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Why phantom nuclei must be considered in the Johnson-Mehl-Avrami-Kolmogoroff kinetics
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In the Johnson-Mehl-Avrami-Kolmogoroff theory, the concepts of phantom nuclei and extended space,
which caused not a little confusion among investigators, isir@avoidableaccident of the theory. A straight-
forward mathematical derivation of that is presented. Besides, some interesting and important physical conse-
guences related to phantom nuclei have been investiged6d63-1827)07717-3

First-order phase transitions implying nucleation andcontain any of theN; and N, marked points, respectively
growth are often interpreted on the basis of a phenomendFig. 1).2 The probability that the point belongs to the
logical model known as Johnson-Mehl-Avrami-Kolmogoroff transformed phase is
(JMAK) theory!~® Recently, some papers appeared in the S=1-—Pa=1—e N i+Namrd) 1 _ oS @)
literature in which the suitability of employing that model 0 ’
was put under criticism. In particular, it was claimed that toS, being the “extended” surface.
take into account the phantom nucleation leads to an overes- |t can happen that a growing clustertgpe 1captures one
timation of the transformed pha$&ven though this conclu- nucleation site ofype 2before the latter starts growing. Un-
sion has been demonstrated to be incortéétinduced Van  der this circumstances the distance between the type-1 and
Siclen to find a derivation of the JMAK formula bypassing type-2 nucleation sites is lower thaifz,—z,). By defini-
the concept of extended volume and phantom ndo@iice  tion, such an event can be regarded as the creation of a
definitely established that the JMAK formula is correct, thephantom nucleation site. Let us calculate the probability a
thorough examination and clarification of some conceptuaphantom cluster be created. Let the generical poile a
points seem to be necessary so as to better understand thecleation site of type 2. As usual, the probability that at
theory and the limits of its applicability. least one point of type 1 lay in a circle of radiu&z,—z,),

In this paper we would like to close some gaps that Varcentered at the type-2-selected site is
Siclen’s work leaves open. Particularly, we focus our atten- Q.= 1 e Mamlr(z-z)] @)
tion on the unavoidable role played by the so-called “phan- ph '

tom nuclei” in the kinetic expresgion. For the sake of Sim'lncidentally, we note thaQ,,=S(z,). Equation(4) allows

plicity, in the following, two-dimensional(2D) phase gne to evaluate the number density of phantom grains, which

changes will be considered. _ is Np=N,Qpn. Thus, once the nucleation law is given for
Let us consider an infinite surface whelg points per  the entire space where the phase transition takes place, phan-

unit area, which play the role of nucleation sites from whichyoms are in principle, unavoidable. To get rid of the phan-

a 2D phase transition can start, are marked at random. Fufom clusters, one can attempt to work out the computation of

thermore, let us assume the nucleation kinetics S by considering nucleation occurring only in the uncovered
dN portion of the surface, as actually happens. Nevertheless, as a
rTi N, 8(t—2z;) + N, 8(t—2,), (1)  result of the presence of borders between the two phases, the

probability the pointc will be transformed depends upon its
6 being Dirac’s functionz,>z,, andNg=N;+N,. It goes location on the uncovered surface and, therefore, a single
without saying that both site populations are distributed atlistribution of probability does not exist for all points. The
random throughout the entire space. The growth law is givestraightforward aforementioned statistical argument cannot
in the formr=r(t—z) (i=1,2, r being the island radius be applied any longetThe easiest way to solve the kinetics
due to unimpeded growtlt,the actual time, and, the birth  is to restore the complete randomness of the system by in-
time of the cluster. According to Poisson’s distribution attroducing phantoms. As a matter of fact, even in the demon-
time t>z,, the probability a generical poirg will not be  stration proposed in Ref. 7, phantoms have been included in

transformed is equal to the nucleation rate, because the Poisson distribution has been
N N2 used.
Po=e " (Nam1tNam2), 2 The very importance of phantoms, in the mathematical

expression of the kinetics, is emphasized by the existence of
wherer;=r(t—z) (t>2z,). This is also equal to the prob- a constraint for the growth law of the clusters. Indeed, it
ability that fort<z, (i.e., when all nuclei are turned 9ftthe  happens that, for peculiar growth laws, a phantom cluster,
circles centered at and having radiug; andr, do not necessarily of type 2, might overtake the cluster of type 1,
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FIG. 1. Configuration for which the point results untrans-
formed at timet>z,. In fact, no solid symbolgtype-1 nuclej are
inside the circle of radius(t—z;) and no open symbol&ype-2
nuclej are inside the circle of radiugt—z,).

which covers it. For this to occur the growth law must satisfy
the conditionr (t—z,) <r(t—z,) that is met, for example, by
growth laws for whichdr/at<0 holds!® A kinetics that in- _
cludes such events cannot be described through the JMAK FIG. 2. Overgrowth of a phantom nucleus<(z,) (&) can give
formula, for the above-reported statistical argument wouldise to unphysical events in which tlegoint results transformed at
be no longer applicable. To make the point clearer, let ud>2 ©.

rewrite Eq.(3) (t>2z,) as

(b)

where N; , are surface densities ard<z,. By definition
S=01(1-02) +92(1—01) + 0102, (5)  theN,, nuclei are distributed at random only on the uncov-

) ered surface; consequently, the stationary condition to have a
whereg;=1—e N (i=1,2) is the probability that at least Poisson process is not met. To apply Poisson’s distribution
one of the marked pointgypei) falls in a circle, centered at the randomness on the whole surface must be restored. In
c, of radiusr;. The first two termgEq. (5)] are related to  other words, not only has the nucleation to occur in the un-
cluster configurations where has been transformed either covered surface, but even in the covered portion of the sur-
by type-1 or type-2 clusters, while the last term includesface att=z,. This is done by using what one may define a
configurations where both type of islands coeeiThe sec- local density of type-2 nuclei at=z,: N,./[1—S(z,)].
ond term on the right-hand side of &) indicates that point  Therefore, Eq(1) becomes
¢ could be transformed just because of the overgrowth of
phantom clusters, that is, because of the “occurrence” of

N
unphysical event&Fig. 2). It is worth noting that without the rTi Np8(t—2zy)+ Tza) 8(t—12z,), W)
concept of phantom clusters it would have been impossible [ (27)]
to find the limit of applicability of the kinetics, as far as the with S(z,) =0
: . . . . 1)=0.
growth law is concerned. A good discussion of this point Now we can apply Poisson's probability to obtain the

appeared recently in the literature.

Finally, consider a 2D phase transition in which nucle-
ation does not take place at preexisting nucleation sites. Such
a situation is commonly encountered in the formation of thin S—1— _ 2 N2a 2
films on solid surfaces, where clustering of adatoms occurs LT ™ N1afit 7= 2| ®)

: g [1-S(z2)]

randomly in the uncovered surfateAgain, we assume the
actual nucleation rate, per unit surface, to be in the form where the limit on the growth law, obviously, remains.

In conclusion, we showed that phantom clusters in JIMAK
kinetics not only are unavoidable, but, as a result of them,
the limit of the theory can be easily found.

kinetics

dN,
gt N1ad(t=21)+Naad(t—2,), (6)
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