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Existence of a tricritical point at finite field in the three-dimensional random-field Ising model
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The critical behavior of the random-field Ising model with a bimodal field distribution is studied using
standard and histogram Monte Carlo calculations. It is definitely found that the transition is second order for
weak fields while it becomes first order for higher fields. The existence of this crossover, discovered here in
Monte Carlo simulations, is in contradiction with earlier Monte Carlo works, but in agreement with mean-field
predictions. Estimates of the critical exponents of the model at low field are given.@S0163-1829~97!01722-0#
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I. INTRODUCTION

In spite of much theoretical and experimental effort do
to understand the random-field Ising model~RFIM!, several
aspects remain unclear. After the works of Imry and Ma1 and
Imbrie,2 its lower critical dimension is now well establishe
to bedl52. On the contrary, the nature of the transition f
d.2 is not yet clarified. Though mean-field results3 indicate
the existence of a tricritical point~TCP! at sufficiently high
fields for the bimodal distribution, standard Monte Ca
~MC! calculations ind53, performed assuming a secon
order transition,4,5 give b;0, suggesting a first-order trans
tion or an extremely sharp second-order one for any fin
field. Exact ground-state calculations at the zero fixed po
also suggest a weak first-order transition for the bimo
distribution.6 Even when the transition is assumed to be s
ond order, estimates of critical exponents issued from a
lytical and numerical works are not coincident4,5,7,8 and de-
pend on the intensity of the random field. The nature of
ordered phase at low temperatures is also poorly underst
Furthermore, suitable scenarios to understand the critica
havior are under discussion. The droplet picture indicate
modification of hyperscaling via a third independent exp
nent u which controls the extremely long relaxatio
times.10–12On the other hand, a new high-temperature se
expansion suggests the existence of a new scaling rela
ship between the exponents governing the critical beha
of the susceptibility and that of the disconnected suscept
ity, leaving only two independent critical exponents,8,9 in
contradiction to the droplet picture.

In this article we address our study to the question of
nature of the transition in the RFIM with a bimodal fie
distribution, using standard and histogram MC~SMC and
HMC, respectively! calculations.13 The histogram method al
lows us to map the probability distribution in the critic
region and to obtain the critical exponents via finite s
scaling~FSS!. As shown below, we clearly find a crossov
between a second- and first-order behaviorat a finite value of
the field intensity.

In Sec. II we describe the model and calculation te
niques used here, in Sec. III we give our results, and in S
IV we discuss our results and give a conclusion.

II. MODEL AND CALCULATION TECHNIQUES

We have considered the following Hamiltonian on
simple cubic lattice of linear dimensionL:
550163-1829/97/55~21!/14080~4!/$10.00
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H52J(
^ i , j &

sisj2gmB(
i
Hisi , ~1!

where si561, the first sum being performed over th
nearest-neighbor~NN! pairs.H is the quenched random fiel
intensity,J is the ferromagnetic interaction constant betwe
NN’s, g the gyromagnetic factor, andmB the Bohr magne-
ton. We defineh5gmBH/kB ; then the field distribution is
written as

P~hi !5 1
2 @d~hi2h!1d~hi1h!#, ~2!

wherehi is the field at sitei .
In the following we useJ/kB51; the temperature and

magnetic fieldh will be given in units ofJ/kB .
We have studied systems ofL516,20,24,30,36,40 with

periodic boundary conditions. As a first step we have p
formed SMC field heating~FH! and field cooling~FC! cal-
culations for different field intensities (h 50.5, 1, 1.5, 1.9, 2,
2.1, 2.2!. These calculations help us to~a! classify the
(T,h) plane in two regions: low field and high temperatur
where we expect the transition to be continuous, and h
field and low temperature, where the transition might be fi
order, and~b! get an estimate of the transition temperatu
T0(L) corresponding to each value ofh that will then be
used as an input of the HMC calculations.

We have then performed HMC calculations atT0 for each
lattice size. We also studied different quenched field confi
rations forh50.5 where the SMC results indicate a secon
order transition. SMC results show that the transition is s
ond order up to, at least,h51, and so the estimates of th
critical exponents calculated ath50.5 should not be affected
by the existence of a TCP. We have also performed so
runs to map the probability distribution at higher values
the field, where SMC calculations suggests a first-order
havior.

We can test the equilibration of the system by monitori
the magnetization and the energy as functions of MC tim
We have found that equilibrium is easily achieved for lo
fields but is harder to obtain as the intensity of the rand
field increases. The length of each run varies as a functio
L. Typically, for the HMC calculations, we have used 106

Monte Carlo steps per second~MCS/s! for thermalization
and 23106 MCS/s for averaging for the largest lattices.
14 080 © 1997 The American Physical Society
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III. RESULTS

