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Towards a microscopic approach to the intermolecular interaction in solid C60
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Although the calculation of the ground-state and thermodynamic properties of solid C60 have been the
subject of intense research, our understanding is still based onad hocmodels that treat phenomenologically
both the Coulomb and short-range part of the interaction potential between C60 molecules. These potentials do
not predict well those properties not fitted to fix the free parameters of the model, and they also do not properly
represent the Coulomb interaction between molecules. To remedy this situation, here we introduce a semi-
empirical model in which the Coulomb interaction is treated microscopically using the local-density approxi-
mation C60 molecular charge densities, and the short-range part of the potential is modeled phenomenologi-
cally via Lennard-Jones~LJ! 12-6 interactions between the centers, delocalized over the surfaces of C60

molecules. The regular LJ parameterss and e as well as multipole moments of the interaction centers
distribution were taken to reproduce the details of the observed low-temperature structure. We found that the
Coulomb interaction is dominated by the charge overlap between the neighboring C60 molecules, and is much
larger than the interaction calculated using the multipole expansion of the charge densities. Contrary to com-
mon belief, this Coulomb interaction by itself does not lead to the observed low-temperature structure. How-
ever, combined with the proposed short-range interaction, it stabilizesPa3̄ spatial structure with the correct
setting angle. We make a comprehensive comparison between the wide range of experimental results and
predictions of our, as well as previously proposed models. Our results show that the proposed model has the
best overall agreement with the experimental observations in both the low- and high-temperature phases.
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I. INTRODUCTION

The construction of a reliable potential for the interacti
of C60 molecules is an important, long-standing proble
Shortly after the discovery of the orientational ordering tra
sition in solid C60,

1 Cheng and Klein2 proposed to describe
the intermolecular potential as a sum of Lennard-Jones 1
interactions between carbon atoms on different molecu
However, soon it was found3,4 that the lowest energy crysta
configuration predicted by this model did not have the sy
metry observed in experiments.

Lu et al.5 and Sprik et al.6 have proposed two simila
ways to improve the performance of this model. They s
gested to augment the Lennard-Jones potential with C
lomb interactions of charges placed on ‘‘5-6’’~‘‘single’’ !
and ‘‘6-6’’ ~‘‘double’’ ! bonds or on carbon sites. This ‘‘sec
ond generation’’ of the intermolecular potentials, construc
to reproduce the experimentally observed low-tempera
structure, was not successful in explaining most of the ot
experimental results.7 In addition, these models are open
criticism on the theoretical grounds. In particular, Yildiri
et al.8 have shown that thead hoccharge distributions, pro
posed in these models, do not agree with local-density
proximation ~LDA ! C60 molecular charge densities. Also
Lamoen and Michel9 have pointed out that since a significa
part of the molecular charge density is spread along inter
bon bonds, a realistic model for the intermolecular poten
should include Lennard-Jones interaction centers placed
550163-1829/97/55~21!/14182~18!/$10.00
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bonds in addition to carbons. In a series of papers Mic
and co-workers9–11have introduced a multiparametric mod
which reproduces some of the experimental results obta
at room temperature. At the same time, no attempts w
made to account for the experimental observations in
low-temperature phase. As we will show, the orientatio
part of Michel’s potential does not reproduce very well t
experimental observations in the simple cubic phase.

In addition to thesead hocmodels, there were severa
studies of the intermolecular interactions based onab initio
techniques.12,13 However, in these papers the computatio
were performed for C60 molecules, placed in the specifi
orientations, so that no information on the orientational d
pendence of the intermolecular interaction potentials was
tained. The complete LDA analysis of the intermolecular
teractions is a very complicated task, requiring the se
consistent treatment of a cluster of C60 molecules. Some
simplifying approaches are necessary to effectively deal w
this problem. One of them, the Gordon-Kim statistical a
proach, uses the sum of the LDA charge densities of
isolated molecules as an approximation for the charge d
sity in the solid. This approach, successfully utilized for c
bon in graphite,14 was applied to solid C60 by La Rocca15

and Yildirim.16 While the values of the lattice constant, c
hesive energy, and bulk modulus calculated within t
approach15 were in reasonable agreement with the expe
mental ones, the predicted details of the orientational ord
ing in the low-temperature phase were not.15,16 This result
14 182 © 1997 The American Physical Society
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can be attributed to the fact that the Gordon-Kim approac
not successful in dealing with the short-range part of
intermolecular interaction~SRI!. However, as was shown i
Ref. 16, this approach is very useful in studying the Co
lomb part of the interaction, which was found to be dom
nated by the charge overlap between neighboring molec
and to be of crucial importance for the stabilization of t
Pa3̄ structure at low temperatures.

The demonstrated importance of the microscopic tre
ment of the Coulomb interaction between molecules~Refs.
8,16! as well as the necessity to find a good comprom
between simple ‘‘Lennard-Jones carbon-carbon’’5,6 and
complete LDA approaches to the SRI motivated us to
velop a new model for the intermolecular potential. In t
present paper we use the previously determined molec
LDA charge densities to compute the Coulomb part of
intermolecular interaction. The SRI is represented by
Lennard-Jones 12-6 potential, acting between the centers
tributed over the surface of the carbon cage. The charac
istics of the Lennard-Jones potential as well as the multip
moments of the interacting centers distribution were used
adjustable parameters. This phenomenological approac
the SRI is a reasonable alternative to the complete clu
LDA calculation mentioned above. As a result we obtain
potential which, on the one hand, uses the molecular ch
density obtained from a quantum-chemical calculation, a
on the other hand, has the best overall performance w
respect to the experimental observations.

The present paper is organized as follows. In Sec. II
discuss some of the experimental results obtained for s
C60 and their interpretation in terms of the intermolecu
potential. Section III deals with general theoretical fram
work used to describe the intermolecular interactions. Th
we introduce our model and discuss the choice of the adj
able parameters we have made. In Sec. IV we present
mean-field stability analysis of our potential and compute
values of the local orientational order parameters at ro
temperature. We also present the values of the libron
quencies predicted by our model. These results are comp
with the experimental data as well as with the predictio
from other potentials. Section V summarizes our conc
sions. Finally, in the Appendixes we present some of
technical details of our calculations.

II. EXPERIMENTAL OBSERVATIONS IN C 60 SOLIDS
AND THE INTERMOLECULAR
INTERACTION POTENTIAL

At T'260 K solid C60 undergoes a first-order phase tra
sition in which the icosahedral@point group I h ~Ref. 17!#
molecules develop long-range orientational order.1 In both
the high-temperature orientationally disordered phase~space
groupFm3̄m! and the orientationally ordered phase~space
groupPa3̄) the molecular centers of mass form an fcc l
tice. The molecular orientations in thePa3̄ phase are ob-
tained as follows. Consider a fiducial state in which all m
ecules are in standard orientationA as shown in Fig. 1. Then
each molecule is rotated through a setting anglef about the
local threefold axis.18,19This structure has been confirmed b
additional diffraction measurements.20,21

Subsequent to the initial observation of the phase tra
is
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tion, solid C60 was the object of extensive study by vario
experimental techniques. Much of this body of evidence c
be related to the specific features of the intermolecular in
action and thus serves to set requirements which ought t
satisfied by any prospective model. This section discus
some of the major experimental findings and their conn
tion to the intermolecular potential.

One of the important studies of the local orientation
order in the low-temperature phase of solid C60 was per-
formed by David and co-workers.21–23By analyzing the tem-
perature evolution of the high-resolution neutron powd
diffraction profile, this group has confirmed the low
temperature value of simple cubic lattice consta
a514.04 Å,measured by Heineyet al.1 David et al. also
suggested that at very low temperatures the orientation of
majority of C60 molecules is described by the setting ang
of '22°, while the minority finds itself in the orientatio
with the setting angle of about 82°. The energy differen
between these two orientations was found to be 11 meV,23 a
value, confirmed later by Yuet al.24 Therefore, we require
that for an intermolecular potential to be acceptable,
Pa3̄ configuration with a setting angle of about 22° shou
correspond to the global minimum in the potential energy
the crystal. At the same time, changing the setting angle
one molecule from its global minimum value to the val
around 82° should bring the crystal into a configuration c
responding to the local minimum of its potential energy
and the energy difference between these minima should
equal to 11 meV. In addition, the equilibrium separation b
tween the molecules in thePa3̄ global minimum configura-
tion should correspond to the experimentally obtained va
of the low-temperature lattice constant.

