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Although the calculation of the ground-state and thermodynamic properties of sgjitia®e been the
subject of intense research, our understanding is still basextldrocmodels that treat phenomenologically
both the Coulomb and short-range part of the interaction potential betwggandlecules. These potentials do
not predict well those properties not fitted to fix the free parameters of the model, and they also do not properly
represent the Coulomb interaction between molecules. To remedy this situation, here we introduce a semi-
empirical model in which the Coulomb interaction is treated microscopically using the local-density approxi-
mation Gsy molecular charge densities, and the short-range part of the potential is modeled phenomenologi-
cally via Lennard-Jone$lLJ) 12-6 interactions between the centers, delocalized over the surfacegyof C
molecules. The regular LJ parametersand ¢ as well as multipole moments of the interaction centers
distribution were taken to reproduce the details of the observed low-temperature structure. We found that the
Coulomb interaction is dominated by the charge overlap between the neighbggmgolecules, and is much
larger than the interaction calculated using the multipole expansion of the charge densities. Contrary to com-
mon belief, this Coulomb interaction by itself does not lead to the observed low-temperature structure. How-
ever, combined with the proposed short-range interaction, it stabitz8sspatial structure with the correct
setting angle. We make a comprehensive comparison between the wide range of experimental results and
predictions of our, as well as previously proposed models. Our results show that the proposed model has the
best overall agreement with the experimental observations in both the low- and high-temperature phases.
[S0163-182697)00422-Q

I. INTRODUCTION bonds in addition to carbons. In a series of papers Michel
and co-workers ! have introduced a multiparametric model
The construction of a reliable potential for the interactionwhich reproduces some of the experimental results obtained
of Cgg molecules is an important, long-standing problem.at room temperature. At the same time, no attempts were
Shortly after the discovery of the orientational ordering tran-made to account for the experimental observations in the
sition in solid Cgy,* Cheng and Kleifiproposed to describe low-temperature phase. As we will show, the orientational
the intermolecular potential as a sum of Lennard-Jones 12-part of Michel's potential does not reproduce very well the
interactions between carbon atoms on different moleculesxperimental observations in the simple cubic phase.
However, soon it was fourid that the lowest energy crystal In addition to thesead hoc models, there were several
configuration predicted by this model did not have the sym=studies of the intermolecular interactions basedabrinitio
metry observed in experiments. techniqueg?*® However, in these papers the computations
Lu etal® and Spriket al® have proposed two similar were performed for @, molecules, placed in the specific
ways to improve the performance of this model. They sug-orientations, so that no information on the orientational de-
gested to augment the Lennard-Jones potential with Coyendence of the intermolecular interaction potentials was ob-
lomb interactions of charges placed on “5-"single”)  tained. The complete LDA analysis of the intermolecular in-
and “6-6" (“double™) bonds or on carbon sites. This “sec- teractions is a very complicated task, requiring the self-
ond generation” of the intermolecular potentials, constructedconsistent treatment of a cluster ofg{Cmolecules. Some
to reproduce the experimentally observed low-temperatursimplifying approaches are necessary to effectively deal with
structure, was not successful in explaining most of the othethis problem. One of them, the Gordon-Kim statistical ap-
experimental result§In addition, these models are open to proach, uses the sum of the LDA charge densities of the
criticism on the theoretical grounds. In particular, Yildirim isolated molecules as an approximation for the charge den-
et al® have shown that thad hoccharge distributions, pro- sity in the solid. This approach, successfully utilized for car-
posed in these models, do not agree with local-density aphon in graphité? was applied to solid g by La Roccad®
proximation (LDA) Cg, molecular charge densities. Also, and Yildirim.X® While the values of the lattice constant, co-
Lamoen and Michélhave pointed out that since a significant hesive energy, and bulk modulus calculated within this
part of the molecular charge density is spread along intercaapproacf® were in reasonable agreement with the experi-
bon bonds, a realistic model for the intermolecular potentiaimental ones, the predicted details of the orientational order-
should include Lennard-Jones interaction centers placed dng in the low-temperature phase were ot This result
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can be attributed to the fact that the Gordon-Kim approach is 001
not successful in dealing with the short-range part of the
intermolecular interactiofSRI). However, as was shown in
Ref. 16, this approach is very useful in studying the Cou-
lomb part of the interaction, which was found to be domi-
nated by the charge overlap between neighboring molecules
and to be of crucial importance for the stabilization of the

Pa3 structure at low temperatures.

The demonstrated importance of the microscopic treat-
ment of the Coulomb interaction between moleculgsfs. Standard Orientation A Standard Orientation B
8,16 as well as the necessity to find a good compromise
between simple “Lennard-Jones Carbontcarb'bﬁ and FIG. 1. Gso molecule in standard orientatio’s and B with
complete LDA approaches to the SRI motivated us to de-

. . respect to the crystal axes.
velop a new model for the intermolecular potential. In the

present paper we use the previously determined molecular

LDA charge densities to compute the Coulomb part of theon. S_Olid Coo Was t.he object of exte_nsive study by various
intermolecular interaction. The SRI is represented by thé&XPerimental techniques. Much of this body of evidence can

Lennard-Jones 12-6 potential, acting between the centers diS€ related to the specific features of the intermolecular inter-

tributed over the surface of the carbon cage. The charactefCtion and thus serves to set requirements which ought to be

istics of the Lennard-Jones potential as well as the multipol§2tisfied by any prospective model. This section discusses

moments of the interacting centers distribution were used azome of th_e major experlmenta] findings and their connec-
n to the intermolecular potential.

adjustable parameters. This phenomenological approach
) P P g op One of the important studies of the local orientational

the SRI is a reasonable alternative to the complete cluster

LDA calculation mentioned above. As a result we obtain a°fder in the low-temperature phase of solig,Qvas per-

. _23 .
potential which, on the one hand, uses the molecular charg@'med by David and co-workefs~**By analyzing the tem-
density obtained from a quantum-chemical calculation, andp_eratur_e evolut_lon of_the high-resolution heutron powder-
on the other hand, has the best overall performance witffiffraction profile, this group has confirmed the low-
respect to the experimental observations. temperature value of simple cubic lattice constant

_ : 1 :
The present paper is organized as follows. In Sec. Il wé=14.04 A, measured by Heinegt al* David et al. also
discuss some of the experimental results obtained for soligud9ested that at very low temperatures the orientation of the

Ce and their interpretation in terms of the intermolecular Maority of Ceo molecules is described by the setting angle
potential. Section Ill deals with general theoretical frame-Of ~22°, while the minority finds itself in the orientation
work used to describe the intermolecular interactions. Ther@ith the setting angle of about 82°. The energy difference
we introduce our model and discuss the choice of the adjusRetween these two orientations was found to be 11 Fﬁesv
able parameters we have made. In Sec. IV we present thélue, confirmed later by Yet al™ Therefore, we require
mean-field stability analysis of our potential and compute théhat_for an intermolecular potential to be acceptable, the
values of the local orientational order parameters at roonf’@3 configuration with a setting angle of about 22° should
temperature. We also present the values of the libron frecorrespond to the global minimum in the potential energy of
quencies predicted by our model. These results are compardde crystal. At the same time, changing the setting angle of
with the experimental data as well as with the predictionsone molecule from its global minimum value to the value
from other potentials. Section V summarizes our conclu-around 82° should bring the crystal into a configuration cor-
sions. Finally, in the Appendixes we present some of théesponding to the local minimum of its potential energy—

technical details of our calculations. and the energy difference between these minima should be
equal to 11 meV. In addition, the equilibrium separation be-
Il. EXPERIMENTAL OBSERVATIONS IN C ¢, SOLIDS tween the molecules in thiea3 global minimum configura-
AND THE INTERMOLECULAR tion should correspond to the experimentally obtained value
INTERACTION POTENTIAL of the low-temperature lattice constant.

