PHYSICAL REVIEW B VOLUME 55, NUMBER 20 15 MAY 1997-11

Diffraction from non-Gaussian rough surfaces
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Most diffraction theories for random rough surfaces are based on the assumption of a Gaussian height
distribution. In this paper, a diffraction theory for non-Gaussian rough surfaces is developed and the relation-
ship between the roughness parameters and the diffraction characteristics is explored. It is shown that a
non-Gaussian rough surface can dramatically alter the diffractionkfor)?>1, wherek, is the momentum
transfer perpendicular to the surface amds the interface width. However, fok(w)?<1, it is possible to
determine all the roughness parameters including the interface width, lateral correlation length, and the rough-
ness exponent without specifying the surface height distribuf®0163-18207)06116-X

[. INTRODUCTION the restricted solid-on-solid mod#,and the Molecular-
beam-epitaxy(MBE) growth modef*~1" would give differ-
Recently, there has been intense interest in the study afnt values for the exponentsand .
statistically rough surfaces that are generated in processes Experimentally, the most direct method to obtain surface
such as the growth and etching of thin filli$ A fundamen-  roughness parameters quantitatively is to measure the height-
tal understanding of the microscopic aspects of the dynamidseight correlation of the surface using real-space imaging
of interface evolution is of prime interest not only for thin- techniques, such as scanning tunneling microscopy, atomic-
film growth and material science, but also for numerousforce microscopy, secondary electron microscopy, transmis-
technological applications. A hypothesis of dynamic scalingsion electron microscopy, and optical imaging techniques.
has been used to describe the interface evolution. Under ldowever, measurement by these methods often interrupts the
far-from-equilibrium condition, the morphology of a grow- growth process, which sometimes is not desirable for practi-
ing interface is proposed to have a self-affine form. The in-cal purposes. Diffraction technigues, such as electron diffrac-
terface widthw, which describes the root-mean-square surdion, x-ray diffraction, atom diffraction, and light scattering,
face height fluctuation, is scaled with the finite sizef the  provide an alternative way to study the surface morphology
system and time¢ as 3 guantitatively. An attractive feature of many of these tech-
niques is that they can be used forsitu, real-time monitor-

N ing of the growth process without interruptiéhntil now,
w(L, =L Lz) @) all the diffraction theories from self-affine random rough sur-
) ) o face had been based on the assumption of a Gaussian height
wherez= a/B. The scaling functiorf(x) is given by distribution of the random surfacé-2! This assumption can

B for x<1 Ie_ad to some very simple asymptotic relations_bletween the

[ _ () dlffra_lctlon profile and th_e roughness parametéré! Thes_e
const forx>1 relations are the basis for rough surface analysis by

diffraction 22 However, in practice, the surface height distri-

f(x)~

For L*>t, the interface width grows with time in the form of g N
B . 7 o . bution is not always Gaussian.
a power laww~t”, while for L*<t, w~L%, showing that : . .
. : : In Sec. Il of this paper we discuss the existence of a
the interface morphology has a stationary self-affine form. . . A :
. : non-Gaussian height distribution in various growth models.
The exponeniB describes the growth rate of the interface

width. The roughness exponemiwhere G<a<1) is a mea- In Sec. lll, based on a mathematical theorem on the joint
' 9 P N distribution of a known marginal distribution function and a

sure of the local surface roughness. The hypothesis of d <nown correlation function, we discuss diffraction from vari-

?;;nt:gnsg?lmg ?;ffﬁ_'ﬁads to an equal-time height-height coty | s taces with different height distributions. A compari-

son between the Gaussian distribution and other distributions
is given. Section IV gives a short conclusion.

r
g(t))’ @
wherer is the spatial vector on a surfade(r,t) is the sur-
face height at position and timet, g(x)=x?¢ for x<1, and
g(x)=1 for x>1. Here ¢ is called the lateral correlation Random rough surfaces are often treated as a result of
length, denoting the correlation parallel to the surfacestochastic processes with respect td-or a stochastic pro-
Within the dynamic scaling approach, different growth mod-cess, it is possible for different processes to have the same
els, such as random depositi‘b‘ﬁ,the Eden modef;®ballis-  correlation function but different height distributions or vice
tic depositiom:>!! the Kardar-Parisi-Zhan¢kPZ) model*?>  versa. Therefore, in order to determine the properties of a

H(r,t)=([h(r,t) =h(0)]*) = 2[W(t)]zg(

II. EXAMPLES OF NON-GAUSSIAN HEIGHT
DISTRIBUTIONS IN SURFACE EVOLUTION
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certain stochastic process, not only should the distribution be  sP[h,t]

given, but also the correlation function, as well as higher- o

order correlators. Traditionally, for surface growth, more em-

phasis has been placed on the height-height correlation or tHehas been proved that the solution for Ef) is Gaussian.

autocorrelation rather than the height distribution. TheoretiHowever, if other statistical properties are satisfigchtead

cally, once both the mean and the correlation of the noisef just Eq. (7)], then the Fokker-Planck equation will not

term in a linear Langevin equation are given, the heighttake the form of Eq(8) and the distribution will not be a

height correlation function can be determined. A simple ex-Gaussian distribution.

