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Undulatory variation of antiferromagnetic strength with magnetic field based
on the Hubbard-model Hamiltonian
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Using the Hubbard model Hamiltonian for the two-dimensional system of antiferromagnetically correlated
electrons, we examine the undulatory variation of antiferromagnetic gstdemgth with applied magnetic
field. The marked reductiofor local minimum of antiferromagnetic strength is predicted to occur only at the
even integer denominator values of the rational number of magnetic flux quanta per plaquette. The predicted
change of the antiferromagnetic order with the external magnetic field is explained in terms of electronic
structure(band gap and Wigner-Jordan transformatidi50163-18207)01222-§

. INTRODUCTION the Landau gauge i=B(0x,0) withx=j,a for the jth site
. ) ] along the x direction with the lattice spacin@. Thus
For the studies of interacting electron systems, one of thg A d|=j Ba?=j,¢, with ¢=Ba2.

Hamiltqniart for various investigations of physical to the Hubbard model Hamiltonian with the use of the two-
properties™* Earlier, by considering the system of uncorre- component spinor

lated electrons Hasegawet al® reported the total kinetic

energy of the spinless noninteracting electrons in two- (Cn
dimensional lattices as a function of magnetic flux per = )
plaguette and found an absolute minimum for the case of one .

flux quantum per particle for a square lattice. However, to@"d the spin operators

the best of our knowledge, for the system of antiferromag- 1At +

netically correlated electrons there exists no systematic study SA1)=2(Cy4Cj =€ Cy)

on the variation of antiferromagnetic orddstrength, and

band gap, and total energy with applied magnetic field.

Unlike our earlier preliminary studi€shere we present a S+(j)=CJTTC”, S_(j)ZCLC”,

systematic examination on the variation of antiferromagnetic ) _ o

strength(Fig. 1) with Coulomb repulsion(electron correla- @nd using the relatiof A di=jy¢ in Eq. (1) above, one
tion) and the variation of the band gap with magnetic field.réadily obtains

In addition, we present an interpretation of the unexplained

undulatory variation of the antiferromagnetic order with ap- = _tz ex —i27-rij> ‘ﬂiTlﬁijUZ ¢?[%<n(1)>
plied magnetic field. {7y q ]

IIl. VARIATION OF ANTIFERROMAGNETIC STRENGTH, —(S(MN1#+ U {SADY2+H(S: (DXS-(]))
TOTAL ENERGY, AND BAND GAP ]
WITH EXTERNAL MAGNETIC FIELD

_1 iV\21 s
With the external magnetic field, the one-band Hubbard ()% ’UE,: SUTRRLTRE 2
Hamiltonian is written
where
i

H=—t > exp[(—izw/%) A d|}cit,cj(,+u2_ NNy, p_¢

(i)Yo j ] q ¢o

—MEJ.: (njp+nj)). (1) n(j)=Cf,C;;+Cf,C;,,

Heret and U are the hopping integral and the Coulomb and
repulsion energy, respectively is the chemical potential. S(j)  S_(j)
(i,j) stands for summation only over the nearest neighbors. S(j)= ( S.(j) —Sz('))'
n;, is the number operator for an electron of spirat site +( J

i, nj,=C/,C;, with C[, (Cj,), the creatior{annihilation  where (S,(j)), (S.(j)), and (S_(j)) denote the average
operator for an electron at sife ¢, is the magnetic flux values ofS,, S, , andS_, respectively, in the ground state.
guantum,¢,=hc/e. The electromagnetic vector potential in The phase anglej,p/q in the first term Eq(2) above can
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TABLE |I. Variation of the total electronic energy per site with magnetic flux per plaqueite,
=(p/q) ¢y, for the 24x24 square lattice of a half-filled band for various strengths of electron correl&tion,

U\g 0 : i 3 s :

0.0 —1.617 —1.650 -1.717 —-1.712 —1.758 —1.915
0.5 —1.743 —1.775 —1.842 —1.838 —1.883 —2.040
1.0 —1.870 —1.900 —1.967 —1.965 —2.009 —2.165
1.5 —2.001 —2.027 —2.092 —2.097 —2.139 —2.290
2.0 —2.139 —2.160 —2.218 —2.235 —2.275 —2.415
3.0 —2.447 —2.462 —2.500 —2.533 —2.565 —2.666
4.0 —2.797 —2.808 —2.836 —2.865 —2.886 —2.935
20.0 —10.198 —10.198 —10.198 —10.199 —10.199 —10.200