Another feature of the intermolecular potential is usua
associated with the phenomenon of orientational freezing
served atT'90 K. The results obtained via various expe
mental techniques24–28 consistently point to the existence o
an energetic barrier of 235–280 meV between the glo
minimum and the local minimum orientations of the mo
ecule inPa3̄ phase.

The experimental value of the low-temperature bu
modulus can be related to the second derivative of the
tential energy of the crystal in the global minimumPa3̄
configuration with respect to the lattice constant at the eq
librium separation. Ludwiget al.29 have obtained the value
of 14.7 and 14.2 GPa for the bulk modulus in the simp
cubic phase29 at 70 and 170 K, respectively. At the sam

FIG. 1. C60 molecule in standard orientationsA and B with
respect to the crystal axes.
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TABLE I. The experimental results interpreted in terms of the properties of the intermolecular intera
potential. The corresponding references are given in parentheses.

Experimental quantity Measured value

Setting angles of the global
and local minima 22°, 82°~Ref. 21!

configurations inPa3̄

The energy difference
between the minima 11 meV~Ref. 21!

The energy barrier
between the minima 235–290 meV~Refs. 24–28!

Lattice constant atT'0 14.04 Å~Ref. 21!

Bulk modulus at 14.7 GPa~Ref. 29!
low temperature 10.3 GPa~Ref. 30!

Cohesive energy 21.6 eV ~Ref. 32!, 21.7 eV ~Ref. 33!,
21.74 eV~Ref. 34!

Orientational order
parameters:
g6 20.38620.395
g10 0.217 0.359
g12
1 0.159 0.228

g12
2 0.440~Ref. 36!, 0.0706~Ref. 11!

Libron frequencies atq'0 2.2–6.2 meV~Refs. 40,41!
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time, Lundin and Sundqvist30 have reported the much lowe
value of 10.3 GPa from measurements at 152 K. In addit
different groups report rather different results for the m
surements of the bulk modulus at room temperature, e
13.4 GPa,29 6.7 GPa,30 14.2 GPa.31 It is clear that some ad
ditional experiments are necessary to establish the reaso
the above-mentioned discrepancy.

The experimental value of cohesive energy can be a
ciated with the value of the potential energy at equilibriu
The measurements of the cohesive energy by Kata
et al.,32 Panet al.,33 and Abrefahet al.34 yielded the values
of E0 to be21.7,21.74,21.65 eV/molecule, respectively

The important information on the shape of the orien
tional potential in the high-temperature phase is provided
the values of the local orientational order parametersg l

m .
These order parameters~which are dimensionless! are related
to the thermal averageŝUl ,m& of the so-called molecula
rotator functionsUl ,m(a,b,g):

35

g l
m5k l^Ul ,m&, ~1!

where k l are the multipole moments of the carbon ato
distribution on the surface of the molecular cage. Above
orientational ordering transition temperature the only n
zero values ofg l

m are those belonging toA1g representations
of theOh group,g l

m5g l
rdm,(r1) . The values ofg l

r were mea-
sured at room temperature using x-ray synchrotron and n
tron powder-diffraction techniques.11,36 The obtained order
parameters forl56,10,12 are presented in Table I: two va
ues for l512 correspond to two different irreducible repr
sentations ofA1g symmetry. As one can see, the values
n,
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g6, g10, andg12
1 coming from these two experiments, agr

with each other quite well and therefore are probably m
reliable than the value forg12

2 .
The comparison between computed libron frequenc

and the experimentally measured ones can serve as ye
other test for the orientational part of the interaction pote
tial. The librational phonon modes in C60 single crystals
were studied most extensively by Pintschovius a
co-workers37–39 and Horoyski.40,41 The former group has
performed several studies of the phonon-dispersion curve
C60 single crystals using inelastic neutron scattering. T
initial assignment of the observed modes37 was corrected in
the later papers.38,39 Their measurements atT'80 K show
the zone center librational modes at the approximate ener
2.2, 2.6, 3, and 4.3 meV. Horoyskiet al. have used Fourier-
transform Raman spectroscopy to perform high-resolut
measurements ofq'0 libron frequencies. The experimen
were performed at 77 K, and the Raman peaks were
served at 2.23, 2.61, 3.06, 4.07, 5.16, and 6.20 meV. H
ever, one has to exercise caution in assigning the hig
energy peaks reported there to single librons rather tha
‘‘multilibrons.’’ Another important feature to keep in mind i
the ‘‘stiffening’’ libron spectrum undergoes when the tem
perature is lowered. Since the comparison between the c
puted and measured librational frequencies is most direc
experimental values taken atT'0, one has to allow for pos
sible corrections. In particular, the lowest energy peak40,41

shifts only slightly to 2.3 meV when the temperature is lo
ered from 77 to 10 K. At the same time, the second pea39

shifts to'2.8 meV, and from extrapolation one can expe
comparable shifts for higher peaks as well.
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TABLE II. The values of the expansion coefficientsal ,n for the SARF of the icosahedral symmetr
(a0,051).

l n50 n562 n564 n566 n568 n5610 n5612

6 20.207 0.475 0.388 20.320

10 0.354 0.288 20.357 0.056 20.425 20.207

12 20.414 0.118 20.183 20.463 20.074 0.292 20.247
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At the same time, the experimentally observed frequ
cies of the translational phonon modes39 were shown to have
largely fcc-type dispersion, so that their values can be
equately explained using only the values of the lattice c
stant and bulk modulus. Accordingly, in this paper we on
concentrate on the libron frequencies. The experimental fi
ings mentioned above are summarized in Table I.

III. SEMI-EMPIRICAL APPROACH
TO THE INTERMOLECULAR INTERACTION

IN SOLID C 60

The experimental results, described in the previous sec
impose numerous restrictions on theoretical models for
intermolecular interaction of fullerenes. Unfortunately, no
of the interaction potential models proposed so far perfo
well against all these experimental benchmarks—the fur
analysis is given in Sec. IV. To correct this situation, w
propose a model for the intermolecular interactions wh
combines the microscopic treatment of the Coulomb inter
tion between molecules with the phenomenological appro
to describing the short-range part of the potential. In t
section we present the general theoretical framework we
as well as details of our approach.

A. The general expressions for the interaction
of two C60 molecules

Let us consider two molecules of icosahedral symmetry,
teracting with each other in a crystal via a generalized
verse power potential with the exponentn ~e.g., for the Cou-
lomb interaction n51 and for the Lennard-Jones 12
potential there will be expressions withn56 andn512).
For simplicity we do not consider an exponential form
interaction, though similar expressions can be obtained
this case as well. Suppose that the positions of the molec
centers of mass are given by vectorsd1 andd2 with respect
to some fixed set of axes, for example, the one connecte
the crystal. Let us also assume that with respect to the s
set of axes the orientations of the molecules are describe
Euler anglesv15(a1 ,b1 ,g1) andv2, respectively@~0,0,0!
being standard orientationA#. Then the expression for th
energy of interaction will be a linear combination of the co
tributionsVn , each of the form

Vn~d1 ,v1 ,d2 ,v2!5E E dr1dr2
rv1

~r1!rv2
~r2!

ur12r21d12un
, ~2!
-
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whered125d12d2, andrv(r ) is the interaction center den
sity. In particular, in the case of the Lennard-Jones ato
atom interaction this function is usually expressed as a s
of d functions centered at the atomic sites. However, in g
eral it can have different forms, with the icosahedral symm
try of the resulting expression being the only imposed
quirement. We would like to emphasize that in soli
because of the crystal-field effects the symmetry of C60 mol-
ecules is, strictly speaking, reduced fromI h to S6. However,
this distortion is small and will be neglected in further ana
sis. The interaction center density function can also be
pressed asrv(r )5r„R̂21(v)r …, wherer(r ) is the interac-
tion center density of C60 molecule in standard orientatio
A ~see Fig. 1!, and R̂(v) is the rotation described by thre
Euler anglesv5(a,b,g). The functionr(r ) transforms into
itself under any operation of the icosahedral groupI h .
Therefore,

r~r !5r~r , r̂ !5(
l

r l~r !Tl
A1g~ r̂ !5(

l
(
n52 l

l

alnr l~r !Yln~ r̂ !,

~3!

where Tl
A1g are the symmetry-adapted rotator functio

~SARF!—the linear combinations of the spherical harmon
of order l belonging to theA1g representation of the icosa
hedral group. SARF were introduced by James and Keen35

for the analysis of the orientational ordering in solid me
ane. Michelet al.42 have applied them to the case of sol
C60. The sum in Eq.~3! runs overl50,6,10,12,16,18 . . . ,
the values allowed by the molecular symmetry. In stand
orientation A the values of the nonzero coefficients f
l56,10,12 are listed in Table II (a0,051).

