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Numerical study of vortices in a two-dimensionalXY model with in-plane magnetic field
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Many physical systems of interest can be mapped into the planar rotatof ¥amdagnetic models with a
magnetic field applied within the easy plane. In this work we study how the shape and energy of a vortex-
antivortex pair depends on the applied field and on the pair separation. Our results show a new feature: the
energy related to the vortex-antivortex pair has a coefficient which depends strongly on the applied field. For
large separation of the pair, the energy increases roughly with the square root of the field and linearly with the
pair separationS0163-18207)03522-4

The two-dimensionaKY model has been the subject of  Parametrizing the spin at siten(n) in terms of spherical
very intense experimental and theoretical research in the lasbordinates,
two decades$.This model is known to support topological
excitations and, although no long range order is established ~ Sin,n= S{C0Sp 1y nCODrm n ;SING M 1 COD iy 0 SINO M}, (2)
at any finite temperature, it shows a phase transition relate\gle obtain, in the continuum limit, equations of motion cor-
to the unbinding of vortex-antivortex pairs. In particular, therespondin’g to the Hamiltoniafi): ’
XY model has been extensively used in the study of high '
temperature superconductordsince it is believed that the
most important fluctuations in the order parameter describing
the superconducting condensate are phase fluctuations. . _ o 1 5 )
When a magnetic field is applied along the easy plane theCO¥ #/IS=2385in26—V=6—3sin26(V $)“+ bsinfcosp.
properties and behavior of the system change considerably: )

no phase transition is expected then. The field modifies thebove we defined the reduced fighd=gugH/JS.
vortex-vortex interaction; instead of an interaction which When § is greater than a critical vallfé(approximately
grows logarithmically with distance, the vortex interaction 0.3 for the square lattidehe spins of the static vortex solu-
becomes linear for large distané@siue to the applied field. tions are restricted to thXY plane, that is,#=0. In this
Although this system has been treated in several previougase, or, for the planatwo-component spinsmodel, Egs.

works®=%a complete understanding of the¥ model with an (3) reduce to=0 and to the 2D sine-Gordon equation:
in-plane field (2DXY+H, from now on is still missing and

guestions about how vortex pairs and domain walls contrib- V2¢=bsing. (4
ute to the properties of the system have not yet been satis- ) ]
factorily answered. Nevertheless, the investigation of thelhe expression for the energy relative to the ground state
properties of the 2RY+H model is very appealing not only becomes
for the model itself but also because this model is related to
more r_ealistic.systerlns in which at least a small three dimen- Estzf dzr(l(v¢)2+b(l—cos¢) _ (5)
sional interaction exists and may influence the overall behav- 2
ior. It has been shovinthat the anisotropic 3RY model
with weakcoupling between the planes can be mapped int
the 2DXY+H model with the in-plane field accounting for,
ina mean fi_eld f_;lpproac_h, the interplanar inter_a_ctio_n. ®(x,y)=tan [2ay/(x2+y2—a?)] (6)
Our aim in this work is to analyze the modifications due
to the applied magnetic field on the vortex pair shape andor a pair formed by a vortex ata(0) and an antivortex at
energy. We start by writing the Hamiltonian for the 29  (—a,0), with separation & Forb+0, Eq.(6) does not cor-
model with in-plane magnetic field=gugH applied along respond to arexactsolution to the problem. However, we
the x-axis and easy-plane anisotropy parametei0: will consider here that, for small applied fields, the vortex-
antivortex pair solution given by E¢6) is still meaningful in
3 the sense that the effect of the field will bedeformit. In
H=— 5% [Smn” Omn— 55;,n93n,n]_hm2n Sia (@) ;r;:/serr]egjonmg, we will write the solution to E@l) as being