Another feature of the intermolecular potential is usually

At T~260 K solid Gy, undergoes a first-order phase tran- associated with the phenomenon of orientational freezing ob-
sition in which the icosahedrdpoint groupl, (Ref. 17]  served aff~90 K. The results obtained via various experi-
molecules develop long-range orientational ordém. both  mental techniquéé 28 consistently point to the existence of
the high-temperature orientationally disordered piapace an energetic barrier of 235-280 meV between the global
group Fm3m) and the orientationally ordered pha@pace minimum and the local minimum orientations of the mol-
group Pa3) the molecular centers of mass form an fcc lat-ecule inPa3 phase.
tice. The molecular orientations in tHea3 phase are ob- The experimental value of the low-temperature bulk
tained as follows. Consider a fiducial state in which all mol-modulus can be related to the second derivative of the po-
ecules are in standard orientatidras shown in Fig. 1. Then tential energy of the crystal in the global minimuRa3
each molecule is rotated through a setting anfjlabout the  configuration with respect to the lattice constant at the equi-
local threefold axis®*° This structure has been confirmed by librium separation. Ludwigt al?® have obtained the values
additional diffraction measuremerf$?! of 14.7 and 14.2 GPa for the bulk modulus in the simple

Subsequent to the initial observation of the phase transieubic phas® at 70 and 170 K, respectively. At the same
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TABLE I. The experimental results interpreted in terms of the properties of the intermolecular interaction
potential. The corresponding references are given in parentheses.

Experimental quantity

Measured value

Setting angles of the global
and local minima

configurations inPa3

22°, 82%Ref. 2]

The energy difference
between the minima

11 metRef. 2]

The energy barrier
between the minima

235-290 meRefs. 24-28

Lattice constant at~0

14.04 A(Ref. 2))

Bulk modulus at
low temperature

14.7 GPRef. 29
10.3 GR®Ref. 30

Cohesive energy

—1.6 eV (Ref. 32, —1.7 eV (Ref. 33,

—1.74 eV (Ref. 39

Orientational order

parameters:

Y6 —0.386—-0.395

Y10 0.217 0.359

Vi 0.159 0.228

v2, 0.440(Ref. 36, 0.0706(Ref. 11

Libron frequencies atj~0 2.2-6.2 meMRefs. 40,41

time, Lundin and Sundqvi&t have reported the much lower 1y, 40, and 1, coming from these two experiments, agree
value of 10.3 GPa from measurements at 152 K. In additionwith each other quite well and therefore are probably more
different groups report rather different results for the meareliable than the value foy?,.
surements of the bulk modulus at room temperature, e.g., The comparison between computed libron frequencies
13.4 GP&? 6.7 GPa’ 14.2 GP&' It is clear that some ad- and the experimentally measured ones can serve as yet an-
ditional experiments are necessary to establish the reason fgther test for the orientational part of the interaction poten-
the above-mentioned discrepancy. tial. The librational phonon modes in g single crystals
The experimental value of cohesive energy can be assquere studied most extensively by Pintschovius and
ciated with the value of the potential energy at equilibrium.co-workerd’=3° and Horoysk'®*! The former group has
The Mmeasurements of the cohesgge ‘energy by Kataurgerformed several studies of the phonon-dispersion curves in
etal,” Panet al,™ and Abrefahet al™ yielded the values ¢ single crystals using inelastic neutron scattering. The
of Eq to be—1.7, —1.74, - 1.65 eV/molecule, respectively. jnitial assignment of the observed motfewas corrected in
The important information on the shape of the orientathe |ater paper®3® Their measurements at~80 K show
tional potential in the high-temperature phase is provided byhe zone center librational modes at the approximate energies
the values of the local orientational order parametgfs 2.2 2.6, 3, and 4.3 meV. Horoyskt al. have used Fourier-
These order paramete@hich are dimensionlegare related  transform Raman spectroscopy to perform high-resolution
to the thermal averagedJ, ,) of the so-called molecular measurements af~0 libron frequencies. The experiments
rotator functionsU ,(a,B,7):* were performed at 77 K, and the Raman peaks were ob-
served at 2.23, 2.61, 3.06, 4.07, 5.16, and 6.20 meV. How-
yi=x (U ), (1)  ever, one has to exercise caution in assigning the highest
energy peaks reported there to single librons rather than to
where k; are the multipole moments of the carbon atoms“mutilibrons.” Another important feature to keep in mind is
distribution on the surface of the molecular cage. Above thehe “stiffening” libron spectrum undergoes when the tem-
orientational ordering transition temperature the only nonperature is lowered. Since the comparison between the com-
zero values ofy* are those belonging ta,, representations puted and measured librational frequencies is most direct for
of the Oy, group, ¥f*= {8, (,1). The values ofy were mea- experimental values taken &t=0, one has to allow for pos-
sured at room temperature using x-ray synchrotron and netsible corrections. In particular, the lowest energy g&ak
tron powder-diffraction techniqué$:®® The obtained order shifts only slightly to 2.3 meV when the temperature is low-
parameters fol=6,10,12 are presented in Table I: two val- ered from 77 to 10 K. At the same time, the second peak
ues forl =12 correspond to two different irreducible repre- shifts to~2.8 meV, and from extrapolation one can expect
sentations ofA;; symmetry. As one can see, the values forcomparable shifts for higher peaks as well.
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TABLE II. The values of the expansion coefficierds,, for the SARF of the icosahedral symmetry

(ago=1).

| n=0 n=x2 n=x4 n=*6 n=x*x8 n==*=10 n=x*x12
6 —0.207 0.475 0.388 —0.320

10 0.354 0.288 —0.357 0.056 —0.425 —0.207

12 —0.414 0.118 —0.183 —0.463 —0.074 0.292 —0.247

At the same time, the experimentally observed frequenwhered,;,=d;—d,, andp,(r) is the interaction center den-
cies of the translational phonon motdf&sere shown to have sity. In particular, in the case of the Lennard-Jones atom-
largely fcc-type dispersion, so that their values can be adatom interaction this function is usually expressed as a sum
equately explained using only the values of the lattice conef & functions centered at the atomic sites. However, in gen-
stant and bulk modulus. Accordingly, in this paper we onlyeral it can have different forms, with the icosahedral symme-
concentrate on the libron frequencies. The experimental findiry of the resulting expression being the only imposed re-
ings mentioned above are summarized in Table I. quirement. We would like to emphasize that in solids

because of the crystal-field effects the symmetry g§ @ol-
ecules is, strictly speaking, reduced fromto Sg. However,

. SEMI-EMPIRICAL APPROACH this distortion is small and will be neglected in further analy-
TO THE INTERMOLECULAR INTERACTION sis. The interaction center density function can also be ex-
IN'SOLID C g9 pressed ap,(r)=p(R *(w)r), wherep(r) is the interac-

tion center density of g molecule in standard orientation

The experimental results, described in the previous sectiorf} (€€ Fig. ], andR(w) is the rotation described by three
impose numerous restrictions on theoretical models for th&uler anglesv=(a,3,7). The functionp(r) transforms into
intermolecular interaction of fullerenes. Unfortunately, noneitself under any operation of the icosahedral grolyp
of the interaction potential models proposed so far performd herefore,
well against all these experimental benchmarks—the further
analysis is given in Sec. IV. To correct this situation, we
propose a model for the intermolecular interactions which . . ' R
combines the microscopic treatment of the Coulomb interan(r)zp(r,r)zz p|(r)TlAlg(r)= 2 2 ane(r)Y(r),
tion between molecules with the phenomenological approach ! bon=-l
to describing the short-range part of the potential. In this 3
section we present the general theoretical framework we use,
as well as details of our approach.
where TlAlg are the symmetry-adapted rotator functions
(SARP—the linear combinations of the spherical harmonics
A. The general expressions for the interaction of orderl belonging to theA,4 representation of the icosa-
of two Cg, molecules hedral group. SARF were introduced by James and Ke&nan
for the analysis of the orientational ordering in solid meth-

