
g,

PHYSICAL REVIEW B 15 MAY 1997-IIVOLUME 55, NUMBER 20
Diffraction from non-Gaussian rough surfaces
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Most diffraction theories for random rough surfaces are based on the assumption of a Gaussian height
distribution. In this paper, a diffraction theory for non-Gaussian rough surfaces is developed and the relation-
ship between the roughness parameters and the diffraction characteristics is explored. It is shown that a
non-Gaussian rough surface can dramatically alter the diffraction for (k'w)

2@1, wherek' is the momentum
transfer perpendicular to the surface andw is the interface width. However, for (k'w)

2!1, it is possible to
determine all the roughness parameters including the interface width, lateral correlation length, and the rough-
ness exponent without specifying the surface height distribution.@S0163-1829~97!06116-X#
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I. INTRODUCTION

Recently, there has been intense interest in the stud
statistically rough surfaces that are generated in proce
such as the growth and etching of thin films.1–3A fundamen-
tal understanding of the microscopic aspects of the dynam
of interface evolution is of prime interest not only for thin
film growth and material science, but also for numero
technological applications. A hypothesis of dynamic scal
has been used to describe the interface evolution. Und
far-from-equilibrium condition, the morphology of a grow
ing interface is proposed to have a self-affine form. The
terface widthw, which describes the root-mean-square s
face height fluctuation, is scaled with the finite sizeL of the
system and timet as1–3

w~L,t !5La f S t

LzD , ~1!

wherez5a/b. The scaling functionf (x) is given by

f ~x!'H xb for x!1

const for x@1
. ~2!

ForLz@t, the interface width grows with time in the form o
a power laww;tb, while for Lz!t, w;La, showing that
the interface morphology has a stationary self-affine fo
The exponentb describes the growth rate of the interfa
width. The roughness exponenta ~where 0<a<1! is a mea-
sure of the local surface roughness. The hypothesis of
namic scaling also leads to an equal-time height-height
relation of the form1–3

H~r ,t !5^@h~r ,t !2h~0,t !#2&52@w~ t !#2gS r

j~ t ! D , ~3!

wherer is the spatial vector on a surface,h(r ,t) is the sur-
face height at positionr and timet, g(x)5x2a for x!1, and
g(x)51 for x@1. Here j is called the lateral correlation
length, denoting the correlation parallel to the surfa
Within the dynamic scaling approach, different growth mo
els, such as random deposition,4–6 the Eden model,7–9 ballis-
tic deposition,10,11 the Kardar-Parisi-Zhang~KPZ! model,12
550163-1829/97/55~20!/13938~15!/$10.00
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the restricted solid-on-solid model,13 and the Molecular-
beam-epitaxy~MBE! growth model,14–17would give differ-
ent values for the exponentsa andb.

Experimentally, the most direct method to obtain surfa
roughness parameters quantitatively is to measure the he
height correlation of the surface using real-space imag
techniques, such as scanning tunneling microscopy, ato
force microscopy, secondary electron microscopy, transm
sion electron microscopy, and optical imaging techniqu
However, measurement by these methods often interrupts
growth process, which sometimes is not desirable for pra
cal purposes. Diffraction techniques, such as electron diffr
tion, x-ray diffraction, atom diffraction, and light scatterin
provide an alternative way to study the surface morpholo
quantitatively. An attractive feature of many of these tec
niques is that they can be used forin situ, real-time monitor-
ing of the growth process without interruption.18 Until now,
all the diffraction theories from self-affine random rough su
face had been based on the assumption of a Gaussian h
distribution of the random surface.19–21This assumption can
lead to some very simple asymptotic relations between
diffraction profile and the roughness parameters.19–21 These
relations are the basis for rough surface analysis
diffraction.22 However, in practice, the surface height dist
bution is not always Gaussian.

In Sec. II of this paper we discuss the existence o
non-Gaussian height distribution in various growth mode
In Sec. III, based on a mathematical theorem on the jo
distribution of a known marginal distribution function and
known correlation function, we discuss diffraction from va
ous surfaces with different height distributions. A compa
son between the Gaussian distribution and other distribut
is given. Section IV gives a short conclusion.

II. EXAMPLES OF NON-GAUSSIAN HEIGHT
DISTRIBUTIONS IN SURFACE EVOLUTION

Random rough surfaces are often treated as a resu
stochastic processes with respect tor . For a stochastic pro-
cess, it is possible for different processes to have the s
correlation function but different height distributions or vic
versa. Therefore, in order to determine the properties o
13 938 © 1997 The American Physical Society
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55 13 939DIFFRACTION FROM NON-GAUSSIAN ROUGH SURFACES
certain stochastic process, not only should the distribution
given, but also the correlation function, as well as high
order correlators. Traditionally, for surface growth, more e
phasis has been placed on the height-height correlation o
autocorrelation rather than the height distribution. Theor
cally, once both the mean and the correlation of the no
term in a linear Langevin equation are given, the heig
height correlation function can be determined. A simple
ample is the Edwards-Wilkison model4

]h

]t
5n¹2h1h~r ,t !, ~4!

wheren is the surface tension andh is the noise term. Very
often h(r ,t) is assumed to be a white noise, satisfying t
relations

^h~r ,t !&50,
~5!

^h~r ,t !h~r 8,t8!&52Dd~r2r 8!d~ t2t8!,

whereD is the fluctuation of the noise. Notice that there
no assumption about the distribution. Equation~4! can be
solved through the spatial Fourier transformation and
corresponding height-height correlation function can be
tained

H~r ,t !}E
0

1/bc
@12U~qr !#

12e22nq2t

q32d dq, ~6!

where bc is the short-scale cutoff~within an order of the
lattice constant!, U(qr)5J0(qr) for d52, and U(qr)
5cos(qr) for d51. Here J0 stands for the zeroth-orde
Bessel function. It is obvious thatH(r ,t) does not depend on
the height distribution.

