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We present a careful study of the energetics of vacancy and substitutional impurities in aluminum in both the
bulk and small cluster environments. The calculations are done within the framework of the local-density-
functional formalism and are based on the pseudopotential method with plane-wave expansion and periodic
boundary conditions. Both the ionic and electronic degrees of freedom are fully relaxed. The electronic
structure problem is treated with a preconditioned conjugate-gradient method that applies equally well to
insulators and metals, and is suitable for parallel computing. We have considered up to 216 atoms in the
supercell, and we show that reliable results can be obtained with 108-atom cells with lpqopiet sampling.
Vacancy-formation energy, heats of solution of the impurities and the relaxations near the defects are in good
agreement with available experimental data. The energetics of substitution in small clusters was found to be
rather different from bulk[S0163-182607)07320-7

I. INTRODUCTION functional methodLDA), on the other hand, is sufficiently
accurate for multicomponent systems in drastically different

Point defects and impurities are the simplest defects in @hemical environments. Although LDA studies are currently
solid. Nevertheless, a great number of physical and mechaniimited to a few hundred atoms, a lot of important results
cal properties are sensitive to their presence. A detailedbout the energetics of defect formation can already be ob-
knowledge of point defects is thus essential for understandained. In addition, the first-principles results can generate a
ing the atomistic as well as the macroscopic behavior ofarge amount of information about the interatomic interaction
materials. In the past, it has been customary to study defectsn a microscopic scale that can used to fit, or at least put
and impurities with empirical potential modété but in re-  constraints on, simple interatomic potentials. It is difficult, if
cent years it has been increasingly popular to applynitio  not impossible, to extract such information from experi-
calculations to study these systems, especially for defect foments.
mation energies in simple meta$ Although first- The last few years have witnessed great advances in the
principles calculations are inevitably slower and far fewerability to calculate the structure and energy of solids by the
atoms can be handled than by empirical methods, there arese of density-functional theory within the LDA framework.
still good reasons to usab initio techniqgues. One major As far as the computation technique is concerned, an impor-
reason is that whereas reliable empirical model interactiontant milestone is the development of the Car-Parrinello
may be available for one particular element in some particumethod'® This method treats the electronic degrees of free-
lar physical or chemical environment, it is difficult to find a dom as classical entities, and puts the electronic and ionic
model potential that applies to all occasions. The situatiordegrees of freedom on the same footing. By proper choice of
becomes even more intractable if the system contains motthe fictitious mass of the electronic degrees of freedom, first-
than one component. For example, it would be rather diffi-principles molecular dynamics can be performed. If we
cult to use an empirical or semiempirical technique to studyfreeze the ionic degrees of freedom, the electrons can find
the energetics of substitutional defects of Si in Al, eventheir ground state through an annealing process if the tem-
though Al on its own may be well described by embedded-perature is reduced slowly, or through a steepest-decent pro-
atom-type interactions in the bulk, and Si in the bulk dia-cedure if the problem is treated as molecular statics. This is
mond structure can be represented well using a simple tighfiot just a technical innovation, but actually opens up new
binding model. If we take on the more challenging task ofways of thinking about total energy calculations, and has
studying the Si interaction with Al in very different environ- stimulated the development of alternative ways of handling
ments such as in bulk and small clusters, empirical potentialthe electronic structure problems. Another important devel-
that were designed to work in the bulk will probably fail in opment is the preconditioned conjugate-gradient
the cluster environment. The first-principles local-density-method*!~**which treats the electronic degrees of freedom
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as a problem of constrained minimization of the total energythe exchange-correlation potentiahnd a plane-wave basis
of the Kohn-Sham functional. Both methods have signifi-set.
cantly improved the capability and thus the applicability of  Calculating the vacancy formation energy involves both
local-density-functional methods to problems of practical in-the relaxation of electrons to the self-consistent ground state
terest. These dev_elopmenlfsl are further aur?mgnted by td%d the relaxation of the ions to their equilibrium positions.
rapid — pro r_el.z,s In parallel computing hardware andy . methad for relaxing the electronic degrees of freedom is
techniques®1® Using these methods, one can now perform o o ) .

p variation of the preconditioned conjugate-gradient scheme

calculations for systems containing hundreds of atoms fo o . :
semiconductor%‘."lg g of Teter, Payne, and Allelt. The original conjugate-gradient

In the conjugate-gradient method, one minimizes a funcimethod of Teter, Payne, and Allen is an iterative band-by-
tion of many variables by first computing the gradient of theband constrained minimization of the LDA total energy
object function. The gradient is then used to construct a vedunctional. We instead iteratively minimize the sum of the
tor of change that is added to the original trial vector in sucheigenvalues for a fixed number of bands. The trial vectors are
an amount as to minimize the function. This process is revaried, subject to orthonormal constraints, so as to minimize
peated with each new vector being forced to be conjugate tthe sum of the eigenvalues for the low@stbands for the
the previous change vectors. The conjugate-gradient techyeq Hamiltonian with a fixed input potential. For metallic
nigue, with pre-conditioning, is applied by Teter, Payne, an ystems, the numbéy has to be large enough to cover all

ll . . . .
Allan  to-minimize the total energy of the local density \o 045 56 that the fractional occupation number is not
functional in a band-by-band manner. This approach works

