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Numerical study of vortices in a two-dimensionalXY model with in-plane magnetic field
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~Received 2 December 1996!

Many physical systems of interest can be mapped into the planar rotator andXY magnetic models with a
magnetic field applied within the easy plane. In this work we study how the shape and energy of a vortex-
antivortex pair depends on the applied field and on the pair separation. Our results show a new feature: the
energy related to the vortex-antivortex pair has a coefficient which depends strongly on the applied field. For
large separation of the pair, the energy increases roughly with the square root of the field and linearly with the
pair separation.@S0163-1829~97!03522-4#
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The two-dimensionalXY model has been the subject
very intense experimental and theoretical research in the
two decades.1 This model is known to support topologica
excitations and, although no long range order is establis
at any finite temperature, it shows a phase transition rela
to the unbinding of vortex-antivortex pairs. In particular, t
XY model has been extensively used in the study of h
temperature superconductors2–5 since it is believed that the
most important fluctuations in the order parameter describ
the superconducting condensate are phase fluctuations.

When a magnetic field is applied along the easy plane
properties and behavior of the system change considera
no phase transition is expected then. The field modifies
vortex-vortex interaction; instead of an interaction whi
grows logarithmically with distance, the vortex interactio
becomes linear for large distances2,5 due to the applied field
Although this system has been treated in several prev
works,6–9 a complete understanding of theXYmodel with an
in-plane field (2DXY1H, from now on! is still missing and
questions about how vortex pairs and domain walls cont
ute to the properties of the system have not yet been s
factorily answered. Nevertheless, the investigation of
properties of the 2DXY1H model is very appealing not onl
for the model itself but also because this model is related
more realistic systems in which at least a small three dim
sional interaction exists and may influence the overall beh
ior. It has been shown8 that the anisotropic 3DXY model
with weakcoupling between the planes can be mapped
the 2DXY1H model with the in-plane field accounting fo
in a mean field approach, the interplanar interaction.

Our aim in this work is to analyze the modifications d
to the applied magnetic field on the vortex pair shape
energy. We start by writing the Hamiltonian for the 2DXY
model with in-plane magnetic fieldh5gmBH applied along
the x-axis and easy-plane anisotropy parameterd.0:

H52
J

2(m,n @Sm,n•gm,n2dSm,n
z gm,n

z #2h(
m,n

Sm,n
x , ~1!

where the sums are performed over all the (m,n) sites of a
two-dimensional square lattice,J is the ferromagnetic ex
change interaction,gm,n

a corresponds to the sum over the fo
nearest neighbors of each spin.
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Parametrizing the spin at site (m,n) in terms of spherical
coordinates,

Sm,n5S$cosfm,ncosum,n ;sinfm,ncosum,n ;sinum,n%, ~2!

we obtain, in the continuum limit, equations of motion co
responding to the Hamiltonian~1!:

2 u̇/JS52cosu¹2f12 sinu¹u•¹f1bsinf,

cosu ḟ/JS52dsin2u2¹2u2 1
2 sin2u~¹f!21bsinucosf.

~3!

Above we defined the reduced fieldb5gmBH/JS.
When d is greater than a critical value10 ~approximately

0.3 for the square lattice! the spins of the static vortex solu
tions are restricted to theXY plane, that is,u50. In this
case, or, for the planar~two-component spins! model, Eqs.
~3! reduce toḟ50 and to the 2D sine-Gordon equation:

¹2f5bsinf. ~4!

The expression for the energy relative to the ground s
becomes

E5JS2E d2r H 12 ~¹f!21b~12cosf!J . ~5!