Figure 1, issued from SMC calculations, shows the diff
ence in the magnetization curves as a function of tempera
for two values of the field. Curves in Fig. 1~a!, corresponding
to h50.5, look continuous and this characteristic rema
when increasing the lattice size. It can be observed thaT0
depends not only onL but also on different configurations o
quenched disorder. Combining these two factors, we can
fine a region limited by the extreme observed values ofT0.
The width of this region, which will give the temperatu
input value for the HMC, is about 2% of the meanT0 and is
expected to decrease with increasingL. This indicates that
the lattice sizes we are working with are large enough
exclude the possibility that the continuous aspect of the tr
sition is a finite-size effect.m(T) curves for two distributions
of quenched disorder are also displayed in Fig. 1~a! for

FIG. 1. Magnetization as a function of temperaturem(T) is
shown for two values ofh: ~a! h50.5, (s) L520, (h) L524,
(n) L524, (L) L530, (3) L530, (1) L536, and (d) L540
~results issued from two different quenched field configurations
included forL524,30!. The arrows indicate the location of extrem
T0 values, observed forL520 andL540. The shift due to sample
to sample fluctuations is even smaller, and so two different sam
will have differentTc(L) but the same critical region within les
than 2%. The continuous aspect of the curves should be comp
to that of~b!. ~b! h52.1, (s) FH, and (h) FC for L524. Jumps,
metastable states, and hysteresis are clearly observed, sugg
that the transition is first order.
-
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L524,30, showing only a slight shift ofT0 . We believe that
this relatively small shift observed forT0 at a givenL is due
to thezero-total-fieldconstraint that we imposed on the sy
tem, contrary to previous works.4,5We will see later that this
shift, which may be considered small for the required pre
sion ofT0 , becomes important when performing the FSS
determineTc(`) necessary to calculate the exponentb.

On the other hand, in Fig. 1~b!, we show a magnetization
FH-FC loop for L524, h52.1. The shape of them(T)
curves is clearly different from those in Fig. 1~a!. We can
observe that FH and FC curves are coincident for high
low T ~long-range order is achieved in FC!, leaving a zone in
between which shows hysteresis along with jumps and m
stable states, suggesting that the transition might be first
der.

Energy distributions, issued from HMC calculations
T0, are shown in Fig. 2. Atlow but finitefield, the critical
region has been carefully explored~by changingT0) and
only a large single peak has been found. In Fig. 2~a! two
histograms obtained at the sameT0 , but issued from initial
random and ferromagnetic configurations, are shown.
fact that both collapse on the same single-peaked distribu
is an additional proof of the second-order nature of
transition—i.e., no hysteresis is observed—and also indic
that equilibrium is reached.

On the other hand, a double-peak distribution is obser
at higher fields@see Fig. 2~b!#, clearly indicating that the
transition is first order. However, due to the hysteresis effe
which is characteristic of a first-order transition, the resulti
structure of the histogram depends on the initial configu
tion of the system, as is also shown in Fig. 2~b!: The single-
peaked histogram is obtained at the same temperature w
the simulation starts from a ferromagnetically ordered c
figuration. This result can be schematically described by
inset of Fig. 2~b!: If the transition is first order, two histo
grams calculated at the sameT0, but starting from different
initial states, follow a different path in the state space. Wh
the initial configuration is ferromagnetic, the system follow
a path that leads it to a state represented by pointA in the
inset of Fig. 2~b!. This state is stable for the path in the spa
state the system has followed, and so we find only one p
in the histogram.

On the other hand, when the intial configuration is ra
dom the followed path will first lead the system to pointB at
T0 , where the histogram is measured. The system beco
unstable for the followed path, and so it also visits stateA. In
this case we observe a two-peak histogram. The energy
function of time curve fluctuates between the two values c
responding to the peaks of the distribution. This is clearl
characteristic of a first-order transition, and not a nonequi
rium effect.

From the above results, we conclude that there exis
tricritical point at some particular value ofT andh where a
crossover between second- and first-order behavior ta
place.

This is in contradiction to Young and Nauenberg4 who
suggested that the transition should be first order for all fin
values of field based on the fact that theg andh they cal-
culated using SMC calculations and assuming second-o
transition do not verify the Schwartz inequality.

We have performed a preliminary calculation of the cri
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cal exponents in the low-field region in order to test whet
the system follows second-order FSS laws. We have t
calculated

V1max~L !}L1/n, ~3!

V2max~L !}L1/n, ~4!

where

V1~T!5
]^m&
]b

5^mE&2^m&^E&, ~5!

V2~T!5
]^m2&

]b
5^m2E&2^m2&^E&. ~6!

E is the energy of the system andb51/kBT.

FIG. 2. ~a! Probability distribution~number of configurations
n, as a function of the energy per spin,e) for h50.5, L530. No
double-peak structure has been found in the critical region.Two
histograms issued from two simulations performed at the sameT0
but starting from ferromagnetic and random intial conditions,
spectively, collapse on the same single peaked distribution.~b! The
same forh52.1,L524; the two-peak structure is obtained when t
initial configuration is random, and the single-peaked histogram
issued from a ferromagnetically ordered initial crystal at the sa
T0. The inset shows schematically a FH-FC loop. The energie
the peaks correspond to those of pointsA andB of the inset~see
text for detailed explanation!.
r
n

In Fig. 3 we show the FSS calculation ofn issued from
Eqs. ~3! and ~4! and that ofg issued from the fit of the
log-log plot of the susceptibility maximum as a function
L:

xmax~L !}Lg/n. ~7!