— 013S=—cosHV2+2 sindV - V ¢+ bsing,

For zero magnetic fieldb=0, Eq. (4) leads to the well-
%nown vortex pair solution given by

where the sums are performed over all the f) sites of a Py =D (xy)+ExY), @
two-dimensional square latticd, is the ferromagnetic ex- whereé(x,y) describes the deformation due to the field. The
change interactiorgy, , corresponds to the sum over the four function®(x,y) enforces the desired positions of the vortex
nearest neighbors of each spin. and antivortex.
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FIG. 1. Total vortex-antivortex pair enerd¥q. (9)] vs half- FIG. 3. Particular contributions to the vortex-antivortex pair en-
separatiora, for the indicated applied field valuds ergy vs half-separation, for b=0.05. Solid lines refer to the full

nonlinear calculation'this work), dashed lines are the linearized
Inserting ansatZ7) into Eq. (4), we obtain a nonlinear calculation as in Ref. 2. The various curves correspond)t&j ,
Schralinger-like equation for the deformatiah () Eq, (1) bg?/2, (IV) beosb(1—cos), (V) (V¢)? and (V§)?,
(V1) bsind®sing, (VIl) bd¢.
V2£=bsin(® + ¢£)=bsindcost + bcosbsing.  (8)

In the linearized limit €< 1), bcosb is an effective potential V2= —4énnt _ Emting ] (11
term and—bsin® is an effective driving field in Eq(8), i=xlj==1
when viewed as a Schiinger equation. For the energy, we gnd then “solve” Eq.(8) for the new value of, ,, at the
have next iteration:
_ 2| 42.r1 2 Cx , 1 .
E=Eo+JS f d2r[ L (VE2+ VD -V E+ bsindsing fm,nﬁLZHZI Emein+j— DSIN®y nCOLm
+bcosb(1—co)], 9

—bcosb, nSiNém |- 12

where

1 Iterating this procedure leads to a minimum energy state. We
Eonszf dzr(z(VCD)2+ b(1—cosb). (10 would like to stress that no linearization of the problem has
been used, and a numerically exact solution of the original

The termE, is due to the presence of a nondeformed vortexH1amiltonian (1) was obtained. A free boundary condition
antivortex pair in the field, and the remaining terms represen/@s applied by cutting off the system at a chosen radius
the energy associated with the field-induced deformation of R=200), and then any sites on the boundary of the system
the pair. have less than four nearest neighbors. For those boundary
We solved Eq(8) numerically for& with b ranging from  Sites, the factor of in Eq. (12) is replaced by ¥, ,, where

0.01 to 0.5 and 1:8a<25.0 by using an iterative nonlinear Zm.n iS the number of neighbors of that site. Our results are
Gauss-Seidel method applied to a circular square lattice sy§hown in Figs. 1-5: we will discuss these results after de-
tem of radiusR=200. The idea is to rewrite the Laplacian scribing, briefly, some previous results available in the litera-

term in Eq.(8) in its simplest finite difference form for the ture. . _ .
square lattice, A problem similar to this one was considered by Cat-

audella and Minnhagénsome years ago and, since then,
their results — which are summarized below — have been
used to account for the energy of a vortex pair in the pres-
ence of a field* It is important to notice that, in fact, their
work was directed to th&XY layeredsuperconductor model
and not to the 2BY+H model. However, for small inter-
planar coupling, the layeredY model can be represented by
the 2DXY+H model. This fact has been stated very clearly
by Ito® who used the following Hamiltonian to describe the
XY-layered model:
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FIG. 2. Comparison of the full nonlinedsolid lineg and lin- ~ Where the summation in runs over the layers)’ is the
earized(dashed linescalculations of the vortex-antivortex pair total interlayer coupling, and the splBihas only two components
energy vs half-separatiom, for indicated applied fields. (S*=0 or #=0). Obviously, the system described by Eg.

0.0 H:_Z % [‘]Sm,n,i'gm,n,i+\],sm,n,i'Sm,n,i+1]: (13)
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FIG. 4. The total spin fieldp=d+¢ for system radius
R=20, half-separatiom=38, field b=0.25.