If we want to know the time evolution of the distributio
of h(r ,t), a more detail assumption about the statistical ch
acteristics ofh(r ,t) should be made. As thenth-order cor-
relation of the noise termh(r ,t) is defined, the solution o
the Langevin equation would satisfy a certain master eq
tion. A very simple case is to assume thath(r ,t) is a
Gaussian-Markov process, i.e.,h(r ,t) not only satisfies Eq.
~5!, but also meets the following conditions: For oddn,

^h~r1 ,t1!h~r2 ,t2!•••h~rn ,tn!&50; ~7a!

for evenn,

^h~r1 ,t1!h~r2 ,t2!•••h~rn ,tn!&

5a1d~r12r2!d~r32r4!•••d~rn212rn!d~ t12t2!

3d~ t32t4!•••d~ tn212tn!1a2d~r12r3!

3d~r22r4!•••d~ t12t3!d~ t22t4!•••1••• ; ~7b!

i.e., the ensemble average ofn52m product ofh(r1 ,t1) is
expressed as all the possible linear combinations of 2m delta
functions. For a Gaussian-Markov process, the correspo
ing master equation can be reduced to a Fokker-Planck e
tion. If we denote byP@h(r ),t# the distribution functional of
the surface position functionh(r ), the corresponding
Fokker-Planck equation for Eq.~4! is23
e
-
-
he
i-
e
t-
-

e

e
-

r-

a-

d-
a-

]P@h,t#

]t
52nE dr

d

dh
@P¹2h#1DE dr

d2

dh2
P. ~8!

It has been proved that the solution for Eq.~8! is Gaussian.
However, if other statistical properties are satisfied@instead
of just Eq. ~7!#, then the Fokker-Planck equation will no
take the form of Eq.~8! and the distribution will not be a
Gaussian distribution.

For a nonlinear Langevin equation, even ifh(r ,t) is a
Gaussian-Markov process, the height distribution may
possess the Gaussian form. A famous example is the K
model12

]h

]t
5n¹2h1

l

2
~¹h!21h~r ,t !, ~9!

wherel is proportional to the growth rate. The appearance
the nonlinear term (¹h)2 breaks the up/down symmetry, th
symmetry of the interface fluctuations with respect to t
mean interface height, and the height distribution becom
asymmetric. The Fokker-Planck equation for Eq.~9! is

]P@h,t#

]t
52E dr

d

dh H Fn¹2h1
l

2
~¹h!2GPJ

1DE dr
d2

dh2
P. ~10!

The solution for Eq.~10! in 111 dimensions can be written
as23

P~Dh!'H expF2
~Dh!2

L G for t@Lz

expF2S uDhu
t1/3 D yG for t!Lz

. ~11!

HereDh5h2^h&; for Dh.0, y53
2, and forDh,0, y'2.5.

For evolution over a long time, the surface height reaches
steady-state Gaussian distribution, while over a short tim
is a skewed distribution.

To make it clear, we plot in Fig. 1 our results obtain
from the numerical integration of the KPZ equation in 211
dimensions with a system size of 2563256 at the initial
stage. The noise termh(r ,t) is simulated by a random nois
generator with Gaussian distribution. Figure 1~a! shows how
the surface height distribution evolved with the number
iterationst. The solid curve represents the best Gaussian
Figure 1~b! shows the skewness and kurtosis@defined later in
Eq. ~36!# versus the number of iterations. For a Gauss
distribution, the skewness is equal to 0.0 and the kurtosi
equal to 3.0, as seen fort50. However, fort.0, the skew-
ness is greater than 0.0, which shows the asymmetric di
bution of the surface height.~For 211 dimensions the heigh
distribution does not approach a steady-state Gaussian d
bution.!

Another important example is surface roughness gen
ated by Schwoebel barrier effects during MBE grow
which has been shown to possess a non-Gaussian h
distribution.24 Roughness structures generated as a resu
Schwoebel barriers effect are not self-affine and therefore
not possess the dynamic scaling properties described by
~3!. Interesting results have been obtained to describe
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13 940 55Y.-P. ZHAO, G.-C. WANG, AND T.-M. LU
diffraction characteristics of these Schwoebel-barrie
induced rough surfaces under certain diffractio
conditions.24

III. DIFFRACTION FROM NON-GAUSSIAN DISTRIBUTED
RANDOM ROUGH SURFACE

In general, the diffraction profile can be written as21

S~k!5E d2r C~k' ,r !eiki•r, ~12!

whereki and k' are momentum transfers parallel and per
pendicular to the surface, respectively, andC(k' ,r ) is called
the height difference function, defined as

FIG. 1. ~a! Evolution of surface height distribution as the num
ber of iterationst for the KPZ model in the~211!-dimensional
case: numerical results.~b! Higher-order moment coefficient skew-
ness and kurtosis versus the number of iterationst in the KPZ
model in the~211!-dimensional case.
-

-

C~k' ,r !5^eik'@h~r1r!2h~r!#&, ~13!

wherer is a position vector on the surface. If we deno
h(r1r)2h(r) asz, it is clear thatC(k' ,r ) is the charac-
teristic function of the distribution ofz. In order to calculate
C(k' ,r ) and the distribution ofz, one needs to know the
joint distribution functionf J of h(r1r) andh(r). As dis-
cussed above, the direct method to do this is to create
corresponding master or Fokker-Planck equation from
known Langevin equation and then to obtain the height d
tribution and related joint distribution by solving the equ
tion. However, solving the master or Fokker-Planck equat
is not trivial due to the various distributions of noise a
nonlinearity. It is even harder to get an analytical solution
simpler way is to make assumptions about the height dis
butions. Since we only consider the self-affine surface,
autocorrelation function is already known through Eq.~3!.
The problem reduces to finding the joint distributionf J given
the height distribution and the correlation function. Th
problem has been attacked by many people over the pas
years.25–27 Beckmann summarizes those results as the
lowing theorem.27

Theorem. Let X andY be two identically distributed ran
dom variables with given probability densityf (x) and given
correlation coefficientR(r )>0 and letX andY be indepen-
dent forR50. If f (x) is proportional to the weighting func
tion of one of the standard classical system of orthogo
polynomials$Qn%, then the joint density ofX andY is

f J~x,y;R!5 f ~x! f ~y! (
n50

`
Rn~r !

hn
2 Qn~x!Qn~y!, ~14!

where

E
a

b

f ~x!Qn~x!Qm~x!dx5hn
2dnm , ~15a!