well for insulators and semiconductors, but metallic system&1€9i9ibly small. The set of vectors that optimize the sum of
are not as easy to deal with. The occupancies for each barfdgenvalues for a fixed number of bands spans the same
are known for insulators and semiconductors, while theysubspace as thie eigenvectors, but a subspace diagonaliza-
must be determined for metallic systems. For semicondudion is needed to rotate the subspace to that of the eigenvec-
tors, we only need to find the subspace that is spanned by thers and find the eigenvalues of the individual levels. In our
eigenvectorgi.e., linear combination of eigenvectors are ascalculations of up to 108 atoms, the subspace diagonalization
good as the eigenvectors when we need to know the chargekes less than 5% of the computation titA&his process is
density and the sum of eigenvalues of the occupied $tatesa conjugate-gradient iterative diagonalization procedure.
which offers more flexibility for an optimization scheme. But When the eigenvalues are known, the Fermi level can be
for metals, knowing the sum of the eigenvali#e trace of  determinedby assuming a particular value of the Gaussian
the Hamiltonian within the subspace spanned by the ocCuyrpadening and the occupation of the levels is then found.
pied statepis not enough, we need to know the individual The charge density can then be determined since we know
eigenstates and eigenvalues before we can determine the Qgg ejgenvectors and the occupation number. The whole pro-
cupancy. In additiork-point sampling is more demanding in cegs is then repeated until we reach self-consistency between
metallic systems, so that whatever method we use has 1iﬂput and output screening potentials. As for the relaxation

have the capability of treating markypoints, and the sam- ¢ yo glectronic degrees of freedom, we are operating with a

pling must Qe done adequately and be carefully monlt_o_redﬁxed Hamiltonian and the minimization procedure uses a
Chetty et al° have shown that even for systems contamlngsimpk_:.r conjugate-gradient scheme than the original

more than 100 atoms, the calculated vacancy formation ®onjugate-gradient scheme proposed by Teter and

ergly Cr?_n have a wron_?l S'r?n i ﬁnly tie [iomt |sbused. 4 co-workerd®*3where the Hamiltonian changes as each band
nt ISI 'l?apt‘?f' We.t\r']v' show tdat tmeta ;tﬁan € treaggf_ Orlglets updated. In our approach there is no need to compute
an equal footing with semiconcuctors with some modifica-y, change in the charge and potential as the optimization

t'oﬁ of t_lr_]ﬁ o”?mflt. precondltlonted dconjuga;e—glrad!ent rocedure goes through band by band kmmbint byk point.
scheme. 1ne cajcuiations are centered around aluminuniy, qgition, the line minimization for the trial vectpcorre-

which is taken to be the prototypical simple metal and be'sponding to Eq(5.23 of Payneet al®] is more straightfor-
cause of the importance of aluminum and its alloys in 'ndUSWard for a fixed Hamiltonian. The advantage of this ap-
trial applications. Aluminum is t.he wgrld S SeCOF‘d MOSt ) hach is that metals and semiconductors are put on an equal
commonly used metal and there is a W'de. and varied famil ooting. The price we have to pay is that we have to achieve
of aluminum alloys now used for a multltu_de of purposesself-consistency between the charge and potential, but we
fthro_ughouF the aeronautics, space exploration, and eIeCtro‘ﬁ'ave had no difficulty in reaching self-consistency in the
|csT|E_dustr|es._ d as foll Section Il d ibes th otential using a Broyden scheligor systems we have

IS paper IS arranged as follows. Section 11 describes eated here, including vacancies and substitutional defects in
methods er_nplpyed for achieving the ground state of the eIecAl with fairly large unit cells. We note that attaining self-
tronic and ionic degrees of freedom. In Sec. lll, the calcu

lated Its f f i ; d'th “consistency can be much more demanding for certain transi-
ated resufts for vacancy formation energies and th€ energe,, atqis with high density of states near the Fermi level,
ics of impurities of Si, Mg, and Li in Al will be presented.

We al i its of substituting Al by th | and for systems with even larger unit cells. In those systems,
€ aiso present results o substituting y the Same €l€ i< inevitable that more computational effort has to be spent
ments Si, Mg, and Li, but in a small cluster environment

) : . Co . in achieving self-consistency. This should not be regarded as
instead of in bulk aluminum. A summary is given in Sec. V. a deficiency of the present method, but rather that some sys-
tems are intrinsically more difficult than the others. If we
directly minimize the total energy, we apparently can by pass
Our calculations are performed within the local-density-the self-consistency problem. However, there is no guaran-
functional formalism using the Hedin-Lundqvist form for tee, especially for metallic systems, that the passage to the

Il. CALCULATION METHOD
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TABLE I. The unrelaxed vacancy-formation energy as a function of system size for a small set of 182
k points and a large set of 13@0points(0.20-eV band energy smearjng

Atoms per Equivalent Small set Equivalent Large set
supercell Structure k points energyeV) k points energyeV)

1 fcc 182 1300

4 sc 56 0.736 364 0.743

8 fcc 28 0.755 182 0.766

16 bcc 20 0.750 112 0.774

27 fcc 10 0.689 60 0.758

32 sc 10 0.678 56 0.756

64 fcc 6 0.644 28 0.732
108 sc 4 0.661 20 0.735

final ground state is more efficient than the scheme we enmoderate cost in the present supercell with 108 atomic sites.
ployed here. This choice ofk points and system size are discussed in full

In the relaxation of the ionic configurations, we employeddetail in a later section.
the force matrix method in which atomic positions are up- The present method relies on the efficiency of fast Fourier
dated bysX=K™1.F, whereF are the Hellmann-Feynman transformations and is suitable for implementation on mas-
forces andK is the force matrix. For vacancy calculations, sively parallel computers. Most of the computations pre-
which involve radial displacements, there are only a few desented here were performed on a machine with a parallel
grees of freedom and the elements of the force matrix ararchitecture(nCube 2$. The parallelization strategy basi-
found initially using finite differences from small displace- cally involves spreading real space and reciprocal space
ments of the atoms. It is further refined as the atoms aracross the node€$.This divides both the CPU load and the
displaced using the Broyden methtdwWe also employed a memory requirements equally among the nodes. Communi-
conjugate-gradient scheme in relaxing the atomic positionscation between nodes is necessary during the transformation
Although this conjugate-gradient relaxation takes more stepbetween real and reciprocal space. This is handled using a
to relax the atoms, it is eventually preferred since it allowshighly tuned three-dimensional fast Fourier transfo{3D
the whole relaxation process to be fully automated. FFT) algorithm that takes advantage of the fact that the