Let us consider two molecules of icosahedral symmetry, in@n€: Michelet "’?I-42 have applied them to the case of solid
teracting with each other in a crystal via a generalized inCeo- The sum in Eq(3) runs overl =0,6,10,12,168 . . .,
verse power potential with the exponente.g., for the Cou- thg valqes allowed by the molecular symmetry. .Il’.l standard
lomb interactionn=1 and for the Lennard-Jones 12-6 °rientation A the values of the nonzero coefficients for
potential there will be expressions with=6 andn=12). |=6,10,12 are listed in Table llapo=1). _
For simplicity we do not consider an exponential form of The multipole density functiong,(r) describe the details
interaction, though similar expressions can be obtained fopf the radial distribution of the interaction centers. Then, for
this case as well. Suppose that the positions of the moleculdpe rotated molecule we have

centers of mass are given by vectdssandd, with respect

to some fixed set of axes, for example, the one connected to

the crystal. Let us also assume that with respect to the same A g on

set of axes the orientations of the molecules are described by Pull)= % anpi(NYR (R (w)r)

Euler anglesw; = (a1,81,Y1) and w,, respectively{(0,0,0

being standard orientatioA]. Then the expression for the Al

energy of interaction will be a linear combination of the con- :l%n anp1(NYim(N Dy ), (4)
tributionsV,,, each of the form

Pay(11)Pay(T2) whereD}, () is a well known Wigner matrif® Substitut-

V”(dl’wl’dz’wZ):f f drdr, [ri—rp+dyy"’ ing the last expression into E(R), we get
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1T Y1 m (TP, (12) Y1 m,(T2)

Vo(dp o,y 00)= 2 X a0 DR (@)a),0,D2 (@) f f drydr,

[ymyn; 1,mon, |r1_r2+ d12|n
=2 3 S} (@S2 (@) Q)7 (d), 5
I1my Iom;
|
where molecule the Coulomb charge density naturally separates
into core (+4|e| per carbon sifeand valence parts. The core
| charge density is given by
Sn(@)= 2 apDpyy(®), (6)
n=-I 60
and p°°re(r)=4|e|k§=‘,l S(r—ry)
| P (r)PL () Yim (T) Y1 m,(T2) =4le |—0) > kT, (8)
Q12 (ol)—ffdr1 ry - ) Ry 1=058... !
Qn 1My [ri—r,+d|

(7)  whereR,=3.55 A is the molecular radius and the atomic

. . . . multipole momentsg, are found from
Thus, the complete information about the interaction of P !

two molecules is “stored” in the interaction matrix
141 . . .
Q. fnz(d). To make use of this general expression we will
1

separately consider Coulomb and Lennard-Johgs 12-6
interactions.

60 60

K= fdrT‘“%r)E 5<r—rk>—2 TSR,  (9)

so that ky=60,47=16.93, kg=2.56, kqi,=19.35,
k1,="7.89. Then, the core charge multipole density functions

B. The Coulomb interaction between Gy, molecules can be expressed @ﬁore(r) =4|e| K[ S(r — Ro)/Rcz)]-

As we shall see, “bond charge” modéfsdo not properly The values of the valence multipole density functions
describe the Coulomb interaction between fulleréiiésn  ,valry were computed for 41 different values of The re-
the present paper we have computed this interaction by usingits for | =0,6,10,12 are presented in Table Il and are
the Cgzo molecular charge densities obtained fr@im initio  ghown in Fig. 2. The values va'(r) for 1=16,18, at

electronic wave function$.We emphasize, that due to the
significant overlap between the charge densities on th
neighboring molecules in solids, the Coulomb interactio
does not reduce itself to multipole-multipole coupling. This
circumstance has important implications for the intermolecu- " |

lar potential'® In partirc):ular, becguse of the mentioned over- The interaction matrifwhich we denote aR! m ()] for

lap, there is a significant contribution to the crystal-field po-Coulomb interaction between core charges on one molecule
tential, coming from the Coulomb interaction. Such aand the totalcore and valengecharges on the neighboring
contribution involving a monopole is absent in the multipole molecule can be computed using two-center expan&er
expansion and has not been considered previously. For eaéppendix B:

anyr were found to be much smaller than thosepg}ﬁ'(r)
for1=0, 6, 10, and 12. So in what follows we limit ourselves

"to considering only contributions from/?(r) with | up to

Ch (R

1'2 (d) 4_( 1)l Il+|2QI0 ( (4m)° v

“o| @@L D2+ +1y)  CUr00200d:+12)

(2134 1) (2l ,+1)[2(1,+1,)— 171!
(21, + )N (21, + 1)!!

C(('1,m1)(|2ym2)(|1+|2))Y|1+|2,m1+m2(a)- (10

Here q,, are the values of the reduced multipole moments of the molecular charge distribution, tabulated in Ref. 8,
C((Iy,m)(l5,my)(l;+1,)) are the Clebsch-Gordan coefficiefits,and n!! is defined as 2?x(n/2)! or
ni/{200- 12 [(n—1)/2]!} for even and oda, respectively. For the Coulomb potential energy of two molecules, in addition

to erﬁllfnz(d) there will also be a terrR'rﬁ'z}nl(d), coming from the interaction between the core charges of the second molecule
and the “total” charge cloud of the first one. However, to avoid double counting of the Coulomb interaction between the core
charges one has to subtract this core-core term, whose interaction matrix is dﬁh'fﬂ'\g(dj), from the final result. This term

is given by
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TABLE Ill. The computed values of the valence multipole density functions according to (ibfhe
units of —|e|/a.u®) for 1=0,6,10,12. All numbers have uncertainty in their last digit.

r,a.u. po(r) pe(r) p1o(r) p1Ar)
1.786 0.0672 0.000629 0.00183 0.000164
2.321 0.364 0.0145 0.0616 0.0103
2.500 0.664 0.0345 0.151 0.0272
2.678 1.162 0.0734 0.321 0.0624
2.857 1.900 0.140 0.608 0.129
2.946 2.360 0.186 0.808 0.179
3.035 2.867 0.241 1.046 0.242
3.125 3.390 0.301 1.303 0.313
3.214 3.850 0.358 1.528 0.374
3.303 4.160 0.400 1.661 0.406
3.393 4.310 0.426 1.710 0.415
3.446 4.390 0.443 1.775 0.440
3.500 4.520 0.472 1.948 0.510
3.571 4.530 0.486 2.049 0.557
3.642 4.150 0.442 1.773 0.462
3.714 3.860 0.413 1.656 0.431
3.785 3.570 0.385 1.583 0.420
3.857 3.220 0.348 1.468 0.395
3.928 2.823 0.303 1.303 0.352
4.017 2.307 0.244 1.066 0.286
4.107 1.830 0.189 0.840 0.222
4.196 1.421 0.143 0.646 0.168
4.285 1.084 0.106 0.489 0.125
4.375 0.814 0.0763 0.363 0.0913
4.464 0.602 0.0540 0.265 0.0655
4.553 0.440 0.0374 0.189 0.0458
4.642 0.319 0.0255 0.133 0.0314
4,732 0.230 0.0171 0.0916 0.0210
4.821 0.166 0.0113 0.0627 0.0138
4.910 0.121 0.00751 0.0429 0.00897
5.000 0.0886 0.00499 0.0294 0.00578
5.124 0.0583 0.00286 0.0177 0.00312
5.249 0.0391 0.00169 0.0109 0.00169
5.357 0.0279 0.00111 0.00735 0.00101
5.464 0.0200 0.000749 0.00506 0.000614
5571 0.0144 0.000516 0.00353 0.000379
5.678 0.0102 0.000361 0.00248 0.000238
5.785 0.00720 0.000254 0.00174 0.000152
5.892 0.00501 0.000179 0.00122 0.0000983
5.982 0.00367 0.000133 0.000904 0.0000694
6.071 0.00266 0.0000983 0.000665 0.0000494
Ali'z (d)=1eﬁ(_1)u(5)llﬂz,< K ( (4m)° l/2<:((| 0)(15,0)(1,+1,))
mym, d d W2\ (21 + 1) (2, +1)[2(14+1,) +1] A