R~r !5
^xy&2^x&^y&

A~^x2&2^x&2!~^y2&2^y&2!
. ~15b!

R(r ) is also called the autocorrelation function whenx and
y are random variables of the same random process. Her
propose another method that starts from the general o
variable Langevin equation and obtained a slightly differe
expression from Eq.~14!. Appendix A shows the detailed
deduction. Then Eq.~14! can be modified as

f J~x,y;R!5 f ~x! f ~y! (
n50

`
R~r !ln /l1

hn
2 Qn~x!Qn~y!, ~16!

whereln is the eigenvalue ofQn(x) for the corresponding
eigenequation. The only difference between Eqs.~16! and
~14! is that the powern of R in Eq. ~14! is changed to the
eigenvalue ofQn(x) for the corresponding eigenequatio
However, the proof of Eq.~16! is more general than that o
Ref. 27.

For the self-affine surface, the height-height correlat
functionH(r ) and the autocorrelation functionR(r ) are re-
lated according to the equation

H~r !52w2@12R~r !#. ~17!
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TABLE I. Summary of the basic results of different height distributions.

Distribution
Height distribution
function f (x)

Variance
Š@x2^x&#2‹

Height difference distribution function
p(z,r )

Height difference function
C(k' ,r )

Gaussian 1

A2pw
expS2 x2

2w2D w2
1

2wAp~12R!
expS2 z2

4w2~12R!D
exp@21

2k'
2H(r )]

exponential 1

w
expS2 x

wD w2
1

2wA12R
expS2

uzu

wA12R
D 1

11
1
2k'

2H~r !

G 1

G~k11!sk11 x
ke2x/s

(k11)s2
1

G~k11!sAp~12R!k11 S zA12R

2s D k11/2

3Kk11/2S z

sA12R
D

1

S 11
k'
2H~r !

2~k11!
D k11

uniform 1

2a

a2

3
1

4a2 (
n50

`

~2n11!Rn~n11!/2

3E
x1

x2
PnS y1z

a DPnS yaDdy
p

2k'a
(
n50

`

~2n11!

3Rn~n11!/2Jn11/2
2 ~k'a!

Rayleigh x

s2 expS2 x2

2s2D 42p

2
s2 E

0

` y~y1z!

s4~12R!
expS2 y21~z1y!2

2s2~12R! D
3I0Sy~y1z!AR

s2~12R!
D dy

(
n50

`
pk's2

2 F S 2
1

2D
n
G2

Rn
2F2

2S 32 , 32 , 32 , 322n;2
k'
2s2

2 D
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It is clear that forr→0, R→1, and for r→`, R→0, i.e.,
R satisfies the condition stated in the theorem. If we den
x ash(r1r), y ash(r), and f (x) as the weighting function
of a system of classical polynomialsQn , then the joint dis-
tribution f J is given by Eq.~16!. The distribution ofz(r )
(5x2y) ~height difference distribution! is expressed as

p~z,r !5E f J„y1z,y;R~r !…dy. ~18!

With this definition,C(k' ,r ) can be written as

C~k' ,r !5E p~z,r !eik'zdz ~19!

or

C~k' ,r !5E E f J„x,y;R~r !…eik'~x2y!dx dy

5 (
n50

`
R~r !ln /l1

hn
2 U E f ~x!Qn~x!eik'xdxU2. ~20!

The derivation ofp(z,r ) andC(k' ,r ) for various continu-
ous and discrete distributions is given in Appendix B and
results are summarized in Table I.

A. The height difference distribution p„z,r …
and height difference functionC„k' ,r …

Table I shows that, for the Gaussian height distributi
the height differencez(r ) also obeys a Gaussian distributio
te

e

,

with the variance associated with the autocorrelation coe
cient R. For exponential height distribution„G(0,x)…, the
height differencez(r ) is also an exponential distribution wit
z(r ) ranging from2` to 1`, while x ranges from 0 to1`.
The height difference distribution for aG height distribution
is aK distribution @see Eq.~B24! in Appendix B#. As seen
from Table I, all the variances for the height difference d
tribution are modified by the autocorrelation coefficientR.
We plot in Figs. 2 and 3 various height distributions and t
corresponding height difference distributions with the sa
standard deviation andR50.5. The Gaussian distribution i
symmetric with respect to its mean and has nonzero e
central moments and no odd central moments. TheG distri-
butions are not symmetric with respect to their mean, es
cially for k50, which is the same as the exponential dist
bution. They are the skewed distributions with nonzero o
central moments. However, the height difference distrib
tions are symmetric with the means equal to zero. The gr
est difference between the Gaussian distribution andG dis-
tribution with respect to their height difference distributio
is that p(z,r ) for the G distribution has higher probability
aroundz50, narrower distribution width, and a longer ta
than that for the Gaussian distribution. As we shall see la
this difference will have a more dramatic effect in the d
fraction profiles at largek' .

The height difference functionC(k' ,r ) also takes differ-
ent forms for different height distributions as seen in Table
C(k' ,r ) is a function ofH(r ), the height-height correlation
function. DenotingV5(k'w)

2, we have
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13 942 55Y.-P. ZHAO, G.-C. WANG, AND T.-M. LU
C~k' ,r !5F„Vg~r /j!…, ~21!

whereg(x) is the scaling function, which we would like t
take the form suggested by Sinha, Sirota, and Garoff,19

g~x!512e2x2a
. ~22!

The plot ofC(k' ,r ) for V!1 andV@1 for different height
distributions is shown in Figs. 4~a! and 4~b!. Here we assume
a50.75 andj55.0. ForV!1 the differences inC(k' ,r ) for
various distributions are very small, while forV@1 the dif-
ferences are more obvious. In fact, from Table I forV!1 all
the height difference functionsC(k' ,r ) can be approxi-
mated by

FIG. 3. Height difference distributionsp(z,r ) for different sur-
face height distributions.

FIG. 2. Surface height distributionf (x) for different statistical
models: Gaussian andG distributions.
C~k' ,r !'12 1
2k'

2H~r !. ~23!

