ddq 1 d% 1 di*p 1
TEHE;EO (2w)d(e§+q2+to)2_(TEEn J(zw)d(e§+q2+t0)2_ (2m)57T (p?+1g)?

ddq 1 dd+lp 1
T enT@+ty® ) 2mTT (PP t)?
e d dig 1 1 Toes 1 N Iny+1+0( )
—_ —_— — —_— _—— — 6 ,
dy| J (2m¢ Va?+y olid+y_q e W™ Jy 2
(2.19
wherey=t,/T2. Using the definition of the functios, in Eq. (2.11), we get finally
T f 4% ! Y Y] A I 2.1
o) @ @i | e )9 (210
|
Note that we have analytically continul, to G’ and ob- GeT¢ 3(3n+14 1 [t
tained an expression which is manifestly analytictat0. U= n+8 “T(ntrs)? 2 +eG T2/ |
Inserting Eq.(2.16 into Eq. (2.14, and expressing, and (2.18
:r:ir;tiizarlndss()f the renormalizegl [Eq. (2.3 ] andt [Eq. (1.3, Note that thew dependence has dropped out at this order,

and this result is consistent with the scaling forfhsl9 and

(1.20.

Finally, it is clear that the couplinf=1 at one loop.

n+8

Uz ucal 1 n+8

6e

2. Susceptibility

2e~2
©og 1
Te [ PR

Tz) ' The one-loop susceptibility follows immediately from the
(217 result(C9):

Evaluating atg=g* [Eq. (B2)] and expanding to ordes?, PP 2 2o n+2
we get finally X (kiog)=k*+wp+R—e| g 27TVR. (2.19
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As R is analytic att=0, and so is this result foy. It is also

clear that this result obeys the scaling forthss), (1.8), and

(1.9, given that the resul2.7) for R obeys Eq.(1.19.
The result(2.19 gives us a prediction for th& andt

dependence of the correlation length 131

27TVR. (2.20

~2_p n+2
¢ "=R-e n+8

By examining the limiting behavior o, we can obtain a
physical interpretation of the regimes of the CQFT associ-
ated with the=0, T=0 quantum-critical point, as shown in
Fig. 1.

(I) T<A,: low-T limit of CQFT, paramagnetic phase.
From Egs.(2.20 and(2.7) we find

'
w»
.

n+2
E2=A%+e n+8)T(8wTA+)1’2eA+’T+ el

FIG. 2. A plot of the universal scaling functidg(y) defined in
(2.2)  Eq.(2.13. Notice that it is smooth at=0. It is analytic for all real

y>—21r.
So the correlation length and the physics are dominated by
its t>0, T=0 behavior, with exponentially small corrections T
due to a dilute number of thermally excited quasiparticles. Imx(k,w) = m[ﬂw—dk))— S(w+e(k))],
(1) T>t|*: high-T limit of CQFT. In this case, the lead- (2.23

ing behavior of¢ from Eqgs.(2.20 and(2.7) is
with e2(k)=k?+ £~ 2. This is clearly an artifact of the one-
loop result, as the spectral density is required on general
12 grounds to be nonzero at all frequencies at any nonzero tem-
) } (2.22 perature. The two-loop computation of the imaginary part of
the susceptibility in Sec. Il B will not suffer from this defect.

n+2
n+8

_2:&_

2m°T? 6e(n+2)
3 | n+s8

The scale of¢, and indeed of all the physics, is now set by
T. The ratio¢~?/T? is a universal number, obtained above ) ]
for small e. The reasons for the appearance of theterms The Ofn)-symmetric action S possesses a set of
were discussed earlier in Sec. | A; as also noted there, notid®n—1)/2 conserved Noether charges. In this subsection we
that there were no such terms in region I. This seriesfisr will examine Fhe susceptibilityy associated with an exter-
not useful as it stands, as it has the unphysical feature d‘fal fleIQH wh|ch couples to one these charges. This analysis
changing sign for physically interesting valueseofindn. is motivated primarily by recent wofkon thed=2, O(3)

As noted earlier, to this order ig, the phase boundary ¢ model of two-dimensional quantum antiferromagnets,
T=T,(t) in Fig. 1 is determined by the conditidR=0 and where this sqscgpnbmty is the response to an ordinary uni-
yields the values foll, given in Egs.(1.10 and(1.11) [the form magngtlc field. Here, we will co_mplem_ent the earlier
order<'? corrections follow from assuming the scaling 1/n_expan3|on resultsby the e expansion. It is also worth
form (2.7) and the fact thaF; has an expansion in integer "0ting here that what we have denoted here as the ordinary
powers ofe]. The results fory andR in this subsection are Susceptibility x(k,) is the staggered susceptibility of the
not valid in the regionT— T,(t)| <T.(t), where, instead, we duantum antiferromagnet. _ _
have to insert the results f&, K, andU in Sec. Il A 1 into Let us orient the fieldH such that it causes a precession of
the tricritical crossover functions of Appendix A. In the or- ¢ in the 1-2 plane. The time derivative term in H4.1) is
dered phase we have a second [wimit of the CQFT  then modified to
(region Il of Fig. 1) where again the properties are domi-
nated by scales set by the:0, T=0 ground state d for . n
n>1, andA_ for n=1). A separate analysis with a sponta- -+ . 2 . 2 2
neously broken symmetry is necessary here; it can be easily 2[(&#’1 IH $2)"+(d:¢2F1H 1) +Z‘3 (9:¢0) }
performed by our methods, but we have not presented it in (2.24
this paper.

Let us now turn to dynamic properties. At this order, theThe susceptibilityyy is the second derivative of the free
self-energy has no momentum or frequency dependence; assaergy with respect to variations ih. We can evaluate this
result the imaginary part of the susceptibility contains onlyusing the method described in Sec. | A and Appendix C; to
6 functions at real frequencies: first order inug we obtain

3. Response to a field coupling to the conserve@n® charge
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- dig g?+ty—é? dig 1 n+2 TJ ddq, > 1 1
o) (2m)7 (E+9°+1p)? (2m9gZ+R ol 6 (2m Ho er+ai+ty gi+R
f a'p 1] S d'go d3tto—3Q; |  [n+2 dig, [ 1 _i)
2mI I p?|| "So ) (2m)T (Q2+2+1to)3 ° 6 2m9\g?+R ¢?
dqu 1
f( ETR? (2.25

Evaluating the frequency summations and the momentum integrals, expressing in terms of the dimensionlesgyddigpling
(2.3)], and expanding some of the terms to the needed orderwe obtain from Eq(2.25

XH to| 2I'(1—d/2) 21 gin+2 n+2\(u\¢ [t t R\ t51 ty to
?’—_FQC‘(F Tamez |72 Tl Te [T e )\ T) Qul7z)|Fel ) 27 2 Tzt o)
(2.26
[
where the functiorF4(y) was defined in Eq(2.5 and B \/_ n+2 \2
T ~3 YSle(n+8)
Ouly)= d% 1 o 2r(a-de) iz 2(n+2)
‘ (2m)® 2sintp(VKkZ+yr2)  (4m)T - 2'7) €| 3(nrg) TO310SL 25"')
' +O(?) (2.30

A number of important results now follow from EqgR.26)

and (2.27); as the analysis is quite similar to that in Sec.