(20,4 1)(2l,+ D[ 2(1 1+ 1) —1]!! A
(2|1+1)”(2|2+1)” C((l1vml)(|21m2)(|1+|2))Y|1+I2,m1+m2(d) (11)

Now, let us consider the interaction between the valence electrons. At the experimentally observed separations between
fullerenes in the crystal there is a significant overlap between the valence charge densities on the neighboring molecules.
Therefore, the convenient two-center expansion is not applicable, and this part of the Coulomb int¢derimed as

Blr#ﬁnz(d)] needs special treatment. Starting with
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and using the Fourier transform

6.0
l_f dg _iqr47T 13
~ p® ) @mt e
et 4.0 0
3 one gets
T
= dg 47
™ 14 _ —iqd _
& 20 Bnﬁlfnz(d)—f(zT)s?e 0 m, (= D m,(Q), (19
where
00 | ’ . .
IIm(Q):J drpy(r)e' Y m(r). (15
_plgr)
Now
2.0 -
1.0 2.0 3.0 4.0 5.0 6.0 4 oo I
o ) T o “ ~
r (A) = 2, ANV @Yi©, (19

FIG. 2. The multipole charge density functiop§®(r), ex-  wherej,(x) = \ax/2J, 1%(X) is the spherical Bessel's func-
pressed in the units-|e[/A® for 1=0,6,10,12. The maximum tjon of orderl. So,
aroundr=23.55 A corresponds to the electrons localized near the

b . 4 a |
carbon cage I|m(q)=§(i)'Y|m(q)fo rdrp(r)ji(qr)
B2, (d) 47
E?m'wm(awq). (17)

' Substituting the last expression into Efj4) and perform-

Prfl(r1)PY;I(T2)Y|1m1(F1)Y|2m2(?2)
:f fdrldrz
(12 ing the integration ovedq, one gets the final expression

|ri—ro+di]

1/2

l+1, 21, +1)(21,+1
(21 +D(2l,+1) Cl(11,my)(15,my)(13)]

327
Il|2 _ _ |1 H |1+|2*|3
Bmlmz(d) d (=1) 13=11—1,] () ( A7(213+1)

~ [=d
X CL(11,0)(12,0)/(15)1Y, g+ my(3) fo EEK.gq)K.z(q)jls(qd). (18)

and for the Coulomb interaction from the model of éual®
calculating a number of one-dimensional integrals involving_(late_r referred to as the LLM modelThe r_esults are Sh_OW_”
in Fig. 3. As one can see, these potentials are qualitatively
o different: while the LLM model predicts, that the Coulomb
K|(Q)=J rdrpy®(r)j,(qr) (190  interaction has a local minimum at setting angle~e22°
0 and a local maximum at85°, our microscopic model states
that at both setting angles the total Coulomb interaction is
maximized® The unrealistic nature of the Coulomb part of
the LLM model is clearly seen in the following observation.

This way one reduces the computation B)'rﬁllfnz(d) to

for 1=0,6,10,12.
Thus, the total Coulomb interaction matrim'nﬁ'lfnz(d),

can be written as At both setting angles the molecular 6t&louble™) bonds
i, 11, 11, Il i, face the centers of the “pentagons(setting angle of
Dn,m (D =B o (D Ry o (DR (D —Ag S, (d). ~22°) or “hexagons”(setting angle of85°) of their near-

(20 est neighbors. Since the charge densities are very similar for

“hexagons” and “pentagons,” the interaction energy should

The resulting Coulomb interaction differs significantly be either maximized or minimized for both setting angles

from both the multipole-multipole interactirand the Cou-  and definitely not maximized for one and minimized for the
lomb interactions from “bond-charge” models. To illustrate other. Another interesting conclusion comes from the analy-

this point, we have computed the variation of the Coulombsis of the curve for the multipole-multipole interactidn,

potential energy with the setting angle in tRa3 phase for which was computed using the same LDA charge densities
our model as well as for the multipole-multipole interaction we used in the present work, however, neglecting the overlap
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02 part of the potential, the microscopic Coulomb interaction

) . . does lead to the stabilization of tH&a3 structure with the
Multipole—multipole Coulomb interaction correct setting angle.

0.0
m C. The short-range part of the intermolecular interaction

-0.2 In the early models of the intermolecular potential in
Bond charge model of Lu et al. Ceo Solid$>®the SRI was represented by carbon-carbon LJ
12-6 interactions. This was an over-simplification, since it

0.4

ignored the repulsion between charges on intercarbon bonds.

Michel et al. have proposed to introduce additional interac-
o6l tion centers on 5-6 and 6-6 bonds in order to reach an agree-
' ment with the experiment on the values of the crystal-field

Present microscopic model coefficients’~** However, as will be shown in Sec. IV, the
“0s ‘ performance of the orientational part of the potential with
oo 400 80.0 1200 regard to the details of the low-temperature structure was
Setting angle in Pa3 structure (degrees) still not satisfactory. At the same time, the Gordon-Kim ap-
proach attempted by La RocCaand Yildirim!® had not
FIG. 3. The Coulomb potential energy per molecule as a funcshown much of an improvement in this regard either. These
tion of the setting angle in tha3 phase for various model¢éa)  results have persuaded us to search for the reliable interme-
our model,(b) model of Luet al, (c) multipole interaction, com-  diate approach to modeling SRI so as to avoid having to
puted by Yildirimet al. implement a full-scale LDA or to use the overly simplistic
recipes of early models. In this paper we have developed a

Coulomb energy per molecule (eV)

between the charges on neighboring molecules. As we segodel where SRI comes from the LJ 12-6 interactions be-
this approach leads to a significant underestimation of th@veen the interaction centers densities, delocalized over the
magnitude of the Coulomb interaction. In addition, neglect-surface of the carbon cage, not necessarily exclusively over
ing the charge overlap leads to the different orientationalntercarbon bonds. Then, the interaction centers multipole

dependence of the Coulomb part of the potential energy. density functiong!(r) can be expressed as
These observations show that the widely accepted as-

sumption about the intermolecular electrostatic interactions i o(r—=Ry)

being minimized when the 6-6 bond on one molecule faces pi(r)= TKI’ (21)
either pentagons or hexagons on the neighboring

molecule€?**is not supported by the microscopic calcula- where «| is thelth multipole of the interaction centers dis-
tion. In fact, the Coulomb interactions are maximized fortribution over the surface of the molecule aRglis the mo-
these mutual orientations. However, as we will show in theecular radius. Then, as in Ep), SRI for the two molecules
next section, being combined with the proposed short-rangbecomes

at? a® o(ri—Rop) i I ~
— _ 1
Vii(dy, @,d5, 05) f fdrldr24€(|r1—r2+d12|12 |r1—r2+d12|6)< Rg lzl Ku% Sml(wl)Yllml(rl)
S(r R) .
( Z —R D K SZ (@2)Y1,m,(T2)
m2
=2 > Si(w)SE(@)PRE2 (dry), (22
|lml I2m2
where
P2, (d)=4ex| x| ['P1Ad) ~ a*Pg(d)], (23
and
A 6(r1_R0) 5([’2—R0) A A~ 1
szffdrdr Y r|yY ro)——. 24
n( ) 14yt 2 Ré Rg |1m1( 1) |2m2( 2)|r1_r2+d|n ( )