be interpreted as an acquired phase as a result of electrdields corresponding tp/q=0 and3, respectively. Encour-
(fermion) hopping by absorbing the external magnetic flux.agingly, we find that they are in excellent agreement with the
Obviously, the hopping term in Eql) or Eq. (2) remains values for the infinite-size lattice particularly for relatively
completely fermionic in nature if there exists no externallargeU values(say,U=3t for the case op/gq=3). As can
magnetic field. With this view, such a gain of statistical be readily seen from this figure, the differencenirbetween
phase during electroffermion) hopping can be regarded to the zero magnetic field and the nonzero magnetic field indi-
affect the antiferromagnetic ordéstrength. cates the reduction of antiferromagnetic strength. Such a re-
For the sake of comparison with the exact results of Haduction tends to disappear for substantially strong correla-
segawaet al,> we performed numerical calculations of the tions, e.g.U=10.
total kinetic energies per site at various values of both elec- In Fig. 2 we show the variation afi with magnetic flux
tron filling factor v and magnetic flux per plaquette) ¢=(p/q) ¢ for various selected values bf. The solid lines
=(p/q) ¢q, for a finite-size square lattice of 224. Encour- indicate the computed results for a>2P0 square lattice.
agingly, our calculatiorsyielded excellent agreement with Symbols other than the solid line represent computed results
the exact calculations of Hasegaefal® for a square lattice for various chosen sizes of square lattices up to the size of
of infinite size. In Table | we show the variation of the total 3636 by satisfying the necessary periodic boundary condi-
electronic energy at half-filling with the flux quantum per tions. However, even in the case of failure in meeting the
plaguette at various values of Coulomb repulsion energyperiodic boundary conditions with the odd-integer denomi-
Our computed total kinetic energies for the noninteractinghator values ofyj=3,5,7 in the rational numbey/q, it was
electrons agree extremely well with the exact results of Hafound that the 2&20 square lattice yielded reasonably good
segawaet al. The computed total energy @i=3¢, is ex- agreement with the results obtained from the lattice sizes
actly twice the value for the case of the integer quantum Hallvhich satisfied the periodic boundary conditidnEhe undu-
effect (IQHE) with quantum number 1,as expected. In latory variation of antiferromagnetic order with magnetic
terms of filling fraction, it corresponds to the IQHE with field tends to disappear at extremely high valuedtofe.g.,
quantum number 2 for the present case of a half-filled bandJ=20t. m=1 corresponds to the maximum antiferromag-
It is of note that the predicted absolute minima of the totalnetic (spin) order which means the “perfectly” antisymmet-
energies are found at the half-integer flux valuegof 3¢, ric states of electrons. However, the degree of such perfect
whether electron correlation is preserti 0) or not U
=0). The total electronic ground-state energy for nonzero 05

external magnetic field is found to be always smaller than the _,
case of zero magnetic field. The total energy difference be- E p/g=0
tween zero and nonzero magnetic fields was found to de 5 045
crease with an increase of electron correlation Coulomb g 035l S
repulsionU), as expected. 2 o3
For two-dimensional systems of antiferromagnetically a )
correlated electrons at half-filling, we define 5 0.25; ~_
g 0.2f p/g=1/2
_ i & o.15 — Infinite
T VAT b e
as antiferromagnetic strengtbrden or staggered magneti- 0.05 « 30230
zation. HereN is the total number of lattice sites, andi, - . . ‘
are the integers corresponding to thandy coordinates of 0 5 10 15 20
site i, respectively, for the two-dimension&@D) square lat- Uit 33

tice of present interest. We report the variatiomofvith the

applied magnetic field. In Fig. 1 we show the computed re- FIG. 1. Dependence of the antiferromagnetic orgérength on
sults of the antiferromagnetic strength for finite-size lattice size with zero and nonzero magnetic fields corresponding to
square lattices for both cases of zero and nonzero magneti¢q=0 andp/q= 3, respectively.
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FIG. 2. Change of antiferromagnetic ordatrength, m, with Coulomb Repulsion, U
magnetic flux per plaquettep, for various strengths of electron
correlationU. FIG. 3. Band gap vs Coulomb repulsion enetdyas a function

] o ] of magnetic flux per plaquette).
antisymmetrization may be subject to change due to the

variation of phase in Eq(2) with applied magnetic field. . _ .
Indeed, it is quite interesting to note from Fig. 2 that thereCal transmutation of particles as a result of coupling to a
exists a strong tendency of losing the antiferromagnetidtatistical (Chern-Simons gauge f'e|.d?- For example, a
strength particularly aih= 1¢,, with U=<3t. Unless the cor- He_|senberg antiferromagnet is equw.altlent to a ;ystem of
relation (Coulomb repulsionU) is exceedingly strong, the SPinless electrons coupled to a statisti¢€@hern-Simonk
predicted absolute minima invariably occur at=3¢,  9auge field when such coupling results in the statistical
showing an undulatory variation of the antiferromagneticPhase angle ofy=nm with n zero or even integers, thus
strength with magnetic field. Interestingly, the local minimaSatisfying the fermion commutation relation. On the other

are found only at the even-integer denominator valuesiof ~hand, withn odd integergor y, odd multiple of) the op-
the rational numberp/q of magnetic flux quanta per €ratorsa satisfy the boson commutation relation and a hard

plaquette = (p/q) do, €.9.,3, %, 1 1 andi while atthe COre conditior_1. The antiferromagnetic_order comes origi.nally
odd-integer value of such local minima tend to disappear. from the statistically(Fermi-Dirac statistiosantisymmetric