A1, we will omit the details.

(i) After expressing in terms of the renormalizédby
to=t[14+g(n+2)/(6€)] [Egs.(1.3) and(B1)], we find that
the poles ine cancel to ordeg.

(ii) The resulting expression foyy is then analytic as a
function oft att=0. This follows from the previously es-
tablished analyticity oR att=0, and the fact thaQy(y) is

analytic aty=0. The resul{2.26) can therefore be used both R

for t>0 andt<0.

(iii) Fort>0, expresd in terms of the true energy gap
A [using Egs.(B6)], and evaluate Eq2.26 at the fixed-
point couplingg=g* [Eg. (B2)]. All dependence on the
renormalization scalg disappears, angly then satisfies the
scaling forn?4

A
xH=T“\IfH(7+ (2.28

whereW, is a universal function, easily obtainable from Eq.

(2.26). A similar result holds fot<<0, where the renormal-
ized energy scale is now the spin stiffnegs related tat by
Egs.(B11) and (B17).

We will be a little more explicit at the critical coupling
t=0. First, we have

4(d—1)T(d—1)¢(d—1)
(4m)9°T (d/2) ’

+0O(e).

Qq(0)= Qu(0)=
(2.29

Using these results, Eq€2.6) and (2.4), we get from Eq.
(2.26

att=0. At the physical value for two-dimensional antiferro-
magnetsn=3, e=1, the successive terms in Eg.30 os-
cillate in sign, and do not become smaller—so a direct evalu-
ation does not yield a useful numerical estimate.

B. Two-loop results

All computations in this subsection will be limited to the
critical couplingt=0
Two-loop results for the values of the static quantities
x_1(0,0) anday 1(k,0)/9k?|, -, are presented in Ap-
pendix C. Our main purpose in obtaining the results is that
they provide an explicit demonstration of the consistency of
the method proposed in this paper: All ultraviolet and infra-
red divergences cancel as required, and the results take the
form of a systematic series in powers @€, along with a
finite number of factors of Ir).

In this subsection we will limit our discussion to dynamic
observables, in particular those related toylik, ). Two-
loop contributions make an important qualitative difference
in that the §-function peaks in Eq(2.23 are broadened due
to dissipative thermal effects.

We begin with the expressiofC9), retaining only the
terms dependent upon the external frequency, setting the
couplinguyg to its fixed-point value, and keeping terms up to
formal ordere?:

,2(n+2) T2 d3q, d3q,

“kiwy)=Zwi-€—0
X ( wn) wn 6 (n+8)2 46n . (277)3 (277_)3

1
X ——— =
[91+o(en)]lazt+o(2n)]
1

q2)2+5(wn_ €n—

X
(k—ay— Qn)

+ terms independent af,

(2.31
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where at the critical coupling=0 [compare Eq(C10)] tematic results for Inp(k,w) for w>\eT. The ¢ depen-
- ) dence of the very important low-frequency limit— 0 for
o(€n) =€t RS, o. (232 finite T remains an open problem. Similar difficulties were

also encountered earlier in theNLexpansion of the same
problem, where the expansion broke down éor T. Here,
We are able to explore the regiafeT<w<T, and in par-

Notice that the finite-frequency propagators in Eg.31)
have only their bare mass which vanishes at the critical co
pling t.:O’. while the zero-frequzzancy propagato_r _has Aticular have systematic results far~T.

fluctuation-induced mass of order”. Clearly, this distinc- It appears worthwhile to discuss further the reasons for
tion is a consequence of our approach which treats the zergra failure of the direcie expansion in the low-frequency

frequency modes in a manner distinct from the finite-ropime The physical properties of the system are quite dif-
frequency modes. Howeyer, the d|§t!nct|on is ummportgnt IMferent between the frequency ranges T (where quantum
an expansion for physical quantities as a series\in  fctuations dominateand w<T (where classical, thermal
(modulo logarithms ofe), for the finite-frequency modes fiycyations dominate Our strategy to treat differently the
have a minimum value ofv>=4xT2, which overwhelms w,=0 andw,#0 modes is, in a sense, an attempt to acco-
any mass term of orde¢T? we might consider adding to modate this distinction as best as we can along the imaginary
their propagator. In other words, E@2.31) provides the frequency axis, where the allowed values of the frequencies
leading frequency-dependent contributionyto*(w,) in an  are quantized in integer multiples ofs. For thermody-
expansion iny/e for all physically allowed values ab, . namic and static quantities, this somewhat crude accomoda-
We are interested here in the value of M(k, ») for real  tion works. However, for dynamic, dissipative quantities, it
frequenciesw. In principle, this can be obtained by analytic js not good enough. It seems clear that a study ofréa
continuation from the values of the susceptibility at the Mat-time dynamics of using real frequencies in the rangeT is
subara frequencies. However—and this is a key point—therfiecessary. Such an analysis will, however, not be presented
is no guarantee that the analytically continued result will alsan this paper.
be a systematic series ife, valid for all values ofw. In fact, In the remainder of the section we will restrict our atten-
it is not difficult to see that the analytically continued resulttion to w> \/eT. Under these conditions we can drop the
is valid only for o> \/eT. This condition can be traced to the massR even from the zero-frequency propagators while
ambiguity in the mass term for the finite-frequency propagacomputing the imaginary patall infrared divergences con-
tors discussed in the previous paragraph; while this ambigurolled by a finiteR occur only in the real part Evaluating
ity is unimportant at the Matsubara frequencies, a simplehe frequency summation in ER.31), analytically continu-
estimate shows that it strongly modifies fk,o) for ing to real frequencies, and taking the imaginary part, we
w~JeT. As a result, we are only able to obtain here sys-obtain atk=0

27T(n+2)i d3q1 d3q2
€ (n+re8)2 &) (2m)% (27)°

3{n(Ja;+az))[1+n(qs)+n(az)]—n(a)n(gz)}
4|q;+02/9:10

1+(3/2)[n(qgy) +n(ay)][1+n(|g;+0,)]
4|q;+0,]0102

Imy Y(k=0,w>0)=—

X 8(w+|01+ 02| — 01— 0p) + Sw—[q;+0zl—a1— ) |,

w>\eT, (2.33

with Imy " 1(k,0<0)=— Imy *(k,— w), and wheren(x)=1/(eT—1) is the Bose function. A similar result can also be
obtained fork+0 but we will refrain from displaying it; we will limit ourselves to analyzing the simpterO result. The
angular integrals in Eq2.33 can be performed and we obtain then