This expression foﬁ’n(d) can be computed using the two-center expansiomfed (see Appendix B for the details and
the definition of the functiora,“1,2|):
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TABLE 1V. The fitting values of the experimental quantiti€®p) and the obtained Lennard-Jones

parametergbottom).
Experimental The energy difference The energy barrier Lattice Bulk Cohesive
guantity between the global and  between the minima constant modulus energy
the local minima in Pa3 phase atT=0K atT=0
Fitting value 11 meV 250 meV 14.04 A 13 GPa —1.7 eV
LJ parameters o € Kg K10 K12
Fitted values 3.695 A 20.255 K 0.542 32.812 4.969
LLM model 3.407 A 34.365 K 2.561 19.353 7.887
Bd)= =S (~1)'2 (4m)° N (L0 0()E( | )Y dan, 2o Ro
n( )_@ | ( ) (2|1+1)(2|2+1)(2|+1) (( 1 )( 21 )( )) (( 1!ml)( 2’m2)( )) Im1+m2( )a|l|2| F’F "
(25
Then
. (477,)3 1/2
12 — i1y _ 1!
P (@) =dexiwi (- 12 > (~1) ((2|1+1)(2|2+1)(2|+1) CL(11,0/(1,0(NICL(11,my)(15,mp)(D)]
12 6
~ g 12 RO RO g 6 RO RO
XY\m, +m,(d) (a) au@(?-? g g gl (26)

In this formula the values ofo, € and K: for and the center of one of the 6-6 bonds, @, d, s, andh
1=6,10, ... serve as adjustable parametghe value of correspond to the centers of the pentagons, atomic sites, cen-
«l), reflecting the total “number” of the interaction centers, ters of the 6-6, 6-5, and hexagons, respectively is rela-
is taken to be 6G/47, as in all earlier modeJs Below, as t!vely high for both atomic sites and_ 6-6 bonds. At the same
before, we consider only the contributions from time, 5-6 bonds correspond to slightly smaller densities,
1=0,6,10,12. Thus, our model includes five parameteré’,\'h”e the centers of pentagonal and hexagonal faces are real

which we determined by fitting to the experimental values of voids,” with the centers of the hexagonal faces being
. y 9 P slightly “deeper.” All this gives us some early insights into
the lattice constant, bulk modulus, cohesive energy as well

th diff dth barrier bet the al ossible mutual orientations of two molecules that would
€ energy dirlerence and the energy barrier between e 9igqinimize their short-range interaction—it should be either

bal minimum and closest to it local minimum orientational 4tomic site or double bond on one molecule versus the center
configurations. Since the experimental reSL_JIts fpr the_va!gegf the hexagon on the other. As we will show in the next
of the bulk modulus and the energy barrier differ signifi- section, those mutual orientations indeed minimize the total
cantly for different experiments, we have taken as our fittinginteraction energy of two molecules in our model.
values the numbers that are somewhere in between the maxi- The intermolecular potential, constructed as described
mum and minimum reported values, e 13 GPa for the above, is analyzed in the next section. However, one com-
bulk modulus and,,~=250 meV for the energy barrier. The ment is due here: at this stage we have fitted to 250 meV the
fitting values as well as obtained parameters;, andx, are  value of the potential barrier that the molecule in a3
presented in Table IV. There we have also included for ghase has to overcome to change its orientation from 22° to
comparison the values of the corresponding parameters f@2° by rotating around its local threefold axis, while its near-
the LJ part of the LLM model. As one can see, the distribu-est neighbors are kept at 22° orientations. In Appendix A we
tion of the LJ interaction centers over the surface qf C show that this value indeed corresponds to the lowest pos-
molecule for our model is quite different from the carbon sible barrier between the two orientations.
atoms distribution.

The visualization of the resulting distribution of short- IV. PROPERTIES OF THE PROPOSED MODEL
range interaction centers is presented in Fig)-4-there the
distance from a given point on the depicted surface to the In this section we analyze the various predictions of the
spherical surface of certain radius is equal to the interactioproposed model. In particular, we present the predictions
centers density at this point, e.g., the “hills” and “spikes” about the most favorable mutual orientations of two interact-
correspond to the local maxima of the interaction centersng molecules together with the mean-field stability analysis
density, while “pits” represent its minima. Figurgl) rep-  of the high-temperature phase. In addition, as a test for our
resents(in arbitrary unit$ the density of the interaction cen- model we compute the dispersion curves for the libron exci-
ters along the cut through the centers of two pentagonal facdations in thePa3 phase as well as the local orientational
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order parameters, describing the behavior of molecules in the
high-temperature phase. These predictions are compared
with the experimental data as well as with similar computa-
tions for two of the most frequently used previous models of
the interaction potential.

In spite of the existence of quite a few models of the
intermolecular interaction, the question of the most favored
mutual orientation of two Gy molecules has not been inves-
tigated in detail. Davicet al?2 have suggested that the ob-
served symmetry of the low-temperature phase gf €ys-
tals is a reflection of the following property of the
intermolecular potential—for two g molecules the interac-
tion energy is at minimum when the 6-6 bond of one mol-
ecule faces the center of the pentagon on the other one. This
way, the arrangement of molecules in the low-temperature
phase is suggested to optimize all nearest-neighbor interac-
tions without frustration. To verify this assumption, we used
our potential to compute the interaction energies for the dif-
o ' ferent mutual orientations of two fullerene molecules. For
our analysis we have chosen the orientations, for which the
high-symmetry elements of both moleculegnter of 6-6 or
6-5 bond or center of hexagonal or pentagonal face or atomic
site) lie on the line connecting the molecular centers of grav-
ity. This arrangement, of course, still leaves the choice of the
relative angle of rotationys of the molecules around the line
connecting their centers. For each of the pairs of symmetry
elements we have chosen the angléo minimize the inter-
action energy. The resul{gn meV) are summarized in Table
V: to make it easier to compare different mutual orientations,
we have subtracted from each number there the orientation-
independent contribution.

The numbers in Table V lead to an interesting
conclusion—the interaction energy for the pair of molecules
is minimized when the atomic site of one molecule faces the
center of the hexagonal face of the neighboring molecule.
This result is not at all surprising—the atomic sites, as well

FIG. 4. The distribution of the short-range interaction centers onyg -6 and 6-5 bonds are the places with the maximum of
the surface of Gy molecule. The distance from a given point on the both the Coulomb charge and the LJ interaction centers con-

depicted surfacéa) to the surface of a sphere of certain radius is . .
) ) . e entration on the surface of the molecule, while the hexago-
equal to the interaction centers density at this point. The cut througﬁ

the centers of the pentagonal faces and the center of the 6-6 bOIIIHaI or pentagonal faces play the role of voids. At the same

—_
Q
-

(Arbitrary units)

Surface density of LJ interaction centers

p ada p s h a h s a

(b)  Points of high symmetry on the surface of Cy molecule

(b) allows one to see a clear difference between the interactiodMe; in the crystal the ordering motive is quite different: at

centers density near atomic sites, 6-6 and 6-5 bonds on the one hafROM temperature the molecules rotate so fast that the influ-
and near the centers of hexagons and pentagons, on the other. TBBCe of the orientation-dependent part of the intermolecular
symbolsp, a, d, s, andh represent the centers of the pentagons,potential on the translational ordering of molecules can be
atomic sites, centers of the 6-6, 6-5, and hexagons, respectively. safely ignored and therefore, the crystal follows the closed-

TABLE V. The computed pair interaction energyn meV) for various mutual orientations of two g

molecules.