(13) shows conventional long-range ordég)+0, and ex-
hibits a second-order phase transition. AssumilhgJ, we
can say that the system will haveqaasitwo-dimensional

As we said before, in layered superconductors, it is ac-
cepted that the important fluctuations are described by the
fluctuations of the phasg; in theith plane. The Hamiltonian
used by Cataudella and Minnhagen to describe the layered
superconductor is

1
H*:EJEi Jd2r[(v¢i)2+b(¢i_¢i+l)z]! (19

where b is the parameter controling the coupling between
planes. Note clearly that the interplane interaction is taken as
purely quadratic in the phase difference, in strong contrast to
the more physical trigonometric form as seen in the
2DXY+H model, Eq.(5). A quadratic coupling is reason-
able for small interplane phase differences, however, we see
below that relatively large phase differences between planes
are possible. In the case of large phase differences, we would
expect that a coupling term of the form
b[1— cos( — ¢;,1)] is necessary?

In order to estimate the effect of adjacent planes on a
vortex pair, Cataudella and Minnhagen looked for a mini-
mum energy configuration for a pair on a particular plane
by solving the Euler equation with the constraifhit ®;+ ¢
for that plane. This treatment corresponds to assuming that

behavior forT>J’ and, then, take account of the interlayer VOrtex pairs can be %eﬂted in one layer independently of
interaction by an effective field. This corresponds to rewrit-Pars in adjacent layers:™In the approach used in Ref. 2,

ing Eq.(13) as

77:2 H_ii H_i:_% [‘]Sm,n,i'gm,n,i+2‘]’m3(n,n,i]!

(14
wherem=(S) is the magnetization. The Hamiltonidb4) is
identical to our Hamiltoniaril) (for S*=0) if we define the

effective field ash.4=2J"m. The continuum version for Eq.
(14) will be identical to Eq.(4). In the following, we will

® is the vortex pair expressidi) and ¢ is the deformation
(fluctuation of that configuration — as i§ in our ansatZ7).

We use( here to distinguish this solution from the solution

of the 2DXY+H problem, Eq.(8). In order to simplify the
calculation, those authors assumed that the phases in the
planes adjacent to the one supporting the vortex pair are
zero, that is,¢; 1= ¢;_1=0. With these approximations,
the equation to be solved fdiis linear [in contrast to Eq(8)

for £]:

compare the equations and approximations done by Cat- VZ(=b(®+), (16)

audella and Minnhagén— keeping in mind that they were

while the energy in terms of becomes

treating a layered model — to the equations we used and

solved in this work.
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FIG. 5. The total spin fieldp=® + ¢, for radiusR=20,a=8,
b=0.25, from the linearized calculation.

E* =%Jf d’r[(VD)%+bd (D +2¢)

+2V®-Vi+(V)?+bi?]. (17)

They solved Eq(16) numerically for zero temperature, find-
ing that the energy of a vortex-antivortex pair of size @n
be parametrized &s

2a )

—-1

2N

where the first term corresponds to the vortex pair creation
energy, the second one gives the logarithmic dependence ex-
pected for a pair even in the absence of a field, and the term
depending linearly on the pair size corresponds to the energy
of a domain wallt! In this equationa, is the diameter of the
vortex core.

Comparing Eqs(8) to Eq.(16) and Eq.(9) to Eq.(17) we
conclude that our equations reduce to the ones obtained by
Cataudella and Minnhagen if one considers bbthnd ¢ to
be small and expand the sine and cosine functions of them.
However, it must be pointed out that this assumption is not

2a
w2+ 277|n<a—) + 2172\/6
0

, (18

E*(a)=1J
2
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obvious and that, at least in the region surrounding the vortex We fitted our results for the energy for 08b=<0.5 and
and antivortex centers, thé field, the & field, and their a.;,=1.0sa<a.,,=10.0 to the following expression:
variations are not small.