1 2277(n+2)
Imy (Ow)=—¢€ W

3f°° dqlfdqz{n<q1+q2—w>[1+n<ql>+n(q2>]—n<q1>n<q2>}
wl2 Wy

wl2 W)
+f0 d%f . dap{1+3[n(qy) +n(a) [ 1+Nn(gy+ 0~ )]}, @>/eT. (2.34
@201

Somewhat unexpectedly, all of the integrals in E3j34) can also be performed analytically; after a lengthy, but straightfor-
ward, computation we obtained a final result which had a surprisingly simple form:

27(n+2)[ w?
227 )§+WZT2+6T2 Lio(e™ 2T

Im)(‘l(O,w) =—€ W

, 0> \/ET, (2.39

where Li(X) is the dilogarithm function,
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xd
Liz(x)=—fovyln(1—y). (2.36

For largew we have from Eq(2.35

’77(02

Z sgn ), (2.37

Imy (0, w| =)=

where 7= €?(n+2)/(2(n+8)?) is the field anomalous dimension; this is precisely the result expeatethis order from
scaling. For smallw, the result(2.35 taken at face value gives us

22’7T(n+2)
(n+8)?

This singular behavior at small is clearly an artifact of taking Eq2.35 beyond its regime of validity; we expect instead that
Imy ~1(0,0) ~ w for small w, but have no direct method here for estimating its coefficient.

One measure of the strength of the dissipation computed above is the valueyof(brwo=T), where our expansion is
expected to be reliable. This is characterized by the dampind rgtelefined in Eq(1.14). From Egs.(2.35 and(2.19 we
have to leading order ia

Imy Y(0,0—0)=—¢ {27%T? sgn ) + 3w T[In(Jw|/2T)—1]}. (2.38

T _ 3
Trr C(n+8)7

It is interesting to compare this value with the exact result for the one-dimensional transverse-field Ising mwotel (
e=2), for which we get*

L 246 Li(e V) |=13.770 2495 (2.39
8 2 : n+8- '

T = 1 (1ans ZF L | /8)sinh(1/2)=2.560 57 t value forn=1 =2
I,—R_r—ﬁ m 1_6 E Sln(’IT )smf( )— . ..., eXacCtvalue i1orn=1, e=Z,
T .
F_:3'06 ... £ expansion(2.39) at n=1, e=2 (2.40
RT

(theT functions on the right-hand side should not be confused with the dampinfj gateThe agreement is quite reasonable,
even fore as large as 2.

It is interesting to compare the ratio of relaxation rate@ &tT [I'g, defined in Eq(1.12)] with that atw=0 (I'gy) for the
n=1,d=1 case, where we have results for both. We oBtain

Tpr A (F(15/1@>2 (15 i)
Tr 2siri(w/16)sinh(1/2) | T(1/16) 16~ 2x

-4
=0.981700183338 &. . . . (2.41

Notice that the two rates are almost exactly equal, as hadbove its upper-critical dimension, and the field theory is
been conjectured earlier fat=2, n=3 in Ref. 9. We sus- therefore nonrenormalizable.

pect that the near equality is quite general, and'gg is . We v_viII analyze a class of models with the general effec-
always a good estimate fdt; in the highT limit (region Il tive actionS, of the form
of Fig. 1).

T d ) )
SgZEwEH jw|¢(k,wn)| [M(w,)+k+1]
IIl. MODELS ABOVE THEIR UPPER-CRITICAL o
DIMENSION +4—?fo de A% (x,7), 3.1)

The computations now follow the same basic strategy as
that used for systems below their upper-critical dimension invhere we have the usual Fourier-transformed field
Sec. Il. The main difference is that the expansion is now in
terms of the bare value of the irrelevant nonlinearity,
rather than its universal fixed-point value. Further, there are
no nontrivial renormalizations, and the renormalization con-
stantsZ, Z,, Z,, andZ, can all be set equal to unity. The Different choices foiM(q,w,) describe a variety of physical
results now will have some explicit, nonuniversal, cutoff de-situations.
pendence which cannot be removed by a simple renormal- (&) M (w,)=w?3. This obviously corresponds to the action
ization: This is because thE=0 quantum-critical point is S of a quantum rotor {=2) or transverse-field Ising

1T )
¢(k,wn)=fo drf dixp(x,r)e' e (3.2
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(n=1) model which we have already studied in Sec. Il. Itwith
has dynamic exponert=1 and upper-critical dimension
d=3. ddq 1
(b) M(wp)=—iDw,. Now Sy describes a dilute Bose Ri= (zw)d(Tg M(en)+q%+t,
gas?~’ with D a constant(analogous to the velocitg for "
S) related to the mass of the bosons. The dynamic critical de 1
exponent iz=2, and the upper-critical dimensionds=2. - J 27 M(e)+q2+ty)’
(¢) M(w,)=D|wy|. In this caseS, describes spin fluc-
tuations in the vicinity of the onset of spin-density wave ddg 1 1
order in a Fermi liquid. Unlike caseg!) and(ll), the T=0 R,= —TJ — 2———2),
dynamic susceptibility now does not have a quasiparticle (2m)1a°+t q
pole in the paramagnetic phases, but instead has a cut de- J
scribing the particle-hole continuum. The dynamic critical R _f d’q E 1 _ 1
exponent isz=2 and the upper-critical dimension @=2. 37 ) 2m9) 27\ M(e)+q%+t, M(e)+q?)
Finally, it must be noted that in this casg is only appli- (3.6

cable in the paramagnetior Fermi liquid phaset® a sepa-
rate action is needed within the magnetically ordered phase. . .
Note that all of the above choices fot share the prop- (@ @nd (D), and is convergent fod<4 in model(c). The
erty M(0)=0. Also in all three cases the correlation lengthNt€dral inRy is ultraviolet convergent fod<4. All of the
exponentr=1/2, and the couplingl, is irrelevant at the ultraviolet divergences have been isolatedRg. For all
Ue=0 quantum-critical point with scaling dimension,; models(a)—(c) this divergence can be separated by a single
for the models above we hawg,=d+z—4, a relationship subtraction which is a linear functia; we write R; as
which is not always valid.