For zero magnetic field,b50, Eq. ~4! leads to the well-
known vortex pair solution given by

F~x,y!5tan21 @2ay/~x21y22a2!# ~6!

for a pair formed by a vortex at (a,0) and an antivortex a
(2a,0), with separation 2a. ForbÞ0, Eq.~6! does not cor-
respond to anexactsolution to the problem. However, w
will consider here that, for small applied fields, the vorte
antivortex pair solution given by Eq.~6! is still meaningful in
the sense that the effect of the field will be todeform it. In
this reasoning, we will write the solution to Eq.~4! as being
given by

f~x,y!5F~x,y!1j~x,y!, ~7!

wherej(x,y) describes the deformation due to the field. T
functionF(x,y) enforces the desired positions of the vort
and antivortex.
14 144 © 1997 The American Physical Society
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Inserting ansatz~7! into Eq. ~4!, we obtain a nonlinear
Schrödinger-like equation for the deformationj:

¹2j5bsin~F1j!5bsinFcosj1bcosFsinj. ~8!

In the linearized limit (j!1), bcosF is an effective potentia
term and2bsinF is an effective driving field in Eq.~8!,
when viewed as a Schro¨dinger equation. For the energy, w
have

E5E01JS2E d2r @ 1
2 ~¹j!21¹F•¹j1bsinFsinj

1bcosF~12cosj!#, ~9!

where

E05JS2E d2r H 12 ~¹F!21b~12cosF!J . ~10!

The termE0 is due to the presence of a nondeformed vort
antivortex pair in the field, and the remaining terms repres
the energy associated with the field-induced deformation
the pair.

We solved Eq.~8! numerically forj with b ranging from
0.01 to 0.5 and 1.0<a<25.0 by using an iterative nonlinea
Gauss-Seidel method applied to a circular square lattice
tem of radiusR5200. The idea is to rewrite the Laplacia
term in Eq.~8! in its simplest finite difference form for the
square lattice,

FIG. 1. Total vortex-antivortex pair energy@Eq. ~9!# vs half-
separationa, for the indicated applied field valuesb.

FIG. 2. Comparison of the full nonlinear~solid lines! and lin-
earized~dashed lines! calculations of the vortex-antivortex pair tota
energy vs half-separationa, for indicated applied fields.
-
nt
f

s-

¹2j524jm,n1 (
i561

(
j561

jm1 i ,n1 j ~11!

and then ‘‘solve’’ Eq.~8! for the new value ofjn,m at the
next iteration:

jm,n8 5
1

4F (
i561

(
j561

jm1 i ,n1 j2bsinFm,ncosjm,n

2bcosFm,nsinjm,nG . ~12!

Iterating this procedure leads to a minimum energy state.
would like to stress that no linearization of the problem h
been used, and a numerically exact solution of the origi
Hamiltonian ~1! was obtained. A free boundary conditio
was applied by cutting off the system at a chosen rad
(R5200), and then any sites on the boundary of the sys
have less than four nearest neighbors. For those boun
sites, the factor of14 in Eq. ~12! is replaced by 1/zm,n , where
zm,n is the number of neighbors of that site. Our results
shown in Figs. 1–5: we will discuss these results after
scribing, briefly, some previous results available in the lite
ture.

A problem similar to this one was considered by C
audella and Minnhagen2 some years ago and, since the
their results — which are summarized below — have be
used to account for the energy of a vortex pair in the pr
ence of a field.3,4 It is important to notice that, in fact, thei
work was directed to theXY layeredsuperconductor mode
and not to the 2DXY1H model. However, for small inter-
planar coupling, the layeredXYmodel can be represented b
the 2DXY1H model. This fact has been stated very clea
by Ito8 who used the following Hamiltonian to describe th
XY-layered model:

H52(
i

(
m,n

@JSm,n,i•gm,n,i1J8Sm,n,i•Sm,n,i11#, ~13!

where the summation ini runs over the layers,J8 is the
interlayer coupling, and the spinS has only two components
(Sz50 or u50). Obviously, the system described by E

