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Recent experiments have revealed that the temperature dependence of the conductance of quasiballistic
guantum wires bears characteristic features of the Luttinger-liquid state. In this paper, the conductance of an
N-channel quantum wire is calculated within the modeNofoupled Luttinger liquids and under the assump-
tion of weak disorder. It is shown that as the number of channels increases, a crossover from the Luttinger-
liquid to the Fermi-liquid behavior occurs. This crossover manifests itself in tNedétrease of the scaling
exponent of the temperature dependence. An exact expression for the scaling exponent for theNcase of
coupled Luttinger chains is obtained, and the laxgkmit is studied for the case of a quantum wire. The case
of N=2 for electrons with spin is analyzed in detail, and a qualitative agreement with the experiment is
achieved[S0163-182¢07)00320-2

[. INTRODUCTION conductance of a weakly disordered single-chahraeid
multichannel quantum wires was interpreted in terms of the
Although the conventional Landau theory for Fermi Tomonaga-Luttinger modél.Luttinger-liquid behavior has
liquids? has been very successful in understanding manylso been observed in transport experiments on fractional
condensed matter systems, its failure to describe quasi-onquantum Hall systems'°where the edge states are believed
dimensional(Q1D) systems, e.g., conducting polymers andto be in the chiral Luttinger-liquid stafe.
organic conductors, has motivated the search for alternative Luttinger liquids and Fermi liquids are two fixed-point
models which can describe a non-Fermi liquid behavior. Theegimes, which are well understood on their own. The cross-
most theoretically studied example of a non-Fermi liquidover between these regimes, which is expected to occur
system is that of interacting electrons in one dimengidp)  when several Luttinger liquids are coupled together, is of
known as the Tomonaga-Luttinger modélBy now, the  significant interest from the general theoretical point of view
main properties of this model are theoretically well under-and has been investigated by a number of auttfors How-
stood and form the concept of a “Luttinger liquid.’Lut-  ever, it is difficult to compare the results of various theoret-
tinger liquids are very different from their higher dimen- ical approaches with the experiment, because the parameters
sional counterparts, Fermi ligquids, in many respectsdriving this crossover such as the number of Luttinger-liquid
including the following: the absence of single-particle exci-chains coupled together by interchain tunneling, electron-
tations at low energies, spin-charge separation, and the ablectron interactions or both, cannot be changed smoothly in
sence of a well-defined Fermi surface, even at zero tempera real sample. The semiconductor quantum wires again ap-
tures. pear to be ideal candidates for studying the Luttinger-liquid
Despite the vigorous theoretical activity in this field, thereto Fermi-liquid crossover, because the number of conducting
has been only limited experimental evidence for the exischannels is an adjustable parameter of the experimental
tence of Luttinger liguids in the conventional Q1D systems,setup. The indication for such a crossover in the conductance
such as organic conductors. The genuine Luttinger-liquid beef GaAs quantum wires has recently been obsefvEdeo-
havior is easily masked in these systems by other effectsgtically, Matveev and Glazmah® have used a multichan-
such as Peierls transitions and dimensionality crossovers reel model to calculate the tunneling rate into a clean wire.
sulting from the coupling among the conducting chains. In this paper, we study the conductance of a multichannel
However, recent advances in semiconductor technologieguantum wire in the presence of disorder. Our main goal is
have made high-mobility quantum wires new and promisingo follow the crossover from the single-channel case to the
candidates for studying Luttinger-liquid effects in Q1D inter- multi-channel, when the wire is expected to be in the
acting electron systems. The most obvious advantages of tHauttinger-liquid state and the Fermi-liquid state, respec-
guantum wires ardi) the absence of unintentional dimen- tively. The second motivation for this study comes from re-
sionality crossoverd(ii) a very low and controllable degree cent experimentéin which an indication of such a crossover
of disorder; and(iii) the absence of Peierls transitions. In- has been observed. Our main result is that the temperature-
deed, the first evidence for Luttinger-liquid behavior has re-dependent conductance of a weakly disordered Luttinger-
cently been obtained in transport measurenféntsm GaAs liquid wire is reduced with an increasing number of occupied
guantum wires, where the temperature dependence of thehanneldN, and disappears in the limit of an infinite number
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of channels. We find that the scaling exponent of the temwavelengti?® i.e., ke/;>1, where /. is the correlation

