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Interactions and disorder in multichannel quantum wires

N. P. Sandler
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

Dmitrii L. Maslov
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801;

Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801;
and Department of Physics, University of Florida, P.O. Box 118440, Gainesville, Florida 32611*

~Received 6 December 1996!

Recent experiments have revealed that the temperature dependence of the conductance of quasiballistic
quantum wires bears characteristic features of the Luttinger-liquid state. In this paper, the conductance of an
N-channel quantum wire is calculated within the model ofN coupled Luttinger liquids and under the assump-
tion of weak disorder. It is shown that as the number of channels increases, a crossover from the Luttinger-
liquid to the Fermi-liquid behavior occurs. This crossover manifests itself in the 1/N decrease of the scaling
exponent of the temperature dependence. An exact expression for the scaling exponent for the case ofN
coupled Luttinger chains is obtained, and the largeN limit is studied for the case of a quantum wire. The case
of N52 for electrons with spin is analyzed in detail, and a qualitative agreement with the experiment is
achieved.@S0163-1829~97!00320-2#
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I. INTRODUCTION

Although the conventional Landau theory for Ferm
liquids1,2 has been very successful in understanding m
condensed matter systems, its failure to describe quasi-
dimensional~Q1D! systems, e.g., conducting polymers a
organic conductors, has motivated the search for alterna
models which can describe a non-Fermi liquid behavior. T
most theoretically studied example of a non-Fermi liqu
system is that of interacting electrons in one dimension~1D!
known as the Tomonaga-Luttinger model.3,4 By now, the
main properties of this model are theoretically well und
stood and form the concept of a ‘‘Luttinger liquid.’’5 Lut-
tinger liquids are very different from their higher dime
sional counterparts, Fermi liquids, in many respec
including the following: the absence of single-particle ex
tations at low energies, spin-charge separation, and the
sence of a well-defined Fermi surface, even at zero temp
tures.

Despite the vigorous theoretical activity in this field, the
has been only limited experimental evidence for the ex
tence of Luttinger liquids in the conventional Q1D system
such as organic conductors. The genuine Luttinger-liquid
havior is easily masked in these systems by other effe
such as Peierls transitions and dimensionality crossover
sulting from the coupling among the conducting chai
However, recent advances in semiconductor technolo
have made high-mobility quantum wires new and promis
candidates for studying Luttinger-liquid effects in Q1D inte
acting electron systems. The most obvious advantages o
quantum wires are~i! the absence of unintentional dime
sionality crossovers;~ii ! a very low and controllable degre
of disorder; and~iii ! the absence of Peierls transitions. I
deed, the first evidence for Luttinger-liquid behavior has
cently been obtained in transport measurements6,7 on GaAs
quantum wires, where the temperature dependence of
550163-1829/97/55~20!/13808~9!/$10.00
y
e-

ve
e

-

,
-
b-
ra-

-
,
e-
ts,
re-
.
es
g

he

-

he

conductance of a weakly disordered single-channel6 and
multichannel7 quantum wires was interpreted in terms of t
Tomonaga-Luttinger model.8 Luttinger-liquid behavior has
also been observed in transport experiments on fractio
quantum Hall systems,9,10where the edge states are believ
to be in the chiral Luttinger-liquid state.11

Luttinger liquids and Fermi liquids are two fixed-poin
regimes, which are well understood on their own. The cro
over between these regimes, which is expected to oc
when several Luttinger liquids are coupled together, is
significant interest from the general theoretical point of vie
and has been investigated by a number of authors.12–21How-
ever, it is difficult to compare the results of various theor
ical approaches with the experiment, because the param
driving this crossover such as the number of Luttinger-liqu
chains coupled together by interchain tunneling, electr
electron interactions or both, cannot be changed smoothl
a real sample. The semiconductor quantum wires again
pear to be ideal candidates for studying the Luttinger-liq
to Fermi-liquid crossover, because the number of conduc
channels is an adjustable parameter of the experime
setup. The indication for such a crossover in the conducta
of GaAs quantum wires has recently been observed.7 Theo-
retically, Matveev and Glazman22,23 have used a multichan
nel model to calculate the tunneling rate into a clean wir