ample is the Edwards-Wilkison model For a nonlinear Langevin equation, evenjfr,t) is a
Gaussian-Markov process, the height distribution may not

fd i PV2h Dfd 52P
-V r%[ ]+ ra—hz . (8)

dh ) possess the Gaussian form. A famous example is the KPZ

EZVV h+ 7(r,t), (4) modef?
wherev is the surface tension anglis the noise term. Very oh N\ 2
often 7(r,t) is assumed to be a white noise, satisfying the ot vVt 5 (V)" a(r.0), ©
relations

where\ is proportional to the growth rate. The appearance of
(m(r,1))=0, the nonlinear termYh)? breaks the up/down symmetry, the
(5 symmetry of the interface fluctuations with respect to the
(n(r,H)m(r’ t'))y=2D8(r—r")(t—t'), mean interface height, and the height distribution becomes

asymmetric. The Fokker-Planck equation for £9). is
whereD is the fluctuation of the noise. Notice that there is

no assumption about the distribution. Equati@ can be dP[h,t] o 2 N )
solved through the spatial Fourier transformation and the Jt :_f dr Sh vy h+§ (Vh)7|p
corresponding height-height correlation function can be ob-
tained 8
+D f dr 2 P. (10)
b, 1—e_2”q2t . . . . .
H(r't)ocJ' [1-U(qr)] _qﬁ_ daq, (6) ng solution for Eq(10) in 1+1 dimensions can be written
0 a
where b, is the short-scale cutoffwithin an order of the (Ah)2
lattice constant U(qr)=Jy(qr) for d=2, and U(qr) [{— 1 for t>L*
=cos@r) for d=1. Here J, stands for the zeroth-order P(Ah)~ (12)
Bessel function. It is obvious that(r,t) does not depend on |Ah[}" ,
the height distribution. exp —| for t<L

If we want to know the time evolution of the distribution _ s
of h(r,t), a more detail assumption about the statistical charHereAh=h—(h); for Ah>0, v=3, and forAh<0, v~2.5.
acteristics of(r,t) should be made. As theth-order cor- For evolution over a long time, the surface height reaches the
relation of the noise termy(r,t) is defined, the solution of steady-state Gaussian distribution, while over a short time, it

the Langevin equation would satisfy a certain master equdS & Skewed distribution. o _
tion. A very simple case is to assume thafr,t) is a To make it clear, we plot in Fig. 1 our results obtained
Gaussian-Markov process, i.ey(r,t) not only satisfies Eq. from the numerical integration of the KPZ equation it 2

(5), but also meets the following conditions: For onig dimensions with a system size of 28856 at the initial
stage. The noise term(r,t) is simulated by a random noise

-0 generator with Gaussian distribution. Figur@lshows how
(nlr2.t)m(rz.to) = 7T ta))=0; 73 the surface height distribution evolved with the number of
for evenn, iterationst. The solid curve represents the best Gaussian fit.
Figure 1b) shows the skewness and kurtdsisfined later in
(m(ry,t) n(ra,to) - n(ry,ty)) Eq. (36)] versus the number of iterations. For a Gaussian
distribution, the skewness is equal to 0.0 and the kurtosis is
=a18(r{—rp)8(rg—rg) -+ 8(rn_1—r,o(t;—t,) equal to 3.0, as seen for=0. However, fort>0, the skew-
ness is greater than 0.0, which shows the asymmetric distri-

X O(t3=tg) -+ O(th—1 )+ @28(r1—ra) bution of the surface heightfFor 2+1 dimensions the height

X S(Fy=Tg)  8(ty—tg) S(ty—ty) -+ (7b) (tj)iljst'tigtl?lt)Jtion does not approach a steady-state Gaussian distri-
i.e., the ensemble average mf2m product of (rq,t;) is Another important example is surface roughness gener-

expressed as all the possible linear combinationswofti2lta ated by Schwoebel barrier effects during MBE growth,

functions. For a Gaussian-Markov process, the correspondvhich has been shown to possess a non-Gaussian height
ing master equation can be reduced to a Fokker-Planck equeistribution?* Roughness structures generated as a result of
tion. If we denote byP[h(r),t] the distribution functional of ~Schwoebel barriers effect are not self-affine and therefore do
the surface position functiorh(r), the corresponding not possess the dynamic scaling properties described by Eg.
Fokker-Planck equation for E@4) is*® (3). Interesting results have been obtained to describe the
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C(k, ,r):<eikL[h(r+P)7h(p)]>, (13
800 [ 8 t=0
where p is a position vector on the surface. If we denote
400 h(r+p)—h(p) asz, it is clear thatC(k, ,r) is the charac-
teristic function of the distribution of. In order to calculate
—~1200 ! L ) ) ) L C(k, ,r) and the distribution oz, one needs to know the
L r=1 joint distribution functionf’ of h(r+ p) andh(p). As dis-
g 800 | . cussed above, the direct method to do this is to create the
. corresponding master or Fokker-Planck equation from the
'C% 400 - . known Langevin equation and then to obtain the height dis-
\;1200 L tribution and related joint distribution by solving the equa-
b= I tion. However, solving the master or Fokker-Planck equation
g 300 i is not trivial due to the various distributions of noise and
@) I ! nonlinearity. It is even harder to get an analytical solution. A
400 . simpler way is to make assumptions about the height distri-
i butions. Since we only consider the self-affine surface, the
800 | . . autocorrelation function is already known through E8).
The problem reduces to finding the joint distributibhgiven
400 b 3 | the height distribution and the correlation function. This
problem has been attacked by many people over the past 40
years>>~?’ Beckmann summarizes those results as the fol-
0 Lt bl lowing theorent’
0.00 005 010 015 020 025 030 035 040 TheoremLet X andY be two identically distributed ran-
@) Height (arb. units) dom variables with given probability densifyx) and given
correlation coefficienR(r)=0 and letX andY be indepen-
5 ' ' T ' ; dent forR=0. If f(x) is proportional to the weighting func-
. /O/ ] tion of one of the standard classical system of orthogonal
Al /° \ | polynomials{Q,}, then the joint density oK andY is
O,
i N o RY(r
e O O
B g i PyR=0f(0) 2 %Qn(xmn(y), (14
- n
Eo )
o -- o-- Skewness where
é r —o— Kurtosis 7 )
Z f F(X) Qu(X) Quu(X)dX=h26,m, (159
1 _0—___0\\ ............................. _ a
L o O/,O”’_ &= 0‘~\<> ]
okt R(r)= (xy) —(xNY) _ (15b)
0 2 4 6 8 10 VOB =02y = (v)?)
(b) Number of Iterations ¢ (arb. units)