The multipole density functionsr l(r ) describe the details
of the radial distribution of the interaction centers. Then,
the rotated molecule we have

rv~r !5(
ln

alnr l~r !Yln„R̂
21~v! r̂ …

5 (
l ,m,n

alnr l~r !Ylm~ r̂ !Dmn
l ~v!, ~4!

whereDmn
l (v) is a well known Wigner matrix.43 Substitut-

ing the last expression into Eq.~2!, we get
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Vn~d1 ,v1 ,d2 ,v2!5 (
l1m1n1

(
l2m2n2

al1n1Dm1n1

l1 ~v1!al2n2Dm2n2

l2 ~v2!E E dr1dr2
r l1~r 1!Yl1m1

~ r̂1!r l2~r 2!Yl2m2
~ r̂2!

ur12r21d12un

5 (
l1m1

(
l2m2

Sm1

l1 ~v1!Sm2

l2 ~v2!Qm1m2

l1l2 ~d12!, ~5!
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where

Sm
l ~v!5 (

n52 l

l

alnDmn
l ~v!, ~6!

and

Qm1m2

l1l2 ~d!5E E dr1dr2
r l1~r 1!r l2~r 2!Yl1m1

~ r̂1!Yl2m2
~ r̂2!

ur12r21dun
.

~7!

Thus, the complete information about the interaction
two molecules is ‘‘stored’’ in the interaction matri
Qm1m2

l1l2 (d). To make use of this general expression we w

separately consider Coulomb and Lennard-Jones~LJ! 12-6
interactions.

B. The Coulomb interaction between C60 molecules

As we shall see, ‘‘bond charge’’ models5,6 do not properly
describe the Coulomb interaction between fullerenes.8,16 In
the present paper we have computed this interaction by u
the C60 molecular charge densities obtained fromab initio
electronic wave functions.8 We emphasize, that due to th
significant overlap between the charge densities on
neighboring molecules in solids, the Coulomb interact
does not reduce itself to multipole-multipole coupling. Th
circumstance has important implications for the intermole
lar potential.16 In particular, because of the mentioned ove
lap, there is a significant contribution to the crystal-field p
tential, coming from the Coulomb interaction. Such
contribution involving a monopole is absent in the multipo
expansion and has not been considered previously. For
f

l

ng

e
n

-
-
-

ch

molecule the Coulomb charge density naturally separa
into core (14ueu per carbon site! and valence parts. The cor
charge density is given by

rcore~r !54ueu(
k51

60

d~r2r k!

54ueu
d~r2R0!

R0
2 (

l50,6 . . .
k lTl

A1g~ r̂ !, ~8!

whereR053.55 Å is the molecular radius and the atom
multipole momentsk l are found from

k l5E drTl
A1g~ r̂ !(

k51

60

d~r2r k!5 (
k51

60

Tl
A1g~ r̂ k!, ~9!

so that k0560/A4p516.93, k652.56, k10519.35,
k1257.89. Then, the core charge multipole density functio
can be expressed asr l

core(r )54ueuk l@d(r2R0)/R0
2#.

The values of the valence multipole density functio
r l
val(r ) were computed for 41 different values ofr . The re-
sults for l50,6,10,12 are presented in Table III and a
shown in Fig. 2. The values ofr l

val(r ) for l516,18, . . . at
any r were found to be much smaller than those ofr l

val(r )
for l50, 6, 10, and 12. So in what follows we limit ourselve
to considering only contributions fromr l

val(r ) with l up to
12.

The interaction matrix@which we denote asRm1m2

l1l2 (d)# for

Coulomb interaction between core charges on one mole
and the total~core and valence! charges on the neighborin
molecule can be computed using two-center expansion~see
Appendix B!:
Ref. 8,

ition
ecule

e core
Rm1m2

l1l2 ~d!54
ueu2

d
~21! l1SR0

d D l11 l2ql10

al10
k l2S ~4p!3

~2l 111!~2l 211!@2~ l 11 l 2!11# D
1/2

C„~ l 1,0!~ l 2,0!~ l 11 l 2!…

3
~2l 111!~2l 211!@2~ l 11 l 2!21#!!

~2l 111!!! ~2l 211!!!
C„~ l 1 ,m1!~ l 2 ,m2!~ l 11 l 2!…Yl11 l2 ,m11m2

~ d̂!. ~10!

Here qlm are the values of the reduced multipole moments of the molecular charge distribution, tabulated in
C„( l 1 ,m1)( l 2 ,m2)( l 11 l 2)… are the Clebsch-Gordan coefficients,43 and n!! is defined as 2n/23(n/2)! or
n!/ $2(n21)/23@(n21)/2#! % for even and oddn, respectively. For the Coulomb potential energy of two molecules, in add
to Rm1m2

l1l2 (d) there will also be a termRm2m1

l2l1 (d), coming from the interaction between the core charges of the second mol

and the ‘‘total’’ charge cloud of the first one. However, to avoid double counting of the Coulomb interaction between th
charges one has to subtract this core-core term, whose interaction matrix is denotedAm1m2

l1l2 (d), from the final result. This term

is given by
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Am1m2

l1l2 ~d!516
ueu2

d
~21! l1SR0

d D l11 l2

k l1
k l2S ~4p!3

~2l 111!~2l 211!@2~ l 11 l 2!11# D
1/2

C„~ l 1,0!~ l 2,0!~ l 11 l 2!…

3
~2l 111!~2l 211!@2~ l 11 l 2!21#!!

~2l 111!!! ~2l 211!!!
C„~ l 1 ,m1!~ l 2 ,m2!~ l 11 l 2!…Yl11 l2 ,m11m2

~ d̂!. ~11!

Now, let us consider the interaction between the valence electrons. At the experimentally observed separations
fullerenes in the crystal there is a significant overlap between the valence charge densities on the neighboring m
Therefore, the convenient two-center expansion is not applicable, and this part of the Coulomb interaction@denoted as
Bm m
l1l2 (d)# needs special treatment. Starting with

TABLE III. The computed values of the valence multipole density functions according to LDA~in the
units of2ueu/a.u.3) for l50,6,10,12. All numbers have uncertainty in their last digit.

r , a.u. r0(r ) r6(r ) r10(r ) r12(r )

