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Existence of a tricritical point at finite field in the three-dimensional random-field Ising model
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The critical behavior of the random-field Ising model with a bimodal field distribution is studied using
standard and histogram Monte Carlo calculations. It is definitely found that the transition is second order for
weak fields while it becomes first order for higher fields. The existence of this crossover, discovered here in
Monte Carlo simulations, is in contradiction with earlier Monte Carlo works, but in agreement with mean-field
predictions. Estimates of the critical exponents of the model at low field are i86t63-18207)01722-0

I. INTRODUCTION
H:_JZ Sisj_gMBz His;, (1
In spite of much theoretical and experimental effort done (D '
to understand the random-field Ising modeFIM), several i .
aspects remain unclear. After the works of Imry and idad where s;j==*1, the first sum being performed over the
Imbrie? its lower critical dimension is now well established néarest-neighbdNN) pairs.H is the quenched random field
to bed,=2. On the contrary, the nature of the transition for intensity,J is the ferroma.gnetlc interaction constant between
d>2 is not yet clarified. Though mean-field restiitsdicate  NN's, g the gyromagnetic factor, andg the Bohr magne-
the existence of a tricritical poinfCP) at sufficiently high  ton. We definen=gugH/kg; then the field distribution is
fields for the bimodal distribution, standard Monte CarloWwritten as
(MC) calculations ind=3, performed assuming a second-
qrder transitior; give 8~ 0, suggesting a first-order tran'si—. P(h))=%[8(h;—h)+ 8(h;+h)], )
tion or an extremely sharp second-order one for any finite
field. Exact ground-state calculations at the zero fixed point herehiis the field at sitd
also suggest a weak first-order transition for the bimodaf/"€r€Nils the field at Sita. )
distribution® Even when the transition is assumed to be sec- " th_e f_oIIowmg we gse.]/_szl_, the temperature and
ond order, estimates of critical exponents issued from andn2dnetic fieldh will be given in units ofJ/kg . _
lytical and numerical works are not coincidéft-®and de- We have studied systems ©f=16,20,24,30,36,40 with
pend on the intensity of the random field. The nature of thgPeriodic boundary conditions. As a first step we have per-
ordered phase at low temperatures is also poorly understootprmed SMC field heatingFH) and field cooling(FC) cal-
Furthermore, suitable scenarios to understand the critical bgulations for different field intensities(=0.5, 1, 1.5, 1.9, 2,
havior are under discussion. The droplet picture indicates 8.1, 2.2. These calculations help us t@) classify the
modification of hyperscaling via a third independent expo-(T,h) plane in two regions: low field and high temperature,
nent @ which controls the extremely long relaxation where we expect the transition to be continuous, and high
times2°~*20n the other hand, a new high-temperature seriesield and low temperature, where the transition might be first
expansion suggests the existence of a new scaling relationrder, and(b) get an estimate of the transition temperature
ship between the exponents governing the critical behavior (L) corresponding to each value bf that will then be
pf the sqsceptlbnlty an_d that of the d|§qonnected suscgptlbnused as an input of the HMC calculations.
ity, leaving only two independent critical exponefitsin We have then performed HMC calculationsTatfor each
contradiction to the droplet picture. _ lattice size. We also studied different quenched field configu-
In this article we address our study to the question of thgaigns forh=0.5 where the SMC results indicate a second-

g?‘t“.f c_)f the transition din dthe ET‘I.M with a bg'“vlogal fi;ald order transition. SMC results show that the transition is sec-
istribution, using standard and histogram M an ond order up to, at leash=1, and so the estimates of the