As long asH(r ) is the same,C(k' ,r ) will be the same no
matter what the height distribution is. Actually, Eq.~23! can
be derived directly from the definition ofC(k' ,r ) in Eq.
~13!. This is a very useful result as we shall discuss later.
V@1 higher-order moments in Eq.~13! will take effect.
These moments depend on the height distribution as s
from Eq. ~20!. For a Gaussian height distributionC(k' ,r )
decreases very fast as a function ofr , while for aG height
distribution the decrease is slower, as shown in Fig. 5. T
abrupt decrease ofC(k' ,r ) for the Gaussian height distribu
tion gives more higher-frequency terms in the Fourier tra
form and the diffuse profile would be much broader than t
obtained from theG distributions, as to be seen later in Fi
12.

For the discrete surface such as steps, we compare
Gaussian height distribution and Poisson height distributi
As shown in Fig. 6, the Poisson distribution is also a skew
distribution with nonzero odd moments. As the standard
viation a increases, the distribution becomes more symm
ric. The height difference distribution for the Poisson heig

FIG. 4. Height difference functionC(k' ,r ) for different height
distributions:~a! V!1 and~b! V@1.
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55 13 943DIFFRACTION FROM NON-GAUSSIAN ROUGH SURFACES
distribution is the modified Bessel function with respect
the order ofn. In Fig. 7 we plot the height difference distr
bution p(z,r ) for both Gaussian and Poisson distributio
with a variance of 4.0. Like theG distribution for the con-
tinuous surface,p(z,r ) for Poisson distribution has a longe
tail than that for the Gaussian distribution. As discussed
Ref. 21, the discrete lattice effect has a significant con
quence on the height difference function. In the continuo
surface case, Eq.~21! shows that the height difference fun
tion C(k' ,r ) is a function ofV, in which k' andw play a
similar role inC(k' ,r ). But for the discrete surfacek' and
w do not play the same role inC(k' ,r ). For the Poisson
distribution, in Appendix A we show that

C~k' ,r !5e2H~r !~12cosF!, ~24!

where phaseF5k'c and c is the lattice constant. For th
Gaussian distribution we have3

C~k' ,r !5

(
m52`

1`

e2~1/2!H~r !~F22pm!2

(
m52`

1`

e2~1/2!H~r !~2pm!2

. ~25!

FIG. 5. Change of the height difference functionC(k' ,r ) with
respect to differentV (5k'

2w2) values.

FIG. 6. Poisson distribution with various variancesa. Here the
surface heightn is in the units of the lattice constant.
n
e-
s

Both Eqs.~24! and ~25! indicate thatC(k' ,r ) is a periodic
function ofk' and it decays exponentially withw2, which is
imbedded inH(r ). The periodic oscillatory behavior o
C(k' ,r ) for both Gaussian and Poisson distributions is pl
ted in Fig. 8 as a function ofF/p. If we denote@F# as
F mod 2p such that2p<@F#<p, then, under the near in
phase condition for Poisson height distribution,

C~k' ,r !'e2~1/2!H~r !@F#2, ~26!

which is the same as for Gaussian height distribution.21 In
Fig. 9 we plot the height difference functionC(k' ,r ) for
both distributions as a function ofr . Even in the case of
V@1 for the continuous surface, as long as the near in-ph
condition is satisfied,C(k' ,r ) for both distributions are the
same. Under the near out-of-phase condition for the Pois
distribution

C~k' ,r !'e22H~r !1~1/2!H~r !~p2u@F#u!2. ~27!

FIG. 7. Height difference distributionp(z,r ) in the discrete lat-
tice with different height distributions.

FIG. 8. Oscillatory behavior of the height difference functio
C(k' ,r ) as a function of phaseF in the discrete lattice case fo
different height distributions and interface widths.
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13 944 55Y.-P. ZHAO, G.-C. WANG, AND T.-M. LU
This equation is different from that obtained from the Gau
ian distribution21

C~k' ,r !'e~1/2!H~r !@F#21e2~1/2!H~r !~2p2@F#2!. ~28!

Figure 10 shows the difference between these two distr
tions. Notice that for the case of (k'w)

2!1, which isV!1
for the continuous surface, as long as the near out-of-ph
condition is satisfied,C(k' ,r ) for both distributions are dif-
ferent. The deviation in the oscillation behavior in Fig. 8 f
different height distributions also originates from Eqs.~27!
and ~28!.

B. The diffraction profile S„k…

The height difference functionC(k' ,r ) can be broken
into two parts

FIG. 9. Height difference functionC(k' ,r ) for different height
distributions under the near in-phase condition.

FIG. 10. Height difference functionC(k' ,r ) for different
height distributions under the near out-of-phase condition.
-

u-

se

C~k' ,r !5C~k' ,`!1DC~k' ,r !, ~29!

where C(k' ,`)5 lim r→`C(k' ,r ). As lim r→`R(r )50,
only the zeroth-order term in Eq.~20! survives. For classic
orthogonal polynomialsQ051, h0

251, andl050, we have

C~k' ,`!5U E f ~x!eik'xdxU2. ~30!

Therefore, the diffraction profileS(ki) can be written as

S~ki!5Sd~ki ,k'!1Sdiff~ki ,k'!, ~31!

where

Sd~ki ,k'!5~2p!2C~k' ,`!d~ki!

5~2p!2U E f ~x!eik'xdxU2d~ki! ~32!

and

Sdiff~ki ,k'!5E E eiki•rd2r(
n51

`
R~r !ln /l1

hn
2

3U E f ~x!Qn~x!eik'xdxU2

5 (
n51

`
1

hn
2 U E f ~x!Qn~x!eik'xdxU2

3E E R~r !ln /l1eiki•rd2r . ~33!

From Eqs.~32! and ~33!, it is clear that thed-peak intensity
of the diffraction profile depends on the characteristic fun
tion of the surface height distribution and the diffuse profi
depends on both the distribution and the correlation fu
tions of surface height. If we think of the total diffuse profi
as the sum of many small diffuse profiles, then for ea
small diffuse profile, the surface height distributionf (x) de-
termines the peak intensity and the correlation funct
R(r ) determines the shape of the diffuse profile.