Elements 6-6 6-5 Hexagon Pentagon Atom
6-6 38 12 -35 -22 31
6-5 12 -6 -28 -19 12
Hexagon -35 —28 -5 -10 —-36
Pentagon —22 —19 —10 —12 —23

Atom 31 12 —-36 —-23 10
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Setting angle in Pa3 structure (degrees) Angle of rotation 6(degrees)

FIG. 5. The Coulomb, short-range and the total potential energy FIG. 6. The potential energy of a molecule in tha3 phase as
per molecule as a function of the setting angle in Ba8 phase, the function of the rotation anglé around local threefold axis,
according to our model. The global minimum in energy correspondsiccording to our model. The nearest-neighbor molecules are kept in
to the setting angle of 23.5°. their “global minimum” orientations with the setting angles of

. . 23.5°. Here#=0 corresponds to the global minimum orientation of
packing scenario to adopt an fcc structure. As the temperape rotated molecule.

ture is lowered, the orientation-dependent part of the interac-
tion becomes more and more important. However, the molwhere « labels the basis functions for the irreducible repre-
ecules find themselves in an awkward situation, whersentations of th®,, group andw is a vector of three Euler

minimizing pair interaction energy with some of the neareslyngles. The coefficients),,, are tabulated by Bradley and
neighbors is penalized through pair interactions with the res&r Al

of the neighbors. In view of this frustration the crystal adopts
the Pa3 spatial structure. In Fig. 5 we have plotted the varia- 872

tion of the computed Coulomb, short-range, and total inter- f U (@)U, (0)do= 2|1—+15|1|25,L1,L2- (28)
molecular interaction energy in tHea3 phase as a function

of the setting angle. We find that the total intermolecular Then the interaction between moleculesind j can be
interaction potential, obtained by combining the microscopioyritten as

Coulomb and the proposed empirical short-range interac-

tions, has a global minimum at the setting angle of 23.5°, in | | 1

agreement with the experimental findings. Figure 6 shows’(di+@i.d; ""i):|2m lzm S, (@)S7 (@) Qp &, (dij)
what our model predicts for the potential energy of the mol- e

ecule in thePa3 structure as the function of the rotation
angle# around its local threefold axis, when the neighboring
molecules are kept in their “global minimum” orientations

acknell’® The functionsU, ,(w) form an orthogonal set:

=2 2 Uy (@)U, (e) W2 (dy),

l1pmy Tomp "

with the setting angles of 23.5°. The local minimum, closest (29)
in energy to the global one, correspondsgte 60°. with
As we will show, thePa3 spatial structure is indeed the
best compromise between the “preset” fcc translational or- W2 (d.)= (PR P l1l5
) . o i)= ct ¢ dii). 30
der and the orientational part of the pair intermolecular po- iy 1) m%nz pam;CrcgnyQmymy i) (39

tential. To investigate this point, we have performed the sta-

bility analysis of the high-temperature phase using the mean- Within the mean-field approach the orientational potential
field approach. The detailed description of the procedure ignergy of the molecule on siteis given by the expression:
outlined by Heid* therefore in this paper we will limit our-

selves to a brief restatement of the major theoretical steps,;i ' I '
) . . \Y, = W12 (di (Ul U
along with the results of the computations using our model. mr( ) “1,%,2,#2 M1M2( i) '2#2> 1y (@)
First of all, in order to simplify the group-theoretical

analysis of the instabilities in the potential, one re-expresses N’ " l115

) \ ) = U + w d;i;
the interaction between the molecules in terms of molecular |1E,A1 V13 Y1y, (@) j,.l,,%wz '”‘1'“2( i)
rotator functions® representing both the molecular symme- j
try and the symmetry of cubic lattice: X(UL Ui, (@), (3D

_ | wl | . where the averagegU! .) are taken with respect to
U'M(“’)_% Sml(“’)cﬂml_m%z A4m, D mym, (@) Cum, the MF orientational distribution ~function fj,e(e)
(27) =exp(— BVye(w)). The primes on the summations exclude
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TABLE VI. The calculated values of the orientational order parameters for our model compared to the
other interaction models.

Values ofy, Ve Y10 Y1 Y1

Experimental values —0.386 0.217 0.159 0.440
Values from our model -0.072 0.218 0.044 0.190
Values from LLM model 0.421 0.132 0.081 0.368
Lamoen and Miche(Ref. 9 —-0.130 0.636 0.049 0.242
Lamoen and Miche(Ref. 10 —0.430 0.840 0.038 0.599

[,=1,=0 in the first line and ;=0 in the second line, while molecule, interacting via Lennard-Jones 12-6 potential. In
the double primed summation is carried out over nonzerdhe later papef8! to improve the agreement with the ex-
values of both indice$; andl,. Here the contribution from periment, the 12 part was replaced by the Born-Mayer repul-
the crystal field is shown explicitly, and the indgx=(p1)  sive potential and the 6 part was limited to include the at-
stands for thepth A4 irreducible representation of th@,  traction only between the atomic site centers. In both papers
group (for | =6,10 there is onlyp=1, while for|=12 there  at least nine Born-Mayer and/or Lennard-Jones parameters
are two irreducible representations withy symmetry, la-  were chosen in such a way that the predicted values of the
beled asp=1 andp=2). crystal field coefficients would be as close to the experimen-
For a given temperature this set of equations has mantal ones as possible—compared to five adjustable parameters
solutions with different symmetry properties. The solutionof our model. We have again employed the high-temperature
that minimizes the free energy at high temperatures has fubxpansion to convert the crystal-field coefficients?
cubic symmetry, that i§U},) = (¥f/ 1) 8,,,(,1), Wherek; are  (analogous to oun,,) of Ref. 9 intof .
defined in Eq(9). The mean-field orientational potential for ~ Comparing with the experimental data from Table I, one
any molecule in the crystal becomes can see that our model gives the proper signs of all of the
measured orientational order parameters and that numerical
VMF(w):E vll\;IJFul(pl)(w)’ (32) valqes are in a reaso_nable agreement with the experi_ments.
Ip While the latest version of the model proposed by Michel
et all! has a better value ofs, their value fory,q is too
high. At the same time, the orientational order-parameter
v values from the model of Liet al. are in the qualitative
PN Iy disagreement with the experiment: the signygfis of crucial
U:\f’F:v'P+; Z W(pll>(p11)(dii)7|' (33 importance for the shape of the mean-field orientational
e potential*®tt
This equation together with The most likely low-temperature structures within the
mean-field approach can be identified by looking at the ei-
7{’11 fdwU|l(pll>(w)eXF[—ﬁ(ElpvaUupl)(w))] gen\{alue spectrum of the orientgtional susc_:eptibility matrix,
— = o obtained by keeping the quadratic terms with respect to the
Ki Jdwexd — B(Zi,vi, Uip)(@))] orientational order parameters in the Landau expansion of
(B4 the free energy. Here we adopt an equivalent appréach,

form the set of nonlinear equations fcyfll as a function of ~Pased on the analysis of the eigenvalue spectrum of