perature dependence behaves & fér N>1. _ length of the disorder potenti&l.Backscattering processes in
This paper is organized as follows. In Sec. Il, we describevhich the longitudinal momentum of the electron in itile
the model of a multichannel quantum wire in the presence oghannel is changed b ok;; =7ik;+%k;, j=1...N, give

long-range disorder and short-range electron-electron intethe contribution to the resistance. The probability of these
actions. In Sec. lll, we present a gene_ral formalism fqr theprocessedPgs for a long-range disorder potential depends
calculation of the conductance and derive the expression fagxponentially on 5kij: Pgs~ eXP(—25Kj/c)-25 Therefore
the exponent of the temperature scaling. This exponent ifyo different regimes may be distinguish&d.

analyzed for various situations in Sec. IV. In Sec. IVA, the  |n the first regimePgg is exponentially small for all oc-
general result for spinless electrons is studied, and the congyupied channels, except for the topmost one ). In this
parison with the experimental results is made in Sec. IVBchannel, two situations can occit) When theNth channel

Our conclusions are given in Sec. V. is just opened, the Fermi energy is equal to the threshold
energy. The momentum carried by this channel is small and
[l. FORMULATION OF THE MODEL is strongly affected by impurity scattering. In this case, the

In this section, we outline the main assumptions and ap§catter|ng in channeé\l clearly gives the dominant contribu-

L tiPn to the resistancd?2) As the Fermi energy is increased,
proximations used to calculate the temperature-dependeghe momentum increaseB.c decreases and finally becomes
conductance of a weakly disordered Luttinger-liquid wire in- BS y

. . : exponentially small. However, becausk;; is minimal for
cluding the following: the geometry of the wire, the effects.:j =N, i.e., for the backscattering within chanré] this

of disorder, the nature of electron-electron interactions, and

the effect of electron reservoirs. We rely on the approacheg.r ocess domlnatgs the resistance. Thus, regardless of the po-
developed by Glazman and Jon&band by Matveev and Sition of the Fermi energy to the threshold energy the largest
Glazmarf3 contribution to the resistance is given by the backscattering

in the topmost channel , and the contributions from the rest
of the channels are negligible.

In the second regimePgg ceases to be exponentially
Consider a quantum wire of widttl, adiabaticallycon-  small for some channdéll.<N, such thalkNC/C~1. Then,

nected to the leads. For Slmp|ICIty, the confinement in th%” the channels W|ﬂ‘NC$ n=N are Subject to Strong back-
transverse direction is modeled by a square well potentiakcattering.

The wave function of theath mode of transverse quantiza' As was shown by Glazman and Jongénhe first (Sec-
tion W (X,y) is expanded over the adiabatic basis of transpng) regime is realized if N<N* (N>N*), where

A. Geometry

verse wave functiong, (y), N*=8(ke/ )% In a typical experimental situation,
N* =100 (N*~60 in the experimef}. As the number of
\pn(x,y)zE Dam(X) Emy (Y) . 1) obs_erved platea_u is usually significan_tly smaller tINiT_] it
m suffices to consider only the first regime and take into ac-

count the backscattering only in the topmost channel.
Although the disorder is smooth on the scale of the Fermi
wavelength kg/.>1), it can be showricf. Appendi® that
1 the effective potential describing the backscattering of left-
%?%(x): —ekn*5, (2) and right-moving excitations can be represented by a
L o-function form: The only information on the smooth varia-
tions of the original potential are hidden in the exponentially
small prefactor of thes function.

Limiting to the leadingzeroth order in the adiabatic expan-
sion, ¥,,m(X) takes the form

wherek, is the longitudinal wave vector of an electron with
a total Fermi momentunike,

C. Electron-electron interactions
kn: k|: 1_

z

: )

The same Luttinger-liquid model for a multichannel wire
as that proposed by Matveev and Glazftas employed.
We specify the assumptions needed for this model and we
begin with the case of spinless electrons. The Hamiltonian of
interacting 2D spinless electrons is given by

wherez=kgd/#. The number of occupied transverse chan-
nels in the wire isN=[z]. An effectiveFermi velocity for
channeln is defined a® ¢(n)=#k,/m*.