1. The intensity of thed peak

Thed-peak intensity is proportional to the square modu
of the characteristic function of the height distributio
f (x). For different height distributions, thed-peak intensity
has a different relation tok' , as seen in Table II. As

E f ~x!eik'xdx5 (
m50

`
nm
m!

~ ik'!m, ~34!

wherenm is themth-order moment off (x) about the origin,
we have

C~k' ,`!5F (
m50

`

~21!m
n2m

~2m!!
k'
2mG2

1F (
m50

`

~21!m
n2m11

~2m11!!
k'
2m11G2. ~35!

For symmetric height distributions about zero, only the fi
term on the right-hand side exists. But for asymmetric hei
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distributions, the second term, i.e., the odd terms on
right-hand side, should be taken into account. If^x&50 for
V,1, thed-peak intensity can be written as

C~k' ,`!'~12 1
2k'

2w21 1
24k4k'

4w42 1
720k6k'

6w6!2

1 1
36k3

2k'
6w6

'12k'
2w21~ 1

41 1
12k4!k'

4w41~ 1
36k3

22 1
24k4

2 1
360k6!k'

6w6, ~36!

wherekm5nm /w
m for m.2. k3 is called the skewness an

k4 is called the kurtosis. The more asymmetric the hei
distribution, the greater the contribution from the odd m
ments and the more deviation from the Gaussian distribut

The total integrated intensity of thed peakI d is

I d5E Sd~ki ,k'!d2ki5~2p!2U E f ~x!eik'xdxU2. ~37!

Figure 11 shows thed-peak intensity as a function ofV for
different distributions. For theG distribution, ask becomes
larger and larger, the distribution is more like a Gauss

TABLE II. d-peak intensity for different height distributions.

Distribution d-peak intensity

Gaussian exp(2k'
2w2)

exponential 1

11k'
2w2

G 1

~11k'
2s2!k11

uniform sin2~k'a!

k'
2a2

Rayleigh U1F1S12,12;2 k'
2s2

2 DU2

FIG. 11. d-peak intensity versusV (5k'
2w2) for different

height distributions.
e

t
-
n.

n

distribution and the results are closer to that obtained fr
the Gaussian distribution. The total integrated intensityI of
the whole scattering field is

I5E S~ki ,k'!d2ki5~2p!2. ~38!

Then

Rd5
I d

I
5U E f ~x!eik'xdxU2 ~39!

and

Rdiff512
I d

I
512U E f ~x!eik'xdxU2. ~40!

One often usesRd to determine interface widthw through
the relation3

Rd5e2k'
2w2, ~41!

which was derived based on the assumption of a Gaus
height distribution. However, in general, the relation b
tweenRd andw also depends on the height distribution
seen from Table II and Fig. 11. If the surface height
longer has a Gaussian distribution, Eq.~41! should be modi-
fied according to the height characteristic function. On
whenV!1, Eq. ~41! approximately holds for all kinds o
distributions andRd has the same result for different distr
butions.

In fact, we can extend Eqs.~39! and~40! to a surface with
any height distribution as long as the surface is self-affi
As r→`, R→0, which means thatx andy are two indepen-
dent random variables but the associated distribution fu
tions f (x) and f (y) are the same. So the joint distributio
can be simply written as

f J~x,y;R→0!5 f ~x! f ~y!. ~42!

Therefore, Eqs.~39! and~40! exist for any self-affine surface
with an arbitrary height distribution. Equation~39! shows
thatRd actually is only related to the characteristic functio
of the surface height distribution. Then two important resu
can be drawn from the discussion above.

~i! If we assume that the surface height distribution is
symmetric distribution, Eq.~39! becomes

Rd~k'!5U E f ~x!cos~k'x!dxU2. ~43!

By changing the incident angle of the incoming beam w
respect to the surface normal, thek' changes correspond
ingly and one can obtain the characteristic function of
height distribution through Eq.~43!. Then an inverse Fourie
cosine transformation of the characteristic functi
Rd(k')

1/2 will give the surface height distribution. This give
a possible way to obtain the surface height distribution
diffraction.

~ii ! Equation ~39! also gives us a method to determin
whether or not the surface height obeys a Gaussian distr
tion. Since for a surface with Gaussian distribution the ch
acteristic function is also a Gaussian function with respec
k' @Eq. ~41!#, one can always plot log@Rd(k')# versusk'

2 in a



h
it i

an

th

s
lf
nt

o

pe-
.
are
stic

of
f-

-
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linear coordinate. If the plot is a straight line, the heig
distribution should be a Gaussian distribution; otherwise,
a non-Gaussian distribution.

2. Diffuse profile

Equation~33! can be written as

Sdiff52p (
n51

`
1

hn
2 U E f ~x!Qn~x!eik'xdxU2

3E
0

`

r R~r !ln /l1J0~kir !dr. ~44!

Two cases should be discussed:V!1 andV@1.
~a! V!1. ForV!1, first we need to prove that

U E f ~x!Qn~x!eik'xdxU2;O~Vn!. ~45!

It is well known that for general orthogonal polynomials,
arbitrary polynomial ofnth degree can be expressed as
linear combination ofQ0(x), Q1(x),...,Qn(x).

25 Then

E f ~x!Qn~x!eik'xdx

5 (
m50

`
~ ik'!m

m! E f ~x!Qn~x!xmdx

5 (
m5n

`
~ ik'!m

m! E f ~x!Qn~x!xmdx

5 (
m50

`
~ ik'!n1m

~n1m!! (
j50

n

ajE f ~x!xn1 j1mdx

5 (
m50

`

(
j50

n
~ ik !n1m

~n1m!!
ajnn1 j1m ,

wherenk is thekth-order moment off (x). Since

nk5kkw
k, ~46!

u* f (x)Qn(x)e
ik'xdxu2;O(Vn). Then forV!1, the diffuse

profile

Sdiff'
2p

h1
2 U E f ~x!Q1~x!eik'xdxU2E

0

`

r R~r !J0~kir !dr.

~47!