HMC, respectively calculations.’ The histogram method al- critical exponents calculated t= 0.5 should not be affected

lows us to map the probability distribution in the critical by the existence of a TCP. We have also performed some

regllt_)n EI‘:nSd tvobtﬁun thg T”t'cal exlponlen;c_s dwa finite 5128 ns to map the probability distribution at higher values of
scaling(FSS. As shown below, we clearly find a crossover the field, where SMC calculations suggests a first-order be-

between a second- and first-order behawioa finite value of havior

the field intensity . . We can test the equilibration of the system by monitoring
. In Sec. Il we d_escrlbe the quel and caIcuIann_tech-the magnetization and the energy as functions of MC time.
niques l.Jsed here, in Sec. lll We give our resu_lts, and in Sequ have found that equilibrium is easily achieved for low
IV we discuss our results and give a conclusion. fields but is harder to obtain as the intensity of the random
field increases. The length of each run varies as a function of
!l MODEL AND CALCULATION TECHNIQUES L. Typically, for the HMC calculations, we have used®10
We have considered the following Hamiltonian on aMonte Carlo steps per secofiCS/g for thermalization
simple cubic lattice of linear dimensidrx and 2< 10° MCS/s for averaging for the largest lattices.
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1 : S — L=24,30, showing only a slight shift af,. We believe that
this relatively small shift observed fdry at a givenL is due
B og (a) to the zero-total-fieldconstraint that we imposed on the sys-
O tem, contrary to previous works. We will see later that this
shift, which may be considered small for the required preci-
06 [ ] sion of Ty, becomes important when performing the FSS to
g determineT () necessary to calculate the expongnt
04l ] On the other hand, in Fig.(h), we show a magnetization
- ¢ FH-FC loop for L=24, h=2.1. The shape of then(T)
h=0.5 © curves is clearly different from those in Fig(al. We can
0zr el ] observe that FH and FC curves are coincident for high and
o® low T (long-range order is achieved in F;@eaving a zone in
s L g between which shows hysteresis along with jumps and meta-
4 42 ﬁ ¢4.4 4.6 stable states, suggesting that the transition might be first or-
der.
T Energy distributions, issued from HMC calculations at
o ! T : Ty, are shown in Fig. 2. Atow but finitefield, the critical
o region has been carefully explorddy changingT,) and
08 |- R ] only a large single peak has been found. In Fit) 2wo
o h=2.1 histograms obtained at the samg, but issued from initial
R random and ferromagnetic configurations, are shown. The
08 ] fact that both collapse on the same single-peaked distribution
g is an additional proof of the second-order nature of the
04 o i transition—i.e., no hysteresis is observed—and also indicates
I “5 that equilibrium is reached.

, On the other hand, a double-peak distribution is observed
*20 (b 8, o 1 at higher fields[see Fig. )], clearly indicating that the
I transition is first order. However, due to the hysteresis effect,
P G P R NP R which is characteristic of a first-order transition, the resulting
14 16 18 2 22 24 26 28 3 structure of the histogram depends on the initial configura-
T tion of the system, as is also shown in Figh2 The single-
peaked histogram is obtained at the same temperature when
FIG. 1. Magnetization as a function of temperatum¢T) is  the simulation starts from a ferromagnetically ordered con-
shown for two values oh: (a) h=0.5, (O) L=20, (d) L=24, figuration. This result can be schematically described by the
(A) L=24, (¢) L=30, (X) L=30, (+) L=36,and @) L=40 inset of Fig. Zb): If the transition is first order, two histo-
(results issued from two different quenched field configurations arggrams calculated at the sarfig, but starting from different
included forL =24,30. The arrows indicate the location of extreme initial states, follow a different path in the state space. When
To values, observed fdr=20 andL =40. The shift due to sample the initial configuration is ferromagnetic, the system follows
to sample fluctuations is even smaller, and so two different sampleg path that leads it to a state represented by piint the
will have differentT.(L) but the same critical region within less jnset of Fig. Zb). This state is stable for the path in the space

than 2%. The continuous aspect of the curves should be comparggate the system has followed, and so we find only one peak
to that of (b). (b) h=2.1, (O) FH, and () FC forL=24. Jumps, i, the histogram. '

metastable states, and hysteresis are clearly observed, suggestingon the other hand, when the intial configuration is ran-

that the transition is first order. dom the followed path will first lead the system to pdBat