In this paper, we study the conductance of a multichan
quantum wire in the presence of disorder. Our main goa
to follow the crossover from the single-channel case to
multi-channel, when the wire is expected to be in t
Luttinger-liquid state and the Fermi-liquid state, respe
tively. The second motivation for this study comes from r
cent experiments,7 in which an indication of such a crossove
has been observed. Our main result is that the tempera
dependent conductance of a weakly disordered Lutting
liquid wire is reduced with an increasing number of occup
channelsN, and disappears in the limit of an infinite numb
13 808 © 1997 The American Physical Society
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55 13 809INTERACTIONS AND DISORDER IN MULTICHANNEL . . .
of channels. We find that the scaling exponent of the te
perature dependence behaves as 1/N, for N@1.

This paper is organized as follows. In Sec. II, we descr
the model of a multichannel quantum wire in the presence
long-range disorder and short-range electron-electron in
actions. In Sec. III, we present a general formalism for
calculation of the conductance and derive the expression
the exponent of the temperature scaling. This exponen
analyzed for various situations in Sec. IV. In Sec. IVA, t
general result for spinless electrons is studied, and the c
parison with the experimental results is made in Sec. IV
Our conclusions are given in Sec. V.

II. FORMULATION OF THE MODEL

In this section, we outline the main assumptions and
proximations used to calculate the temperature-depen
conductance of a weakly disordered Luttinger-liquid wire
cluding the following: the geometry of the wire, the effec
of disorder, the nature of electron-electron interactions,
the effect of electron reservoirs. We rely on the approac
developed by Glazman and Jonson24 and by Matveev and
Glazman.23

A. Geometry

Consider a quantum wire of widthd, adiabatically con-
nected to the leads. For simplicity, the confinement in
transverse direction is modeled by a square well poten
The wave function of thenth mode of transverse quantiza
tion Cn(x,y) is expanded over the adiabatic basis of tra
verse wave functionsjm'(y),

Cn~x,y!5(
m

cnm~x!jm'~y! . ~1!

Limiting to the leading~zeroth! order in the adiabatic expan
sion,cnm(x) takes the form

cnm
~0!~x!5

1

AL
eiknxdnm , ~2!

wherekn is the longitudinal wave vector of an electron wi
a total Fermi momentum\kF,

kn5kFA12FnzG
2

, ~3!

wherez5kFd/p. The number of occupied transverse cha
nels in the wire isN5@z#. An effectiveFermi velocity for
channeln is defined asvF(n)5\kn /m* .

B. Disorder

In the absence of disorder, the conductance is quantize
units of e2/h per spin orientation, where each plateau
quantization corresponds to a newly occupied channel.

The quasiballistic regime, where the wire lengthL is
shorter than the~transport! mean free pathl is considered.
This regime is realized in the experiments by Taruc
et al.,6,7 in which l /L.6.

We assume also that the disorder potential in GaAs
erostructures varies slowly on the scale of the Fe
-
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wavelength,25 i.e., kFl c.1, where l c is the correlation
length of the disorder potential.26 Backscattering processes
which the longitudinal momentum of the electron in thei th
channel is changed by\dki j5\ki1\kj , j51 . . .N, give
the contribution to the resistance. The probability of the
processesPBS for a long-range disorder potential depen
exponentially ondki j : PBS;exp(22dkijl c).

25 Therefore
two different regimes may be distinguished.24

In the first regime,PBS is exponentially small for all oc-
cupied channels, except for the topmost one (i5N). In this
channel, two situations can occur.~1! When theNth channel
is just opened, the Fermi energy is equal to the thresh
energy. The momentum carried by this channel is small
is strongly affected by impurity scattering. In this case, t
scattering in channelN clearly gives the dominant contribu
tion to the resistance.~2! As the Fermi energy is increased
the momentum increases,PBS decreases and finally become
exponentially small. However, becausedki j is minimal for
i5 j5N, i.e., for the backscattering within channelN, this
process dominates the resistance. Thus, regardless of th
sition of the Fermi energy to the threshold energy the larg
contribution to the resistance is given by the backscatte
in the topmost channel , and the contributions from the r
of the channels are negligible.