We also note that it is not necessary to fully optimize thereciprocal-space representation is localized to a sphere. The
electron trial wave functions before we update the electrorefficiency of the 3D FFT algorithm allows the problem to be
screening potential. Initially, when we have reasonably goodpread over twice as many nodes as the length of the side of
electron screening potentialsonstructed from a superposi- the mesh. Calculations involving multiple points can also
tion of atomic chargesbut poor wave functions, we perform take advantage of this higher level of parallelism by running
approximately six conjugate-gradient steps before we updateachk point concurrently on a subset of the available nodes.
the potential. When the wave functions get better, only 2—3-or example, a typical &-point calculation of aluminum on
conjugate-gradient steps are executed before updating tlee 64X 64X 64 mesh can run with 87% efficiency on 256
potential. It is also not necessary to fully relax the electronicnodes by running eadhpoint on a 64-node subset where the
degrees of freedom or wait until the potential becomes fullydistributed 3D FFT operates with high efficiency.
consistent before proceeding to move the atoms. The error in
the forces due to the error in self-consistency can be cor-
rected and the change in the potential due to the change of . RESULTS AND DISCUSSIONS
the atomic positions can be predicted rather effectively by a
recently proposed scherfie.

Most of the results reported here employ a simple-cubic Since we are handling metallic systems, which are usually
supercell withL=3a, wherelL is the supercell dimension more demanding on the system size dnrgoint sampling
anda is the lattice constant of fcc bulk aluminum. There arethan semiconductors or insulators, we first studied the effects
108 atomic sites per supercell. Tests were done using up tof the system size, the number kfpoints used, and the
216 atom cells to test for size effects. The Kleinman-Gaussian band smearfign the calculated vacancy forma-
Bylander-type pseudopotentidisvere generated according tion energy. Chettyet al® have emphasized that a large
to the coefficients presented by Stumpf and co-workers. k-point set must be used to accurately calculate the defect
The d-wave component of the pseudopotential is set as thenergies in Al, even when large supercells are used to ensure
local potential and the and p components were treated as that the defects are very far apart. This is in opposition to the
nonlocal potentials. The Bloch wave functions are reprecommon practice of using a singkepoint in Car-Parrinello-
sented by a plane-wave basis using a 12.5-Ry cutoff for théype simulations. As an example, they find that if only one
plane-wave kinetic energy. The equilibrium lattice constank point is used, a 108-atom cell would give a vacancy for-
and cohesive energy are 3.97 A and 3.96 eV, respectivelynation energy with the wrong sign, and even a 256-atom cell
for fcc Al, which compare well with experimental values of would give unacceptable results.

4.05 A and 3.39 e\ The four speciak points in the 1/48 We have tested the effects of the system size on the un-
irreducible Brillouin zone provide a reasonable precision at aelaxed vacancy formation energy using up to 216 atoms in

A. k-point sampling, supercell size, and pseudopotentials
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TABLE Il. The unrelaxed vacancy-formation energi@seV) as a function of cell size and band energy
smearing. The& points for all runs are equivalent to a 182point set.

Atoms per Equivalent Band energy smeariey)

supercell Structure k points 0.05 eV 0.20 eV 0.75 eV 1.6 eV 3.2eV
1 fcc 182

4 sc 56 0.737 0.736 0.743 0.749 0.748
8 fcc 28 0.752 0.755 0.770 0.778 0.752
16 bce 20 0.753 0.750 0.761 0.746 0.739
27 fcc 10 0.655 0.689 0.763 0.780 0.751
32 sc 10 0.651 0.678 0.759 0.770 0.747
64 fcc 6 0.640 0.644 0.746 0.772 0.751
108 sc 4 0.691 0.661 0.748

128 bce 5 0.656 0.651 0.771

216 fcc 2 0.640

various supercell geometries and differing number of specialhe smearing is taken into account as suggested by De Vita
k points in the irreducible Brillouin zongIBZ). Table |  and Gillan?® All the calculated energies reported in this pa-
shows the unrelaxed vacancy-formation energy of Al withper are computed with this correction. With this formulation,
cells containing up to 108 atoms for two setskgboints; the  the error introduced by the Gaussian broadening is at most
“small” and “large” sets being equivalent to 182 and 1300 third order in the Gaussian smearing factor, so that for a
k points, respectively, in the IBZ of fcrimitive unit cel)  fixed large set ok points the result of using large smearing
Al. The Gaussian broadening factors fixed at 0.2 eV. We is almost the same as using very small smearing. On the
observe that there is remarkably little change in the vacancysther hand, rapid convergence with respect to the number of
formation energy when the “large” set & points is used. k points is expected at large smearing, so that we may be
The unrelaxed vacancy-formation energy is relatively con-able to obtain good results for metals with a smaller set of
stant at 0.75 eV, varying by only 0.025 eV over the entiresamplingk points if we use a large Gaussian broadening
range from 4 atoms up to 108 atoms. However, if we use théactor, as long as the entropy correction is taken into account
smaller set ok points, the formation energy has observableproperly. In Table II, we show the unrelaxed vacancy-
changes as the system size increases. More importantly, thef@mation energy using the sma{tpoint set(equivalent to
is a noticeable difference in the calculated energy for thel82k points in the IBZ of the primitive cellusing Gaussian
108-atom cell between the sma#f) and large(20) sets of broadening factors ranging from 0.05 to 3.2 eV. The results
k points. Since the results of the largegpoint set are settled indicate that with large broadening, the results do approach
to the order 0.01 eV from 32 to 108 atoms, there is goodhose with the larger set d€ points. For example, with a
reason to believe that this is the converged result, whici08-atom supercell, a sampling ok4points and a smearing
would imply that a 4k-point sampling with Gaussian smear- of 0.75 eV gives a calculated relaxed vacancy-formation en-
ing of 0.2 eV is still inadequate for supercells as large as 10&rgy of 0.748 eV, which compares favorably with the 0.735
atoms. These results indicate that a 108-atom cell, or eveaV obtained with 2k points and 0.2-eV smearing. If we use
smaller, is already good enough for the point defect calcula4 k points but a smearing of 0.2 eV, the result is 0.66 eV
tion, but the system with the vacancy is still a metal thatinstead. These tests indicate that a larger Gaussian smearing
requires adequate-point sampling to give accurate results. can compensate for using fewlkerpoints for the case of Al
A supercell of the order of 100 atoms is needed to allow alefect calculations.
proper level of relaxation of the atoms near the defects due to However, care must be taken in choosing an appropriate
the effects of the periodic boundary conditions. level of smearing and an appropriate numberkopoints