1.786 0.0672 0.000629 0.00183 0.000164
2.321 0.364 0.0145 0.0616 0.0103
2.500 0.664 0.0345 0.151 0.0272
2.678 1.162 0.0734 0.321 0.0624
2.857 1.900 0.140 0.608 0.129
2.946 2.360 0.186 0.808 0.179
3.035 2.867 0.241 1.046 0.242
3.125 3.390 0.301 1.303 0.313
3.214 3.850 0.358 1.528 0.374
3.303 4.160 0.400 1.661 0.406
3.393 4.310 0.426 1.710 0.415
3.446 4.390 0.443 1.775 0.440
3.500 4.520 0.472 1.948 0.510
3.571 4.530 0.486 2.049 0.557
3.642 4.150 0.442 1.773 0.462
3.714 3.860 0.413 1.656 0.431
3.785 3.570 0.385 1.583 0.420
3.857 3.220 0.348 1.468 0.395
3.928 2.823 0.303 1.303 0.352
4.017 2.307 0.244 1.066 0.286
4.107 1.830 0.189 0.840 0.222
4.196 1.421 0.143 0.646 0.168
4.285 1.084 0.106 0.489 0.125
4.375 0.814 0.0763 0.363 0.0913
4.464 0.602 0.0540 0.265 0.0655
4.553 0.440 0.0374 0.189 0.0458
4.642 0.319 0.0255 0.133 0.0314
4.732 0.230 0.0171 0.0916 0.0210
4.821 0.166 0.0113 0.0627 0.0138
4.910 0.121 0.00751 0.0429 0.00897
5.000 0.0886 0.00499 0.0294 0.00578
5.124 0.0583 0.00286 0.0177 0.00312
5.249 0.0391 0.00169 0.0109 0.00169
5.357 0.0279 0.00111 0.00735 0.00101
5.464 0.0200 0.000749 0.00506 0.000614
5.571 0.0144 0.000516 0.00353 0.000379
5.678 0.0102 0.000361 0.00248 0.000238
5.785 0.00720 0.000254 0.00174 0.000152
5.892 0.00501 0.000179 0.00122 0.0000983
5.982 0.00367 0.000133 0.000904 0.0000694
6.071 0.00266 0.0000983 0.000665 0.0000494
1 2
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Bm1m2

l1l2 ~di j !

5E E dr1dr2
r l1
val~r 1!r l2

val~r 2!Yl1m1
~ r̂1!Yl2m2

~ r̂2!

ur12r21di j u
,

~12!

FIG. 2. The multipole charge density functionsr l
val(r ), ex-

pressed in the units2ueu/Å3 for l50,6,10,12. The maximum
aroundr53.55 Å corresponds to the electrons localized near
carbon cage.
ing

ly

te
m

on
and using the Fourier transform

1

r
5E dq

~2p!3
e2 iqr

4p

q2
, ~13!

one gets

Bm1m2

l1l2 ~d!5E dq

~2p!3
4p

q2
e2 iqdI l1m1

~2q!I l2m2
~q!, ~14!

where

I lm~q!5E drr l~r !eiqrYlm~ r̂ !. ~15!

Now

eiqr5
4p

qr (l50

`

(
m52 l

l

~ i ! l j l~qr !Ylm~ q̂!Ylm* ~ r̂ !, ~16!

where j l(x)5Apx/2Jl11/2(x) is the spherical Bessel’s func
tion of orderl . So,

I lm~q!5
4p

q
~ i ! lYlm~ q̂!E

0

`

rdrr l~r ! j l~qr !

[
4p

q
~ i ! lYlm~ q̂!Kl~q!. ~17!

Substituting the last expression into Eq.~14! and perform-
ing the integration overdq̂, one gets the final expression

e

Bm1m2

l1l2 ~d!5
32p

d
~21! l1 (

l35u l12 l2u

l11 l2

~ i ! l11 l22 l3S ~2l 111!~2l 211!

4p~2l 311! D 1/2C@~ l 1 ,m1!~ l 2 ,m2!~ l 3!#

3C@~ l 1,0!~ l 2,0!~ l 3!#Yl3 ,m11m2
~ d̂!E

0

`dq

q3
Kl1

~q!Kl2
~q! j l3~qd!. ~18!
ely
b

s
is

of
n.

r for
ld
les
he
ly-
,
ties
rlap
This way one reduces the computation ofBm1m2

l1l2 (d) to

calculating a number of one-dimensional integrals involv

Kl~q!5E
0

`

rdrr l
val~r ! j l~qr ! ~19!

for l50,6,10,12.
Thus, the total Coulomb interaction matrix,Dm1m2

l1l2 (d),

can be written as

Dm1m2

l1l2 ~d!5Bm1m2

l1l2 ~d!1Rm1m2

l1l2 ~d!1Rm2m1

l2l1 ~d!2Am1m2

l1l2 ~d!.

~20!

The resulting Coulomb interaction differs significant
from both the multipole-multipole interaction8 and the Cou-
lomb interactions from ‘‘bond-charge’’ models. To illustra
this point, we have computed the variation of the Coulo
potential energy with the setting angle in thePa3̄ phase for
our model as well as for the multipole-multipole interacti
b

and for the Coulomb interaction from the model of Luet al.5

~later referred to as the LLM model!. The results are shown
in Fig. 3. As one can see, these potentials are qualitativ
different: while the LLM model predicts, that the Coulom
interaction has a local minimum at setting angle of'22°
and a local maximum at'85°, our microscopic model state
that at both setting angles the total Coulomb interaction
maximized.16 The unrealistic nature of the Coulomb part
the LLM model is clearly seen in the following observatio
At both setting angles the molecular 6-6~‘‘double’’ ! bonds
face the centers of the ‘‘pentagons’’~setting angle of
'22°) or ‘‘hexagons’’~setting angle of'85°) of their near-
est neighbors. Since the charge densities are very simila
‘‘hexagons’’ and ‘‘pentagons,’’ the interaction energy shou
be either maximized or minimized for both setting ang
and definitely not maximized for one and minimized for t
other. Another interesting conclusion comes from the ana
sis of the curve for the multipole-multipole interaction8

which was computed using the same LDA charge densi
we used in the present work, however, neglecting the ove
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between the charges on neighboring molecules. As we
this approach leads to a significant underestimation of
magnitude of the Coulomb interaction. In addition, negle
ing the charge overlap leads to the different orientatio
dependence of the Coulomb part of the potential energy

These observations show that the widely accepted
sumption about the intermolecular electrostatic interacti
being minimized when the 6-6 bond on one molecule fa
either pentagons or hexagons on the neighbor
molecules,22,44 is not supported by the microscopic calcul
tion. In fact, the Coulomb interactions are maximized
these mutual orientations. However, as we will show in
next section, being combined with the proposed short-ra

FIG. 3. The Coulomb potential energy per molecule as a fu
tion of the setting angle in thePa3̄ phase for various models:~a!
our model,~b! model of Luet al., ~c! multipole interaction, com-
puted by Yildirimet al.
e,
e
-
l

s-
s
s
g

r
e
e

part of the potential, the microscopic Coulomb interacti
does lead to the stabilization of thePa3̄ structure with the
correct setting angle.

C. The short-range part of the intermolecular interaction

In the early models of the intermolecular potential
C60 solids

2,5,6 the SRI was represented by carbon-carbon
12-6 interactions. This was an over-simplification, since
ignored the repulsion between charges on intercarbon bo
Michel et al. have proposed to introduce additional intera
tion centers on 5-6 and 6-6 bonds in order to reach an ag
ment with the experiment on the values of the crystal-fi
coefficients.9–11 However, as will be shown in Sec. IV, th
performance of the orientational part of the potential w
regard to the details of the low-temperature structure w
still not satisfactory. At the same time, the Gordon-Kim a
proach attempted by La Rocca15 and Yildirim16 had not
shown much of an improvement in this regard either. Th
results have persuaded us to search for the reliable inte
diate approach to modeling SRI so as to avoid having
implement a full-scale LDA or to use the overly simplist
recipes of early models. In this paper we have develope
model where SRI comes from the LJ 12-6 interactions
tween the interaction centers densities, delocalized over
surface of the carbon cage, not necessarily exclusively o
intercarbon bonds. Then, the interaction centers multip
density functionsr l

i(r ) can be expressed as

r l
i~r !5

d~r2R0!

R0
2 k l

i , ~21!

wherek l
i is the l th multipole of the interaction centers dis

tribution over the surface of the molecule andR0 is the mo-
lecular radius. Then, as in Eq.~5!, SRI for the two molecules
becomes

-

d

VLJ~d1 ,v1 ,d2 ,v2!5E E dr1dr24eS s12

ur12r21d12u12
2

s6

ur12r21d12u6
D S d~r 12R0!

R0
2 (

l1
k l1
i (
m1

Sm1

l1 ~v1!Yl1m1
~ r̂1! D

3S d~r 22R0!