In the second regime,PBS ceases to be exponentiall
small for some channelNc,N, such thatkNcl c;1. Then,

all the channels withNc<n<N are subject to strong back
scattering.

As was shown by Glazman and Jonson,24 the first ~sec-
ond! regime is realized if N,N* (N.N* ), where
N*58(kFl c)

2. In a typical experimental situation
N*.100 (N*'60 in the experiment7!. As the number of
observed plateau is usually significantly smaller thanN* , it
suffices to consider only the first regime and take into
count the backscattering only in the topmost channel.

Although the disorder is smooth on the scale of the Fe
wavelength (kFl c.1), it can be shown~cf. Appendix! that
the effective potential describing the backscattering of le
and right-moving excitations can be represented by
d-function form: The only information on the smooth vari
tions of the original potential are hidden in the exponentia
small prefactor of thed function.

C. Electron-electron interactions

The same Luttinger-liquid model for a multichannel wi
as that proposed by Matveev and Glazman23 is employed.
We specify the assumptions needed for this model and
begin with the case of spinless electrons. The Hamiltonian
interacting 2D spinless electrons is given by

H5H01H int, ~4!

whereH0 is the Hamiltonian of free electrons and

H int5
1

2E dr dr 8U~r2r 8!Ĉ†~r !Ĉ†~r 8!Ĉ~r 8!Ĉ~r ! ,

~5!

whereU(r2r 8) is a ~repulsive! Coulomb interaction and

Ĉ(r ) represents the fermionic field operator. Our first a
sumption is that the interaction term@Eq. ~5!# can be re-



le

ra
ha
nt

t
he
e

fo
n

t

, t
e
m
c
sc

ha
n

ns
g

he
o
p
r
t
re
on
fa

de

h

s

s

ion
in

uc-

y

r-
ure,
son

pen-
er of
s-
the
ains

r-
e

wn

f the

ced
d is
.
e of
ut-
he
gly
e

on-
liq-

13 810 55N. P. SANDLER AND DMITRII L. MASLOV
placed by the direct density-density interaction between e
trons occupying different channels, i.e.,

H int⇒
1

2(i j E dxE dx8r i~x!r j~x8!Ui j ~x2x8! , ~6!

whererk is the density operator of thekth channel and

Ui j ~x2x8!5E dy8E dy uj i~y!u2uj j~y8!u2U~r2r 8! .

~7!

This assumption neglects the interchannel exchange inte
tions, which are usually considered to be less important t
the direct ones due to the smaller values of the overlap i
grals.

The Coulomb potential is assumed to be screened by
metallic gates forming the channel, and in the dc limit t
actual form of the potentialU(r2r 8) can be replaced by th
delta function:U0d(r2r 8).23 For ad-function 2D potential,
the effective 1D potential is also ad function. Using the
eigenfunctions of a square-well confinement potential
j i' in Eq. ~7!, the 1D coupling constant is channel indepe
dent and it is related toU0 by

\V05
U0

d
, ~8!

where the numerical coefficient has been absorbed into
redefinition ofU0.

The interaction Hamiltonian@Eq. ~6!# causes forward and
backward scattering processes. In a multichannel case
forward scattering is defined as the process in which non
the momenta of the electrons is reversed, although the
mentum transfer,Q, may not be equal to zero as the ele
trons can be exchanged between the channels. Forward
tering includes processes withQ'0 ~for momentum transfer
between electrons in the same channel and in different c
nels! andQ'kF( i )2kF( j ) ~for momentum transfer betwee
electrons in channeli and channelj ). The density-density
interaction in Eq.~6! conserves the total number of electro
in a given channel. Therefore, for temperatures low enou
i.e., T!min$vF(i),vF(j)%ukF(i)2kF(j)u, the forward scattering
with QÞ0 involves electron states only far away from t
Fermi level and can thus be neglected. Apart from the ren
malization of parameters, the backscattering processes
duced by repulsive interactions do not change the low ene
properties of the system,12,27,28 and therefore they are no
included in the model.29 Finally, the Umklapp processes a
not included. Due to the low electron densities in semic
ductor heterostructures a typical quantum wire is very
away from the half-filling condition.