R(r) is also called the autocorrelation function whemand
FIG. 1. () Evolution of surface height distribution as the num- Y are random variables of the same random process. Here we
ber of iterationst for the KPZ model in the(2+1)-dimensional ~ Propose another method that starts from the general one-
case: numerical result&) Higher-order moment coefficient skew- Variable Langevin equation and obtained a slightly different
ness and kurtosis versus the number of iteratibris the KPzZ  expression from Eq(14). Appendix A shows the detailed
model in the(2+1)-dimensional case. deduction. Then Eq.14) can be modified as
diffraction characteristics of these Schwoebel-barrier- Z R(r)M™
induced rough surfaces under certain diffractionf’(x,y;R)=f(x)f(y) >, T Qn(X)Qn(Y), (16)
conditions?* n=0 n
where\,, is the eigenvalue 0Q,(x) for the corresponding
Ill. DIFFRACTION FROM NON-GAUSSIAN DISTRIBUTED eigenequation. The only difference between E{®) and
RANDOM ROUGH SURFACE (14) is that the powen of R in Eq. (14) is changed to the
eigenvalue ofQ,(x) for the corresponding eigenequation.
However, the proof of Eq(16) is more general than that of
. Ref. 27.
S(k)=J d?r C(k, ,re’, (12 For the self-affine surface, the height-height correlation
function H(r) and the autocorrelation functidR(r) are re-
wherek, andk, are momentum transfers parallel and per-|ated according to the equation
pendicular to the surface, respectively, &k, ,r) is called
the height difference function, defined as H(r)=2w?[1—R(r)]. (17

In general, the diffraction profile can be writterfas
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TABLE I. Summary of the basic results of different height distributions.

Height distribution Variance Height difference distribution function Height difference function
Distribution function f(x) x={x)1% p(z,r) C(k,,r)
Gaussian 1 2 w2 1 2 exd — 3k?H(r)]
expg—=— exp —
27w p( ZWZ) 2wy/m(1—R) p( 4WZ(1—R))
exponential 1 % X w? 1 12 1
—expg—— expg — PERETEIIVN
w w 2w/1I-R p( w\/l—R) 1+3kZH(r)
T 1 (k+1)o? o\ k+12 1
DX : (Z : R) LGN
kt1l)o D(k+Dom(1-R)<*1 | 20 L KH®)
2(k+1)
XK z
k+1/2) oJI—-R
uniform 1 a? 1 & *
5 ? 4_2 2n+1)Rn(n+1)/2 >
Xo +z XRn(n+1)/2J2 k a
Xf P, ya P, )g’ dy n+uAkia)
X1
Rayleigh X [{ xz) 4—7702 fw y(y+2) Y2+ (z+y)? ° 7k, o2 1) 12
— exp—=z— —_— S ——eXg — s —
P 252 o 0%1-R) 20°(1-R) HEO 2 [( Z)J
yy+2\R 23338 L Ko
21-Rr), %Y @22'202'2 0 2

It is clear that forr—0, R—1, and forr—«, R—0, i.e., with the variance associated with the autocorrelation coeffi-
R satisfies the condition stated in the theorem. If we denoteient R. For exponential height distributiol’(0,x)), the
x ash(r+p), y ash(p), andf(x) as the weighting function height differencez(r) is also an exponential distribution with
of a system of classical polynomia®,, then the joint dis-  z(r) ranging from—c to +, while x ranges from 0 tot+ .
tribution f* is given by Eq.(16). The distribution ofz(r) The height difference distribution for & height distribution
(=x—y) (height difference distributionis expressed as is aK distribution[see Eq.B24) in Appendix BJ. As seen
from Table I, all the variances for the height difference dis-
p(z,r):f f(y+zy:R(r))dy. (18 tribution are modified by the autocorrelation coefficiéht
We plot in Figs. 2 and 3 various height distributions and the
With this definition,C(k, ,r) can be written as corresponding height difference distributions with the same
standard deviation an@=0.5. The Gaussian distribution is
c(k, ):f p(z,r)eki7dz (19) symmetric with respect to its mean and has nonzero even
central moments and no odd central moments. ITtedstri-
or butions are not symmetric with respect to their mean, espe-
cially for k=0, which is the same as the exponential distri-
_ Jre o ik, (x-y) bution. They are the skewed distributions with nonzero odd
Clk,.r)= FoGyiR(r))e dx dy central moments. However, the height difference distribu-
" tions are symmetric with the means equal to zero. The great-
-3 est difference between the Gaussian distribution Brdis-
n=0
The derivation ofp(z,r) andC(k, ,r) for various continu-

tribution with respect to their height difference distributions
is that p(z,r) for the I' distribution has higher probability

ous and discrete distributions is given in Appendix B and th

results are summarized in Table I.

R(r))\ niNg

ff(x)Q (x)e"&de . (20)

aroundz=0, narrower distribution width, and a longer talil
Shan that for the Gaussian distribution. As we shall see later,
this difference will have a more dramatic effect in the dif-
fraction profiles at largé, .

The height difference functio@(k, ,r) also takes differ-
ent forms for different height distributions as seen in Table I.
Table | shows that, for the Gaussian height distribution,C(k, ,r) is a function ofH(r), the height-height correlation

the height difference(r) also obeys a Gaussian distribution function. DenotingQ = (k, w)?, we have

A. The height difference distribution p(z,r)
and height difference functionC(k, ,r)
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FIG. 2. Surface height distributiof(x) for different statistical

models: Gaussian arld distributions.

C(k, ,r)=F(Qg(r/¢)),

(21)
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whereg(x) is the scaling function, which we would like to
take the form suggested by Sinha, Sirota, and Ga?off,

2a

gx)=1-e"

(22

The plot of C(k, ,r) for <1 andQ>1 for different height
distributions is shown in Figs.(d) and 4b). Here we assume

a=0.75 and¢=5.0. For()<1 the differences il€(k, ,r) for

various distributions are very small, while fo¥>1 the dif-
ferences are more obvious. In fact, from Table 1§b&1 all

C(k, ,r)~1—3K?H(r).