We will now show that the stringent requirement for since there is a direct effect on the computational load and
k-point sampling can be alleviated by using larger Gaussiamemory requirements. As the band energy smearing is in-
broadening when the so-called “entropy correction” due tocreased, more bands need to be used in the calculation. More

TABLE Ill. The unrelaxed vacancy-formation energiyn eV) for Alg as a function of band energy
smearing and the number kfpoints.

Number of Band energy smearing

k points 0.05 eV 0.20 eV 0.75 eV 1.6 eV 3.2eV
1 —4.346 —4.054 -3.123 —9.356 —6.162
4 —0.088 0.033 0.359 0.308 0.692
8 0.968 0.961 0.861 0.754 0.742
20 0.753 0.750 0.761 0.746 0.739

112 0.777 0.774 0.768 0.746 0.741
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TABLE IV. Unrelaxed vacancy-formation energies comparing the pseudopotential method using 0.05-
and 0.75-eV band energy smearing to an all-electron calculation by Mehl and (Refn 6 (all using a
lattice constant of 4.05 A

Number of Number of All-electron Pseudopotential Pseudopotential
atoms k points calculationRef. 6 (eV) (0.05-eV smearing  (0.75 eV smearing
(eV) (eV)

4 56 0.856 0.856 0.862

8 28 0.860 0.860 0.876

16 20 0.855 0.851 0.858

27 10 0.781 0.784 0.863

27 60 0.862 0.876 0.861

bands require more storage space and increase the compultg-up to 40%. However, it is interesting to note that even a
tional load. Table Il shows that the smaller setkopoints  sampling with only thel’ point and very small Gaussian
reproduces the unrelaxed vacancy formation energy ofmearing was able to find the equilibrium positions for the
0.75+0.02 eV range of the larger set when a moderate levehtoms to within 0.014 A or 0.5% of the bond distance. Even
of 0.75 eV smearing is used. This level of smearing in-though the forces may have been off by as much as a factor
creased the number of bands required by about 20%, whichf 2, the atomic relaxation could still proceed to a rather
is a very small cost when compared to the cost of using morgccurate atomic configuration in this case. In short, we need
k points. Higher levels of smearing cannot reduce thea very careful sampling ok points to determine quantities
k-point sampling much further, but do increase the cost okuch as vacancy-formation energy for metals, which by defi-
the calculation greatly. Increasing the smearing to 1.6 or 3.2ition requires the comparison of the total energy of two
eV required many additional bands so that the increase igifferent systemsgone with the vacancy and one withput
computational cost defeats the original purpose of using &hek-point sampling must be adequate to give a reasonably
high level of smearing. good representation of the change of the local density of
Table Ill shows the vacancy-formation energy calculatedstates about the defects before a reliable difference in energy
for a cell with 16 Al sites as the number &f points are can be established. The forces are gradients of the energy
varied over a broader range. At a small Gaussian broadeningurfaces, and we found that they also require a good sam-
of 0.05 eV, the results depend strongly on the numbek of pling. Equilibrium positions of the atoms in a system corre-
points used as expected, and a very large numbkrpafints  spond to extremum of the energy surfaces. In the case of Al
are needed to obtain reliable results. At the other extreme afefects, we found that even though the forces are not accu-
using a large 3.2-eV broadening, the results converge with asite and the vacancy-formation energies are bad with single
few as 8k points. When the set df points is reasonably k-point sampling, the relaxed atomic positions are accept-
large, the results are rather independent of the Gaussiable. This means that even though the energy surfaces have
smearing factor. In fact, the results of the bottom rd&2  inaccurate absolute values and gradients, the extremum can
k points at various Gaussian broadeniagd the results of be at more or less the same position as in the case with better
the last column(large broadening at various pointg are  sampling of the Brillouin zone.
rather similar. This fact allows us to use a smaiboint set With the effects of band energy smearing, system size,
with large broadening to obtain results similar to those of aand choice ok points now understood, the optimal choice
large k-point set and small broadenirfg/hich is the correct  for accurately investigating the relaxed vacancy formation
result we are looking for However, we should point out that energy can now be made. A system of 108 Al atoms is large
if the k-point set is too small, in the limit of using just one enough to allow for the relaxation of 4 shells of neighbors
k point as shown in Table I, the vacancy-formation energyaround the vacancy which should prove adequate. A choice
is still hopelessly wrong no matter how much smearing isof the 4k points from the small set combined with the mod-
used. In this limit, there is simply insufficient information for erate level of 0.75 eV smearing of the band energy provides
a meaningful answer. In addition, we note that the high lev-a high level of accuracy and proves to be computationally
els of 1.6- and 3.2-eV Gaussian broadening are almost agery efficient.
costly in the computation as using mdegooints, so little is We note in passing that this technique of using larger
gained. However, moderate levels of smearing, such as 0.#roadening to compensate for fewepoints works well for
eV, can provide high accuracy with fewkrpoints without  simple metals, at least for the case of Al. However, care
adding much to the cost of the calculation. should be exercised before applying to transition metals,
The level of band energy smearing and the numbek of which have more structured density of states. We also note
points used affects the accuracy of the forces between thihat earlier calculations of vacancy-formation energies
atoms in a manner similar to how the unrelaxed vacancyshowed some variations in the restit$?®that have some-
formation energies are affected. Thé<point set with mod- times been attributed to the use of pseudopotentials in some
erate smearing of 0.75 eV produces interatomic forces thaif the calculations. In Table IV we show that our pseudopo-
are very close to thk-point converged forces. Lowering the tential results can accurately reproduce the all-electron re-
number ofk points or reducing the level of band energy sults of Mehl and Kleifi if we use exactly the same lattice
smearing can cause deviations in the magnitude of the forcgsaramete4.05 A) and the same set &fpoints when a smalll
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Gaussian broadening of 0.05 eV is used, and can reproduce