Each 1D channel is described by a Luttinger-liquid mo
in which the electron density fluctuations of thei th channel
are represented by a boson fieldf i(x,t) defined so that

r i~x!2 r̄ i5
1

Ap
]xf i , ~9!

wherer̄ i is the average electron density in this channel. T
~number! current flowing in thei th channel is
c-
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j52 i ]tf/Ap . ~10!

The ~Euclidean! action of the system of interacting electron
occupyingN channels is given by23

S15
\

2E0
b

dt E dx (
i51

N F 1

Kiv i
~]tf i !

21
v i
Ki

~]xf i !
2G ,

~11a!

S25
\

2(iÞ j

N
V0

p E
0

b

dt dx ]xf i]xf j . ~11b!

The actionS1 describes a set ofN Luttinger liquids with
parametersKi ,v i which depend on the Fermi velocitie
vF( i ) and the effective coupling constantV0. The actionS2
describes the forward part of the density-density interact
between the channels. The electron spin will be included
Sec. IVB.

D. Effect of reservoirs

Two characteristic features are predicted for the cond
tance of a single-channel Luttinger-liquid wire,g. First, in
the absence of disorder,g is expected to be renormalized b
the electron-electron interactions to the value ofg5Ke2/h
per spin orientation,30,31whereg5e2/h for a noninteracting
system, whenK51. Second, in the presence of weak diso
der, g had been shown to decrease with the temperat
revealing a tendency to interaction-enhanced Ander
localization.30,32,33 At temperatures lower thanTL[vF /L,
this temperature dependence crosses over to a length de
dence. However, as has recently been shown by a numb
authors,34–37 the first prediction does not survive if the pre
ence of the Fermi-liquid electron reservoirs attached to
wire is taken into account. Instead, the conductance rem
at its noninteracting valueg5e2/h. This result was obtained
in Refs. 34–37 in a model in which the Fermi-liquid rese
voirs were imitated by switching off the interactions in th
outer parts of the system, i.e., by puttingK51 outside the
wire.38 On the other hand, the second prediction was sho
to survive even in the presence of the reservoirs.39–41More-
over, the scaling exponent of the leading term in theT de-
pendence was found to be the same as in the absence o
reservoirs.39–42This occurs because whenT@TL , i.e., when
L@LT , the density-density correlation function, whose 2kF
Fourier component determines the value of disorder-indu
corrections to the conductance, decays inside the wire an
only minimally affected by the presence of the reservoirs43

Thus, in order to determine the temperature dependenc
the conductance, the original model of a homogeneous L
tinger liquid30–33may be employed and the presence of t
reservoirs may be ignored. If the interactions are not stron
attractive,42 the error introduced by this simplification will b
in an incorrect numerical prefactor of theT-dependence
term, a nonuniversal quantity. Using this reasoning, we c
sider only the model of homogeneous coupled Luttinger
uids.
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III. CONDUCTANCE OF AN N-CHANNEL WIRE

In this section a general scheme for the calculation of
corrections to the conductance of a quantum wire carry
N occupied channels due to the presence of weak disord
presented. The currentI5e j is related to the electric field by

I ~x,t !5E
2L/2

L/2

dx8E dv

2p
e2 ivt sv~x,x8! Ev~x8! , ~12!

whereEv(x) is the temporal Fourier component of the ele
tric field andsv(x,x8) is the nonlocal ac conductivity. To
calculatesv(x,x8), we make use of the Kubo formula44

sv~x,x8!5
ie2

2p\vE0
b

dt ^Tt* j ~x,t! j ~x8,0!& ei v̄tuv̄52 iv1e ,

~13!

wheree j(x,t) is the total current through the wire,Tt* is a
time ordered product as defined in Ref. 44, andv̄ is the
Matsubara frequency.