él'he integral inR; is ultraviolet convergent in atl in models

d
Another model of interest is the quantum-critical point g :f d’q E 1 _ 1
describing the onset of ferromagnetism in a Fermi liquitl. ) (2mi) 27 M(e)+q%+ty M(e)+0?
has recently been pointed tithat the effective action now ¢ A g q ¢
contains nonanalytic dependences on the momentkim, +—°22)_f qdf_e 0 .
(~k%71 in clean systems and-k%~2 in random systems [M(e)+0g7] 0 (2m)°) 2w [M(e)+0q7]

which are present only at=0. This singular behavior is (3.7)
possible because gapless fermion modes are being integrated
out. It is now clearly necessary to also account for The The last integral is a cutoff-X-) dependent term which has
dependence arising from the elimination of the critical ferm-the simplifying feature of being a linedand therefore ana-
ion models. This should be possible using the general methytic) function ofty. The first integral is now ultraviolet con-
ods of this paper, but this issue shall not be addressed in thisrgent, but is a more complicated functiontgf In other
paper. models additional subtractions involving higher powers of
Returning to model$a)—(c) above, we perform a pertur- t, may be necessary at this stage.

bation theory inu as described in Sec. | A and Il. The gen-
eralization of Eq.2.2) to linear order inug is now

- n+2 f ddq S 1 +T
~ot ol T | 2ma| ' o M(en) a7ty o
fde 1 3.2
27 M(e)+q?) 33

The susceptibility, defined in Eql.4), is obtained fromR
by generalizing Eq(2.19 to
x Ykijiw,)=k?>+M(w,)+R

2I((4—d)/2)
(d—2)(4m)9?

n+2

(d—2)/2
6 .

—u,T (3.4

Carrying out all the frequency integrals and summations
in Egs. (3.6 and (3.7) for (along with the momentujrinte-
gration of the last term in E43.7), we find that in all three
modelsR takes the form

to

R= to( 1- U()ClA 0U) + uOCZT(1+ 0UV)/ZVY( Cs ﬁ_.l_l 7v |

(3.8

where c,, c,, and c; are constants, and’ is a universal
scaling function given byR; + R, + R3 but with the last term
in Eq. (3.7) omitted. By examining the limiting behavior of
Egs. (3.4 and (3.8) we can delineate the different physical
regimes as shown in Fig. %3:%1°

(1) T<(to/ug)?”'+%m: low-T limit of CQFT, paramag-
netic phase. In this regime we are dominated by tth®
ground state, with givert given to leading order by its
T=0 value. The subleading temperature-dependent correc-

We have assumed above and will continue to assume be|0%ns are, however, different depending upon whether the

that 2<d<4. The correlation lengtl, is given at this order
by £2=x(0,0), as in Sec. Il A 2. To apply the analog of Eq.
(2.2), it is convenient to separafe into the following form:

R=ty+Ug [Ri+Ry+R3], (3.5

n+2
6

argument of the scaling functiol' (y) is small or large.
These subregimes are therefore the following.

(la) T<t{”. The nature of the corrections depends upon
the behavior ofY (y— ), which can vary considerably from
model to model. In model&) and(b) thet,>0 ground state
has a gap, and so the leading correction will be exponentially
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A
T 0.3
LONG RANGE \, .~ Ia
0 ORDER - . 0.1
0 >
to
FIG. 3. As in Fig. 1, but for the case where the quantum-critical
point is above its upper-critical dimension. Now properties are con-
trolled by the value of the coupling,, associated with the least
irrelevant operator involving quantum-mechanical interactions; we 0.1 i : i : i : ; ,
denote its scaling dimension as 6, (6,>0). The crossover 4 8 =2 1 0 1 2 3 4
boundaries on either side of region Il, and the phase transition line y
T=T(t), now scale asT~(|t|/ug)®*/**%"). The boundary be-
tween regions la and Ib scales &s t*". The expansion is now in FIG. 4. A plot of the universal scaling functiof(y), defined in
powers of the bare coupling,, and classical tricritical crossover gq. (3.12), for d=3. Notice that it is smooth at=0. It is analytic
functions are needed in the shaded region wiRs(Tuo)”“~%.  for 4l realy>— 2.
For more discussion on the regions see the discussion below Eqg.
(3.9.

where ¢ is the digamma function; it can be verified that the
integral overg in Eq.(3.11) is convergent for 2 d<4. Now
small in temperature. Modét) is a Fermi liquid forty>0,  we use the identityy(z+1)=y(z) +1/z to simplify Eq.
and has power-law corrections Thwhich will be described (3.11) to (see Fig. 4

in more detail below.

2V 2 T<< zvl(1+ 6y) 1 dd 2 2+ +
(Ib) t5'<T<t] : o o Y(y):—f LI Y DY P A B
Now the T-dependent corrections involv(0), which is T (277)Ej 27 27 o}
always a pure number; so we have (3.12

In this form, it is manifestly clear that (y) is analytic as a
EAT)=¢ A(T=0)+uC,TH 2y (0)+ - .. function ofy aty=0, and so from E¢(3.10, R is analytic at
(3.9  ty=0. Indeed the first singularity of Eq(3.12 is at
y=—2, and Eq.(3.12 can be used for ay>—27. This
(1) T |t/ %) high-T limit of CQFT. Now T is the allows us to access the region with<O, but T>T(to).
most important energy scale and gHdependent corrections The singularity ay= — 2 is of no physical consequence, as
can be neg|ected. The correlation |ength still obeys(E@) it is well within the ordered phase. Recall that a similar phe-

but with the second term now being larger. nomenon occurred in our earlier analysis®for d<3 in
The transition to the ordered state occurs, as before, aec. 1AL _

R=0. To leading order im,, T, is given by Eq.(3.9) to be By evaluating the largg behavior ofY(y), we can de-

Te=[|tol/(UgC,Y (0)) 7"+ 0ur), termine from Eq(3.4) the T-dependent corrections in regime

In the remaining presentation we specialize to madgl  1a. We find
the properties of model®) and(b) will be quite similar. The
upper-critical dimension iglI=2, and we assume we are £ 2AT)=¢ 2T=0)+ ub (n+2)T((4-d)i2) _,
above it. For this case, the explicit result fris 92 36(4m)9?

3.13
Rt |1 UpA? % (n+2 Sy As noted earlier, thd@-dependent correction is a power-law
-0 D 6 |m(d—2) characteristic of a Fermi liquid.

. %(TD)dlz( r‘:;) Y(%) ' (3.10 IV. CONCLUSIONS
This paper has provided a general strategy computation of
whereY is initially obtained as finite-tempe_rf'iture _universal crossover functions near
quantum-critical points. The strategy can be broken down
g 5 5 into steps, each step containing distinct physical effects; this
Y ):if d’q In Q) 27 —y a~+y) 7ty separation is an important advantage of our method. The

Y=%] emnd " 27 q°+y 2 g? |”  steps are the following.