the k-point converged results when a moderate smearing of 0.00 -
0.75 eV is used. M 1
§ -0.01
. = ]
B..Vacanc.y formation energy g 002 -
The vacancy in aluminum has been used as a prototype = .
system for point defects in simple metals, as well as a bench- é -0.03
mark for computational methods. There have been many pre- §
vious calculations of the vacancy-formation energy using 3 -0.04 Vacancy in Aluminum
methods ranging from pair potentials to local-density- ) 1
functional methods, including both plane-wave pseudopoten-  -0.05 -
tial and linear augmented plane-wave methods. LDA-based L B I A —
calculations employed periodic boundary conditions and ear- 3.0 4.0 5.0 6.0 7.0 8.0
lier calculations have used relatively small supercell to Radial distance (Angstroms)

32 atomic sites>*®2° Since the relaxation surrounding a

point defect in_g SUperce”_ i_s constrained _by the periodic FIG. 1. The radial displacement for the atoms around a vacancy
boundary conditions, a sufficiently large unit cell should bej, ayminum. Shells 1 and 4, the face-center and face-diagonal,
used to model an isolated defect. Our use of 108 atomic site§ove inward while the other atoms remain roughly in place.

in a simple cubic supercell puts the nearest distance between

two single defects at about 12 A and allows 4 shells of atomsyhere() is the volume of one atom in the perfect lattice and

to relax around the defect. Also, the availability of othery’ js the relaxed volume of the supercell with a vacancy. We

theoretical and experimental results made this an ideal casfte that Chettget al® obtained a value of 0.6¥,, while De

for testing our approagh to deallngl with metalllc systems. Vita and Gillan?® using a smaller 16-atom cell, found 0.72
The vacancy-formation energy is obtained from the dif-() .

ference between the total energy of the defect supercell with Figure 1 shows the lattice relaxation around the vacancy

N—1 atoms and that of the perfect crystal withatoms: defect. Only the first four shells are completely free to move
N-1 in response to the vacancy. The other shells are affected

E,=E(N—1V')— E(N,V). 1) slightly by_ a small_a_mount of contraction of the supercell bu_t
N are at points equidistant between the defect and one of its

. - eriodic images and therefore cannot fully relax as the
We start from a perfect lattice consisting of 108 atoms orﬁ g y Y

latii : h h ould around an isolated defect. It is mainly the first shell

108 lattice sites, remove one .qf the atoms to form the V@atoms that move inward by about 2% of the bond length to
cancy, and fully reIa>_< the positions of the ions. The Iatt'cecompensate for the vacancy. The fourth shell also shows
parameter of the cell is then varied followed by another com

. i o ; . significant displacement, more than the second and third
plete relaxation of the ions. This is repeated to find the Iatt'ceshells. The first and the fourth shell atoms correspond to the

cr?nstanlt and ionic configuration that produces a minimum i, e centered position and the positions diagonal across the
the tota err:ergky. . q . fthe b dface of the cubic cell. Therefore the lattice relaxation in-
Using the 4k-point set and 0.75-eV smearing of the band, ;| 5 mainly a radial shift of the atoms along the face di-

energy that was determined to l.)e optimal for this pmb_lemagonals inward toward the vacancy site, as illustrated in Fig.
the fully relaxed vacancy-formation energy for 108 Al SiteS5” The other atoms remain in position aside from a slight
came out to be 0.66 eV. This is in good agreement with the

experimental value of 0.670.03 eV?’ The vacancy-
formation energy in Al has been studied carefully with large
supercells by Chettgt al.® who got basically the same re-
sult (0.66 eV) using a larger set df points. Previous results
with smaller supercells range from 0.52 to 0.84 %26
Volume relaxation turns out to have only a small effect on
the vacancy-formation energy as long as we allow for atomic
relaxations around the vacancy sithis is not the case if
relaxation is not allowed If we fix the 108-atom cell at the
equilibrium volume of Al, the vacancy-formation energy in-
creases by only about 0.01 eV. This shows that atomic re-
laxation is much more important and the energetics of the
defect formation is largely decided by the atomic configura-
tions close to the vacancy. If no atomic relaxations were
allowed, the vacancy-formation energy would be about 0.75
ev.

A vacancy-formation volume of 0.8%, was found using
the definition of

Vacancy Site

FIG. 2. Radial relaxation inward along the face diagonal for a
QF=VvV'—(N-1)Q,, vacancy defect in aluminum.
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FIG. 3. The difference in elec-
tronic charge density in a vacancy
defect in aluminum.

Charge Density (e/a3)

contraction of the supercell. A constant volume relaxationenergy of the impurity, andE, ) is the energy ofN Al
where ionic and electronic relaxations are performed at &toms in the bulk environment. The bulk energy of the Al
volume matching the bulk volume, produced very similarhgst is calculated with a 108-atom cell, with exactly the same
results since there is relatively little overall contraction of thek-point sampling and Gaussian broadening as the defect cal-
system. The Iattlces relaxations we obtained closely matc|ation to minimize systematic errors. We will consider Li,
those of Chettyet al.° The Harris-functional local-orbital re- Mg, and Si as substitutional impurities, and a negative heat

iggs ?f Carol,l Drfabolg, tzn? tﬁanfkaéwmo l?IS? utsed up to dof formation indicates that the impurity is soluble in the low
~ve-atom cells, foun at the Tirst shell ot aloms MOVEC, ., e ntration limit, while a positive heat of formation indi-

inward by about 4% of the bond lengtiwice as big as cates that the impurities will segregate. We employ a peri-
ours, and the next two shells move outwards from the va- P gregate. poy ap

cancy. However, these calculations did not allow for volumeOdIC cubic unit cell of 108 atoms, with 107 Al and one im-

contraction and the lack of self-consistency in the HarrisPurty atom. Both the volume and the atomic positions are

functional approach may also contribute to the difference. fully relaxed. As in the case of vacancy calculations, we used