FIG. 4. Height difference functio€(k, ,r) for different height
distributions:(a) Q<1 and(b) O>1.

(23

the height difference function€(k, ,r) can be approxi-

mated by

0~4 T T T T T T T T T T T T T T

e
w
T

Probability Density
=) =)
—_ o

Gaussian

-0 8 6 4 -2 0 2 4
Height Difference z

FIG. 3. Height difference distributions(z,r) for different sur-

face height distributions.

As long asH(r) is the sameC(k, ,r) will be the same no
matter what the height distribution is. Actually, E§3) can

be derived directly from the definition dE(k, ,r) in Eq.
(13). This is a very useful result as we shall discuss later. For
O>1 higher-order moments in Eq13) will take effect.
These moments depend on the height distribution as seen
from Eg. (20). For a Gaussian height distributic®(k, ,r)
decreases very fast as a functionrofwhile for aT” height
distribution the decrease is slower, as shown in Fig. 5. The
abrupt decrease @(k, ,r) for the Gaussian height distribu-
tion gives more higher-frequency terms in the Fourier trans-
form and the diffuse profile would be much broader than that
obtained from thd" distributions, as to be seen later in Fig.
12.

For the discrete surface such as steps, we compare the
Gaussian height distribution and Poisson height distribution.
As shown in Fig. 6, the Poisson distribution is also a skewed
distribution with nonzero odd moments. As the standard de-
viation a increases, the distribution becomes more symmet-
ric. The height difference distribution for the Poisson height
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FIG. 7. Height difference distributiop(z,r) in the discrete lat-

FIG. 5. Change of the height difference functiGigk, ,r) with tice with different height distributions.

respect to differenf) (= kfwz) values.

distribution is the modified Bessel function with respect toBoth Egs.(24) and (25) indicate thatC(k, ,r) is a periodic
the order ofn. In Fig. 7 we plot the height difference distri- function ofk, and it decays exponentially with?, which is
bution p(z,r) for both Gaussian and Poisson distributionsimbedded inH(r). The periodic oscillatory behavior of
with a variance of 4.0. Like th& distribution for the con-  C(k_,r) for both Gaussian and Poisson distributions is plot-
tinuous surfacep(z,r) for Poisson distribution has a longer ted in Fig. 8 as a function oft/m. If we denote[®] as
tail than that for the Gaussian distribution. As discussed irfP mod 2r such that—n<[®]<m, then, under the near in-
Ref. 21, the discrete lattice effect has a significant consePhase condition for Poisson height distribution,
quence on the height difference function. In the continuous — (WBH[]2
surface case, Eq21) shows that the height difference func- C(k,,r)~e : (26)
tion C(k, ,r) is a function of€, in whichk, andw play a  \which is the same as for Gaussian height distributfom
similar role inC(k_ ,r). But for the discrete surfade, and  Fig, 9 we plot the height difference functiod(k, ,r) for
w do not play the same role i€(k, ,r). For the Poisson poth distributions as a function of Even in the case of
distribution, in Appendix A we show that Q=1 for the continuous surface, as long as the near in-phase

C(k, ,r)=e H(N(A-cos®) (24) condition is satisfiedC(k, ,r) for both distributions are the

Lo ' same. Under the near out-of-phase condition for the Poisson

where phaseb=k, ¢ andc is the lattice constant. For the distribution
Gaussian distribution we have

. C(k, ,r)~e 2RO+ WAH( (- [[®])? (27)
o) y .
2 e—(l/z)H(r)(cp—zwm)?
m=—co 1.0 —— —
C(kl 1r) = + oo . (25) Gaussian
2 e*(l/Z)H(r)(Zﬂ'rm)z o 08 o POISSON
m=—o o w=5
% 0.6
0.30 T T T T S 0.4
= R
2
=025 gz 4 g 02
I g = o -
2 o 2210 3 00 O B e m
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. - Gy =
= v, = 08}t w=0.5 4
g 015 . A [ J ;
g T < 06 -
= 0.10 /) Y . i e I
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FIG. 8. Oscillatory behavior of the height difference function
FIG. 6. Poisson distribution with various varian@esHere the  C(k, ,r) as a function of phas@ in the discrete lattice case for
surface height is in the units of the lattice constant. different height distributions and interface widths.
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C(k, ,r)=C(k, ,)+AC(k, ,r), (29

where C(k, ,»)=Ilim,_.C(k, ,r). As lim,_,R(r)=0,
only the zeroth-order term in Eq§20) survives. For classic
orthogonal polynomial,=1, h%=1, andAy=0, we have

2

C(ki,oo)=f f(x)eXdx| . (30)

Therefore, the diffraction profil&(k,;) can be written as

Gaussian S(kll): Sﬁ(kH !kL)+Sdiff(k|| vki)v (31)
POiSSOﬂ
w=0.5,0/r=0.016 where
Ss(kK ,kL):(ZTf)ZC(kL ) 6(K))
2
e ~2m? [ t0erax sk) (32
1072 107! 10° 10! 10°
Distance r and
*° Np /N
FIG. 9. Height difference functio@(k, ,r) for different height S (K, ,ki):J J eikn-rdzrz &;l
distributions under the near in-phase condition. n=1 hn
. L . _ 2
Lr:sd?s?ﬁggggé? different from that obtained from the Gauss- > J' £(x)Qp(x) e *dx
~ @(L2H(N[®]? | o= (LH()(27~[®]?) - , 2
cla n=e re B =3 | [ t00uekax
Figure 10 shows the difference between these two distribu- n=1 T
tions. Notice that for the case ok(w)?<1, which isQ<1 _
for the continuous surface, as long as the near out-of-phase Xf f R(r)*n Mgk fd?r, (33

condition is satisfiedC(k, ,r) for both distributions are dif-

ferent. The deviation in the oscillation behavior in Fig. 8 for From Egs.(32) and(33), it is clear that thes-peak intensity

different height distributions also originates from E¢27)
and(28).