B=1/(kgT). For T=300 K one can simplify the problem by 1

expanding the exponent. For our potential this results in a /12 ()= = > wh's (g.)3'92 explig(d;—d,)),
rapidly converging series. That is, keeping terms, containing =~ #1#2 o R T R b

B? changes the solutions fqr‘l"l1 only by few percent com- (39

pared to the ones resulting from keeping terms linegB.in
For our calculations we have used the vaiire14.16 A, as
the fcc lattice constant for room temperatdfeOur results . , , _ _
are summarized in Table VI. In order to compare our predic- I, = (UL, UL, —(UlL (UL, (36)

tions with those from other models, we have also included in

this table the values of the orientational order parameters for . . .

the same temperature and lattice constant, predicted by the The averages in the Iast_ expression are taken with respect
LLM modeP and the models of Michel and co-workdrd! 0 the high-temperature distribution functidiye(w). The

For the former model we have computed the crystal-field@lues of(U],) in this phase do not depend on position of
valuesv,, and have used the high-temperature exparigimn the sitej and are equal to/f/x . At the same time, the
get the values of/f . The latter model included 210 centers averagegU] , U, ) can be expressed in terms(@},) in

on the atomic sites as well as 6-5 and 6-6 bonds of eacthe following way(see Appendix €

where

where
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FIG. 7. The lowest eigenvalues of the interaction matrix for
wave vectors along the lines of high symmetry in the first Brillouin
zone of the fcc lattice.

50| LLM Model

45t

5'1'25/‘1:“2

j j — j mimo(pl)
<U{1M1Uf2ﬂ2>— 2|1+1 +% <U|(pl)>M|1|2IN|1|12|2 )
(37)

Libron energies (meV)
o=

where

RSN

M= 20 @080, +n,C(1ND (20 ()),  (38)
ning

and (b) wave vector

55

wmamo(pl) _ 1% lox i
Nll}zlz = annz Cullnlc;fznzcwl),nﬁnzc((l 1) (1) (). 5o Model of Michel and Lamoen
(39

45

The lowest-energy part of the resulting eigenvalue spec-
trum of W'Ml'liz(q) is shown in Fig. 7. As we see, our model

predicts that the strongest instability in the intermolecular
potential occurs at th& point of the reciprocal lattice and
corresponds to th&a3 space group. This result remained
unchanged when we varied the value of the lattice constant ‘
used in the calculation—however, the actual energy eigen- 20
values strongly depend on this parameter—for example, for ¢
slightly different lattice constana=14.18 A, we obtained 158 S M R G
E(X2)=21.6 meV. The closest competing instabiliiso (© wave vector
occurring at theX point) corresponds to the tetragonal
P4,/mnmspace group. This mst_ablllty may be rgsponsmle FIG. 8. The libron dispersion relations for wave vectors along
for the recently observed noncubic peaks in the diffuse X-ray,g ines of high symmetry in the first Brillouin zone of the simple
and quasielastic neutron-scattering patterns @p €Ingle  cypic lattice for the present modéd), LLM (b) and the model of
crystals in the high-temperature ph&&e™® Lamoen and Miche(c). The details of the mode symmetry assign-
A corresponding analysis for the potentials similar to theément are given in the paper by Yildirim and HarfRef. 50. The
LLM model was performed by Heitf He showed that the curves for the LLM potential have been corrected by a factor of
sequence of phase transitions associated with these potentialg (Ref. 39 compared to the ones presented in Refs. 50 and 51.
does not correspond to the one observed in experiments. In
particular, unobserved intermediate phases are predicted. At Another important test for the interaction potential is to
the same time, to the best of our knowledge, there were noompare the computed frequencies of the libron excitations
reports on the stability analysis of the models proposed bwith the experimental ones. Figure 8 presents the libron dis-
Michel and Lamoen, and this prevents us from making goersion curves for our model as well as the models of LLM
direct comparison with their model. and Michel and Lamoen along the high-symmetry lines in

-3

4.0

35

3.0

Libron energies (meV)

25

-3 FHE
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FIG. 9. The potential energy of the molecule in tha3 phase
as the function of the rotation angtearound local threefold axis, (@) o
according to the model of Lamoen and Michel. Compare with Fig.
6.

N

the first Brillouin zone. The extensive symmetry analysis of

the libron modes in g, crystals was performed by Yildirim

and Harris®® In the present paper we are following the same
notation for the symmetry points in the reciprocal lattice and

for the symmetry labels of the mode&{, T,,Ay). Also, we

have added the factof2 that was missinj in the libron Y
energies, reported in Refs. 50 and 51. Comparing the com-
puted dispersion curves with the experimental restits,

one can see that our model reproduces some, but not all, of
the observed features of the spectrum. In particular, the com-
puted frequency of théy mode at theG point is in very Q
good agreement with the experimental valug,,,=3.04
meV (Ref. 39]. Note that theA; mode corresponds to vary- ) @m
ing the setting angle in th®a3 phase. The fact that our 3 4
theory correctly reproduces the frequency of this mode sug-

gests that the barrier of rotation around {ligl,1] axis is (b) ol
correctly represented by our potential. However, our calcu-

lation predicts that the lowest-frequency librons at the
point haveT; symmetry, whereas the experimental interpre-

w
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FIG. 10. The contour plots of the potential energy of, @ol-

: - .~ ecule in thePa3 phase(all neighbors are kept in their “global
tation attributest symmetry to these modes. We have in- yinimum® orientations for a fixed Euler angled=1.15 rad as a

vestigated a range of parameters for our model but are unabignction of « and y. The regions, shown on the graphs correspond
to remove this disagreement. Furthermore, the model of the values of the potential energy from1.7 eV (global mini-
Lamoen and Michet>**which captures some features of the mum) to — 1.689 eV(local minimum) plus the “barrier” of (a) 240
potential correctly, gives the same prediction as ours for thenev and(b) 250 meV.
symmetry of the lowest-energy modes. Of course, one has to
keep in mind that our calculation of the libron modes does . — )
not allowfor any orientational disorder, which is observed in€nergy of a molecule in th®a3 phase computed for this
Ceo Crystals even at very low temperatures. An additionamodel when the molecule is rota_1ted aroun_d its local threefold
investigation is necessary in order to determine whether th@xes. The lattice constant for this calculation was taken to be
presence of orientational disorder can account for the disequal to the experimental value of 14.04 A rather than the
crepancy between theory and experiment mentioned abovednrealistic value of 14.68 A predicted by this model. We
Before concluding, we would like to point out that the would like to point out that, while this value could be cor-
phenomenological model of Lamoen and Michel, con-rected by adding the appropriate orientationally independent
structed to obtain reasonable values of the orientational ordeontribution to the potential, such a modification will not
parameters in the high-temperature phase, does not give carhange the deficiencies in the orientational behavior of this
rect predictions as far as the low-temperature phase is comodel, namely that both the relative energies of two minima
cerned. As an illustration, in Fig. 9 we show the potentialas well as the value of the barrier between them is in signifi-
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cant disagreement with the experimental values shown in ACKNOWLEDGMENTS

Table I. We acknowledge useful conversations with J. E. Fischer,

P. A. Heiney, E. J. Mele, P. Launois, and S. Ravy. Partial
support for this work was provided by the National Science
V. CONCLUSION Foundation under Grant No. NSF-95-20175.

We have constructed a model of the interaction potential AppENDIX A: THE MINIMUM ENERGY BARRIER
for Cgo molecules which agrees with the quantum-chemical BETWEEN THE GLOBAL AND THE LOCAL MINIMA
calculations of the g molecular charge densities and the IN LOW-TEMPERATURE PHASE
details of the crystal structure at low temperatures. We may
summarize our work as follows.