R0
2 (

l2
k l2
i (
m2

Sm2

l2 ~v2!Yl2m2
~ r̂2! D

5 (
l1m1

(
l2m2

Sm1

l1 ~v1!Sm2

l2 ~v2!Pm1m2

l1l2 ~d12!, ~22!

where

Pm1m2

l1l2 ~d!54ek l1
i k l2

i @s12P̂12~d!2s6P̂6~d!#, ~23!

and

P̂n~d!5E E dr1dr2
d~r 12R0!

R0
2

d~r 22R0!

R0
2 Yl1m1

~ r̂1!Yl2m2
~ r̂2!

1

ur12r21dun
. ~24!

This expression forP̂n(d) can be computed using the two-center expansion forn.1 ~see Appendix B for the details an
the definition of the functional1l2l

n ):
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P̂n~d!5
1

dn(l ~21! l2S ~4p!3

~2l 111!~2l 211!~2l11! D
1/2

C„~ l 1,0!~ l 2,0!~ l !…C„~ l 1 ,m1!~ l 2 ,m2!~ l !…Ylm11m2
~2d̂!al1l2l

n SR0

d
,
R0

d D .
~25!

Then

Pm1m2

l1l2 ~d!54ek l1
i k l2

i ~21! l2 (
l50,6, . . .

~21! l S ~4p!3

~2l 111!~2l 211!~2l11! D
1/2

C@~ l 1,0!~ l 2,0!~ l !#C@~ l 1 ,m1!~ l 2 ,m2!~ l !#

3Ylm11m2
~ d̂!F S s

d D 12al1l2l12 SR0

d
,
R0

d D2S s

d D 6al1l2l6 SR0

d
,
R0

d D G . ~26!

TABLE IV. The fitting values of the experimental quantities~top! and the obtained Lennard-Jones
parameters~bottom!.

Experimental The energy difference The energy barrier Lattice Bulk Cohesive
quantity between the global and between the minima constant modulus energy

the local minima in Pa3̄ phase at T50 K at T50

Fitting value 11 meV 250 meV 14.04 Å 13 GPa 21.7 eV

LJ parameters s e k6 k10 k12

Fitted values 3.695 Å 20.255 K 0.542 32.812 4.969
LLM model 3.407 Å 34.365 K 2.561 19.353 7.887
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In this formula the values ofs, e, and k l
i for

l56,10, . . . serve as adjustable parameters~the value of
k0
i , reflecting the total ‘‘number’’ of the interaction center

is taken to be 60/A4p, as in all earlier models!. Below, as
before, we consider only the contributions fro
l50,6,10,12. Thus, our model includes five paramet
which we determined by fitting to the experimental values
the lattice constant, bulk modulus, cohesive energy as we
the energy difference and the energy barrier between the
bal minimum and closest to it local minimum orientation
configurations. Since the experimental results for the val
of the bulk modulus and the energy barrier differ sign
cantly for different experiments, we have taken as our fitt
values the numbers that are somewhere in between the m
mum and minimum reported values, e.g.,B513 GPa for the
bulk modulus andEbar5250 meV for the energy barrier. Th
fitting values as well as obtained parameterss, e, andk l are
presented in Table IV. There we have also included fo
comparison the values of the corresponding parameters
the LJ part of the LLM model. As one can see, the distrib
tion of the LJ interaction centers over the surface of C60
molecule for our model is quite different from the carb
atoms distribution.

The visualization of the resulting distribution of shor
range interaction centers is presented in Fig. 4~a!—there the
distance from a given point on the depicted surface to
spherical surface of certain radius is equal to the interac
centers density at this point, e.g., the ‘‘hills’’ and ‘‘spikes
correspond to the local maxima of the interaction cent
density, while ‘‘pits’’ represent its minima. Figure 4~b! rep-
resents~in arbitrary units! the density of the interaction cen
ters along the cut through the centers of two pentagonal fa
s
f
as
lo-
l
s

g
xi-

a
or
-

e
n

s

es

and the center of one of the 6-6 bonds (p, a, d, s, andh
correspond to the centers of the pentagons, atomic sites,
ters of the 6-6, 6-5, and hexagons, respectively!—it is rela-
tively high for both atomic sites and 6-6 bonds. At the sa
time, 5-6 bonds correspond to slightly smaller densiti
while the centers of pentagonal and hexagonal faces are
‘‘voids,’’ with the centers of the hexagonal faces bein
slightly ‘‘deeper.’’ All this gives us some early insights int
possible mutual orientations of two molecules that wou
minimize their short-range interaction—it should be eith
atomic site or double bond on one molecule versus the ce
of the hexagon on the other. As we will show in the ne
section, those mutual orientations indeed minimize the to
interaction energy of two molecules in our model.

The intermolecular potential, constructed as describ
above, is analyzed in the next section. However, one co
ment is due here: at this stage we have fitted to 250 meV
value of the potential barrier that the molecule in thePa3̄
phase has to overcome to change its orientation from 22
82° by rotating around its local threefold axis, while its nea
est neighbors are kept at 22° orientations. In Appendix A
show that this value indeed corresponds to the lowest p
sible barrier between the two orientations.

IV. PROPERTIES OF THE PROPOSED MODEL

In this section we analyze the various predictions of
proposed model. In particular, we present the predicti
about the most favorable mutual orientations of two intera
ing molecules together with the mean-field stability analy
of the high-temperature phase. In addition, as a test for
model we compute the dispersion curves for the libron ex
tations in thePa3̄ phase as well as the local orientation
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FIG. 4. The distribution of the short-range interaction centers o
the surface of C60 molecule. The distance from a given point on the
depicted surface~a! to the surface of a sphere of certain radius is
equal to the interaction centers density at this point. The cut throu
the centers of the pentagonal faces and the center of the 6-6 bo
~b! allows one to see a clear difference between the interactio
centers density near atomic sites, 6-6 and 6-5 bonds on the one h
and near the centers of hexagons and pentagons, on the other.
symbolsp, a, d, s, andh represent the centers of the pentagons
atomic sites, centers of the 6-6, 6-5, and hexagons, respectively
order parameters, describing the behavior of molecules in
high-temperature phase. These predictions are comp
with the experimental data as well as with similar compu
tions for two of the most frequently used previous models
the interaction potential.

In spite of the existence of quite a few models of t
intermolecular interaction, the question of the most favo
mutual orientation of two C60 molecules has not been inve
tigated in detail. Davidet al.22 have suggested that the ob
served symmetry of the low-temperature phase of C60 crys-
tals is a reflection of the following property of th
intermolecular potential—for two C60 molecules the interac
tion energy is at minimum when the 6-6 bond of one m
ecule faces the center of the pentagon on the other one.
way, the arrangement of molecules in the low-temperat
phase is suggested to optimize all nearest-neighbor inte
tions without frustration. To verify this assumption, we us
our potential to compute the interaction energies for the
ferent mutual orientations of two fullerene molecules. F
our analysis we have chosen the orientations, for which
high-symmetry elements of both molecules~center of 6-6 or
6-5 bond or center of hexagonal or pentagonal face or ato
site! lie on the line connecting the molecular centers of gra
ity. This arrangement, of course, still leaves the choice of
relative angle of rotation,c of the molecules around the lin
connecting their centers. For each of the pairs of symme
elements we have chosen the anglec to minimize the inter-
action energy. The results~in meV! are summarized in Table
V: to make it easier to compare different mutual orientatio
we have subtracted from each number there the orientat
independent contribution.

The numbers in Table V lead to an interestin
conclusion—the interaction energy for the pair of molecu
is minimized when the atomic site of one molecule faces
center of the hexagonal face of the neighboring molecu
This result is not at all surprising—the atomic sites, as w
as 6-6 and 6-5 bonds are the places with the maximum
both the Coulomb charge and the LJ interaction centers c
centration on the surface of the molecule, while the hexa
nal or pentagonal faces play the role of voids. At the sa
time, in the crystal the ordering motive is quite different:
room temperature the molecules rotate so fast that the in
ence of the orientation-dependent part of the intermolec
potential on the translational ordering of molecules can
safely ignored and therefore, the crystal follows the clos

n

h
nd
n
nd
The
,
.

TABLE V. The computed pair interaction energy~in meV! for various mutual orientations of two C60
molecules.