B. Disorder H=Hg+Hjq, (4)

In the absence of disorder, the conductance is quantized iyhereH, is the Hamiltonian of free electrons and
units of e2/h per spin orientation, where each plateau of

guantization corresponds to a newly occupied channel. 1 ) N Nt 2

The quasiballistic regime, where the wire lendthis Hint:iJ dr dr'U(r=r" )W) wi(r’)w(r")w(r) ,
shorter than thétransport mean free path’” is considered. (5)
This regime is realized in the experiments by Tarucha ) ) ) ,
et al.%" in which //L>6. where U(r—r’) is a (repulsive Coulomb interaction and

We assume also that the disorder potential in GaAs het\if(r) represents the fermionic field operator. Our first as-
erostructures varies slowly on the scale of the Fermisumption is that the interaction terpq. (5)] can be re-
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placed by the direct density-density interaction between elec- j=—id,pl\m . (10)
trons occupying different channels, i.e.,

1 The (Euclidean action of the system of interacting electrons
Himizz J dXJ dx’ pi(x)pj(x")Uj;(x=x") , (6)  occupyingN channels is given iy
ij

ho(B N
sl=—f drfdx2
2J)o =

wherep, is the density operator of thah channel and

1 Uj
m(f%d’i)zﬂL E(axd’i)z ,

Ui,-(x—X’)=f dy’f dy [&WIPIE(yHIPUr=r") . (113
(7
This assumption neglects the interchannel exchange interac- N Vo (8
tions, which are usually considered to be less important than 5225_2_ = d7 dX dydidy ;- (11b
the direct ones due to the smaller values of the overlap inte- 171 0
grals.

The Coulomb potential is assumed to be screened by thghe actionS; describes a set dfl Luttinger liquids with
metallic gates forming the channel, and in the dc limit theparametersk;,v; which depend on the Fermi velocities
actual form of the potentidl (r —r") can be replaced by the (i) and the effective coupling constavig. The actionS,
delta function:U,8(r —r").2% For aé-function 2D potential, describes the forward part of the density-density interaction
the effective 1D potential is also & function. Using the between the channels. The electron spin will be included in
eigenfunctions of a square-well confinement potential forSec. IVB.

&, in Eq.(7), the 1D coupling constant is channel indepen-
dent and it is related tdJ, by
D. Effect of reservoirs

Uo 8 Two characteristic features are predicted for the conduc-
: (8) ; : o= S

d tance of a single-channel Luttinger-liquid wirg, First, in

: - . the absence of disorday,is expected to be renormalized b

where the numerical coefficient has been absorbed into thﬁ]e electron-electron iegteracti%ns to the valuegefKe?/h y

red;_ar]:ini'tion ofU,. Hamiltoni " . dand P spin orientatior>** whereg=e?/h for a noninteracting
e interaction HamiltoniafEq. (6)] causes forward an system, wherK=1. Second, in the presence of weak disor-

backward scattering processes. In a multichannel case, the., g had been shown to decrease with the temperature
forward scattering is defined as the process in which none bvealing a tendency to interaction-enhanced Anderson
the momenta of the electrons is reversed, although the mqg ;> 2tion30:32.32 At temperatures lower thai, =vg /L,

mentum transferQ, may not be equal to zero as the elec- this temperature dependence crosses over to a length depen-
trons can be exchanged between the channels. Forward SClknce. However. as has recently been shown by a number of
tering includes processes wide=0 (for momentum transfer authors®*~3"the f,irst prediction does not survive if the pres-
between electro_ns n th_e same channel and in different Charc];\'nce of the Fermi-liquid electron reservoirs attached to the
nels andQ~ke(i) —kg(j) (for momentum transfer between i is taken into account. Instead, the conductance remains
electrons in channel and channef). The density-density 4 it noninteracting valug=e?/h. This result was obtained
interaction in Eq(6) conserves the total number of electronsin Refs. 34—37 in a model in which the Fermi-liquid reser-

in a given channel. Therefore, for temperatures low enough ;s \ere imitated by switching off the interactions in the
l.e., T<minfve (i) ve()}ke() —ke(j)], the forward scattering o yor barts of the system, i.e., by puttikg=1 outside the