FIG. 3. Particular contributions to the vortex-antivortex pair e
ergy vs half-separationa, for b50.05. Solid lines refer to the full
nonlinear calculation~this work!, dashed lines are the linearize
calculation as in Ref. 2. The various curves correspond to~I! E0* ,
~II ! E0, ~III ! bz2/2, ~IV ! bcosF(12cosj), ~V! (¹z)2 and (¹j)2,
~VI ! bsinFsinj, ~VII ! bFz.
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~13! shows conventional long-range order,^S&Þ0, and ex-
hibits a second-order phase transition. AssumingJ8!J, we
can say that the system will have aquasi-two-dimensional
behavior forT@J8 and, then, take account of the interlay
interaction by an effective field. This corresponds to rew
ing Eq. ~13! as

H̄5(
i
H̄ i , H̄ i52(

m,n
@JSm,n,i•gm,n,i12J8mSm,n,i

x #,

~14!

wherem5^S& is the magnetization. The Hamiltonian~14! is
identical to our Hamiltonian~1! ~for Sz50) if we define the
effective field asheff52J8m. The continuum version for Eq
~14! will be identical to Eq.~4!. In the following, we will
compare the equations and approximations done by
audella and Minnhagen2 — keeping in mind that they were
treating a layered model — to the equations we used
solved in this work.

FIG. 4. The total spin fieldf5F1j for system radius
R520, half-separationa58, field b50.25.

FIG. 5. The total spin fieldf5F1z, for radiusR520, a58,
b50.25, from the linearized calculation.
-

t-
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As we said before, in layered superconductors, it is
cepted that the important fluctuations are described by
fluctuations of the phasef i in the i th plane. The Hamiltonian
used by Cataudella and Minnhagen to describe the laye
superconductor is

H*5
1

2
J(

i
E d2r @~¹f i !

21b~f i2f i11!
2#, ~15!

whereb is the parameter controling the coupling betwe
planes. Note clearly that the interplane interaction is taken
purely quadratic in the phase difference, in strong contras
the more physical trigonometric form as seen in t
2DXY1H model, Eq.~5!. A quadratic coupling is reason
able for small interplane phase differences, however, we
below that relatively large phase differences between pla
are possible. In the case of large phase differences, we w
expect that a coupling term of the form
b@12cos(fi2fi11)# is necessary.

12

In order to estimate the effect of adjacent planes on
vortex pair, Cataudella and Minnhagen looked for a mi
mum energy configuration for a pair on a particular plani
by solving the Euler equation with the constraintf5F i1z
for that plane. This treatment corresponds to assuming
vortex pairs can be created in one layer independently
pairs in adjacent layers.13,14 In the approach used in Ref. 2
F is the vortex pair expression~6! andz is the deformation
~fluctuation! of that configuration — as isj in our ansatz~7!.
We usez here to distinguish this solution from the solutio
of the 2DXY1H problem, Eq.~8!. In order to simplify the
calculation, those authors assumed that the phases in
planes adjacent to the one supporting the vortex pair
zero, that is,f i115f i2150. With these approximations
the equation to be solved forz is linear @in contrast to Eq.~8!
for j#:

¹2z5b~F1z!, ~16!

while the energy in terms ofz becomes

E*5
1

2
JE d2r @~¹F!21bF~F12z!

12¹F•¹z1~¹z!21bz2#. ~17!

They solved Eq.~16! numerically for zero temperature, find
ing that the energy of a vortex-antivortex pair of size 2a can
be parametrized as2,5

E* ~a!5
1

2
JFp212p lnS 2aa0 D12p2AbS 2aa0 21D G , ~18!

where the first term corresponds to the vortex pair crea
energy, the second one gives the logarithmic dependence
pected for a pair even in the absence of a field, and the t
depending linearly on the pair size corresponds to the ene
of a domain wall.11 In this equation,a0 is the diameter of the
vortex core.

Comparing Eqs.~8! to Eq.~16! and Eq.~9! to Eq.~17! we
conclude that our equations reduce to the ones obtaine
Cataudella and Minnhagen if one considers bothF andj to
be small and expand the sine and cosine functions of th
However, it must be pointed out that this assumption is
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obvious and that, at least in the region surrounding the vo
and antivortex centers, theF field, the j field, and their
variations are not small.