B. The diffraction profile S(k)

The height difference functio©(k, ,r) can be broken
into two parts

Gaussian
POiSSOn

w=35.0,0/7=0.99

Gaussian
--------------- Poisson

w=0.5,®/n=0.99

Height Difference Function C(k, )

Lol 1 sl " ananl AT T
1072 107 10° 10! 10?

Distance »

FIG. 10. Height difference functiorC(k, ,r) for different
height distributions under the near out-of-phase condition.

of the diffraction profile depends on the characteristic func-
tion of the surface height distribution and the diffuse profile
depends on both the distribution and the correlation func-
tions of surface height. If we think of the total diffuse profile
as the sum of many small diffuse profiles, then for each
small diffuse profile, the surface height distributibfx) de-
termines the peak intensity and the correlation function
R(r) determines the shape of the diffuse profile.

1. The intensity of theé peak

The &-peak intensity is proportional to the square modulus
of the characteristic function of the height distribution
f(x). For different height distributions, th&peak intensity
has a different relation t&, , as seen in Table Il. As

[

J f(x) ek Xdx= ngo % ik, )™, (34)

wherewv,, is themth-order moment of (x) about the origin,
we have

o 2
C(k, ,oo>=[mE=O (—ym (;’;”;! ki’“}
oo 2
_qaym_Yem+1 ) omy1
2 D" Gy KT - @9

For symmetric height distributions about zero, only the first
term on the right-hand side exists. But for asymmetric height
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TABLE II. &-peak intensity for different height distributions.  distribution and the results are closer to that obtained from
the Gaussian distribution. The total integrated intenkityf

Distribution &-peak intensity the whole scattering field is
Gaussian exp(—k*w?)
- 2 2
exponential 1 | fs(k||'kl)d k” (277) . (38)
1+kw? Then
r 1 | 5
TRA Rem2=| [ 1000 70x 39
uniform ik
si kf(aéa) and
Rayleigh 2 2\|2 | ) 2
view ) l(;é;_'%’z) Rdiﬁ=1—|—§=1—‘f F(x)euxdy| (40)
One often useR; to determine interface widtv through
the relatiori
distributions, the second term, i.e., the odd terms on the
right-hand side, should be taken into accounixf=0 for Ry= e Kiw? (41)

0 <1, the &-peak intensity can be written as ) ) ) _
which was derived based on the assumption of a Gaussian

height distribution. However, in general, the relation be-
tweenRs andw also depends on the height distribution as
seen from Table Il and Fig. 11. If the surface height no
longer has a Gaussian distribution, E¢1) should be modi-

C(k, )= (1—3K2W?+ 3 k4K W — 755 k6K WP)2

+ ;—GKEKEWG

~1-K2WPH (2 + Sk K WA (A2 — Zikg fied according to the height characteristic function. Only
when <1, Eq. (41) approximately holds for all kinds of
- %)Ks)kfws, (36 distributions andR; has the same result for different distri-
butions.

where k= v, /W™ for m>2. k4 is called the skewness and  In fact, we can extend Eqé39) and(40) to a surface with
K, is called the kurtosis. The more asymmetric the heigh@ny height distribution as long as the surface is self-affine.
distribution, the greater the contribution from the odd mo-Asr—c, R—0, which means that andy are two indepen-
ments and the more deviation from the Gaussian distributiordent random variables but the associated distribution func-

The total integrated intensity of th&peakl 5 is tions f(x) and f(y) are the same. So the joint distribution
can be simply written as

37) I(x,y;R—0)=f(x)f(y). (42)

Therefore, Eqs(39) and(40) exist for any self-affine surface

Figure 11 shows thé-peak intensity as a function @t for with an arbitrary height distribution. Equatio(r?ol9)- shows-
different distributions. For thé& distribution, ask becomes that Rs actually is only related to the characteristic function

larger and larger, the distribution is more like a GaussiarPf the surface height distribution. Then two important results
can be drawn from the discussion above.

(i) If we assume that the surface height distribution is a
10°E SR T T T symmetric distribution, Eq(39) becomes

2

f f(x)ekXdx| .

|5:j Sa(ky k) d?k=(2)?

2

o R,;(kL)=f f(x)cogk, x)dx| .

I T By changing the incident angle of the incoming beam with
107 ¢ e 3 respect to the surface normal, the changes correspond-

N T ingly and one can obtain the characteristic function of the
height distribution through Ed43). Then an inverse Fourier

(43

0 N

103 F Gaussian 4

8 Peak Intensity (arb. units)

e T(0, %) cosine transformation of the characteristic function
-------- (1, x) R;s(k, )2 will give the surface height distribution. This gives
10_4:_ """" T4, x) 1 a possible way to obtain the surface height distribution by
E , , , , LN diffraction.
0 1 2 3 4 5 6 7 8 9 10 (i) Equation(39) also gives us a method to determine
Q whether or not the surface height obeys a Gaussian distribu-

tion. Since for a surface with Gaussian distribution the char-

FIG. 11. &peak intensity versug) (=k*w?) for different  acteristic function is also a Gaussian function with respect to

height distributions. k, [Eq.(41)], one can always plot 1g&k,)] versuskf ina
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linear coordinate. If the plot is a straight line, the height TABLE lIl. Diffuse peak intensity for different height distribu-
distribution should be a Gaussian distribution; otherwise, it igions (2<1).

a non-Gaussian distribution.