with Q#0 involves electron states only far away from the, ;.o 38 o, the other hand, the second prediction was shown
Fermi level and can thus be neglected. Apart from the renore, o rvive even in the presence of the resenviré More-
malization of parameters, the backscattering processes Pr@ver the scaling exponent of the leading term in Thele-
duced by repulsive interactions do not change the low energ%end’ence was found to be the same as in the absence of the
properties of the systeftf;?’?®and therefore they are not ..o oi39-42This occurs because whaisT, ie. when
included in the modéel® Finally, the Umklapp processes are L>L+, the density-density correlation functiLo,n, W,hoslq:Z

not included. Due to the low (_alectron densmgs N SEMICONL gy component determines the value of disorder-induced
ductor heterostructu.r(_as a typpgl quantum wire is very farc:orrections to the conductance, decays inside the wire and is
away from the haIf-f|'II|ng cor_1d|t|on. . - only minimally affected by the presence of the reservbirs.

. Eaph 1D channel is deS(_:rlbed by a Luttinger-liquid mOOIeIThus, in order to determine the temperature dependence of
in which the electron density fluctuatlons _of thid channel the conductance, the original model of a homogeneous Lut-
are represented by a boson fiekl x, 7) defined so that tinger liquic®33may be employed and the presence of the
reservoirs may be ignored. If the interactions are not strongly
attractive?? the error introduced by this simplification will be

in an incorrect numerical prefactor of thE-dependence
term, a nonuniversal quantity. Using this reasoning, we con-
wherep; is the average electron density in this channel. Thesider only the model of homogeneous coupled Luttinger lig-
(numbej current flowing in theith channel is uids.

hVO:

1
Pi(X)—Pi:\/—;f%«ﬁi. 9
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IIIl. CONDUCTANCE OF AN N-CHANNEL WIRE N

k(B
In this section a general scheme for the calculation of thesl+82 Zfo dr dXiJEzl L(0x)™F vi(dxi) "+ Vij (Fxi)
corrections to the conductance of a quantum wire carrying
N occupied channels due to the presence of weak disorder is X(dxxj)] (19

presented. The currehtej is related to the electric field by
WhereVij = (V0/’7T)\ Kivinvj .

Due to the separability of the interaction tefBy. (11b)],

L2 do . , )
I(x,t)=ﬁu2dx fﬂe o, (xX') Eo(X') (12 s action can be diagonalized exactly to give

whereE ,(x) is the temporal Fourier component of the elec- N

tric field and o, (x,x") is the nonlocal ac conductivity. To S+ Sf%fﬁdr dxz [(0,5%)2+W2(ax1)?]
calculates,(x,x'), we make use of the Kubo formdfa 0 =1 0
’ i82 B * i ; ’ ioT

o, (XX")= ZWﬁwfo dr(T7i (X Dj(x".0) € ominrer  where¥m=3";Amnxs andw; are the eigenvalues @,
(13) satisfying the following equation:

whereej(x,7) is the total current through the wir@} is a » N Ko

time ordered product as defined in Ref. 44, ands the = ! ) (21)

Matsubara frequency. Vo j=1[wi—vi+(Vo/mKjuj]

In the presence dfl channels, the total current is the sum ) o . .
of the currents carried by each channel. Upon bosonization|he elements of the diagonalization matfixare given by
the expression for the conductivity takes the form
Kiv;

62 iw? Aizj: 2 7 7
0, (X X)) = —G5(X, X )osiwre, (14 (Wi —vi+ (Vol/ m)Kjvi]
2n7h o
N K|U| -1
where X
\ {2‘1 [sz—v|2+(V0/77)K|v|]2} - @
B —
Gotx,x")= fo dTijzzl (T di(x, 1) #j (X", 0))e'“ The expression for the impurity action now takes the form
(15
. i . ho(B
and ¢, is defined in Eq(9). Slz_f de dx \/V(x)cog{ZkF(N)x
For a 2D disorder potentidV(r), the effective 1D poten- maJo

tial Wj;(x) is obtained by taking the matrix element of N

W(r) between the transverse wave functiahs and §;, . +\/EE AniVK 01X
The action representing the impurity-electron interaction i=1

takes the form

(23

Because of the assumption of weak disorder, the conduc-

o . tanceg can be obtained via the perturbation expansion in
S=52 | I U COW 00450 (16 w(x):
where ¢, (x) is defined by Eq(2). Although the impurity e?
scattering includes processes where electrons can be trans- g=N-—-+49 . (29

ferred from channel to channelj, as discussed in Sec. II B, 2mh

only the backscattering in the last occupied chaneis
important. In this caséyV;; (x) = W(X) Sin S -
The part ofS, describing the backscattering is