Equations~3! and~4! give two estimates ofn. Its final value
is then calculated as the mean value of the two, giv
n50.6460.015. The value obtained for the susceptibil
critical exponent isg51.4660.07.

According to the Harris criterion,14 one expects the pure
3d Ising exponents to be modified by the presence of dis
der induced by the random field. This is indeed the case:
values of the critical exponents obtained from Fig. 3 a
different from those of the pure 3d Ising case13

(n I50.628960.0008, g I51.239060.071, b I50.3258
60.0044!.

We are not able to obtain an estimate forb at this stage.
This is due to the fact that to calculateb we need the critical
temperature of the infinite systemTc(`) which is usually
obtained by extrapolating theTc(L) values given by the
peaks’ positions of the different calculated quantiti
@x(T), V1(T), V2(T), etc.#. We have observed that sampl
to-sample fluctuations are more important in the precise
cation ofTc(L) than in the value of the peak itself~see Fig.
3!. Then, a good estimate ofTc(`) is very difficult to obtain.

Now, it is worthwhile to make two remarks. First, th
suggestion of Refs. 4 and 5 that the transition at low field
first order would imply that the transition at the zero-fie
limit is a tricritical point: We know that it is not true. So w
believe that the second-order transition is more plausi
Second, the critical exponents estimated above verify w
the FSS laws as seen in Fig. 3. This excludes the possib
of the transition being first order since, in this case, the
sponse functions scale as the volume of the system.15 The
fact of obtaining a slope smaller than 3 in Fig. 3, whe
g/n52.2860.06, is a clear indication of that the transition
not first order for this value of the field.

-

is
e
of

FIG. 3. Preliminary FSS calculation of critical exponentsn and
g. (s) n from Eq. ~3!, (h) n from Eq. ~4!, and (n) g from Eq.
~7!. The straight line corresponds to the linear fit. Different poin
for a given lattice correspond to different quenched disorder c
figurations.
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IV. DISCUSSION AND CONCLUSION

Our results clearly show that the RFIM with a bimod
distribution has a TCP at finiteT andh. This is consistent
with mean-field ~MF! and renormalization-group~RG!
results,3,16 which indicate that, if the probabiliy distribution
has a minimum at the origin, then a TCP exists at sufficien
low T. The MF phase diagram given by Aharony3 in four
dimensions surprisingly applies to the Ising in three dim
sions studied here: At high fields, the transition is first ord
and it becomes second order at low fields.

On the other hand, our result is in contradiction with p
vious SMC calculations,4 which suggested the transition t
be first order for all finite values ofh. We believe that this
suggestion is not plausible as discussed above.

Let us compare now our preliminary values of critic
exponents to those found by Rieger and Young5 using SMC
calculations. The difference may lie on different groun
First, they have assumed that no TCP occurs along the c
cal line (Tc ,hc) and then that the critical exponents will b
the same on that line. We believe that their numerical val
for the exponents~which vary as a function of the ratio
h/T within a considerable error! may be affected by the vi
cinity of the crossover to first-order behavior as the values
the field they have chosen are equivalent to takingh;1,
1.2, and 1.5. The possibility of having the values of the cr
cal exponents affected by the vicinity of a TCP has be
suggested by high series expansion calculations.8,9

Second, they have considered very small lattice sizes~up
to L516! and used SMC calculations. In this case, corr
tions to scaling and to FSS may be considerable. In our c
the low value of the field allows us to equilibrate larg
enough lattice sizes so as to avoid, in a first approach,
rections to FSS as discussed above. On the other hand, H
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simulations allow us to obtain all the necessary quantities
continuousfunctions of the temperature from long runs
the critical region, and so no interpolation to determine
peak of response functions is needed. Finally, Rieger
Young5 did not impose the zero-total-field condition. Th
condition was supposed to be obtained in their calculation
averaging over many different configurations. In our ca
we imposed this zero total field which assures thateach
samplehas a phase transition. This also reduces fluctuati
from sample to sample as shown in Fig. 1~a!.

It is worthwhile to notice that the problem of calculatin
critical exponents of the RFIM is far from being solved. O
preliminary values ofg agree with those given in Refs. 1
and 18 (g51.42–1.48 andg51.58–1.6, respectively!. How-
ever, there is a large spread of numerical values in the lite
ture. We believe that one of the most important sources
disagreement comes from the fact of neglecting the existe
of a TCP. In the other limit, it is also possible that, due to t
small value of the field (h50.5!, our values are affected b
the vicinity of the Ising fixed point. So further calculations
the exponents at different values ofh are necessary.

In conclusion, let us emphasize that we have found e
dence of the existence of a TCP on the (Tc ,hc) line. This
numerical simulation agrees with the MF and RG pred
tions, unlike early MC works. We believe that further calc
lations of critical exponents by multihistogram techniqu
with many quenched field distributions at differentlow-field
values and withlarge enough latticeswould be necessary to
determine if there is a RFIM universality class.
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