(3.11 (i) Renormalize th& =0 CQFT to obtain a well-defined
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guantum theory whose ground state, excited states, and scahysical meaning or mathematical justification of these

tering amplitudes between them are known. In principle, thigenormalization conditions is not clear to us, and our cri-

information completely specifies the nonzéfoproperties, tiques in the previous paragraph apply here too. We also note

and no further renormalizations should be necessary. that their results are not systematic expansion in some con-
(i) Use the information ir(i) to integrate out all degrees trol parameterimany of the terms contaie to all orders,

of freedom with a finite Matsubara frequency, to derive ef-and are not naturally expressed in the terms of renormalized
fective action(which could be quite complicatedor the ~ T=0 energy scales which expose the full universality of the

zero-frequency mode. physics. . N
(i) Analyze the effective action by an appropriate tech- Largen expansions have also been used to study finite-
nique of classical statistical mechanics. temperature properties of quantum critical poﬁﬁé.They

We have applied this method in this paper to a relativistichave the advantage of being uniformly valid over the entire
n-componenté* theory below its upper-critical dimension, phas% diagram. Their most extensive appllcatllon has been in
and to a class of models above their upper-critical dimend=2," whereT(t)=0 for largen. However,T is nonzero

sion. for d>2, and a largex computation then gives results con-
We will now comment on the relationship of our results to sistent with those of this paper.
some earlier work. We now turn to discussing some open problems and di-

The early work on quantum-critical points® studied rections for future research.
only the quantum-to-classical crossover in the shaded region The major gap in existing results is a quantitative and
of Figs. 1 and 3. The crossovers in the remainder of théystematic theory for the low-frequency dynamics. This is an
phase diagram, and their universal properties, were missedXxperimentally important question, as the damping rate di-
Rasoltet al. studied the quantum-to-classical crossovergectly determines NMR relaxation rates in two-dimensional
in the dilute Bose gas id=3. In the present language, these quantum antiferromagnetsOur present approach fails for
are the crossovers near tie=0 quantum-critical point at @<v/e€T, but it is possible that a systematic analysis of a
chemical potentialu=0. They described the physics in self-consistent approach, witha control parameter, can be
terms of the Gaussian-Heisenberg crossovergff field  performed.
theory ind dimensions. This is closely related, but not iden-  The present paper has avoided discussion of logarithmic
tical, to our description in terms of tricritical functions, as the corrections in special dimensions, either duedtbeing the
latter are the universal limit of the former when upper-critical dimension of the quantum-critical point or be-
up<A* 932 whereA is a momentum cutoff. Our approach cause of the logarithmic corrections that appear in weakly
properly identifies all the nonuniversal cutoff dependence asoupled classical theories oh=2. We made this choice to
due to theT=0 quantum theoryin Rz in Eq. (3.6)], and  streamline our discussion, but it should not be too difficult to
shows that the finite-temperature corrections are universaxtend our results to include these cases.
[the scaling functionY in Eq. (3.8)]. Below the upper- Finally, we have already noted that there should be inter-
critical dimension, there are no nonuniversal cutoff depenesting finiteT crossovers in nearly ferromagnetic Fermi lig-
dences, and the use of tricritical crossovers is essential. uids, as some nonanalytig dependences in the effective
Another popular approach to the study of finite- action have recently been pointed ddt.
temperature crossovers has been the momentum-shell renor-
malization group(RG), in which the RG equations aré
dependent andr is itself scale dependeht.®1%12? This
method has been quite useful in identifying qualitative fea- | thank E. Brezin, A.V. Chubukov, K. Damle, and T.
tures of the crossovers in static and thermodynamic quantSenthil for helpful discussions, and A.V. Chubukov for valu-
ties. However, quantitative crossover functions have beeable remarks on the manuscript. J. Ye collaborated with the
quite difficult to obtain. We believe this is not merely a tech-author at the very early stages of this work. This research
nical difficulty, but an intrinsic problem with the physical was supported by the National Science Foundation under
basis of this approach. The dynamic consequences of quaGrants Nos. DMR-96-2318(ht Yale) and PHY94-07194at
tum and thermal fluctuations are physically quite distinct,the Institute for Theoretical Physics, Santa Barhara
and it appears quite unsound to interpolate between them by
defining a scale-dependent temperature. It is quite clear that
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such a method will not correctly describe the thermal dissi- APPENDIX A: CLASSICAL TRICRITICAL
pative dynamicgsee the remarks in Sec. Il B, in the para- CROSSOVER FUNCTIONS
graph before that containing E(R.33, on the subtleties of In this section we will tabulate results on the classical

the »<T region apply to such an approach jomstead, our icritical crossover functions needed in the region
point of view is 'Fhat the RG flows are more properly Cons'd'IT—Tc(t)|<Tc(t). We will confine our attention to the
ered as properties of the=0 theory, and allow one to de- .qssover function? (q,v), appearing in Eq1.24), for the
fine its eigenstates an8l matrices. The finitéF physics is  giatic susceptibility. In the weak-coupling regior<1, we

then completely determined by these properties. ; ; a i .
. - can easily expand in a power series in integer powets: of
O’Connor and Stepheffshave used an idea similar to y exp P gerp

that in the momentum-shell RG, but in the framework of the

field-theoretic RG. They achieve this by defining some un- n+2\ 2I'(4—d)/2) O
usual renormalization conditions which seem designed to 6 (d—2)(4w)d’zv 9.
yield B functions which are temperature dependent. The (A1)

Vl(qu)=g>+1-
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In this region the tricritical crossovers connect smoothly with 1.t>0

our e expans.ion results in the region outside At T—0, all properties are “relativistically” invariant,
[ T—Te(t)|<T(t); the equivalent of Eq(A1) was already  ang are most conveniently expressed in terms of a Euclidean

used.in. Egs(2.19 and (3.4). momentum p=(w,k). The renormalized susceptibility
Within |[T—T¢(t)|<T(t), v becomes large, and alterna- {5yes the form

tive perturbative expansions are needed to obtain tricritical

crossovers. We will discuss two such methods here. Y Hp)=p2+t—3(p?), (B3)
The first method is the expansion in—4l. The reader

may be bothered by our simultaneous use of an expansion inhereZ, is the self-energy. The quasiparticle pole occurs at

€=3—d in the analysis ofS in the main part of the paper. p?=—A2 which is the solution ofA2 =t—3(—A2). The

However, the two expansions occur in separate calculationgsidue at this pole4, is given by

and compute entirely different crossover functions. They are

combined only in the final result, in which the results of one a3,

appear as arguments of the other. So there is no inconsis- A—(l (9_p2

tency, and the procedure is entirely systematic. The result for

W can be read off from earlier resuftéto leading order in  To leading order irg, we can now easily obtain by the usual

-1
pZ_Ai) . (B4)

4—d we have methods
- (n+8)y [~(n*2Nn*d n+2 |\ n+2 ue dd+1
Yol(qu)=9?+|1+ 2 _ I p
c (q,v)=q 2872(4—d) A=t 1+ ——9|+— 5,29 2o
(A2)
When combined with Eq(1.24), we see that the critical X(zi_iz) (B5)
point is atR=0; this will change at higher orders in-4d, pe+t p

when we expect a critical value~[TU/K%2]2/(4=d),

! . . Evaluating this ag=g* we obtain
The function¥ . can also be obtained in a largeexpan- g 8=9

sion, withd now arbitrary. Taking the large-limit of Eq. A2 = W2(t/ u?)?" (B6)
(1.23 while keepingnv fixed, a straightforward calculation - '
gives to leading order where v=1/2+ e(n+2)/4(n+8) is the correlation length
1 ) exponent, and there is no correction to the prefactor at order
\PC (qav):q +H(U), (A3) €.
whereII(v) is determined by the solution of the nonlinear ~ TO obtain the leading contribution td we have to go to
equation orderg?, where we obtain
I'((4—d)/2) n+2 . n+2(ug\®ad [ dp; d¥'p,
(d=2)/2_ _ 2 9
H(U)+nl) 3(d—2)(47T)a72[H(U)] 1. (A4) A 1+ 14469 + 18 Sd+1 ap2 (27T)d+1 (27T)d+l

Finally, it is easily checked that Eg&\1), (A2), and(A3)
all agree with each other in their mutually overlapping re-
gimes of validity.