The leading term in Eq(24) is taken to be unrenormalized
by the interactiongcf. Sec. I B. 8g is expressed in terms of
the correlation functioW(x)W(0). As isshown in the Ap-
pendix, this correlation function can be taken in the follow-

h (B
SlB:%fO dq'f dx We(x)cog 2ke(N)X+ 27y ] ing form:
17

wherea is the microscopic cutoff length and/g(x) is the
effective backscattering potenti@f. Appendix.
We introduce the new fieldg(x, 7) by rescaling the fields

Wi(X1)Wp(X2) = NiuZ8(X1—Xo) | (25

whereu is the effective impurity strength. The only informa-
tion about the long-range nature of the disorder is how con-
¢(x,7) as tained in the parameter?, which is proportional to the back-
_ scattering probabilityPzg of the original potentialcf. Sec.
¢ 067 = VKiwixi(x7) - (18 11B). Under this assumption, the leaditgecond order in
Using these fields, the action of the system without disorde¥V) contribution for the correction to the Green’s function is
takes the form given by
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2n,u? (L2 vi (vi—1<wW;<v;), whereas oney; is bigger than the maxi-

OGL(x,X")=— (mad) dxa[FV (%) = F¥(x,)] mal v;. This biggest velocity corresponds to the collective
L2 mode}jZEiCjid)i, where all the coefficients;; have the
N _ same sign. The linear combination for the restgfinclude
X[ 2 Cil CjmCNICNmG (@ X — X1) coefficientsc; with different relative signs.
Lihm=1 In a model case where ti coupled channels are viewed

asN equivalent coupled chains with disorder scattering only
, (26) in one chain, the eigenvalue equation fbox 2 can be solved
exactly. In this cas&;=K; v;=v, i=1,...N; Eqg. (21

xém(w_;xl—x’)

where can be solved analytically and the matrix elemekjjscan be
found explicitly. The expression for the temperature expo-
B N _ nent is given by
FE)—N)(X):f dre'eTexp —47>, c&[G;(x,0)
0 =1 K
CYN:2 -
~ N V1+[VoK(N=1)]/(mv)
_Gj(XyT)]) : (27)
_ 1 K
Gj(x,7) is the propagator of the fielg; defined as B 1— (VoK) (m0) (3D
Gj(x—x',7)=—(Tx;(x,7)x;(x",0)) , (28 In Eq. (31), the second term is the contribution coming

from the collective mode, and the last one is the contribution
from all the other modes. In the limit of lard¢, we obtain a

finite value fora, for generic values oK, v, andV,. How-

ever, these parameters are not independent, but are related as

and ¢;;= VKjv;A;; . The functionF is the Fourier trans-
form of the X density-density correlation function for the
channelN. Because the actio§, + S, as written in Eq(20)

is quadratic in}j , the propagatof5; and the functiorFEU—N)

can be calculated straightforwardly. Following the procedure Vo |12
of Ref. 39, we obtain fol.>L that the correction to the K=|1+ e : (329
conductance is given by
) VO 1/2
e L (47T N v=vgl 1+ — (32b
5g— mc/—*(h—w':) , (29) TUE
where Substituting these equations into E81), we find
VN -1/2
N 2 0
Az, 1|1+ = 33
asz(l—KNvNZ %) . (30) N N( P (33
1=1 Wj

In the limit N—, the exponent vanishes rendering a
In Eq (29), /* is an effective elastic mean free path deﬁnedtemperature_independent conductance.
by 1//* =nju¥/a?wf , with g being the(nonuniversal ul- In order to understand the temperature dependence of the
traviolet energy cutoff, an@ is a positive constant depend- conductance for quantum wires, however, we need to work
ing onK;j,v;. Equation(29) is the most general result given with a set of N different parameter¥; ,v;. These param-
in terms of the initial parameters of the model. In the nexteters are related to the Fermi velocity of the channel by
section various regimes in which the scaling exponregtin  K;v;=vg(i), with ve(i) defined in Sec. Il A. Making use of