To explore the cause of such differences in antiferromagnetiétate(eéxchange symmetyyof electrons(fermions. Bosonic
strength between the even- and odd-integer values ofe stz_:\tlstlcal transmutation corre_spondlng to the _odd multiple of
computed the band gap as a function of magnetic field. Thé In the phase anglg above will result in thgz disappearance
computed band gap also showed local minima at the evefif antiferromagnetic orden. As well knqwn, such bosonic
integer values ofg, although not displayed here. Conse- {ransmutation arises when an eved integer number of
quently, easier electron hopping at the even-integer denomflux quanta is attached to each spinless electfermion).
nator values for the flup/q tends to destroy the antiferro- El€ctron(i.e., fermion hopping strength in Eq1) or Eq.(2)
magnetic order. A noticeable band gap opening begins t Mmodulated by the “statistical” phase factor ify
occur atU~ 2t for p/q=13, as shown in Fig. 3. At all values =t €XP(~i2j,p/q) as a result of the applied magnetic field.
of Coulomb repulsion energy, the lower values of band As can be |nferred fro.m_the phase fact.or that appears in Eq.
gaps are predicted to occur with=3¢,. Accordingly, the (2), sgch bosonic sta}t|st|cal transmutation is possible for the
locations of the absolute minima in antiferromagneticEVen intéger denominator values @fin p/q. However, for
strengthm are found to occur only at this half-integer value the odd-integer denominator valuesgfsuch antiferromag-

of the magnetic flux per plaquettp/q= 2, for values ofU netic order is not likely to disappear. Indeed, such even- and
<2t ’ odd-integer differences are well predicted from our calcula-

By introducing a statistical phase interpretatfone now tions as shown in Fig. 2. Indeed, for the case of relatively
examine the even-odd differencéassociated with the de- Weak electron correlation, say<2t, the predicted antifer-
nominator valueq in the rational numbep/q) in antiferro- ~ fomagnetic strength tends to disappear at the half-integer
magnetic strength. The generalized equal-time commutatiok@lué @=2, i.e., an even denominator vajuef ¢= 3¢,

relation for anyons with a hard core condition on a squaréVhich is clearly equivalent to the phase angle of an odd-
lattice is given by integer multiple ofw for the spinless electron considered in

Eq. (3), thus satisfying the bosonic commutation relation. On
aia;fz 5;—¢ VajTai (3)  the other hand, such a tendlency ils not found with odd de-
nominator values, e.gp/g=3 and : as shown in Fig. 2.
in connection with the Jordan-Wigner transformatidrere Finally, bosonic statistical transmutation is difficult to occur
a;r anda; are the anyon creation and annihilation operators aat sufficiently largeU values due to the persistence of anti-
the sitesi and j, respectively, on the square lattice. The ferromagnetic order. Indeed, this feature is well predicted as
phase angley in Eqg. (3) above represents a possible statisti-shown in Fig. 2.
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I1l. CONCLUSION tiferromagnetic strength with magnetic field of the even-odd

By considering the two-dimensional systems of antiferro—difference in the denominator of in p/q was found to cor-
y 9 y relate well not only with electronic structufband gajp, but

magnetically correlated electrons, we have systematically exX;| ith th stical oh hich Its f h
amined the variations of the total electronic ground-state enc >0 with the statistical phase, which results from the cou-
ling of fermions to the fictitious(statistical or Chern-

ergy. bgnd_ gap, and antlferrom_agnetlc orde_r with applle_z imong gauge field, which tends to screen out the electro-
magnetic field. The absolute minima of antiferromagnetic . i

X magnetic gauge field.
strength, total electronic energy, and band gap were found to
invariably occur at the half-integer value of magnetic flux
per plaquettegp= 3¢,. For the case of the total energy, the
absolute minima were shown to occur, also, ¢at 3¢,
whether there exists electron correlati@lectron repulsion One of us(S.H.S.S). was supported by the Korean Min-
U) or not. ForU+0, the local minima of the antiferromag- istry of Education BSRI program, POSTECH BSRI special
netic strength were found to invariably occur at the evenfund, and the Center for Molecular Science at the Korea
(but not odd} integer denominators of the magnetic flux per Advanced Institute of Science and Technology. We are
plaquette, that isp/q=3, 2, i, and:. Unless electron cor- grateful to Professor H. Y. Choi at Sung Kyun Kwan Uni-
relation is sufficiently strong, the undulatory variation of an-versity for his computational assistance.
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