1
(pi+A2)(p3+AS)[(p+pa+ pz)2+Ai])

p2=-A%

The integral can be performed by transforming to the usual
APPENDIX B: COMPUTATIONS FOR S AT T=0 parametric representation, which yields

We consider properties of the modél [Eq. (1.1)] at

2e12
T=0 andd<3, in an expansion in powers ef=3—d. We A=1+ Egz_ E&(i) I'“(2—el2)I'(e)
will compute the renormalize@=0 parameters which char- 144 18 ¥ 1A, 4
acterize the ground state, and appear as arguments of the 1 L (1—y)y “2x2(1—x)<P2
quantum-critical scaling functions. The computations are X f dxf dy _ (B8)
standard>?*and we will be quite brief. o Jo 7 [1=x(1-x)(1-y)]°

The renormalization constantg, Z, (and Z,) to the

needed order iig in the minimal subtraction scheme are ~ Evaluating the integral as a power seriesejnwe find that

the poles ine cancel. Finally, replacing—g*, we find

S n+2 , 5 1+n+2 . 1+n+8
=l=2779 Lo=lt——0, £44=1+—7—0. Ap\7 n+2
144¢ 6e 6e | =+ 2
=|—/ [ 1+0.282 361 514 , (B9
®1) =51 rrorel ©
The fixed point on the3 function is atg=g* with where the exponenp=(n+2)e%/2(n+8)>2.
L 20+2n—n? a0 5 <o
S| R Tr B2 <

First we determine the value ®f;=(¢). Ordinary bare
We consider the casés-0 andt<<0 separately. perturbation theory gives
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oo < fBltel[ [ w0 [ d®ip 1 1 12y UoNo UoNo [ d!py
0~ Uo [ _4|t0| (27T)d+l p2+2|t0| _F . X1 (p)_p 0 6 - 9 (27T)d+l
(B10)
y 1
Reexpressing in terms of the renormalizedand g, and (p+P)?(pi+2|t|)

evaluating ag=g*, we find (we can ignore the wave func- d+1
tion renormalizatiorZ at this ordey + Yo d™ "py 1 - i) (B14)
6) (2mTH pi+2lte p
- n+8/2|t|\” Again, we use Eq(B10), reexpress in terms of the renormal-
No=ut™? e 7) , (B11) izedt andg, and evaluate aj=g*, to obtain,
2€lt]

21 )
—-|In 7| — 1
p? 2[t]

P =p*+
where the exponeng=1/2—3e/2(n+8). X1 n+s
To get the energy scale measuring deviation from critical-

ity, we consider the cases=1 andn=2 separately. In the regionp?<|t|, the above result takes the simple form

a.n=1 _ €
Bare perturbation theory tells us thgfp) is given by (n+8)
We can therefore identify
UN  UgNg [ d?**p, N2 e \[21t]\™
-1 —n2 0
x (p)=p°ttot - B O S [l
2 2 ) @m™ bs ( 2(n+8) ( MZ) (B17
« 1 3. Universal ratios
[(p+p1)?+2[to] 1(p3+ 2[to|) For completeness, we list here the universal ratios that can
qa+1 1 1 be constructed out of the>0 andt<0 results. Fon=1, we
+ Yo P1 -5, B12 can take the ratios of the gaps andA, ,
2) @m™H pi+2lty p
A_ 7T\/§—3
_ o _ —=2" 1+ ———¢€]. (B18)
Using Eq.(B10), reexpressing in terms of the renormalized Al 12

t andg, and evaluating ag=g*, we find (again ignoring  The analog of this ratio fon=2 is
Z at this order the energy gapA_ by solving

~1(n2_ 2\_qn- n+8
x Yp?=—-A%)=0: Ps _ S@-1)»
ATT=2 2¢ |\ T 2y B
m3-3 \[2|t]\?* A second set of ratios emerges from the ratios of the field
A% =p? 1+ s <\ u? (B13)  scale. Now we have fon=1
NG n+8 - m/3-3 520
b. n=2 ATTAT 26 6 © (20
In this case we will use the stiffnegg as a measure of and forn=2
deviation from criticality. We compute the transverse sus- ’
ceptibility (measured in a direction orthogonal to the conden- Na —_1_ € (B21)
satg in bare perturbation theory: psA 2(n+8)°

APPENDIX C: COMPUTATIONS FOR S FOR T>0

This appendix will present formal results for the syst8fiEq. (1.1] to orderug at nonzerdr. In Sec. | A, we outlined how
to compute these using a two-step procé@gsbtain an effective actio§ [(Eq. (1.17)] for the w,,=0 mode;(ii) compute the
correlations of observables undsy .

First, for future use, let us obtain the value of the mass subtran@ngonsider the susceptibility of the theorydl, but
with bare maS$n(2); to orderug, this is given in bare perturbation theory B0 by

E)(_l(p):pz"'mg"‘Uo nte dd+1dp+11 21 5 —Uj n+2)® ddeFlll 21 2 ( derldp+21 2 ! >
Z 6 (2m) 1t pi+mg 6 (2m) %t pi+mg (2m) "t (p5+mg)?
,(n+2 di*ip; d9"1p, 1
“U\ 18 | | 2m T 2m) T (p2 R (p2 mR)(p— pa—pa)’t ] €y

The critical point is determined by the valug=my. at which y 1(p=0)=0 atT=0. Solving Eq.(C1) for this condition
order by order irnuy we obtain
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n+2 di*lp 1 n+2\ [ d4p, d¥"1p, 1
My = —Ug a¥1 2 +Uj f a+1 a+I 2.2 7 (C2
o 6 (2m)"" " p 18 /) (2m)" = (2m)"" " p1p3(p1+p2)
In subsequent computations, in all propagators carrying a nonzero frequency, we will insert the mass
ma=mz.+1to, (C3

with mgc given by Eq.(C2), and expand in powers af,: All nonzero frequency propagators in the resulting expression will
therefore have madsg.