1 W -7

be calculated are discussed. relations similar to those given by Eq&2a), (32b),
IV. SCALING EXPONENT Vo }_1/2
: Ki=|1+ . , (343
A. One and N channels for spinless electrons mor(i)
The case of a wire with only one occupied spinless chan- ) Vo |12

nel is the simplest one and the well-known value for the vi=ve()| 1+ va(i)} (34b)
temperature exponent is easily recovered. In this case
N=1, A;;=1, and from the eigenvalue equatiofzl) the eigenvalue equation reduces to
w=vp. Thus, the temperature exponent reduces to N
a;=2(1—K) in agreement with previous resuffs®? 122 S 35

To analyze the case ™ occupied channels, it is neces- Vo
sary to solve the eigenvalue equati@1) which amounts to _ _
finding all zeros of amN degree polynomial. The solutions to Wherevo=Vo/ve, s;= V1-(j/2)?, and wj=w;/vg. Un-
this equation ;) have the meaning of the sound velocities der the conditiondN>1, Vo/vg<1, andVoN— const,
of the new fieldsy; , whereas the original fields; propagate
with velocitiesv; . The main feature of these solutions is that _E VoN| E

. . an= 1-0 . (36
all but onew; lie between the values of two adjacent N 7vg N
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Equation(36) contains the combinatioWgN/vg. Using  Following the same procedure as in the spinless case, the
Eqg. (8) in the limits N—~ and V,—0, this combination temperature exponent of the conductance is
approaches the constant valUgm/ =42, which is the di-

. . .. 2 2
mensionless coupling constant of the original 2D probtém, - Asic
common in Fermi-liquid theory.Thus, in both cases dfl azzl_KZCUZCZI Wio (40
occupied channels and chains, the dependence of the tem-
perature exponent with the number of chanrfetschaing is ~ whereA,, . is the matrix used to diagonalize the charge part
1/N as shown in Eqs(33), (36). This result is in agreement of the action andw;. are the corresponding eigenvalues.
with the dependence found by Matveev and Glazhéor Here, the S) symmetry requirement oK,=1 has al-
the exponent of the tunneling conductance, after redefiningeady been satisfied. In complete analogy with the spinless
the value of their one-dimensional interaction potential incase, the relation betwedd;,v.; and the Fermi velocity of
such a way to get a finite two-dimensional coupling constanta given channel and the equality between the intra- and inter-
In the same limit, the velocity of the collective mode  channel interactions are used to solve the eigenvalue equa-
approaches the zero-sound velocity of a two-dimensionaiion. For completeness, explicit analytic expressions for the

Fermi liquid>*® eigenvalues and matrix elements are presented,
As is seen from Eqg33) and(36), in the limit N—« the y
temperature exponent vanishes, and the correction to the , X1t X5

g
conductance,fg, becomes temperature independent. This S127 75 +§(X1+X2)

corresponds to the conductance of a Fermi liquid at low tem-

peratures in the presence of weak disorder. In the Born ap- +(X5_X§) \/1+ 29 n g° (414

proximation, the lowest order of perturbation theory in im- -2 X1HXy  (Xg—Xp)2 '

purity scattering, the temperature-dependent weak-

localization corrections are not observed. Thus, as the ) 1

number of occupied channelsr the number of chainsn- Ajjc= v awall (41b
\ L X1[ Sf—X5

creases, the crossover between a Luttinger liquid and a 2D 1+ _( '2 2)

Fermi liquid is observed. X2\ §j —Xq

) _ wherex;=1—(i/2)%, s;=Wi./ve, andg=Vy/(7vE). In
B. N=2 (electrons with a spin the onel-channe(l ca)lse with allcspiFn, 9= Vollme)
Finally, in order to compare theoretical with the experi- _
mental result$,the temperature exponent for a two-channel a;=1-Keq. (42
wire for the case of electrons with a spin is calculated. To
include the spin, a boson field for each spin orientation [N order to compare the one- and two-channel cases, the