The shape of the diffuse profile is mainly determined by
integral *0

`r R(r )J0(kir )dr, which is proportional to the
power spectrum̂ uh(ki)u2& of the surface height and ha
nothing to do with the surface height distribution. For a se
affine surface, aK-correlation model proposed by Palasa
zas gives28

^uh~ki!u2&5
A

~2p!5
w2j2

~11bki
2j2!11a , ~48!

where A is the surface area andb5@12(1
1bQc

2j2)2a#/2a. HereQc is the stopping frequency due t
the atomic spacing. Equation~48! shows that the full width
t
s

a

e

-
-

at half maximum~FWHM! of the diffuse profile is inversely
proportional to the lateral correlation lengthj, and for
ki@1,

^uh~ki!u2&}ki
2222a . ~49!

Equation~48! gives the possibility of determiningj anda
through the diffuse profile.

However, the diffuse peak intensity depends on the s
cific height distributions as listed in Table III. In fact, Eq
~47! shows that the diffuse peak intensity is the squ
modulus of the product of the surface height characteri
function and its first-order derivative.

~b! V@1. In this case, other terms in the summation
Eq. ~33! will affect the diffuse profile. If we assume a sel
affine surface and expressR(r ) ase2(r /j)2a

, then for both the
Gaussian distribution and theG distribution, asln5n, we
have

E
0

`

r R~r !nJ0~kir !dr

5j2n21/aE
0

`

X exp~2X2a!J0~kijn21/2aX!dX

5j2n21/aE
0

`

X exp~2X2a!dX

3 (
m50

`
~21!m

~m! !2 S kijX

2 D 2mn2m/a; ~50!

so

Sdiff52pj2 (
m50

`
~21!m

~m! !2 E
0

`

X exp~2X2a!S kijX

2 D 2mdX
3F (

n51

`
1

hn
2 n

2~m11!/aU E f ~x!Qn~x!eik'xdxU2G .
~51!

TABLE III. Diffuse peak intensity for different height distribu
tions ~V!1!.

Distribution Diffuse peak intensity

Gaussian k'
2w2j2 exp(2k'

2w2)

exponential k'
2w2j2

~11k'
2w2!2

G
~k11!

k'
2s2j2

~11k'
2s2!k12

uniform 3pj2

2k'a
J3/2
2 ~k'a!

Rayleigh p

8
k'
2s2j2 2F2

2S 32 , 32 ; 32 , 12 ;2 k'
2s2

2 D
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The asymptotic form for summation in the square bra
ets is different for different height distributions. For Gaus
ian height distribution21

@ #5 (
n51

`
n2~m11!/a

n!
~k'

2w2!n exp~2k'
2w2!

'~k'
2w2!2~m11!/a for V@1. ~52!

Then

Sdiff'2pj2V21/aE
0

`

X exp~2X2a!J0~kijV21/2aX!dX.

~53!

For the exponential height distribution

@ #5 (
n51

`
~k'

2w2!n

~11k'
2w2!n11 n

2~m11!/a

'
1

11k'
2w2 (

n51

`

n2~m11!/a5
1

11V
zSm11

a D , ~54!

wherez(x) is the Riemann zeta function. Forx@1 one has29

z~x!'22x11, ~55!

which leads to

Sdiff'
2pj2

11V F E
0

`

X exp~2X2a!J0~kijX!dX

1221/aE
0

`

X exp~2X2a!J0~2
21/2akijX!dXG .

~56!

It is clear that different height distributions give differe
asymptotic results. For Gaussian distribution, the diffu
peak intensityI D}(k')

22/a and also the FWHM is propor
tional to (k')

1/a. Due to these two relations, one can deri
the roughness exponenta. However, for exponential heigh
distribution, there is no such relation and one cannot obtaa
using these relations obtained from Gaussian distribut
Figure 12 shows the FWHM of the diffuse profile as a fun
tion of k' for different a values and for different heigh
distributions. Here we assume thatw50.5 andj55.0. For
k'!1 both the Gaussian height distribution and the ex
nential distribution give the same FWHM, while fork'@1
they have different behaviors. For the Gaussian distribut
the FWHM diverges ask' goes to infinity; for the exponen
tial distribution, the FWHM will be bounded by a certa
value. These results show that caution should be taken w
one wants to determinea through the relations obtained un
der the assumption of the Gaussian height distribution.

IV. CONCLUSION

One question is immediately raised here: How accur
can the diffraction technique be used to estimate the gro
kinetics without the knowledge of the surface height dis
bution? ForV!1, as roughness parameters individually
fect the density and shape of the diffraction profiles, one
obtain the interface widthw, lateral correlation lengthj, and
-
-

e

n.
-

-

n,

en

te
th
-
-
n

roughness exponenta through Eqs.~41!, ~48!, and~49! with-
out any specific assumption about the surface height di
bution. However, forV@1, as the diffuse profile depends o
both the surface height distribution and the correlation fu
tion, the relations between roughness parameters and dif
tion profiles are much more complicated and depend v
much on the surface height distribution. There is no gene
way to determine the roughness parameters.

If one uses the inverse Fourier transform to determine
height-height correlation functionH(r ) from the diffraction
profiles,30 the same problem also can arise since differ
height distributions give different forms ofC(k' ,r ), as dis-
cussed above. However, forV!1 the approximation
C(k' ,r )'12 1

2k'
2H(r ) always holds without any specifi

assumption about the height distribution and one can ob
the height-height correlation function directly without th
knowledge of the distribution.
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APPENDIX A

A general single variable Langevin equation takes
form31

dx

dr
5h~x,r !1g~x,r !h~r !, ~A1!

whereh(r ) is a Gaussian-Markov process, satisfying

^h~r !&50,
~A2!

^h~r !h~r 8!&52d~r2r 8!.

Here we adopt the Stratonovich interpretation of Eq.~A1!.
The corresponding Fokker-Planck equation for Eq.~A1! is

FIG. 12. FWHM of the diffuse profile versusk' for different
height distributions.
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]P~xux0 ;r !

]r
52

]

]x
@A~x,r !P~xux0 ;r !#

1
]2

]x2
@B~x,r !P~xux0 ;r !#, ~A3!

where

A~x,r !5h~x,r !1g~x,r !
]g~x,r !

]x
, ~A4!

B~x,r !5g2~x,r !, ~A5!