In the presence ofN channels, the total current is the su
of the currents carried by each channel. Upon bosonizat
the expression for the conductivity takes the form

sv~x,x8!5
e2

2p\

i v̄2

v
Gv̄~x,x8!uv̄→2 iv1e , ~14!

where

Gv̄~x,x8!5E
0

b

dt (
i , j51

N

^Tt*f i~x,t!f j~x8,0!&ei v̄t ,

~15!

andf i is defined in Eq.~9!.
For a 2D disorder potentialW(r ), the effective 1D poten-

tial Wij (x) is obtained by taking the matrix element
W(r ) between the transverse wave functionsj i' and j j' .
The action representing the impurity-electron interact
takes the form

SI5
\

2(i , j
N E dx c i* ~x!Wij ~x!c j~x! , ~16!

whereck(x) is defined by Eq.~2!. Although the impurity
scattering includes processes where electrons can be t
ferred from channeli to channelj , as discussed in Sec. II B
only the backscattering in the last occupied channelN is
important. In this case,Wij (x)5W(x)d iNd jN .

The part ofSI describing the backscattering is

SIB5
\

paE0
b

dtE dx WB~x!cos@2kF~N!x12ApfN# ,

~17!

wherea is the microscopic cutoff length andWB(x) is the
effective backscattering potential~cf. Appendix!.

We introduce the new fieldsx(x,t) by rescaling the fields
f(x,t) as

f i~x,t!5AKiv ix i~x,t! . ~18!

Using these fields, the action of the system without disor
takes the form
e
g
is

-

n,

n

ns-

r

S11S25
\

2E0
b

dtE dx (
i , j51

N

@~]tx i !
21v i

2~]xx i !
21Vi j ~]xx i !

3~]xx j !# , ~19!

whereVi j5(V0 /p)AKiv iK jv j .
Due to the separability of the interaction term@Eq. ~11b!#,

this action can be diagonalized exactly to give

S11S25
\

2E0
b

dtE dx(
i51

N

@~]tx̃ i !
21wi

2~]xx̃ i !
2# ,

~20!

where x̃m5( i51
N Amnxn andwi are the eigenvalues ofAmn

satisfying the following equation:

p

V0
5(

j51

N
K jv j

@wi
22v j

21~V0 /p!Kjv j #
. ~21!

The elements of the diagonalization matrixA are given by

Ai j
25

Kiv i
@wj

22v i
21~V0/p!Kiv i #

2

3F(
l51

N
Klv l

@wj
22v l

21~V0 /p!Klv l #
2G21

. ~22!

The expression for the impurity action now takes the form

SI5
\

paE0
b

dtE dx W~x!cosF2kF~N!x

1A4p(
i51

N

ANiAKiv i x̃ i G . ~23!

Because of the assumption of weak disorder, the cond
tanceg can be obtained via the perturbation expansion
W(x):

g5N
e2

2p\
1dg . ~24!

The leading term in Eq.~24! is taken to be unrenormalize
by the interactions~cf. Sec. II B!. dg is expressed in terms o
the correlation functionW(x)W(0). As isshown in the Ap-
pendix, this correlation function can be taken in the follo
ing form:

WB~x1!WB~x2!5niu
2d~x12x2! , ~25!

whereu is the effective impurity strength. The only informa
tion about the long-range nature of the disorder is now c
tained in the parameteru2, which is proportional to the back
scattering probabilityPBS of the original potential~cf. Sec.
II B !. Under this assumption, the leading~second order in
W) contribution for the correction to the Green’s function
given by
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dGv̄~x,x8!52
2niu

2

~pa2!E2L/2

L/2

dx1@F0
~N!~x1!2F v̄

~N!~x1!#

3F (
i , j ,l ,m51

N

cil cjmcNlcNmG̃l~v̄;x2x1!

3G̃m~v̄;x12x8!G , ~26!

where

F v̄
~N!~x!5E

0

b

dtei v̄texpS 24p(
j51

N

cNj
2 @G̃j~x,0!

2G̃j~x,t!# D . ~27!

G̃j (x,t) is the propagator of the fieldx̃ j defined as

G̃j~x2x8,t!52^Ttx̃ j~x,t!x̃ j~x8,0!& , ~28!

and ci j5AKiv iAi j . The functionF v̄
(N) is the Fourier trans-

form of the 2kF density-density correlation function for th
channelN. Because the actionS11S2 as written in Eq.~20!
is quadratic inx̃ j , the propagatorG̃j and the functionF v̄

(N)

can be calculated straightforwardly. Following the proced
of Ref. 39, we obtain forL@LT that the correction to the
conductance is given by

dg52
e2

2p\
C

L

l * S 4pT

\vF
D 2aN

, ~29!

where

aN52S 12KNvN(
j51

N ANj
2

wj
D . ~30!