In Fig. 1 we show the result we obtained for the total
energy of the pair Eq(9) for some values of the applied E=c,+c,In(2a)+csa. (19
field,b=0.01, 0.05, 0.1, and 0.5, by solving £§). We also
solved Eq.(16), which corresponds to the linearized version
of Eq. (8), by using the linear version of the Gauss-SeidelNotice that we chos@,,,<200 in order to guarantee that
iteration described in this paper, and evaluated the corresur results would not be strongly influenced by the finite
sponding energfE* of Eq.(17). Figure 2 shows the energies size of our lattice. This equation is formally equivalent to
E [solid lines, from Eqs(8) and(9)] andE* [dashed lines, Eq. (18) because both assume that the energy must some-
from Egs.(16) and (17)] for b=0.05,0.10. For small pair how depend logarithmically on the pair distance since the
separation §<5), the agreement between the two results isyortex and antivortex particles are kept there and depend
surprisingly good, considering the approximations leading tainearly on the pair distance because, as can be seen in Fig. 4,
Egs. (16) and (17). For larger pair separations, we obtain the region connecting the vortex to the antivortex resembles
E*>E, as could be expected. In Fig. 3 we show the separatg 27 domain wall of length 2 and width decreasing as
contributions due to each term of EdS) and(17). In both b increases. According to E18), the c, coefficient in Eq.
calculations, thev¢-V® or V-V contribution is negli-  (19) should be a constant whilec;=A—2J72\b
gible and is not shown. It is interesting to notice that thefa— 372+ 27JIn(2/a,)] and cs=2J72\b/a, should both
combinations of errors made in the various terms Contributvary with Jb. We made a rough evaluation of the vortex
ing to E* nearly cancel, leaving a small net difference be-ore a, by fitting the vortex pair energy fob=0 to the
tweenE andE*. expression E,=2mJIn(2a/a,) obtaining a,=0.20 which

The total field g=d+¢ for a=8, b=0.25, calculated  g4reeg with previous estimat®sor a,. The fitting obtained
for a circular system with radiu8=20, is shown in Fig. 4. It 5. aach of the coefficientsc,, c,, and c; gave

is seen that the field confines the vortex—ar_1tivortex pair to %12 15.5-10.10°36 c,=0.19-1.12lrb, and
small region of the system composed basically by a vorteX. _ _ o 6o+ 16
and an antivortex — whose radii decrease with the field- 3 ' '
linked to each other by a kind of domain wall whose width

also decreases with increasibg For comparison, the total coefficient is the expected one for arZiomain wall in a
. ; . ; - 2DXY+H tem. Wi th th tical ic-
field =P+ ¢ from the linearized calculation with the same system. We do not have any theoretical predic

ters is sh in Fia. 5. In the field far f th - tion to which we could compare the obtained dependence of
parameters Is shown in Fig. 5. In the Tield far from the palr'c2 with b. However, it seems reasonable that this coefficient

L:Ngegl{gzutl\t/vgorgglltggL'Jrlﬁz Izrr]yezltgc;gflgianr:cggfgrrzn::jnk;ek_) decreases with increasifigbecause the effect of the field is
) 9 18 reduce the effectivarea affected by the pair.

the line connecting the pair, where the spins tend to poin The linear dependence of the energy on the distance

more against the applied field in the full nonlinear Calcu'?’suggests that the pair may become unstable, and the domain

tion, compared to the linearized calculation. In this domamwaII connecting them may break and form new smaller pairs:

wall region, this results in a lower exchange energy densit)é mechanism which resembles particle creation. This possi-

at the expense of a higher magr)etic field energy density. IBiIity will be investigated in a future work
an intermediate region a few lattice constants above and be- '

low this domain wall,& (and alsoZ, not shown herecan This work was supported by NSF/CNPq International
approach the valuer/2, where the linearization approxima- Grant No. INT-9502781. G.M.W. also gratefully acknowl-
tion starts to fail. This occurs also for smaller although  edges the support of NSF Grant No. DMR-9412300 and a
apparently a fortuitous cancellation of errors in the linearized=APEMIG Grant for Visiting Researchers. M.E.G. gratefully
calculation(see Fig. 3 results in a relatively small error in acknowledges the support of a FAPEMIG grant for comput-
the total energy. ing equipment used in this calculation.
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