P(xux0 ;r ) is the condition probability density, andx and
x0 are separated by distancer . We now consider the solution
of Eq. ~A3! corresponding to an initial value

P~xux0 ;r50!5d~x2x0! ~A6!

and the reflecting barriers boundary conditions

]

]x
@B~x,r !P#2A~x,r !P50 at x5x1 ,x2 . ~A7!

A further assumption can be made concerning coefficie
A(x,r ) andB(x,r ):

A~x,r !5A~x!F~r !,
~A8!

B~x,r !5B~x!F~r !.

Then Eq.~A3! can be solved by a separation of variables. L

P~xux0 ;r !5X~x!T~r !. ~A9!

We have

dT

dr
52lF~r !T~r !, ~A10!

d2

dx2
@B~x!X~x!#2

d

dx
@A~x!X~x!#1lX~x!50.

~A11!

The solution for Eq.~A10! is obvious:

T~r !5T~0!expS 2lE
0

r

F~r !dr D . ~A12!

Equation~A11! is an eigenvalue problem of the second-ord
ordinary differential equation. We can give some spec
form of A(x) andB(x) and Eq.~A11! can be changed to
Sturm-Liouville equation. Let

B~x!5b~cx21dx1e!, ~A13!

A~x!5
dB~x!

dx
1b~ax1b!, ~A14!

and

dW~x!

dx
5

ax1b

cx21dx1c
W~x! ~Pearson equation!.

~A15!
ts

t

r
l

Then Eq.~A11! becomes a standard Sturm-Liouville equ
tion

d

dx FB~x!W~x!
dX

dxG1lW~x!X50 ~A16!

and the boundary condition is

B~x!W~x!
dX

dx
50, x5x1 ,x2 . ~A17!

So the general solution for Eq.~A3! is

P~xux0 ;r !5W~x!(
n

expS 2lnE
0

r

F~r !dr DQn~x!Qn~x0!,

~A18!

whereQn(x) is the eigenfunction of Eqs.~A16! and ~A17!
andln is the corresponding eigenvalue.Qn satisfies the nor-
malized relation

E
x1

x2
W~x!Qn~x!Qm~x!dx5dnm . ~A19!

In fact,Qn(x) is the classical orthogonal polynomial. If th
probability density forx0 is given asW(x0), then the joint
distribution forx andx0 is

P~x,x0 ;r !5W~x!W~x0!(
n

R̄lnQn~x!Qn~x0!,

~A20!

where

R̄~r !5expS 2E
0

r

F~r !dr D . ~A21!

The correlation functionR(r ) is given as

R~r !5R̄~r !l1. ~A22!

APPENDIX B

The individual height distributions are discussed below

1. Continuous surfaces

„a… Gaussian distribution

If the surface height obeys the Gaussian distribution,

f ~x!5
1

A2pw
expS 2

x2

2w2D . ~B1!

Equation~B1! is the weighting function of Hermite polyno
mialsHn(x):

E
2`

` 1

A2pw
expS 2

x2

2w2DHnS x

A2wDHmS x

A2wD dx
52nn!dnm , ~B2!

e.g.,

hn
252nn!. ~B3!

The eigenvalueln5n. So
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f J~x,y;R!5
1

2pw2 expS 2
x21y2

2w2 D
3 (

n50

`
Rn

2nn!
Hn S x

A2wDHnS y

A2wD . ~B4!

As

(
n50

`
tn

2nn!
Hn~x!Hn~y!

5~12t2!21/2 expS 2xyt2~x21y2!t2

12t2 D , ~B5!

the joint distribution for Gaussian height distribution is

f J~x,y;R!5
1

2pw2A12R2
expS 2

x21y222xyR

2w2~12R2! D . ~B6!

This is the well-known joint distribution function for Gaus
ian process. According to Eq.~5!, the height difference dis
tribution is

p~z,r !5
1

2wAp~12R!
expS 2

z2

4w2~12R! D . ~B7!

Equation ~B7! indicates that the height differencez also
obeys the Gaussian distribution. From the definition
height-height correlation functionH(r ),

H~r !5^@h~r !2h~0!#2&52w2~12R!, ~B8!

one has

p~z,r !5
1

A2pH~r !
expS 2

z2

2H~r ! D ~B9!

and the height difference function

C~k' ,r !5exp@2 1
2k'

2H~r !#. ~B10!

„b… Exponential distribution

The exponential distribution

f ~x!5
1

w
expS 2

x

wD , x>0. ~B11!

This is an asymmetric distribution and its corresponding
thogonal polynomials are Laguerre polynomialsLn(x):

hn
25E

0

` 1

w
expS 2

x

wDLnS xwDLnS xwDdx51. ~B12!

The corresponding eigenvalueln5n. Therefore,

f J~x,y;R!5
1

w2 expS 2
x1y

w D (
n50

`

RnLnS xwDLnS ywD .
~B13!

As
f

-

(
n50

`

Ln~x!Ln~y!tn5
1

12t
expS 2t

x1y

12t D I 0S 2Axyt12t D ,
~B14!

where I 0(x) is the zeroth-order modified Bessel functio
Then

f J~x,y;R!5
1

w2~12R!
expS 2

x1y

w~12R! D I 0S 2AxyR
w~12R!

D .
~B15!

Therefore,

p~z,r !5E
0

` 1

w2~12R!
expS 2

z12y

w~12R! D
3I 0S 2A~y1z!yR

w~12R!
D dy

5
1

2wA12R
expS 2

uzu

sA12R
D , ~B16!

i.e.,

p~z,r !5
1

2wA12R
expS 2

uzu

wA12R
D , 2`<z<`.

~B17!

This means that the height difference distribution is still e
ponential, but it becomes symmetric. In this case,

C~k' ,r !5
1

11 1
2k'

2H~r !
. ~B18!

This is different from that of the Gaussian distribution.

„c… G distribution

TheG distribution

f ~x!5
1

G~k11!sk11 x
ke2x/s, x>0. ~B19!

This is the weighting function of associated Laguerre po
nomials:

hn
25E

0

` 1

G~k11!sk11 x
k expS 2

x

s DLn~k!S xs DLn~k!S xs Ddx
5

G~n1k11!

G~k11!G~n11!
. ~B20!