In Fig. 1 we show the result we obtained for the to
energy of the pair Eq.~9! for some values of the applie
field, b50.01, 0.05, 0.1, and 0.5, by solving Eq.~8!. We also
solved Eq.~16!, which corresponds to the linearized versi
of Eq. ~8!, by using the linear version of the Gauss-Sei
iteration described in this paper, and evaluated the co
sponding energyE* of Eq. ~17!. Figure 2 shows the energie
E @solid lines, from Eqs.~8! and ~9!# andE* @dashed lines
from Eqs. ~16! and ~17!# for b50.05,0.10. For small pai
separation (a,5), the agreement between the two results
surprisingly good, considering the approximations leading
Eqs. ~16! and ~17!. For larger pair separations, we obta
E*.E, as could be expected. In Fig. 3 we show the sepa
contributions due to each term of Eqs.~9! and ~17!. In both
calculations, the¹j•¹F or ¹z•¹F contribution is negli-
gible and is not shown. It is interesting to notice that
combinations of errors made in the various terms contrib
ing to E* nearly cancel, leaving a small net difference b
tweenE andE* .

The total fieldf5F1j for a58, b50.25, calculated
for a circular system with radiusR520, is shown in Fig. 4. It
is seen that the field confines the vortex-antivortex pair t
small region of the system composed basically by a vo
and an antivortex — whose radii decrease with the fieldb —
linked to each other by a kind of domain wall whose wid
also decreases with increasingb. For comparison, the tota
field f5F1z from the linearized calculation with the sam
parameters is shown in Fig. 5. In the field far from the p
it is difficult to distinguish any significant differences b
tween the two results. The largest differences are seen a
the line connecting the pair, where the spins tend to p
more against the applied field in the full nonlinear calcu
tion, compared to the linearized calculation. In this dom
wall region, this results in a lower exchange energy den
at the expense of a higher magnetic field energy density
an intermediate region a few lattice constants above and
low this domain wall,j ~and alsoz, not shown here! can
approach the valuep/2, where the linearization approxima
tion starts to fail. This occurs also for smallerb, although
apparently a fortuitous cancellation of errors in the lineari
calculation~see Fig. 3! results in a relatively small error in
the total energy.
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We fitted our results for the energy for 0.01<b<0.5 and
amin51.0<a<amax510.0 to the following expression:

E5c11c2ln~2a!1c3a. ~19!

Notice that we choseamax!200 in order to guarantee tha
our results would not be strongly influenced by the fin
size of our lattice. This equation is formally equivalent
Eq. ~18! because both assume that the energy must so
how depend logarithmically on the pair distance since
vortex and antivortex particles are kept there and dep
linearly on the pair distance because, as can be seen in F
the region connecting the vortex to the antivortex resemb
a 2p domain wall of length 2a and width decreasing a
b increases. According to Eq.~18!, thec2 coefficient in Eq.
~19! should be a constant whilec15A22Jp2Ab
@A5Jp212pJln(2/a0)# and c352Jp2Ab/a0 should both
vary with Ab. We made a rough evaluation of the vorte
core a0 by fitting the vortex pair energy forb50 to the
expressionEp52pJln(2a/a0) obtaining a050.20 which
agrees with previous estimates10 for a0. The fitting obtained
for each of the coefficientsc1 , c2 , and c3 gave
c1515.5210.1b0.36, c250.1921.12lnb, and
c3520.69116.5b0.49. In fact, the term linear ina is the
important one for largea and the dependence onAb of its
coefficient is the expected one for a 2p domain wall in a
2DXY1H system. We do not have any theoretical pred
tion to which we could compare the obtained dependenc
c2 with b. However, it seems reasonable that this coeffici
decreases with increasingb because the effect of the field i
to reduce the effectiveareaaffected by the pair.

The linear dependence of the energy on the distanca
suggests that the pair may become unstable, and the do
wall connecting them may break and form new smaller pa
a mechanism which resembles particle creation. This po
bility will be investigated in a future work.
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