The plot in Fig. 3 shows the electronic charge density4 specialk points in the irreducible Brillouin zone, and a

transfer that occurs when a vacancy is initially added to thé>aussian smearing of 0.75 eV. As a check, the heat of solu-

bulk system. The figure shows the difference in charge denion ©f Si in Al (without lattice and volume relaxatipmith

sity between the electronically relaxed system and the sy¥0k points ar_1d a Gaussian _smearing 0of0.2eVis fqund to be
tem of overlapping atomic charges for 107 aluminum atomd-392 .ev' With only 4.k points apd 0.2-eV smearing, the
at the lattice sites. Clearly there is a flow of electrons into thd©Sult iS 0.896 eV, which is obviously unacceptable. How-

vacancy site, which in turn provides the electrostatic forcefVel: With the same K points but a larger 0.75-eV Gaussian
that pulls the neighboring ions in toward the vacancy. broadening, the heat of solution is found to be 0.400 eV,
which is almost the same as that of the larggyoint set. In

other words, what we have learned abktgoint sampling in
the vacancy-formation energy calculations is also applicable
Li, Mg, and Si form important binary and ternary alloys to the substitutional defect calculations.

with Al. It is therefore of practical interest to study the en-  The calculated heats and volumes of formation are listed
ergetics of these elements embedded in an Al host. Since the Table V. From these calculated heats of formation, we see
conjugate-gradient method allows us to study systems witthat Li gains energy by substituting one Al atom in the Al
more than 100 atoms, the structural properties and the heatwst. On the other hand, the heats of formation of Mg and Si
of formation of these elements in Al can be studied in theare positive. These results are consistent with available ex-
dilute limit. The heat of formation for a substitutional defect perimental information. The formation volume of the impu-
is defined here as the total energy of the two-componentties is defined here ag-=V' -V, ), whereVyy, is the
system minus the total energy of the same number of atomequilibrium volume of the Al host withiN atoms, andv’ is

C. Impurities in bulk aluminum

of the constituent elements in the bulk environment: the total volume of a unit cell withN—1) Al atoms and one
substitutional impurity. The formation volume is found to be
N—1 positive for Mg and negative for Si and Li. According to

H = Enostrimpurity = Ei — TEAI(N>- 2 published values of “atomic and ionic radi?®the sizes of

the atoms decrease in the orderIMg>Al>Si. Thus, the
N is the number of sites in the unit celyqs impurity IS the  trend we find is consistent with the atomic sizes for the case
total energy of the unit cell containingN(1) host atoms of Mg and Si. Since the heats of substitution are positive for
and one impurity atomE; is the chemical potential of the these two elements, we may say that Mg and Si do not mix
impurity atom, which is taken to be the equilibrium bulk with Al in the dilute limit, and the volume expansion or
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TABLE V. Single vacancy and substitutional defect formation energies for Li, Mg, and Si in bulk

aluminum.
Formation Formation

Defect energyeV) volume Chettyet al. (Ref. 8 Experiment(Ref. 27

Li —0.496 —0.107),

Mg 0.038 0.372), 0.07 eV 0.06-0.20 eV

Si 0.377 —0.134), 0.37 eV 0.51 eV

Vacancy 0.664 0.847, 0.66+0.03 eV 0.6740.03 eV
contraction should largely be determined by atomic sizes. Li, 0.01

on the other hand, dissolves in Al. The binding between the
Li and the Al host draws the host metal atoms in and causes
a contraction although bulk Li has a bigger atomic volume
than Al. The lattice relaxations around the impurity are
shown in Figs. #a)—4(c), for Li, Mg, and Si, respectively.
For all three cases, the lattice relaxations are found mainly in
the first shell of the Al atoms around the impurity site. The
atoms in the first shell relax outward for Mg, and inward for

0.00

-0.01

-0.02

Displacement (Angstroms)

Si and Li, which is consistent with the changes in the forma- -0.03 - Lithium Defect in Aluminum

tion volume that Mg causes an expansion in the Al lattice,

while Si and Li cause volume contractions. Our results for ., —————————

the lattice relaxation around a Si impurity agree well with 3.0 40 50 6.0 70 8.0
those of Chettyet al® The results of Carcet al?® agree Radial distance (Angstrams)
qualitatively with ours, but their relaxations are substantially @) 9

larger than the values we obtained. 0.03

D. Aluminum clusters

In the previous section, we have seen that it is energeti- Magnesium Defect in Aluminum

cally favorable for Li to substitute for Al in a bulk environ-
ment, but not so for Mg and Si. We will show that the situ-
ation can change quite a bit if we consider the same
substitution in a small cluster environment.

All the calculations involving clusters were performed
with an fcc supercell of lattice parametar=20 A, and a
plane-wave cutoff of 12.5 Ry. By increasing the lattice pa-

0.02 —

0.01 4

Displacement (Angstroms)

rameter to 30.5 A, we found that the total energy of an 0.00 ————=—

Al 5 cluster changed by less than 1 meV, indicating that this 3.0 4.0 5.0 60 - 7.0 8.0
supercell is large enough so that our results should be close Radial distance (Angstroms)

to those of isolated clusters. Our calculations are not spin

polarized (except for the atomic reference energy used be- 0.005

low, where the spin polarization energies are calculated by
an all-electron atomic Herman-Skillman type cpdeut the
error of ignoring spin polarization should be small in clusters
containing up to 13 atoms, especially when our attention is
focused on clusters with “magic” numbers of electrons.