Elements 6-6 6-5 Hexagon Pentagon Atom

6-6 38 12 235 222 31

6-5 12 26 228 -19 12

Hexagon 235 228 25 210 236

Pentagon 222 219 210 212 223

Atom 31 12 236 223 10
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packing scenario to adopt an fcc structure. As the temp
ture is lowered, the orientation-dependent part of the inte
tion becomes more and more important. However, the m
ecules find themselves in an awkward situation, wh
minimizing pair interaction energy with some of the near
neighbors is penalized through pair interactions with the
of the neighbors. In view of this frustration the crystal ado
thePa3̄ spatial structure. In Fig. 5 we have plotted the var
tion of the computed Coulomb, short-range, and total in
molecular interaction energy in thePa3̄ phase as a function
of the setting angle. We find that the total intermolecu
interaction potential, obtained by combining the microsco
Coulomb and the proposed empirical short-range inte
tions, has a global minimum at the setting angle of 23.5°
agreement with the experimental findings. Figure 6 sho
what our model predicts for the potential energy of the m
ecule in thePa3̄ structure as the function of the rotatio
angleu around its local threefold axis, when the neighbori
molecules are kept in their ‘‘global minimum’’ orientation
with the setting angles of 23.5°. The local minimum, clos
in energy to the global one, corresponds tou'60°.

As we will show, thePa3̄ spatial structure is indeed th
best compromise between the ‘‘preset’’ fcc translational
der and the orientational part of the pair intermolecular
tential. To investigate this point, we have performed the s
bility analysis of the high-temperature phase using the me
field approach. The detailed description of the procedur
outlined by Heid,45 therefore in this paper we will limit our-
selves to a brief restatement of the major theoretical s
along with the results of the computations using our mod

First of all, in order to simplify the group-theoretica
analysis of the instabilities in the potential, one re-expres
the interaction between the molecules in terms of molec
rotator functions,35 representing both the molecular symm
try and the symmetry of cubic lattice:

Ulm~v!5(
m1

Sm1

l ~v!cmm1
* l 5 (

m1m2

alm2
Dm1m2

l ~v!cmm1
* l ,

~27!

FIG. 5. The Coulomb, short-range and the total potential ene
per molecule as a function of the setting angle in thePa3̄ phase,
according to our model. The global minimum in energy correspo
to the setting angle of 23.5°.
a-
c-
l-
n
t
st
s
-
r-

r
c
c-
n
s
l-

t

-
-
-
n-
is

ps
l.

es
r

wherem labels the basis functions for the irreducible rep
sentations of theOh group andv is a vector of three Euler
angles. The coefficientscmm1

l are tabulated by Bradley an

Cracknell.46 The functionsUlm(v) form an orthogonal set:

E Ul1m1
~v!Ul2m2

~v!dv5
8p2

2l 111
d l1l2dm1m2

. ~28!

Then the interaction between moleculesi and j can be
written as

V~di ,vi ,dj ,vj !5 (
l1m1

(
l2m2

Sm1

l1 ~vi !Sm2

l2 ~vj !Qm1m2

l1l2 ~di j !

5 (
l1m1

(
l2m2

Ul1m1
~vi !Ul2m2

~vj !Wm1m2

l1l2 ~di j !,

~29!

with

Wm1m2

l1l2 ~di j !5 (
m1m2

cm1m1

l1 cm2m2

l2 Qm1m2

l1l2 ~di j !. ~30!

Within the mean-field approach the orientational poten
energy of the molecule on sitei is given by the expression

VMF
i ~v!5 ( 8

j ,l1 ,m1 ,l2 ,m2

Wm1m2

l1l2 ~di j !^Ul2m2

j &Ul1m1
~v!

[ ( 8
l1m1

v l1m1
Ul1m1

~v!1 ( 9
j ,l1 ,m1 ,l2 ,m2

Wm1m2

l1l2 ~di j !

3^Ul2m2

j &Ul1m1
~v!, ~31!

where the averageŝUlm
i & are taken with respect to

the MF orientational distribution function fMF
i (v)

5exp„2bVMF
i (v)…. The primes on the summations exclud

y

s

FIG. 6. The potential energy of a molecule in thePa3̄ phase as
the function of the rotation angleu around local threefold axis
according to our model. The nearest-neighbor molecules are ke
their ‘‘global minimum’’ orientations with the setting angles o
23.5°. Hereu50 corresponds to the global minimum orientation
the rotated molecule.
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TABLE VI. The calculated values of the orientational order parameters for our model compared
other interaction models.

Values ofg l g6 g10 g12
1 g12

2

Experimental values 20.386 0.217 0.159 0.440

Values from our model 20.072 0.218 0.044 0.190

Values from LLM model 0.421 0.132 0.081 0.368

Lamoen and Michel~Ref. 9! 20.130 0.636 0.049 0.242

Lamoen and Michel~Ref. 10! 20.430 0.840 0.038 0.599
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l 15 l 250 in the first line andl 150 in the second line, while
the double primed summation is carried out over nonz
values of both indicesl 1 and l 2. Here the contribution from
the crystal field is shown explicitly, and the indexm5(r1)
stands for therth A1g irreducible representation of theOh
group ~for l56,10 there is onlyr51, while for l512 there
are two irreducible representations withA1g symmetry, la-
beled asr51 andr52).

For a given temperature this set of equations has m
solutions with different symmetry properties. The soluti
that minimizes the free energy at high temperatures has
cubic symmetry, that iŝUlm

j &5(g l
r/k l)dm,(r1) , wherek l are

defined in Eq.~9!. The mean-field orientational potential fo
any molecule in the crystal becomes

VMF~v!5(
lr

v lr
MFUl ~r1!~v!, ~32!

where

v lr
MF5v lr1(

j
( 8
l1r1

W
~r1!~r11!

l l 1 ~di j !
g l1

r1

k l
. ~33!

This equation together with

g l1

r1

k l
5

*dvUl1~r11!~v!exp@2b~( lrv lr
MFUl ~r1!~v!!#

*dvexp@2b~( lrv lr
MFUl ~r1!~v!!#

~34!

form the set of nonlinear equations forg l1

r1 as a function of

b51/(kBT). ForT5300 K one can simplify the problem b
expanding the exponent. For our potential this results i
rapidly converging series. That is, keeping terms, contain
b2 changes the solutions forg l1

r1 only by few percent com-

pared to the ones resulting from keeping terms linear inb.
For our calculations we have used the valuea514.16 Å, as
the fcc lattice constant for room temperature.36 Our results
are summarized in Table VI. In order to compare our pred
tions with those from other models, we have also included
this table the values of the orientational order parameters
the same temperature and lattice constant, predicted by
LLM model5 and the models of Michel and co-workers.9–11

For the former model we have computed the crystal-fi
valuesv lr and have used the high-temperature expansion

9 to
get the values ofg l

r . The latter model included 210 cente
on the atomic sites as well as 6-5 and 6-6 bonds of e
o

y

ll

a
g

-
n
or
he

d

h

molecule, interacting via Lennard-Jones 12-6 potential.
the later papers10,11 to improve the agreement with the ex
periment, the 12 part was replaced by the Born-Mayer rep
sive potential and the 6 part was limited to include the
traction only between the atomic site centers. In both pap
at least nine Born-Mayer and/or Lennard-Jones parame
were chosen in such a way that the predicted values of
crystal field coefficients would be as close to the experim
tal ones as possible—compared to five adjustable param
of our model. We have again employed the high-tempera
expansion to convert the crystal-field coefficientswl

t1g

~analogous to ourv lr) of Ref. 9 intog l
r .

Comparing with the experimental data from Table I, o
can see that our model gives the proper signs of all of
measured orientational order parameters and that nume
values are in a reasonable agreement with the experime
While the latest version of the model proposed by Mich
et al.11 has a better value ofg6, their value forg10 is too
high. At the same time, the orientational order-parame
values from the model of Luet al. are in the qualitative
disagreement with the experiment: the sign ofg6 is of crucial
importance for the shape of the mean-field orientatio
potential.10,11

The most likely low-temperature structures within th
mean-field approach can be identified by looking at the
genvalue spectrum of the orientational susceptibility mat
obtained by keeping the quadratic terms with respect to
orientational order parameters in the Landau expansion
the free energy. Here we adopt an equivalent approac45

based on the analysis of the eigenvalue spectrum of

Wm1m2

l1l2 ~q!5
1

N(
di ,dj

(
l3m3

Wm1m3

l1l3 ~di j !Jm3m2

l3l2 exp„iq~dj2di !…,

~35!

where

Jm1m2

l1l2 5^Ul1m1

j Ul2m2

j &2^Ul1m1

j &^Ul2m2

j &. ~36!