Distribution Diffuse peak intensity
2. Diffuse profile Gaussian kZw2£2 exp(—kiw?)
Equation(33) can be written as )
exponential KPwPe
oo 2 ——
. 1+ wA)?
Su=2m%, 5 | | f00Qu(x)e*:dx e
n=1 hy r e kfozfz
oc (1+Kg?)<t?
XJo r R(r)*™13q(kyr)dr. (44 uniform 3
2, a‘]3/2( k a)
Two cases should be discussénk1 and(Q>1. Rayleigh 3331 Ko?
(@ Q<1. ForQ<1, first we need to prove that gkf(,zéz F3 551550 i2_°'

2
~0(Q"). (45)

U f(X)Qp(x)e’kXdx

It is well known that for general orthogonal polynomials, anat half maximum(FWHM) of the diffuse profile is inversely
arbitrary polynomial ofnth degree can be expressed as aproportional to the lateral correlation length and for
linear combination 0RQy(x), Q1(X),....Qn(x).% Then k>1,

f f(x)Qn(x)e'*1Xdx (|h(ky)|?yocky 272, (49)

Z (k)™ o Equation(48) gives the possibility of determining and «
= 20 i J f(x)Qn(x)x™dx through the diffuse profile.
m= ' However, the diffuse peak intensity depends on the spe-

cific height distributions as listed in Table Ill. In fact, Eq.
ff(x)Qn(x)xmdx (47 shows that the diffuse peak intensity is the square
modulus of the product of the surface height characteristic

g (k"

m=n m!

ik, yrem function and its first-order derivative.
= 2 alf f(x)x" it Mg x (b) Q>1. In this case, other terms in the summation of

= (n+m)! | Eq. (33) will affect the diffuse profile. If we assume a self-
= e, affine surface and expregér) ase™ (9", then for both the
= 2 2 Vntitms Gaussian distribution and the distribution, as\,=n, we
o = (n+m) AP0t have

wherev, is thekth-order moment of (x). Since

V= kak' (46) fo r R(r)n\]o(kur)dr
IS f(x)Qn(x)e*1Xdx|2~0(Q"). Then forQ<1, the diffuse .
profile zgzn’l’“f X exp( —X29) Jo(kyén~Y22X)d X
0
au . 2 fo
Sdiff%F f f(x)Qq(x)ekXdx fo r R(r)Jo(kr)dr. =§2n*1’“fmx exp — X2%)dX

(47) °
The shape of the diffuse profile is mainly determined by the o (=DM [kex\m o 50
integral [3r R(r)Jo(k,r)dr, which is proportional to the * & (mHz | 2 noo (50
power spectrun{|h(k,)|?) of the surface height and has
nothing to do with the surface height distribution. For a self-g,
affine surface, &-correlation model proposed by Palasant-
zas give® .

(_1)m o kugx 2m
W22 Sy=2mE Y, —zf X exp(—X2*)| ——| dX
(Ih(ky) %)= e (48 n=o (m)" Jo ?
I (2 )5 (1+bk §2)1+a’ . )
1 :
where A is the surface area andb=[1—(1 X 21 Y n-(m+la J f(x)Q(x)eXdx
n= n

+bQ§§2)*“]/2a. HereQ. is the stopping frequency due to
the atomic spacing. Equatigqd8) shows that the full width (52
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The asymptotic form for summation in the square brack-
ets is different for different height distributions. For Gauss-

Gaussian

ian height distributioft

P (B O
[1=2 —r— (dw)" exp(—kiw?)

~(Kiw?)~(mtDle for O>1, (52)
Then

Sy~ 220 Ve J X exp(— X2) Jo(k Q™ Y2X)d X.
0

(53
For the exponential height distribution
*® 2.,,2\Nn
[ 1= E (kiw?) n—(m+1/a
=1 (1+kfw?)nHt
1 - 1 m+1
~— —(m+)/a—___— _
1+k2w? n; " 170 ¢ o ) ®4

whereZ(x) is the Riemann zeta function. Fe®1 one ha¥
{(X)~27%+1, (55)
which leads to

2mé?

101 :_ Exponentlal _:

Ara=0.75,w=0.55=50
B:a=055w=05%=50

| [ - _

FWHM of Diffuse Profile (arb. units)

10-1 Ll . e sl . NP |
107! 10° 10

k, (arb. units)

FIG. 12. FWHM of the diffuse profile versus, for different
height distributions.

roughness exponentthrough Eqs(41), (48), and(49) with-
out any specific assumption about the surface height distri-
bution. However, fo)>1, as the diffuse profile depends on
both the surface height distribution and the correlation func-
tion, the relations between roughness parameters and diffrac-
tion profiles are much more complicated and depend very
much on the surface height distribution. There is no general
way to determine the roughness parameters.

If one uses the inverse Fourier transform to determine the

S~ f "X exp — X29) Jo(k EX)dX

1+Q | Jo height-height correlation functiokl(r) from the diffraction
profiles® the same problem also can arise since different
height distributions give different forms &@(k, ,r), as dis-
cussed above. However, fofl<<1 the approximation
56 ClK ,r)~1-31k?H(r) always holds without any specific
assumption about the height distribution and one can obtain
It is clear that different height distributions give different the height-height correlation function directly without the
asymptotic results. For Gaussian distribution, the diffuseknowledge of the distribution.
peak intensityl 5 (k,) % and also the FWHM is propor-
tional to (k,)¥*. Due to these two relations, one can derive
the roughness exponent However, for exponential height ACKNOWLEDGMENTS
distribution, there is no such relation and one cannot ohtain  Thjs work is supported by NSF Grant No. DMR-9531482.

using these relations obtained from Gaussian distributionthe authors also thank J.B. Wedding for reading the manu-
Figure 12 shows the FWHM of the diffuse profile as a func-gcyipt.

tion of k, for different o values and for different height
distributions. Here we assume that=0.5 andé=5.0. For

k, <1 both the Gaussian height distribution and the expo-
nential d|str!but|on give the same FWHM, Wh'le ﬂ?ﬁ%l ) A general single variable Langevin equation takes the
they have different behaviors. For the Gaussian distributiong, 31

the FWHM diverges ak, goes to infinity; for the exponen-

tial distribution, the FWHM will be bounded by a certain

value. These results show that caution should be taken when %zh(x D) +g(x,r) 7(r)
one wants to determine through the relations obtained un- d ’ ' '
der the assumption of the Gaussian height distribution.

+2—1/afo X exp( — X2%)Jg(2~ Y2k £X)d X|.