For the Al cluster, it is well known from theoretical
calculations that the icosahedral cluster is lower in energy
than the cubo-octahedral clust&r3* although the reported
energy differences varies from 0.6 gRef. 3]) to 1.6 eV
(Ref. 32. Figure 5 shows both the icosahedral and cubo-
octahedral clusters, with the center atom shaded darker. We -0.015 T T T T
find that ideal icosahedral g (I —Al,3), with an optimized 3.0 4.0 5.0 6.0 7.0 8.0

0.000

-0.005

-0.010

Displacement (Angstroms)

Silicon Defect in Aluminum

bond length of 2.76 A and distance to center atom of 2.62 A, Radial distance (Angstroms)
is 1.02 eV lower in energy than cubo-octahedral; Al (c)

(O—Al;3), which has an optimized bond length of 2.68 A.
Yi, Oh, ,and Bernhof¢ used a plane-wave pseudopotential FIG. 4. The radial displacement for the atoms arour@)Li,
Car-Parrinello scheme to find that iddat Al,3 is 0.6 eV (b) Mg, and(c) Si substitutional defect in aluminum.
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FIG. 5. (a) Icosahedral an¢b) cubo-octahedral clusters with 13
atoms showing a different atom in the center.

tional method. Our result agrees well with that of Pederéon,
who found an energy difference of 1.1 eV using an all-
electron cluster code.

We now consider the change in binding energy when an
Al atom is substituted by another atom, which is equivalent
to the following substitution reaction:

Al 13+ X—Al 12X +Al (3)

X is Li, Mg, or Si, and is assumed to substitute the Al atom
in the center of the icosahedral cluster. The icosahedral sym-
metry is maintained for both the Aland the A|,X clusters.
Although these clusters may gain more energy by Jahn-
Teller distortions, the energy gain is expected to be about
0.02 eV/aton®! which will not affect our results as discussed
below. We found that the above interaction is highly endo-
thermic for the case of Si, which gains an energy of 2.9 eV
(Gong and Kuma? find a difference in binding energy of
3.2 eV). We also found that the interaction
2Al 3+ Si,—2Al,Si+ Al, produces a gain of 2 eV, which
further indicates the stability of the A cluster. On the
other hand, the reaction is unfavorable for the case of Mg
and Li, where the energy goes up by 3.5 and 2.6 eV, respec-
tively. For an Al ; cluster, it is therefore energetically favor-
able for Si to substitute for an Al atom, but not so for the
case of Li and Mg. The important point to note is that the
trend is different from that of bulk behavior, where we found
that it is favorable for Li to substitute Al, but not for Mg and
Si. The distances of the Al atoms from the center impurity
atom in the icosahedral clusters are 2.57, 2.59, and 2.64 A
for Li, Si, and Mg, respectively. In A}, the distance of the
surface atom to the center atom is 2.62 A. Mg thus causes an
expansion of the Al cluster, while Si and Li cause contrac-
tion. This trend is consistent with the trend we found for
substitution in the bulk.

The above results also hold for cubo-octahedral clusters.
For example, Al;+ Si— Al ,Si+ Al gains 2.2 eV when both
Ali3 and Al,Si are cubo-octahedral, while using Mg or Li
instead of Si the energy goes up by 3.5 and 2.8 eV, respec-
tively. 2Al,5+ Si,— 2Al;,Si+ Al, produces a gain of 1.3 eV.

These results are therefore qualitatively the same as for
the icosahedral and cubo-octahedral clusters, although these
two forms have different structural characteristics. The ob-
served trend in the energetics can be explained using a
simple jellium modef®33Al, 5 has 39 valence electrons, so it
is one electron short of forming a closed shell of 40 electrons
in the jellium sphere modefS:*® This extra electron can be
provided by substituting one Al by Si, but not by Mg or Li,
accounting for the stability of AbSi. Since the stabilizing
factor is electronic in origin, it is not surprising that we see
the same trend for icosahedral and cubo-octahedral clusters,
as long as they are both reasonably spherical. As the metal
cluster size becomes bigger, and eventually grows into the
bulk limit, the molecular energy levels are broadened into

lower thanO— Al 3. This difference is due to the fact that energy bands, and the highest occupied—lowest unoccupied
Yi, Oh, and Bernhole used a much smaller 4-Ry plane-wavenolecular orbital gap will disappear. The contribution due to
cutoff, which they estimated would lead to an error of 0.03atomic relaxation to accommodate the defect becomes in-
eV per atom, while we used a highly converged plane-wavereasingly important and it will become more difficult to

cutoff of 12.5 Ry. Cheng, Berry, and Whetténeported a
much larger difference of 1.6 eV using Xmx discrete varia-

predict the trends of energetics. Whether an impurity atom
will favorably substitute for the host in the bulk depends on
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factors such as size mismatch and chemical bonding, whicemearing was found to be beneficial by allowing the calcu-
can in turn be attributed to the change in the electronic strudation to be performed with fewek points without sacrific-
ture. It is quite difficult to predict these energetics based orning accuracy. We found that the energetics of substituting an
simple arguments without doing a careful calculation. EverAl atom is rather different in the bulk and small cluster en-
for the case of small clusters, the icosahedral cluster is urvironments.

characteristically simple because of its high symmetry. In

general, the problem can be very difficult even for a cluster

of one component since the cluster may have a very complex

potential energy landscape. ACKNOWLEDGMENTS

We would like to thank Dr. B. C. Pan for checking some
of our cluster results, and Dr. M. Weinert for helpful com-
munications, especially about the issuekgboint sampling.