The averages in the last expression are taken with res
to the high-temperature distribution functionfMF(v). The
values of^Ulm

j & in this phase do not depend on position
the site j and are equal tog l

r/k l . At the same time, the
averageŝUl1m1

j Ul2m2

j & can be expressed in terms of^Ulm
j & in

the following way~see Appendix C!:
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^Ul1m1

j Ul2m2

j &5
d l1l2dm1m2

2l 111
1(

lr
^Ul ~r1!

j &Ml1l2l
Nl1l2l

m1m2~r1! ,

~37!

where

Ml1l2l
5 (

n1n2
al1n1al2n2al ,n11n2

C„~ l 1n1!~ l 2n2!~ l !…, ~38!

and

Nl1l2l
m1m2~r1!

5 (
n1n2

cm1

l1
n1
* cm2

l2
n2
* c~r1!,n11n2

l C„~ l 1n1!~ l 2n2!~ l !….

~39!

The lowest-energy part of the resulting eigenvalue sp
trum ofWm1m2

l1l2 (q) is shown in Fig. 7. As we see, our mod

predicts that the strongest instability in the intermolecu
potential occurs at theX point of the reciprocal lattice and
corresponds to thePa3̄ space group. This result remaine
unchanged when we varied the value of the lattice const
used in the calculation—however, the actual energy eig
values strongly depend on this parameter—for example, f
slightly different lattice constanta514.18 Å, we obtained
E(X5

1)521.6 meV. The closest competing instability~also
occurring at theX point! corresponds to the tetragon
P42 /mnmspace group. This instability may be responsib
for the recently observed noncubic peaks in the diffuse x-
and quasielastic neutron-scattering patterns of C60 single
crystals in the high-temperature phase.47–49

A corresponding analysis for the potentials similar to t
LLM model was performed by Heid.45 He showed that the
sequence of phase transitions associated with these pote
does not correspond to the one observed in experiment
particular, unobserved intermediate phases are predicted
the same time, to the best of our knowledge, there were
reports on the stability analysis of the models proposed
Michel and Lamoen, and this prevents us from making
direct comparison with their model.

FIG. 7. The lowest eigenvalues of the interaction matrix
wave vectors along the lines of high symmetry in the first Brillou
zone of the fcc lattice.
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Another important test for the interaction potential is
compare the computed frequencies of the libron excitati
with the experimental ones. Figure 8 presents the libron
persion curves for our model as well as the models of LL
and Michel and Lamoen along the high-symmetry lines

r

FIG. 8. The libron dispersion relations for wave vectors alo
the lines of high symmetry in the first Brillouin zone of the simp
cubic lattice for the present model~a!, LLM ~b! and the model of
Lamoen and Michel~c!. The details of the mode symmetry assig
ment are given in the paper by Yildirim and Harris~Ref. 50!. The
curves for the LLM potential have been corrected by a factor
A2 ~Ref. 39! compared to the ones presented in Refs. 50 and 5
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the first Brillouin zone. The extensive symmetry analysis
the libron modes in C60 crystals was performed by Yildirim
and Harris.50 In the present paper we are following the sam
notation for the symmetry points in the reciprocal lattice a
for the symmetry labels of the modes (Eg ,Tg ,Ag). Also, we
have added the factorA2 that was missing39 in the libron
energies, reported in Refs. 50 and 51. Comparing the c
puted dispersion curves with the experimental results,37–41

one can see that our model reproduces some, but not a
the observed features of the spectrum. In particular, the c
puted frequency of theAg mode at theG point is in very
good agreement with the experimental value@vexp53.04
meV ~Ref. 39!#. Note that theAg mode corresponds to vary
ing the setting angle in thePa3̄ phase. The fact that ou
theory correctly reproduces the frequency of this mode s
gests that the barrier of rotation around the@1,1,1# axis is
correctly represented by our potential. However, our cal
lation predicts that the lowest-frequency librons at theG
point haveTg symmetry, whereas the experimental interp
tation attributesEg symmetry to these modes. We have i
vestigated a range of parameters for our model but are un
to remove this disagreement. Furthermore, the mode
Lamoen and Michel,10,11which captures some features of th
potential correctly, gives the same prediction as ours for
symmetry of the lowest-energy modes. Of course, one ha
keep in mind that our calculation of the libron modes do
not allowfor any orientational disorder, which is observed
C60 crystals even at very low temperatures. An additio
investigation is necessary in order to determine whether
presence of orientational disorder can account for the
crepancy between theory and experiment mentioned abo

Before concluding, we would like to point out that th
phenomenological model of Lamoen and Michel, co
structed to obtain reasonable values of the orientational o
parameters in the high-temperature phase, does not give
rect predictions as far as the low-temperature phase is
cerned. As an illustration, in Fig. 9 we show the potent

FIG. 9. The potential energy of the molecule in thePa3̄ phase
as the function of the rotation angleu around local threefold axis
according to the model of Lamoen and Michel. Compare with F
6.
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energy of a molecule in thePa3̄ phase computed for this
model when the molecule is rotated around its local threef
axes. The lattice constant for this calculation was taken to
equal to the experimental value of 14.04 Å rather than
unrealistic value of 14.68 Å predicted by this model. W
would like to point out that, while this value could be co
rected by adding the appropriate orientationally independ
contribution to the potential, such a modification will n
change the deficiencies in the orientational behavior of
model, namely that both the relative energies of two mini
as well as the value of the barrier between them is in sign

.

FIG. 10. The contour plots of the potential energy of C60 mol-
ecule in thePa3̄ phase~all neighbors are kept in their ‘‘globa
minimum’’ orientations! for a fixed Euler angleb51.15 rad as a
function ofa andg. The regions, shown on the graphs correspo
to the values of the potential energy from21.7 eV ~global mini-
mum! to 21.689 eV~local minimum! plus the ‘‘barrier’’ of ~a! 240
meV and~b! 250 meV.
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cant disagreement with the experimental values shown
Table I.

V. CONCLUSION

We have constructed a model of the interaction poten
for C60 molecules which agrees with the quantum-chemi
calculations of the C60 molecular charge densities and th
details of the crystal structure at low temperatures. We m
summarize our work as follows.

~1! The earlier models of the interaction potential do n
properly describe the Coulomb interaction between the60
molecules. The major reason for this lies in thead hocchar-
acter of the ‘‘bond charges,’’ inconsistent with the micr
scopic molecular charge distribution. In addition, we ha
determined that the Coulomb interaction between the ne
boring C60 molecules at the separations typical for soli
does not reduce to the multipole-multipole coupling and t
the proper treatment of the charge overlaps between the
ecules is necessary.

~2! The short-range part of the interaction is best mode
by the 12-6 Lennard-Jones interactions between the inte
tion centers distributed over the surfaces of the molecu
The proper choice of the fitting parameters have yielded
potential with the best overall behavior with respect to
experimental results for both high- and low-temperat
phases.

~3! The proposed interaction potential favors the ‘‘atom
site versus hexagon’’ mutual orientation of the two intera
ing molecules, contrary to the argument in Ref. 22. In
crystal, however, it is impossible to optimize the interactio
between all the nearest-neighbor pairs in this way. In
resulting frustration, the Pa3s̄pace structure was found to b
the best candidate for the low-temperature phase.

~4! The present model shows that stabilization of the P¯

phase at low temperatures is accompanied by a close c
petition with other phases. This prediction may be related
the recently observed noncubic peaks in the diffuse x-ray
neutron-scattering patterns taken at temperatures close t
orientational ordering transition.47–49

~5! We report the microscopic values of the molecu
multipole density functionsr l(r ) to make them available fo
the future research. The results obtained in this work can
used in the theoretical studies of orientational ordering
C60 monolayers

52 as well as orientational ordering in th
crystals comprised of C60 derivatives.