$,i (0=1,1) is introduced, and the charge and spin fields€xponentsy; anda, are plotted as a function df;; as an

are defined as follows: effective measure of the interaction strength. As is shown in
Fig. 1, the value of the exponent for two channels is smaller
brit b, than for one channel. This is in qualitative agreement with
Gei=——=, (379  the experimental observatiohsyhere the temperature de-
V2 pendence of the conducting wire was found to be weaker

than in the one-channel case. The arrow indicates the value

i P b of K.;=0.7 obtained from the analysis of the data on the
bsi= N (379 condgctance of a singLe-channeI wird=or this value of
K¢1, @, is smaller thana; by only about 30%. Thus, al-
The action in the absence of disorder is though the Fermi-liquid-like behavior sets in fot>1, a

Luttinger-liquid behavior is still well-pronounced for a few-

h(B 2 1 h | wi
3 _J q de bV channel wire.
2Jo i {“;rsjzl KMJ'U/LJ'( Pu)
V. CONCLUSIONS
v
+ ﬁ(@%ﬂz +(Vo/77)<9x¢1c0"x¢2c] , (38 The correction to the conductance of Mrchannel quan-
ui

tum wire arising from weak impurity scattering is calculated,
where the parametef$,,; ,v,,; correspond to the charge and assuming that the wire can be modeled by a sét abupled
spin Luttinger-liquid parametef for both channels. The Luttinger liquids. The general expression for the scaling ex-
backscattering part of the interaction has not been includegonent of the temperature-dependent conductance of a quan-
in Eq. (38) according to the discussion in Sec. || C. The parttum wire is obtained, and it is shown that this exponent be-
of the impurity action describing the backscattering in thehaves as N for N>1. That is, as the number of channels
topmost {=2) channel has the form increases, the temperature dependence diminishes and van-
- ishes in the limitN— . This temperature-independent con-
~ B ductance is characteristic for a Fermi-liquid system. In this
S'B_Efo de dx W(x)cog 2ke(2)x way, the results presented support the idea of a continuous
crossover between the Luttinger-liquid and the Fermi-liquid
+ \/Egbz(:(x,r)]coi \/Ed%(x,r)] . (39 pictures, as the number of channéds chain$ is increased,
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1-0 \\ T T T T T T T T T H:f dX lpT(X)W(X)lp(X) (Al)

AN or, in momentum space,

\ ——— 1-channel
2-channel

> dqgd
LN _ H= [ 2o W@ QU@WQ), (A2

- \ . where W(x) is the disorder potential, whose correlation

\ function W(x)W(0) is assumed to be known. The operators

3 05 N\ i of right- and left-moving electrons are introduced and the

N contributions to the integral ove® in Eq. (A2) from the

\ forward (Q|~0) and backward|Q|~2kg) scattering pro-

N AN | cesses are separated. Going back to the real-space represen-
\ tation, the backscattering part of Hamiltonighl) takes the

L N § form

d
l N\ HB=JW—Zcos(2kFx+ JAmd)Wg(X) | (A3)

0.0
0.0 0.5 1.0 whereWg(x) is the effective backscattering potential

2ke+A d )
WB(x)=2ReLk R Z—SW(Q)e'QX, (A4)

FIG. 1. Scaling exponents of the temperature-dependent correc- -

tion to the conductance as a function Kf;. Solid line: N=2;

dashed lineN=1. ForN=2, z=2.5 (middle of the plateau The and A=1/a<kg is a hard momentum cutoff. Note that

arrow points aK;=0.7, the experimental value fot=1 (Ref. 6.  Wg(X) is not equal to the originalV(x) because the integra-
tion overQ in Eqg. (A4) is taken over narrow regions near

as has been suggested by several autfdfsVe have also  2kg only. RepresentingV(x) by a sum of single impurity

learned of recent work by Kawabata and Brantfeho  potentialsu(x), the correlation functiomg(x)Wg(0) takes

have also found a ¥ scaling for the temperature exponent the form

by using a different method.