Let us now obtain the couplings in the effective actify for the w,=0 mode to ordeu3. By ordinary perturbation theory
in the finite-frequency modes we obtain

_ L E ddq 1 B di1lp 1 e E 2 ddq, 1
Callg =2k Zlo Uo| —5 ) T2, f 2m® &+ P+, (2w)d+1ﬁ4 Yl 78] | o ) 2m Er it
di*ip 1 d%q, 1 o(n+2\[, dq, diq,
J(Z )d+t _2}( nzsao (2m)9 (Q3+g5+1tg)2 ~ Yo g €n 00,706+ Q270 fwm
y 1 1 ~ dd+1p dd+1p 1 } ca
(€2+07+10)(Q2+03+1o) (en+ Q)+ (k—a1— A%+t ) (2m)T T (2m) T T p2p3(p,+p,)?

We have implicitly assumed above thas 1+ ©O(g?) and only writtenZ where it is needed for the~ordgF— result; we will
continue to do this in the remainder of the appendix. In a similar manner, we can obtain the v@&lye of

n+8
6

1

_ R
Ca(kq,ky k3, —k;—ky—Kz) =Up—Ug en;eoj(27T)dSym((eﬁ-i-q2+to)[eﬁ+(k1+kz—q)2+to]'

(CH

where the symbol Symdenotes that the expression foIIowing it has to be symmetrized among the mokaekta ks,
k,= —k;—k,—k3. All other couplings inSy; are zero at ordem0
We now perform the renormalizations of the superrenormalizable classical theory to Gbtaind C,. First, to order

uo, it is easy to see that,= C4 For C2, in addition to the tadpole renormalization in Ed..18 there is a two-loop
renormalization that has to be included fbiclose to 3:

n+ 2) ddkl E4(k,_k,k1|_kl)

do%; d%, Ca(k,Kq,Ky,—K—Ky—ky)Ca(—K,—Kq,—Ky,k+Ky+k+2)
(2m)9 (2m)d (k5 +T2)(k5+ T2)[ (k+kq+kp)2+T?]

(n+2

(C6)

This, in fact, completes the set of renormalizations, and there are no new terms that have to be accounted for at higher orders
in ug in the superrenormalizable classical theory. To avoid an infrared divergente 3n we have performed the two-loop
renormalization above at an arbitrarily chosen Pauli-Villars mass equal ©ur results for the coupling constants will
therefore depend upon this choice of renormalization scheme, but all physical observables will be independent of it. Combin-
ing Egs.(C4) and(C6) we get

d+1 2
Cu(k)= kz"‘Zto‘HJo )[ E I(Z ) 2+a(en) f((zj,n_)dgliz —uj %
ddql di*p 1 d’, 1 ,(n+2
f( 1+U(en) I(ZW)"”F Tn%o (2m)® (Q2+q2+tp)?) o\ 18
x| T? 2 ddqld ddqzd 2 2 ! 2
b, ) (2m 2mT [of+ o) a5+ o(Q)I[(k—0ay—0p) %+ o€+ Q)]
dd+1p1 dd+1p2 1 } ,[n+2 ddql ddq2
(2m) T (2m) T pips(pitp2)?] Ol 18 (2m)? (2m)S
1 1
(BTG T (=, - 02+ T2 q%q%(k—ql—qzﬁ} €7

where we have defined
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o(en)=eptto(1= 5 o). (C8

The values of the couplingR, K, andU now follow directly from Eq.(1.20 and the result$C5) and(C7) above.

Let us now apply the above procedure to obtain the perturbative result for the dynamic suscepfikiiity,) at finite
T. As discussed in Sec. | A, this result will be valid everywhere in the phase diagram of Fig. 1, except in the shaded region
|T—T.(t)|<T(t). The simplest way to proceed is to introduce an external source term coupling to the fieid then to
proceed in the two-step procedure noted at the beginning of this appendix. We omit the details and state the final result:

PP, ) n+2 diq R ,(n+2\? d’q, R
x o llon) = 2IE Zon Rl 5T | e gz r) %l e { (2m)? T+ R)
d + d d
> J (i:;d[q%'&lmn)]z)_“g et T2 (2—7%‘3—:;'
1
" [T e TG+ A ALK~ G~ )2+ o €n— Q)]
1 o(n+2\_, [ d%q; dg,
@t olen Bt o O I(Qy + G2+ olent 01| | 0| 718 (2m)? (2m)°
1 1
T T+ 97+ T8 (a2’ ©9
where
G(en)=€5+ RS, o+to(1-35. o). (C10

Notice that in Eq.(C9) we do not expand out they-dependent expression f& given in Eq.(2.2), but instead treaR as
variable formally independent afy; this is required by the method of Sec. | A.

Equations(C7) and (C9) are the main results of this appendix, and will be used in the body of the paper.

In the following subsections of this appendix, we will evaluate the formal results above to obtain explicit two-loop
expressions for some quantitiestat0. Our main purpose in doing this is to demonstrate the consistency of our approach, by
explicitly displaying the cancellation of all ultraviolet and infrared divergences and the collapse of the results into the scaling
forms of Sec. I.

1. Evaluation of R

As noted above, we will restrict our results to the critical couplingd. We begin with Eq(C7) and the definitior(1.20).
Explicitly evaluating out the one-loop contributions in terms of the functions introduced in Sec. [aAdLidentity(2.16)],
and expressed in terms of the couplipgising Eq.(2.3), we find to orderg?

€ 2¢ 2
_ [ #\[nt2 n+8 _ oo #)\T(NH2) 5L _2[n*2
" T2 2 ddql ddq2 1 _f dd+1p1 dd+1p2 1
s, ) 2m) (2mY (E+9D) Q2+ (ent Q)2+ (a1+02)2] ) (2m)* L (2m) T pip3(pi+p,)?
,(n+2\ [ d%; d%;, 1 1 11
Yo| 718 2m® 2m | (Z+TD(R+ T+ 022+ T2]  q203(dy+ d)2)’

Notice that the above expression has poles multiplying the thermal functior4(0). Consistency requires that these poles
must cancel divergences coming out of the two-loop frequency summation left unevaluated@1BqThis is indeed what
happens. We can see this by adding and subtracting the following expression(©1&yg.

n+2
24

gZMZE

L [da 1 1 1fddq2 LV g B2 e oyar2- el Tier
Soa) @' @ e -1\ §) @ (g T T |2 eI,
(C12
We absorb the left-hand side of E@12) into the unevaluated integrals in E@11). The right-hand side of EqC12) has

poles ine which precisely cancel the poles in E€11). Settingg=g* [Eq. (B2)] and expanding in powers &f one finds
that theu dependence of EqC11) also disappears; in this manner we obtain
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(n+2)eT? , n?—8n—68 2(n+2) €212
T n+s n+8C (O~ Zmrgz | €|F O~z (C13

where the numbel arises from the frequency summations in Eg11) combined with Eq(C12); evaluating these summa-
tions we find

n(qy)[1+n(gz) +n(|dz+dzl)]—n(gz)n(|a1+aa|)
0102/a1+ 0| (a2t [0+ 0z —ayp)

n(a2)[1+n(ay) +n(|as+az))]—n(a)n(a+a9z|) n(q)+n(az)n(|a;+a,|)