53,54
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APPENDIX A: THE MINIMUM ENERGY BARRIER
BETWEEN THE GLOBAL AND THE LOCAL MINIMA

IN LOW-TEMPERATURE PHASE

In order to find the lowest possible energy barrier that
molecule has to overcome to get to thePa3̄ global mini-
mum arrangement, where all molecules are kept at the
ting angle of'22°, from the local minimum, where th
setting angle of one molecule is changed to'82°, we have
computed the orientational potential energyV(a,b,g) of the
molecule, when its nearest neighbors are kept at the glo
minimum setting angles. To visualize our results, below
present the contour plots of the potential energy—the thr
dimensional space of the Euler angles was ‘‘sliced’’ alo
the planes of constantb, so that each plot represents th
dependence of the potential energy ona andg with b being
fixed. The way we plot our data is such that the points in
space of Euler angles, whose energies are higher than ce
value, are not shown. The regions in the space of Eu
angles enclosing the global and local minima plus all nei
boring points, whose energies are not higher than the lim
ing value mentioned above, form wormlike ‘‘islands.’’ A
the limiting value is pushed up, the islands grow, and wh
the critical limiting value is reached, there occurs a perco
tion between the local minimum island and the global mi
mum one. Thus, this critical limiting value is equal to th
energy of the molecule at the local minimum plus an orie
tational barrier between the local and the global minim
Eachb ‘‘slice’’ represents the cross sections of islands a
for a given limiting value one has to scan through all slic
cutting the local minimum island, in order to check that it
disconnected from any other island. When the limiting va
becomes equal to the orientational barrier, the percola
happens first on one of theb slices. In Fig. 10 we show the
contour plots of the potential energy for this value
b51.15 rad for two limiting values:~a! 21.689 eV1240
meV, ~b! 21.689 eV1250 meV. Our ‘‘best slice’’ contains
both the local and the global minima regions—marked on
plots as 1 and 2, respectively. As one can see, when
‘‘trial barrier’’ is set to 240 meV, the islands remain com
pletely isolated, whereas when we switch to 250 meV, th
occurs a percolation between neighboring islands.
APPENDIX B: TWO-CENTER EXPANSION AND
COMPUTATION OF THE INTERACTION MATRICES

Yasuda and Yamamoto55 have shown, that forur1u1ur2u,d the function containing the inverse powers ofur12r21du can
be represented by the expansion~for n.1)

1

ur12r21dun
5
1

dn(l3 (
l4

(
l

~21! l4S ~4p!3

~2l 311!~2l 411!~2l11! D
1/2

C„~ l 3,0!~ l 4,0!~ l !…al3l4l
n S r 1d ,

r 2
d D

3 (
m3m4

C„~ l 3 ,m3!~ l 4 ,m4!~ l !…Yl ,m31m4
~2d̂!Yl3m3

* ~ r̂1!Yl4m4
* ~ r̂2!, ~B1!

whereC„( l 3 ,m3)( l 4 ,m4)( l )… are Clebsch-Gordan coefficients and
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al3l4l
n ~x,y!5(

p
(
q

xpyq~2l 311!~2l 411!

~n22!! ~p2 l 3!!!

~n1p1q2 l23!!!

~p1 l 311!!! ~q2 l 4!!!

~n1p1q1 l22!!!

~q1 l 411!!!
~B2!

with the sum forp going overl 3 ,l 312,l 314 . . . , etc., and forq— over l 4 ,l 412,l 414, . . . , etc.
For n51 the above equation becomes

1

ur12r21du
5
1

d(l3 (
l4

~21! l4S ~4p!3

~2l 311!~2l 411!„2~ l 31 l 4!11…D
1/2S r 1d D l3S r 2d D l4C„~ l 3,0!~ l 4,0!~ l 31 l 4!…

3
~2l 311!~2l 411!„2~ l 31 l 4!21…!!

~2l 311!!! ~2l 411!!! (
m3m4

C„~ l 3 ,m3!~ l 4 ,m4!~ l 31 l 4!…Yl31 l4 ,m31m4
~2d̂!

3Yl3m3
* ~ r̂1!Yl4m4

* ~ r̂2!. ~B3!

Using this result we can compute the Coulomb interaction matrixRm1m2

l1l2 (d) for the core and the total charges on t

neighboring molecules:

Rm1m2

l1l2 ~d!5~21! l14
ueu
d SR0

d D l2k l2F E S r 1d D l1@r l1
core~r 1!1r l1

val~r 1!#r 1
2dr1G S ~4p!3

~2l 111!~2l 211!@2~ l 11 l 2!11# D
1/2

3C„~ l 1,0!~ l 2,0!~ l 11 l 2!…
~2l 111!~2l 211!@2~ l 11 l 2!21#!!

~2l 111!!! ~2l 211!!!
C„~ l 1 ,m1!~ l 2 ,m2!~ l 11 l 2!…Yl11 l2 ,m11m2

~ d̂!.

~B4!

The integral in the last expression is directly related to the ‘‘reduced’’ multipole momentsqlm ,
8 namely

E r 2drS rdD
l

@r l
core~r !1r l

val~r !#5SR0

d D l qlmueu
alm

. ~B5!

Further, since the ratioqlm /alm does not depend onm, we can choose, say,m50. Then we obtain Eq.~10!.
In the same way one can compute the values ofP̂n(d) for the expression of the Lennard-Jones interaction ma

Pm1m2

l1l2 (d) from Eq. ~25!.

APPENDIX C: COMPUTATIONS OF ORIENTATIONAL CORRELATIONS

The computation of the averages^Ul1m1

j Ul2m2

j & in the high-temperature phase can be simplified in the following way.

mean-field orientational distribution functionfMF(v) above the orientational ordering transition has full cubic symmetry:

fMF~v!5exp„2bVMF~v!…5expS 2b(
lr

v lr
MFUl ~r1!~v! D[(

lr
Zlr
MF~b!Ul ~r1!~v!. ~C1!

Since functionsUl (r1)(v) form an orthogonal set, the orientational partition function is given by

QMF~b!5E dvfMF~v!58p2Z0
MF~b! ~C2!

and the averageŝUl (r1)& are equal to

^Ul ~r1!&5
1

QMF
E dvUlr1~v! fMF~v!5

1

2l11

Zlr1
MF~b!

Z0
MF~b!

. ~C3!

Similarly,

^Ul1m1
Ul2m2

&5
1

QMF
E dvUl1m1

~v!Ul2m2
~v! fMF~v!5(

lr1

2l11

8p2 ^Ul ~r1!&E dvUl1m1
~v!Ul2m2

~v!Ul ~r1!~v!

5
d l1l2dm1m2

2l 111
1

1

8p2(
lr

8~2l11!^Ul ~r1!&Fl1m1 ,l2m2

lr , ~C4!

with
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Fl1m1 ,l2m2

lr 5E dvUl1m1
~v!Ul2m2

~v!Ul ~r1!~v!

5 (
n1m1

(
n2m2

(
nm

al1n1al2n2alncm1

l1
m1
* cm2

l2
m2
* c~r1!m

l E dvDm1n1

l1 ~v!Dm2n2

l2 ~v!Dmn
l* ~v!

5
8p2

2l11(
n1m1

(
n2m2

(
nm

al1n1al2n2alncm1

l1
m1
* cm2

l2
m2
* c~r1!m

l C„~ l 1 ,m1!~ l 2 ,m2!~ l !…C„~ l 1 ,n1!~ l 2 ,n2!~ l !…

5
8p2

2l11
Ml1l2l

Nl1l2l
m1m2~r1! , ~C5!

where

Ml1l2l
5 (

n1n2
al1n1al2n2al ,n11n2

C„~ l 1n1!~ l 2n2!~ l !…, ~C6!

and

Nl1l2l
m1m2~r1!

5 (
n1n2

cm1

l1
n1
* cm2

l2
n2
* c~r1!,n11n2

l C„~ l 1n1!~ l 2n2!~ l !…. ~C7!
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