The corresponding eigenvalueln5n. The joint distribution
is

f J~x,y;R!5
1

G~k11!s2k12 ~xy!k expS 2
x1y

s D
3 (

n50

`
G~n11!

G~n1k11!
RnLn

~k!S xs DLn~k!S ys D
~B21!

and



n

r-

in

ials

e

13 950 55Y.-P. ZHAO, G.-C. WANG, AND T.-M. LU
(
n50

`
G~n11!Rn

G~n1k11!
Ln

~k!~x!Ln
~k!~y!

5
1

~xyR!k/2~12R!
expS 2R

x1y

12RD I kS 2AxyR12R D ,
~B22!

whereI k(x) is thekth-order modified Bessel function. The

f J~x,y;R!5
1

G~k11!sk12~12R!Rk/2 ~xy!k/2

3expS 2
x1y

s~12R! D I kS 2AxyR
s~12R!

D . ~B23!

The height difference distribution is calculated as

p~z,r !5
1

G~k11!sAp~12R!k11 S zA12R

2s D k11/2

3Kk11/2S z

sA12R
D , ~B24!

whereKn is a modified Bessel function. The height diffe
ence function is then

C~k' ,r !5
1

@11k'
2s2~12R!#k11 . ~B25!

Note that for this distribution, the interface widthw is ex-
pressed as

w25~k11!s2. ~B26!

Therefore,

C~k' ,r !5
1

S 11
k'
2H~r !

2~k11!
D k11 . ~B27!

The exponential distribution is a special case whenk50.

„d… Rayleigh distribution

The Rayleigh distribution

f ~x!5
x

w2 expS 2
x2

2w2D , x>0. ~B28!

This is also an asymmetric distribution. The correspond
orthogonal polynomials are Laguerre polynomialsLn(x):

hn
25E

0

` x

w2 expS 2
x2

2w2DLnS x2

2w2DLnS x2

2w2Ddx51.

~B29!

The joint distribution is

f J~x,y;R!5
xy

s4 expS 2
x21y2

2s2 D (
n50

`

RnLnS x2

2s2DLnS y2

2s2D .
~B30!
g

According to Eq.~B14!,

f J~x,y;R!5
xy

w4~12R!
expS 2

x21y2

w2~12R! D I 0S 2xyAR
w2~12R!

D .
~B31!

Therefore,

p~z,r !5E
0

` y~y1z!

w4~12R!
expS 2

y21~z1y!2

2w2~12R! D
3I 0S y~y1z!AR

w2~12R!
D dy ~B32!

and

C~k' ,r !5 (
n50

`
pk'w

2

2 F S 2
1

2D
n
G2

3Rn
2F2

2S 32 , 32 ; 32 , 322n;2
k'
2w2

2 D ,
~B33!

where 2F2(a;b;g;h;z) is a hypergeometric function.

„e… Uniform distribution

The uniform distribution

f ~x!5
1

2a
, 2a<x<a. ~B34!

The corresponding polynomials are Legendre polynom
Pn(x):

hn
25E

2a

a 1

2a
PnS xaDPnS xaDdx5

1

2a
. ~B35!

The corresponding eigenvalueln5n(n11). The joint dis-
tribution is

f J~x,y;R!5
1

4a2 (
n50

`

~2n11!Rn~n11!/2PnS xaDPnS yaD .
~B36!

The height difference distribution is

p~z,r !5
1

4a2 (
n50

`

~2n11!Rn~n11!/2

3E
x1

x2
PnS y1z

a DPnS yaDdy, ~B37!

where x1 and x2 are the integration boundaries:x1
5max@2a2z,2a# andx25min@a2z,a#. The range ofz is
from 22a to 2a. The height difference function is therefor
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C~k' ,r !5
p

2k'a
(
n50

`

~2n11!Rn~n11!/2Jn11/2
2 ~k'a!.

~B38!

2. Discrete surface

We consider the Poisson distribution

f ~x!5
e2aax

x!
, x50,1,2,..., a.0. ~B39!

The corresponding orthogonal polynomials are Char
polynomials, defined as32

Cn~x,a!5a2nLn
~x2n!~a!, ~B40!

whereLn
(x2n)(a) is associated Laguerre polynomial. The o

thogonal relation is given by

(
x50

`

f ~x!Cn~x,a!Cm~x,a!5
a2n

n!
dnm . ~B41!

Therefore,

hn
25

a2n

n!
. ~B42!

The joint distribution function is

f J~x,y;R!5
e22aax1y

x!y! (
n50

` SRa D nn!Ln~x2n!~a!Ln
~y2n!~a!

~B43!

and

(
k50

`

k! tkLk
~a2k!~x!Lk

~b2k!~y!

5b! tb~12ty!a2betxyLb
~a2b!S 2

~12tx!~12ty!

t D .
~B44!

Therefore,

f J~x,y;R!5
e22aax

x!
Ry~12R!x2yeaRLy

~x2y!S 2
a~12R!2

R D .
~B45!
r

The height difference distributionf (z;R) can be written as

p~z,r !5 (
y50

`

f ~z1y,y;R!

5
e22a1aR~12R!2az

z! (
y50

`
~aR!y

~z11!y
Ly
z

3S 2
a~12R!2

R D . ~B46!

Since

(
k50

`
tk

~a11!k
Lk

a~x!5G~a11!~ tx!2a/2etJa~2Atx!,

~B47!

then

p~z,r !5~21!2z/2e22a~12R!Jz@2~12R!i #

5e22a~12R!I z@2a~12R!#, ~B48!

whereI z(x) is modified Bessel function. Therefore,

C~k' ,r !5 (
z52`

`

e22a~12R!I z@2a~12R!#eik'cz,

~B49!

where c is the lattice constant along thez axis. Let F
5k'c; then

C~k' ,r !5e22a~12R!I 0@2a~12R!#

12e22a~12R! (
n51

`

I n@2a~12R!#cos~nF!,

~B50!

i.e.,

C~k' ,r !5e22a~12R!~12cosF!. ~B51!

The height-height correlation function is

H~r !5 (
z52`

`

z2e22a~12R!I z@2a~12R!#52a~12R!.

~B52!

So

C~k' ,r !5e2H~r !~12cosF!. ~B53!
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