APPENDIX A

(A1)

where 7(r) is a Gaussian-Markov process, satisfying

IV. CONCLUSION
(n(r))=0,

One question is immediately raised here: How accurate
can the diffraction technique be used to estimate the growth
kinetics without the knowledge of the surface height distri-
bution? For()<1, as roughness parameters individually af-
fect the density and shape of the diffraction profiles, one catlere we adopt the Stratonovich interpretation of EAl).
obtain the interface widtkw, lateral correlation lengthf, and  The corresponding Fokker-Planck equation for ) is

(A2)

(n(r)n(r"))=248(r—r").
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IP(X|Xq;r) d _
= [AKDP(X|xein)]
&2
+ o2 [BXDP(Xxin)],  (A3)
where

dg(x,r)
A(x,r)=h(x,r)+g(x,r) Fva (A4)
B(X,r)=g%(x,r), (A5)

P(x|xq;r) is the condition probability density, and and

Xg are separated by distanceWe now consider the solution

of Eq. (A3) corresponding to an initial value
P(X|Xg;r=0)= 8(X—Xg) (A6)

and the reflecting barriers boundary conditions

&—i [B(x,r)P]—=A(x,r)P=0 at x=Xq,X,. (A7)

Y.-P. ZHAO, G.-C. WANG, AND T.-M. LU
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Then Eqg.(A11) becomes a standard Sturm-Liouville equa-
tion

dXx
ax B(X)W(x) ax +AW(X)X=0 (A16)
and the boundary condition is
dX
B(x)W(x) azo, X=X1,X5. (A17)

So the general solution for EGA3) is

P(Xlxo:r)=W(X); eXD( —)\nJOrF(r)dr> Qn(X)Qn(Xo),
(A18)

where Q,(x) is the eigenfunction of EqgA16) and (A17)
and\ , is the corresponding eigenvalu@,, satisfies the nor-
malized relation

f W) Qu(X) Qu(X)dX= S (A19)

In fact, Q,(x) is the classical orthogonal polynomial. If the

A further assumption can be made concerning coefficientprobability density forx, is given aswW(x,), then the joint

A(x,r) andB(x,r):

A(X,r)=A(X)F(r), (A8)

B(x,r)=B(X)F(r).

distribution forx andxg is

P(X,Xoi1) =W W(x0) X RMQ,(X) Qn(Xo),

Then Eq.(A3) can be solved by a separation of variables. Letwhere

P(X|xo;r)=X(X)T(r). (A9)
We have
a7
E——)\F(r)T(r), (A10)
d? d
g [BOOX(0]= 5 TAGOX(X)]+AX(x) =0.
(A11)
The solution for Eq(A10) is obvious:
T(r)=T(O)ex;{ —)\frF(r)dr). (A12)
0

Equation(A11l) is an eigenvalue problem of the second-order
ordinary differential equation. We can give some special
form of A(x) andB(x) and Eqg.(A11) can be changed to a

Sturm-Liouville equation. Let

B(x)=B(cx?+dx+e), (A13)
dB(x)
A(X)= dx + B(ax+h), (A14)
and
dWI(x) B ax+b .
dx ot dxic W(x) (Pearson equation

(A15)

(A20)
E(r)zex;{ — frF(r)dr). (A21)
0
The correlation functioR(r) is given as
R(r)=R(r). (A22)

APPENDIX B

The individual height distributions are discussed below.

1. Continuous surfaces
(a) Gaussian distribution
If the surface height obeys the Gaussian distribution,

f(x)= (B1)

1 '{ x? )
—expg —5—>3|.
\N2mTw 2w?
Equation(B1) is the weighting function of Hermite polyno-
mials H,(x):

© 1 X2 X X
el m)”m(m)dx
=271 8, (B2)
e.g.
h2=2"n!. (B3)

The eigenvalue.,=n. So
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fJ(x.y:R)=—126X _x2_+>2f
27w 2w
% n « y
X2 S Hn(\/zw H, ﬁw)' (B4)
As
* n

t
2 Sy HaOOHA(Y)

(B5)

2xyt— (x2+y?)t?
1-t2 ’

=(1-t?)~ 12 exp(
the joint distribution for Gaussian height distribution is

v R) 1 F{ x2+y2—2xyR 36
YR iR O T 2wy | B0

This is the well-known joint distribution function for Gauss-
ian process. According to E@5), the height difference dis-

tribution is

1 via
p(z,r)= m exp( - m) . (B7)

Equation (B7) indicates that the height difference also

13949
- 1 x+y)  [2yxyt
n_ —t —
2 La()Ln(y)t —Hexp( t1 |o< = )
(B149)

where I 4(x) is the zeroth-order modified Bessel function.
Then

3 o 1 X+y ZJFR
Py R=3z1—R) em(‘w(l—R) '°(w<1—R>)'
(B15)
Therefore,
® 1 z+2y
p(z’”:fo WA1-R) exp(‘w(l—R))

(2\/(y+z)yR)
1o YR Gy

w(1—-R)
! p( 12 ) (B16)
= ——@X —
2w\/1—Re aJ1-R)’
1 p(_ | o
p(z’r)_zw\/l—ReX wVi-R/’ e
(B17)

This means that the height difference distribution is still ex-

obeys the Gaussian distribution. From the definition Ofponential, but it becomes symmetric. In this case,

height-height correlation functioH (r),

H(r)={([h(r)—h(0)]®>)=2w?(1—R), (BY)
one has
(z,r) ! p( z ) (B9)
zZ,r)= exp —
P V27H(r) 2H(r)
and the height difference function
C(k, ,r)=exd — tk*H(r)]. (B10)
(b) Exponential distribution
The exponential distribution
f ! X 0 B11
=_ —— =
(x)=exp -], x=0. (B11)

This is an asymmetric distribution and its corresponding or-

thogonal polynomials are Laguerre polynomiblgx):

5 fw 1 F< X
hy=| —expg-—-—
o W w

The corresponding eigenvalig,=n. Therefore,

Gl

(B13)

X X
Ln(—> Ln(—)dx=1. (B12)
W W

1 X+Y)
J P — _ n
f'(x,¥;R) vl ex;{ W )nE_o R"L,

As

C(k, ,r)= (B18)

1+1K2H(r)

This is different from that of the Gaussian distribution.