Finally, the temperature exponent in the two-channel case _——
is calculated including the electron spin. The result agrees WB(X)WB(O)zZ”iLk _A
qualitatively with the experimental observations. F

2ket+A dQ
5 U(Q)?cox . (A5)

To avoid spurious oscillations introduced by a hard cutoff
procedure, an actual calculation should be performed by us-
ing the soft cutoff procedure. Therefore, the following
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the experimental results. This work was supported by the —w 27T B
Department of Physics of the University of lllinois at i
Urbana-ChampaigiiN.P.S), NSF under Grant No. DMR- U(Q) is chosen to be
89-20538, and the Department of Physics, University of _1ol/
Florida at GainesvilléD.L.M.). The work of N.P.S. was also u(Q)=uoe Qe (A7)
supported in part by AAUW. D.L.M. gratefully acknowl- This form captures correctly the exponential dependence of
edges the hospitality the NTT Basic Research Laboratorie;(Q) on Q for a realistic disorder potential in GaAs
where part of this work has been done. heterostructure®. Performing the integration in EqA5),

one obtains
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APPENDIX A e —
Wp(x)Wg(0)=n;(uge 2K )2[g; 5 (X) cog 2KeX)

In this appendix, the bosonized expression for the impu- )
rity backscattering Hamiltonian for the one-channel case is +daa(X)SIN(2Kex) ], (A8)
derived. This calculation is necessary because, as will bg . e
shown below, the effective backscattering potential for the
right and left movers is different from the original one. It is cog2A2/ x)
Zf]:fce)!\(/:vt?v(tahatt()e;/Ce;Séfatt?eerizngmal potgntlal is long-ranged, the graa(X)=A \/:ezAz/ﬁeAzxz/zx [ SIN2A2/ ) -

g potential takes the local ™ c

(8-function) form. (A9)

For a one-channel quantum wire, the Hamiltonian de-
scribing the electron-impurity interaction is The correction to the bosonic propagator is given by
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, 2 [ 27\ (L2 scale =L;. The propagatonG%(x) decays on the scale
OGx=x")==——3 w_F,B) LuzdxldXZ ~vr/w. After the analytic continuationip— w+i0) is
performed and the dc limit is taken, this scale becomes infi-
X Wg(X1—X2)Wg(0)CoSKr(X1—X5) nite. By the meaning of the cutoff procedute;,/ ;> 1/A.
0 0 Also, when comparing the scales of k/4and 1/A2/2, one
X[Gtx—X1) Gt X1 =X ) Fo(X1—X2) has to recognize that the limii=/A— is to be taken be-

fore the limit A—occ. Thus it is possible to establish the fol-

0 0 ’ _
~ GutX=X1) G txe =X )F X1 —Xa) ], lowing hierarchy of scales:

(A10a)
B 1 1 1 1 L A12
o fﬁd el ak; “A\2A/7, ) SK ST (A12)
ol X)= T e 2 : 27K
o  [(sinhmx/Ly)*+(sinm/B)*] l(AlOb) This shows that the i--oscillating terms in Eq(A11) can

be neglected as these oscillations are the most rapid ones,
where G2(x) is the propagator in the absence of disorderWhereas the functiorF(x) varies slowly compared to

g14(X). As can be easily checked;(x|x_.-— 8(x). The
The productWg(x)Wg(0)coskex can be separated as effective correlation function takes the form

Wg(X)Wg(0)cosKexc gy (X) + COL4KeX)g1a(X)

Sin(Akex)g2a () - (ALD) which is the same as for a sum &ffunction impurities with
An estimate of the length scales of the various functionghe exception that the strength of each impurity is renormal-
entering the integrals ovex, , in Egs.(A10a),(A10b) can be ized. This renormalization is the only effect of the actual
done. First of all, the produdtVg(x)Wg(0)cosXkex contains  form of the impurity potential on the effective backscattering
a component oscillating on the scatel/4k., whereas the potential. For as-function original potential {'.=0), the
functions g; ,4(x) in this product oscillate on the scale renormalization is absent. For a long-ranged potential
=1/(2A?/.) and decay rapidly on the scalke1/A. The (kg/>1), such as the present in GaAs heterostructures, the
density-density correlation functiofA10b) decays on the backscattering potential is exponentially weak.

Wg(X)Wg(0)—ni(uge” 2 )25(x) , (A3
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