Ty, where the histogram is measured. The system becomes

unstable for the followed path, and so it also visits sfatén
Figure 1, issued from SMC calculations, shows the differ-this case we observe a two-peak histogram. The energy as a

ence in the magnetization curves as a function of temperatutfeinction of time curve fluctuates between the two values cor-

for two values of the field. Curves in Fig(d, corresponding responding to the peaks of the distribution. This is clearly a

to h=0.5, look continuous and this characteristic remainscharacteristic of a first-order transition, and not a nonequilib-

when increasing the lattice size. It can be observed That rium effect.

depends not only oh but also on different configurations of From the above results, we conclude that there exists a

guenched disorder. Combining these two factors, we can dericritical point at some particular value df andh where a

fine a region limited by the extreme observed value3pf crossover between second- and first-order behavior takes

The width of this region, which will give the temperature place.

input value for the HMC, is about 2% of the me&p and is This is in contradiction to Young and Nauenb&rgho

expected to decrease with increasingThis indicates that suggested that the transition should be first order for all finite

the lattice sizes we are working with are large enough tovalues of field based on the fact that theand » they cal-

exclude the possibility that the continuous aspect of the traneulated using SMC calculations and assuming second-order

sition is a finite-size effect(T) curves for two distributions transition do not verify the Schwartz inequality.

of quenched disorder are also displayed in Fi¢gn) Ffor We have performed a preliminary calculation of the criti-

lll. RESULTS
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[ FIG. 3. Preliminary FSS calculation of critical exponentand

v. (O) v from Eq.(3), (1) v from Eq. (4), and (A) y from Eq.

(7). The straight line corresponds to the linear fit. Different points
for a given lattice correspond to different quenched disorder con-
figurations.
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6000 In Fig. 3 we show the FSS calculation efissued from
Egs. (3) and (4) and that ofy issued from the fit of the
log-log plot of the susceptibility maximum as a function of

L:

4000

2000
Xmax(l-)ocl—yly- (7)

2.85 2. 2. 2. 2 2. Equationg3) and(4) give two estimates of. Its final value

e is then calculated as the mean value of the two, giving
v=0.64+0.015. The value obtained for the susceptibility

FIG. 2. (a) Probability distribution(number of configurations, Ccfitical exponent isy=1.46+0.07.

n, as a function of the energy per spi), for h=0.5, L=30. No According to the Harris criteriof! one expects the pure
double-peak structure has been found in the critical reglowo ~ 3d Ising exponents to be modified by the presence of disor-
histograms issued from two simulations performed at the sBgne der induced by the random field. This is indeed the case: The
but starting from ferromagnetic and random intial conditions, re-values of the critical exponents obtained from Fig. 3 are
spectively, collapse on the same single peaked distribuipThe  different from those of the pure d3 Ising casé®
same foh=2.1,L =24; the two-peak structure is obtained when the (»,=0.6289+ 0.0008, 7,=1.2390+0.071, B3,=0.3258
initial configuration is random, and the single-peaked histogram is+0.0044.
issued from a ferromagnetically ordered initial crystal at the same \We are not able to obtain an estimate it this stage.
To. The inset shows schematically a FH-FC loop. The energies ofrhjs is due to the fact that to calculgewe need the critical
the peaks correspond to those of poiAtandB of the inset(see  temperature of the infinite systeffi,() which is usually
text for detailed explanation obtained by extrapolating th&,(L) values given by the

. i L eaks’ positions of the different calculated quantities
cal exponents in the low-field region in order to test Whethe|P P q

(T), V4(T), V,(T), etc]. We have observed that sample-
the system follows second-order FSS laws. We have theg(—sample fluctuations are more important in the precise lo-

calculated cation of T,(L) than in the value of the peak itséfee Fig.