3
|1:WJ d3q1d3q2

0102|091+ A2l (91 + a1+ 02 —a2) " 0202101+ G2l (Qy F Apt [yt 0z])
n(dz)+n(qy)n(|as+dsz|) n(q) 1 ngy) 1 8
A Gl Gt Ot At ) G (@F D dp (1% 3(QR+ (Gt 1) + Gp)2+ 1]
8
~ 30%03(a,+ Q2)2}' (C14)

wheren(q)=1/(e"—1) is the Bose function at unit temperature. It can be checked by a straightforward asymptotic analysis
that the combined integrals in EqC14) are free of both ultraviolet and infrared divergences; we evaluated the integrals
numerically and found

l,~—15.2. (C1H
We also quote the values of the other constants in(E§3):

2% wA(1+2In2—2y)+127'(2
G'(0)=24538085820..., Fy(0)= "7 - ( 37) 2'(2)

wherey=0.577 25 . .. isEuler’s constant, and(s) is the Reimann zeta function.

+0(€?), (C19

2. Evaluation of x(0,0
We can obtain an expression for the static susceptibilit®,0), att=0 directly from Eq.(C9)

d
d R )

~10.0=R n+2 TJ N n+2
X ( !)_ —Up 6 (27T)d qZ(q2+R) Ug

6

2 ddq1 R ddq2 1
TJ 2 d 2,42 TJ 2 d( 2 2 2\2
(2) ql(q1+R) (2) 0,70 (Qn+q2)
n+2 dd d¢ R
+3U(2)(_>T2 qld Q2d ) RNy 7
18 | aiFo J (2m)" (2m)° q1(a1+ R (Q5+a2) [ Q7+ (A1 +02)7]
ddQl dsz
(2m (2m)®

+
(42+R)?

1 1
(ZHRN(BTR)[(Qr+d)?+R]  (qZ+TH(Q2+TH[(q1+d2)%+ T

n+2
18

2

_ 2
Ug

(C17

Expressing this in terms @ using Eq.(2.3), and rearranging terms a bit, we obtain

L 00=R - n+2 1+n+8 1 ddq, R
X (0.0=R=gu"T| =5 6e 9)|5.1) @m° E@R)
|1 guer[ 8| L[ G Lo+ vozuzer? T2 (1,41, (c19
9N T sn) @ml o 02+ @2 T (@ RrZ) |9 T e 2T
where
L 3 dq, d%;, R 1 1 19
2 S5 0o ) (2m 2m)% g3(@2+R)(Q2+0d) | Q2+ (q:+0y)2  QZ+03
and
1 diq; dYg, 1 1
I3=— = d a| 72 7 7 Sl S T 7 |- (C20
Si1) (2m)° (2m)7| (a1 +R)(02+R)[(A1+02)“+R]  (q1+T9)(a2+ T9)[(1+0p) "+ T7]

Let us now evaluate some of the integrals in Egl8) to the needed accuracy & First, we have
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d _ d
L [da R 27TR<1—6>/2<1+1 2In2€+m)' L[ da 1 o aR-tron
S 2m)° Z(Z+R) 2 Ser1) 2m)° (Z+R)
L[4 ! —T15<1 G’ 0)) (C2D)
Sortl @m0+ 22 ¢ O

where the last equation is related to E}.16. The integrals over momenta in EQC19 can be performed exactly i=3
(which is all we neegdand give

l,=1272 >,

fopes!

In| 1+ (C22

ﬂ) . ﬂ}
210,) ” 200,])

Now notice thaR~ eT2<T?2. In this limit we can get the leading result foy simply by expanding Eq(C22) to leading order
in R; this leads to

= R
2=~ 4T2nzl n2_  8T% (C23
The integral in Eq(C20 can also be evaluated and we find
l3=27%n(R/T?). (C24

We are now ready to assemble all these results intd E8). Expanding Eq(C18) in powers ofg to orderg? one finds,
as expected, that all the polesdrtancel. Setting/=g* [Eq.(B2)] and expanding in powers ef(while keepingR fixed), one
finds that all thew dependence disappears and the resulting expression takes the form

n+2
-1 _ _
X H0.0=R—e| —= 27TyR

20+2n—n2 1-2In2 1 R
=In=+G'(0)

e Zmrez T2 2T

n+8

We have retained all terms, which, after inserting Egj13), are of ordere®? or larger. The three-loop corrections, of order
u3, contain a contribution like*T/ VR~ €>?, and so Eq(C25 does not contain all terms of ordef’? it does, however,
include all terms of ordee?Ine or smaller.

3. Evaluation of dx~1(k,0/dk?|,—o
From Eqg.(C9) we have, at=0,

axMkO| . n+2 . n+2(ugT|? f ddq; oldq2
k|, 144 Syr1, K2 (2m)9 (2m)d
1
= = = C26
2, [q§+a(en>][q§+o(nn>][(k—q1—q2>2+o(wnmn)]) (€29
whereo(e,) is defined in Eq(C10) with t,=0. Now add and subtract the following integral from the above:
_n+2( Meg)Z J dd+1p1 dd+1p2 1
“ Sar1) ok?) (2m) T (2m) T (pI+TA(p2+TOI(k—p1—p2)*+ T, _,
7|12 ! +1| T+| +0 Cc2
with the constant5 0.226 5756032... . Thepoles ine then cancel, and the remainder of EG26) can be evaluated at
e=0 andg=g*. Let us now define the momentum integral
X = 1 9 ( d%q; dq, 1
a;,a,,a
BERIT S ok (2m)® (2m)° (af+ap)(d3ta)l(k—ai—d)?Fasl |,
__ fldxfld (1-y)Vyx(1—x) (29
T Ya,(1=x)y+ax(1-x)(1-y) +axy’

where in the second equation we have transformed to the usual parametric representation. Then we can(@2i6ziEdhe
form
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ax~(k,0) T ,2(n+2) ) - - -
——r— k:0_1—77 In— e gz |lstT Eﬂ X(T(€n),7(Qp),0(€n+ Q)
de dQ
—f——X(62+T2,92+T2,(G+Q)Z+T2) . (C29
27 2

It is now not difficult to show that the combination of the summation and integration within the square bracket$@2%q.

is free of both ultraviolet and infrared divergences. In fact, this combination is a dimensionless quantity which is a function
only of the dimensionless rati@/T?. Now we know from Eq(C13) thatR/T?<1, and in this limit, the term in the square
brackets in Eq(C29 is dominated by the single term in the summation vtk Q,=0; we have therefore

,0.595 938 096 522(4+2) T?

{T2X(R,R,R)[1+O(RITA) ]}

ax 1(k,0) P T ,2(n+2)
N o T T  nt8)?
T -7
=<—) l+e€
o

E[1+O( JRIT?)]|. (C30
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