(c) T distribution
TheT distribution

f(x)= e™Xo  x=0. (B19)

T(k+t1)o 1™

This is the weighting function of associated Laguerre poly-
nomials:

h2= fm _eexd = XX X ax
" Jo T(k+1)o<t?t o/ "\o/ " \o

~ I(n+x+ 1)
CT(k+1)I(n+1)°

The corresponding eigenvalug,=n. The joint distribution
is

(B20)

PRI = e (X9)* oxp| —
e I(k+1)o2<* o

K X K y
e Dl

(B21)

. I'(n+1)
ano T(ntrtl)

and
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= PN+ 1)R" ) i} According to Eq.(B14),
2, L OOLE(y)

& T(ntx+1)

2+ 2
= : exp(—R X, (Z“XVR) fJ(x,y;R)=ﬁyR)eXp(_w§(1 yR) O(wzzz(i/ﬁ:e))'
= uR 21 B K . - - -
(xyR“*(1—R) 1-R 1-R (B31)
(B22 Therefore,
wherel (x) is the kth-order modified Bessel function. Then
1 w +2) 24 (z+y)?
fl(x,y;R) = xy)*’? _ [ Yyt _y ey
( y ) F(K+1)O_K+2(1_R)RK/2( y) p(z,r) o W4(1_R) ex 2W2(1—R)
X+ 2xyR
><exp(— Y )|( 1 (s23 y(y+2)\R (832)
d(1-R) d(1-R) 0 m
The height difference distribution is calculated as and
( ) 1 ( 7 /1_ R) k+1/2
Z,r)= "
P I(k+1)oym(1-R)<*1\ 20 Kk, w? 1) 12
Clk, =2 -5
. h=0 2 2],
XK, —], B24
2 sV1-R (B29 (3333 k2 w2
XRnZFZ _1_!_1__n1_ ]
whereK, is a modified Bessel function. The height differ- 2°2°2°2 2
ence function is then (B33
1 where ,F,(a;B;v; 7;2) is a hypergeometric function.
C(k ’r)_[1+kf02(1—R)]"“' (B25)
e . . . (e) Uniform distribution
Note that for this distribution, the interface width is ex- ) R
pressed as The uniform distribution
w?=(k+1)0?. (B26)
1
Therefore, f(x)= 23 —asx<a. (B34)
C(k, ,r)= 5 1 . (B27) The corresponding polynomials are Legendre polynomials
N KTH(r) |“ P (X):
2(k+1)
The exponential distribution is a special case whketD. , 21 X X 1
hn=f_a£Pn 5 Pn a)dx=£. (835)

(d) Rayleigh distribution
The corresponding eigenvalug,=n(n+1). The joint dis-

The Rayleigh distribution
yielg tribution is

1 < x\ [y
PxyiR)= 7 ngo (2n+ 1)R”(“+1)’2Pn(a) Pal 5 -
This is also an asymmetric distribution. The corresponding (B36)
orthogonal polynomials are Laguerre polynomi}gx):

2
f(x)= x exp — . x=0. (B28)
w? 2w?)’

The height difference distribution is

2 [T X x? x? x? 1 < n(n+1)/2
hn: fo Wex —W L, W Ly W dx=1. p(Z,I’):EnE::O (2n+1)R
(B29) N
X2 z
The joint distribution is X f Pn ez Pn(x)dy, (B37)
X a a
fix y'R)=gex _x2+y2) RIL X_2 L y_2 where x; and x, are the integration boundariest;
o a? 20° |& " " 20?%) " 2067 =may —a—z,—a] andx,=min[a—za]. The range ok is

(B30) from —2a to 2a. The height difference function is therefore
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C(k, ,n)= E (2n+1)RYMD232 (K, a).

13951

The height difference distributiof{z;R) can be written as

2k ®
(B39 p(z,r)= 20 f(z+y,y;R)
y=
2. Discrete surface e 2a+aR(1 R » (aR)y
We consider the Poisson distribution - 7l Z (z+ 1)y
a(1-R)?
—agx - (B46)
f)=—4— x=012.., a>0. (B39 R
' Since
The corresponding orthogonal polynomials are Charlier * tk
polynomials, defined 4% ——— L¥(x)=T(a+1)(tx) " “%'3,(2tx),
K=o (a+1)y
(B47)
Cn(x,a)=a "L¥* "(a), (B40)  then
p(z,r)=(—1) 7% 2217RJ[2(1-R)i]
wherelL %" (a) is associated Laguerre polynomial. The or- C2ai-R)
thogonal relation is given by =e I[2a(1-R)], (B49)

-n

Zo f(X)Cn(X,8)Cpry(X,8) = —

y Sam- (B41)
Therefore,
a "
hﬁzW (B42)

The joint distribution function is

oo

e~ Zaax+y

n
=] LMLy V()

(B43)

J . —
fY(x,y;R)= X1y n§=:0

and
go KL R O0LE R (y)

(1-tx)(1-ty)

_ _ a—Batxy| (a=p)[ _
=pBIA(1—ty)* Fe™Ly ( "

(B44)
Therefore,
g~ 23X a(1-R)?
(x,y;R) = Ry(l—R)XYeaRL;XW( - (T) :
(B45)

wherel ,(x) is modified Bessel function. Therefore,

C(k, 1= Z e 28R [2a(1-R)Je*
Z2=—»

(B49)

where ¢ is the lattice constant along the axis. Let ®
=k, c; then

C(k, ,r)=e 221-R| [2a(1-R)]

+2e 21-R> | 123(1—-R)]cognd),
n=1

(B50)
C(k ,r)=e72a(17R)(1fcosCI>)_ (B5l)

The height-height correlation function is

H(r)= _Z_ 72 221-R)| 1253(1-R)]=2a(1-R).
(B52)
So

C(k, ,r)=g HN-cos®), (B53)
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