Vi ma(L)oc LY 3) 3). Then,_a_good estim_ate 0t.(0) is very difficult to o_btain.
ma ’ Now, it is worthwhile to make two remarks. First, the
Vol L) e L1 4) suggestion of Refs. 4 and 5 that the transition at low fields is
ma ' first order would imply that the transition at the zero-field
where limit is a tricritical point: We know that it is not true. So we
) believe that the second-order transition is more plausible.
am Second, the critical exponents estimated above verify well
V(M) = W=<mE}—<m)(E), ®)  the FSS laws as seen in Fig. 3. This excludes the possibility
of the transition being first order since, in this case, the re-
a(m?) sponse functions scale as the volume of the systefihe
Vo(T)= B =(m?E)—(m?)(E). (6)  fact of obtaining a slope smaller than 3 in Fig. 3, where

vlv=2.28+0.06, is a clear indication of that the transition is
E is the energy of the system amd= 1/kgT. not first order for this value of the field.
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IV. DISCUSSION AND CONCLUSION simulations allow us to obtain all the necessary quantities as
continuousfunctions of the temperature from long runs in
the critical region, and so no interpolation to determine the
peak of response functions is needed. Finally, Rieger and
Young® did not impose the zero-total-field condition. This

- - . - condition was supposed to be obtained in their calculation b
has a minimum at the origin, then a TCP exists at Sumc'emlyaveraging over r%gny different configurations. In our casey

low T. The MF phase diagram given by Ahardrip four we imposed this zero total field which assures thath

dimensions surprisingly applies to the Ising in three dimen-, . ; .
. ; S A mpleh h ransition. This also r fl ion
sions studied here: At high fields, the transition is first orde samplenas a phase transitio s also reduces fluctuations

I S O
and it becomes second order at low fields. from sample to sample as shown in Figall

On the other hand, our result is in contradiction with pre- It is worthwhile to notice that the problem of calculating

. ) ; o critical exponents of the RFIM is far from being solved. Our
vious SMC calculation$,which suggested the transition to preliminary values ofy agree with those given in Refs. 17

i aeles 0 e beleve LISy 10 -1 42145 an - 1.50-L., respectvelyions
gll_get us com arg how our preliminar valueé of critical ever, there is a large spread of numerical values in the litera-
P P y ture. We believe that one of the most important sources of

gliir;aet?;ist,o frr;]()ese(j;;)grgigg r?]lsgeiireagg E(Iffj;gzg Sr'gl:; ds disagreement comes from the fact of neglecting the existence
j Y g ‘'of a TCP. In the other limit, it is also possible that, due to the

First, they have assumed that no TCP occurs along the criti- . _
cal line (T;,h.) and then that the critical exponents will be small value of the field {=0.5), our values are affected by

the same on that line. We believe that their numerical valuethe vicinity of the Ising fixed point. So further calculations of

for the exponentgwhich vary as a function of the ratio e exponents at different values fofare necessary.

/T within% considerable err);)nma be affected by the vi- In conclusion, let us emphasize that we have found evi-
. : y : y fience of the existence of a TCP on the (h.) line. This

cinity of the crossover to first-order behavior as the values o

' : ) numerical simulation agrees with the MF and RG predic-
the field they have chosen are equivalent to takingl, . : . )
1.2, and 1.5. The possibility of having the values of the Criti_t|ons, unlike early MC works. We believe that further calcu

S lations of critical exponents by multihistogram techniques
cal exponents affected by the vicinity of a TCP has been i, many quenched field distributions at differdot-field
suggested by high series expansion calculafiohs.

; ; val nd witHar nough latti I n r
Second, they have considered very small lattice siaps alues and witflarge enough latticesvould be necessary to

. ) determine if there is a RFIM universality class.
to L=16) and used SMC calculations. In this case, correc- y

tions to scaling and to F_SS may be considerapl_e. In our case ACKNOWLEDGMENT
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Our results clearly show that the RFIM with a bimodal
distribution has a TCP at finit€ andh. This is consistent
with mean-field (MF) and renormalization-group(RG)
results>® which indicate that, if the probabiliy distribution
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