Using a preconditioned conjugate-gradient method, weThis work was made possible in part by the Scalable Com-
have performed first-principles calculations to obtain theputing Laboratory, which is funded by lowa State University
vacancy-formation energy of a single vacancy in aluminumand Ames Laboratory. Ames Laboratory is operated for the
and the energetics of Li, Mg, and Si substitutional impuritiesU.S. Department of Energy by lowa State University under
in bulk aluminum and small A} clusters. The calculated Contract No. W-7405-ENG-82. This work was also sup-
vacancy-formation energy and heats of solution are in googorted by the Director of Energy Research, Office of Basic
agreement with available experimental information. In theEnergy Sciences, U.S. Department of Energy. C.T.C. ac-
bulk point defect calculations, a supercell of about 100 atom&nowledges support from DAG95/96-SC12 and HKUST694/
is found to be adequate for simulating isolated defects. How96P from HKUST, Hong Kong. Z.Z.Z. acknowledges sup-
ever, k-point sampling needs to be done carefully and adport from the China National Science Foundation and 863
equately for metallic systems. A higher level of band energy-oundation.

IV. SUMMARY

“Electronic address: turner@ameslab.gov calculations of up to 108 atoms, the subspace diagonalization
1pP.S. Ho, Phys. Rev. B, 4035(1971). takes less than 5% of the computation time. However, when the
°G. Das, P.V.S. Rao, and P. Vashishta, J. Phys, E35 (1975. system becomes larger, we can actually bypass the subspace
*R. Benedek, L.H. Yang, C. Woodward, and B.I. Min, Phys. Rev.  diagonalization altogether. All we need to do is modify the mini-

B 45, 2607(1992. mization process. When the trial vector is updated, we normally
4M.J. Gillan, J. Phys. Condens. Mattir689 (1989. orthogonalize the change vector to all the vectors in the current

°R. Pawellek, M. Fahnle, C. Elsasser, K.M. Ho, and C.T. Chan, J. searching subspace. This just guarantees that the subspace is the

GMP\rJ]y:/.I i?ndzn;'\'/\l/'algej 24:35h1(1'99];72 211(199) same as that of the eigenvectors. However, if we explicitly or-

7o enhland B.M. Kiein, Fhysica YT ) thogonalize the change vector to the eigenvectors of lower band
P.T. Salo, K. Kokko, K. Mansikka, and R. Laihia, J. Phys. Con index that are already known, then each vector optimized is in

8 dens. Matterr, 2‘.161(1995. fact an eigenvector and subspace diagonalization is unnecessar-
N. Chetty, M. Weinert, T.S. Rahman, and J.W. Davenport, Phys. iy,

Rev. B52, 6313(1995. 19 . .
%p. Hohenberg and W. Kohn, Phys. Rei36 B864 (1964; W. 20D.H. Vanderbilt and S.G. Louie, J. Comput. Phy8, 259(1984).
C.T. Chan, K.P. Bohnen, and K.M. Ho, Phys. Rev4RB 4771

Kohn and L. J. Shamid. 140, A1133(1965. (1993

0R. car and M. Parrinello, Phys. Rev. Lefb, 2471(1985. o ?
11\, p. Teter, M. C. Payne, and D. C. Allen, Phys. Rev4@ L. Kleinman and D.M. Bylander, Phys. Rev. Le#8, 1425

12 255(1989. ,p (1982, _
12| stich, R. Car, M. Parrinello, and S. Baroni, Phys. Rev3® R. Stumpf, X. Gonze, and M. Schefflamnpublishedl
4997 (1989. 23C. Kittel, Introduction to Solid State Physicsth ed.(Wiley, New
13M.C. Payne, M.P. Teter, D.C. Allen, T.A. Arias, and J.D. Joan-  York, 1986.
nopoulos, Rev. Mod. Phy$4, 1045(1992. 24D.E. Turner, Zizhong Zhu, C.T. Chan, and K.M. Hanpub-
14 stich, M.C. Payne, R.D. King-Smith, J.S. Lin, and L.J. Clark, lished.
Phys. Rev. Lett68, 1351(1992. 25C.L. Fu and K.M. Ho, Phys. Rev. B8, 5480(1983.
15K .D. Brommer, M. Needels, B.E. Larson, and J.D. Joannopoulos?®A. DeVita and M.J. Gillan, J. Phys. Condens. Mat8r6225
Phys. Rev. Lett68, 1355(1992. (1991).
163.S. Nelson, S.J. Plimpton, and M.P. Sears, Phys. R&7, B765  2’P. Ehrhart, P. Jung, H. Schulta, and H. Ullmaier Atomic De-
(1993. fects in Metalsedited by H. Ulimaier, Landolt-Bornstein, New
7L, Hedin and B.I. Lundqvist, J. Phys. & 2064 (1971). Series Group lll, Vol. 25Springer-Verlag, Berlin, 1990

Most of the calculations are done by minimizing the sum of ei-2®R.W. Jansen and B.M. Klein, J. Phys. Condens. Malte8359
genvalues for the lowedl states subject to the constraints that  (1989.
trial vectors are orthonormal. The set of vectors that optimize?®A. Caro, D. Drabold, and O.F. Sankey, Phys. Revd® 6647
the sum of eigenvalues for a fixed numbemMbbands spans the (1994).
same subspace as tNeeigenvectors, but a subspace diagonal-3°S.N. Khanna and P. Jena, Phys. Rev. L&%.1664(1992.
ization is needed to rotate the subspace to that of the eigenveélJ.Y. Yi, D. J. Oh, and J. Bernholc, Phys. Rev. L&, 594
tors and find the eigenvalues of the individual levels. In our (1991).



13 852 D. E. TURNER, Z. Z. ZHU, C. T. CHAN, AND K. M. HO 55

324 p. Cheng, R.S. Berry, and R.L. Whetten, Phys. ReW43 From Clusters to Crystalsedited by P. Jena, S.N. Khanna, and
10 647(1991). B.K. Rao(Kluwer Academic, Dordrecht, 1992Vol. Il, p. 861.
33X.G. Gong and V. Kumar, Phys. Rev. Left0, 2078(1993. 35W.D. Knight et al,, Phys. Rev. Lett52, 2141(1984).

34M. R. Pederson, irPhysics and Chemisitry of Finite Clusters: *°M.Y. Chou and M.L. Cohen, Phys. Lett13A, 420(1986.