(1) The earlier models of the interaction potential do not

In order to find the lowest possible energy barrier that the

molecule has to overcome to get to tﬁa3_global mini-

properly describe the Coulomb interaction between thg C mum arrangemento, where all moIecngs' are kept at the set-
ting angle of ~22°, from the local minimum, where the

molecules. The major reason for this lies in #iehocchar- . . .
« "o . . . setting angle of one molecule is changed~t82°, we have
acter of the “bond charges,” inconsistent with the micro- . : .
computed the orientational potential enekfie, 8, y) of the

scopic molecular charge distribution. In addition, we havemolecule, when its nearest neighbors are kept at the global

determined that the Coulomb interaction between the neighty; i ' setting angles. To visualize our results, below we
boring Cgo molecules at the separations typical for solidsyesent the contour plots of the potential energy—the three-
does not reduce to the multipole-multipole coupling and thayimensional space of the Euler angles was “sliced” along
the proper treatment of the charge overlaps between the mglse planes of constang, so that each plot represents the
ecules is necessary. dependence of the potential energy®mandy with 8 being

(2) The short-range part of the interaction is best modelegdixed. The way we plot our data is such that the points in the
by the 12-6 Lennard-Jones interactions between the interagpace of Euler angles, whose energies are higher than certain
tion centers distributed over the surfaces of the moleculessalue, are not shown. The regions in the space of Euler
The proper choice of the fitting parameters have yielded thengles enclosing the global and local minima plus all neigh-
potential with the best overall behavior with respect to thehoring points, whose energies are not higher than the limit-
experimental results for both high- and low-temperatureing value mentioned above, form wormlike “islands.” As
phases. the limiting value is pushed up, the islands grow, and when

(3) The proposed interaction potential favors the “atomicthe critical limiting value is reached, there occurs a percola-
site versus hexagon” mutual orientation of the two interact-tion between the local minimum island and the global mini-
ing molecules, contrary to the argument in Ref. 22. In themum one. Thus, this critical limiting value is equal to the
crystal, however, it is impossible to optimize the interaCtiOﬂSenergy of the molecule at the local minimum p|us an orien-
between all the nearest-neighbor pairs in this way. In theational barrier between the local and the global minima.
resulting frustration, the Paspace structure was found to be Each g “slice” represents the cross sections of islands and
the best candidate for the low-temperature phase. __ for a given limiting value one has to scan through all slices,

(4) The present model shows that stabilization of the PaZutting the local minimum island, in order to check that it is
phase at low temperatures is accompanied by a close comdisconnected from any other island. When the limiting value
petition with other phases. This prediction may be related tdbecomes equal to the orientational barrier, the percolation
the recently observed noncubic peaks in the diffuse x-ray antlappens first on one of the slices. In Fig. 10 we show the
neutron-scattering patterns taken at temperatures close to thentour plots of the potential energy for this value of
orientational ordering transitioH4° B=1.15 rad for two limiting values(a) —1.689 e\*240

(5) We report the microscopic values of the molecularmeV, (b) —1.689 e\W-250 meV. Our “best slice” contains
multipole density functiong,(r) to make them available for both the local and the global minima regions—marked on the
the future research. The results obtained in this work can bplots as 1 and 2, respectively. As one can see, when the
used in the theoretical studies of orientational ordering of‘trial barrier” is set to 240 meV, the islands remain com-
Cgo monolayer¥ as well as orientational ordering in the pletely isolated, whereas when we switch to 250 meV, there
crystals comprised of g, derivatives>>>* occurs a percolation between neighboring islands.

APPENDIX B: TWO-CENTER EXPANSION AND
COMPUTATION OF THE INTERACTION MATRICES

Yasuda and Yamamatdhave shown, that fojr;| + |r,| <d the function containing the inverse powers|of—r,+d| can
be represented by the expansidor n>1)

1 1 (4m)3 12 Lo(rir
T 3 3 OV gD Cs0t0m, |35
X 2 Cl(13,ma) (L ,Ma) (DY (= DY (F1) Vi, (T2), (BD)

whereC((l3,mz)(l4,m,) (1)) are Clebsch-Gordan coefficients and
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xPyd(2l3+1)(21,+1) (n+p+g—1-=-3)!1 (n+p+qgq+l—-2)!

a1 (%Y= 2 E =2 1Pl (PHIat DI(q—TT  (qil,+ DI B2
with the sum forp going overl;,l3+213+4 ... etc., and forg— overl,,l,+2],+4, ... etc.
Forn=1 the above equation becomes
1 1 (4m)° Y21\ '3(r,)\'e
- —1)la S I
|r1—r2+d|_d|23 .24( Y (2153+1)(21,4+1)(2(13+14)+1) (d) (d) C(3.00405+1a)
(213+1)(2l4,+1)(2(13+1 ) — N .
DA DI DT, C(3m) (M (st L)Y myem,(~ )
Y, (F) Y, (F2). (B3)

Using this result we can compute the Coulomb interaction m&t';j&z(d) for the core and the total charges on the
neighboring molecules:

( rl) cor val 2 ( (477)3 vz

f Lo )+ ol (r ) Irdn | o S P D20, 41, 7 1]

(20,4 1)(20 p+ 1)[2(1 1+ 1) — 1]11
@I+ D2+ Dl

d

2
R2 (d)=(~ 1sa '(RO) i,

XC((1,0(12,00(11+12)) C((11,m)(I2,ma) (11 +12)Y) 1, my s m, (D).

(B4)
The integral in the last expression is directly related to the “reduced” multipole monagpt& namely
r! R e
f 2dr( [P+ p¥a(r)]= ( 0 q'g" 5 (B5)
Im

Further, since the ratiq,,,/a,, does not depend om, we can choose, say=0. Then we obtain Eq.10).
In the same way one can compute the valuesPgfd) for the expression of the Lennard-Jones interaction matrix
P'rrllllfnz(d) from Eq. (25).

APPENDIX C: COMPUTATIONS OF ORIENTATIONAL CORRELATIONS

The computation of the averagéLcjlilMU{'zﬂz) in the high-temperature phase can be simplified in the following way. The
mean-field orientational distribution functidiy,-(w) above the orientational ordering transition has full cubic symmetry:

(@) = exp(— BV (@) = exp( ﬂE VI Ujp1)(@) E ZMF(B)Uj(pn) (). (CY

Since functiondJ,)(w) form an orthogonal set, the orientational partition function is given by
Qur(B) = f defye(w)=87°Zg" (B) (C2)

and the averagedJ)(,1)) are equal to
1 Zpi(B)
<U|(pl)> Q f dwUlpl(w)fMF(w)_2|+l Zl(\);I)F(ﬁ) (CS)
Similarly,
(Ui, Y, = fdwU|l,L1(w)U|2M () fyr(w)= 2 82 <U|(p1)>fdwU|lp,1(w)U|2/,L2(w)U| p1)(®)
5'1'25:“1#2 Ip

- 21;+1 _22 (24 1)U Rl lipglamg (C4)

with
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Fie sy ™ J doU, , (@)U, (0)U),)()
=Em Em > a1,0,80,0,20C, 1, €2 Clo f dwD;} | (@)D | (@)Dpry(w)
2| +1n1m1 2 2 80,800,800, 5, CpymC (1M (12.me) (D)C(1n0)(12,02)(1)
:j—iMlllzl ﬁf;z(pl): (CH
where
sz':n%z 8 n,81,n,31 n, +n,C((11N1) (1202)(1), (C8)
and
N‘i}sz(pb nlEnz Clﬂll:l ifz’r:zcl(pl),nl-%—nzc((llnl)(|2n2)(|))- (C?
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