In Eq. ~29!, l * is an effective elastic mean free path defin
by 1/l *5niu

2/a2vF
2 , with vF being the~nonuniversal! ul-

traviolet energy cutoff, andC is a positive constant depend
ing onKi ,v i . Equation~29! is the most general result give
in terms of the initial parameters of the model. In the ne
section various regimes in which the scaling exponenta can
be calculated are discussed.

IV. SCALING EXPONENT

A. One andN channels for spinless electrons

The case of a wire with only one occupied spinless ch
nel is the simplest one and the well-known value for t
temperature exponent is easily recovered. In this c
N51, A1151, and from the eigenvalue equation~21!
w5v. Thus, the temperature exponent reduces
a152(12K) in agreement with previous results.30,32

To analyze the case ofN occupied channels, it is nece
sary to solve the eigenvalue equation~21! which amounts to
finding all zeros of anN degree polynomial. The solutions t
this equation (wi) have the meaning of the sound velociti
of the new fieldsx̃ i , whereas the original fieldsf i propagate
with velocitiesv i . The main feature of these solutions is th
all but one wi lie between the values of two adjace
e

t

-

se

o

t

v i (v i21,wi,v i), whereas onewj is bigger than the maxi-
mal v i . This biggest velocity corresponds to the collecti
mode x̃ j5( icj if i , where all the coefficientscji have the
same sign. The linear combination for the rest ofwi include
coefficientscil with different relative signs.

In a model case where theN coupled channels are viewe
asN equivalent coupled chains with disorder scattering o
in one chain, the eigenvalue equation forN>2 can be solved
exactly. In this caseKi5K; v i5v, i51, . . . ,N; Eq. ~21!
can be solved analytically and the matrix elementsAi j can be
found explicitly. The expression for the temperature exp
nent is given by

aN52F12
1

N

K

A11@V0K~N21!#/~pv !

2S 12
1

ND K

A12~V0K !/~pv !
G . ~31!

In Eq. ~31!, the second term is the contribution comin
from the collective mode, and the last one is the contribut
from all the other modes. In the limit of largeN, we obtain a
finite value fora, for generic values ofK, v, andV0. How-
ever, these parameters are not independent, but are relat

K5F11
V0

pvF
G21/2

, ~32a!

v5vFF11
V0

pvF
G1/2 . ~32b!

Substituting these equations into Eq.~31!, we find

aN5
2

NS 12F11
V0N

pvF
G21/2D . ~33!

In the limit N→`, the exponent vanishes rendering
temperature-independent conductance.

In order to understand the temperature dependence o
conductance for quantum wires, however, we need to w
with a set of 2N different parametersKi ,v i . These param-
eters are related to the Fermi velocity of the channel
Kiv i5vF( i ), with vF( i ) defined in Sec. II A. Making use o
relations similar to those given by Eqs.~32a!, ~32b!,

Ki5F11
V0

pvF~ i !G
21/2

, ~34a!

v i5vF~ i !F11
V0

pvF~ i !G
1/2

, ~34b!

the eigenvalue equation reduces to

p

v0
5(

i51

N
si

w̃j
22si

2
, ~35!

where v05V0 /vF , sj5A12( j /z)2, and w̃j5wj /vF . Un-
der the conditionsN@1,V0 /vF!1, andV0N→ const,

aN5
2

N

V0N

pvF
F12OS 1ND G . ~36!
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Equation~36! contains the combinationV0N/vF . Using
Eq. ~8! in the limits N→` and V0→0, this combination
approaches the constant valueU0m/p\2, which is the di-
mensionless coupling constant of the original 2D problem18

common in Fermi-liquid theory.1 Thus, in both cases ofN
occupied channels andN chains, the dependence of the tem
perature exponent with the number of channels~or chains! is
1/N as shown in Eqs.~33!, ~36!. This result is in agreemen
with the dependence found by Matveev and Glazman23 for
the exponent of the tunneling conductance, after redefin
the value of their one-dimensional interaction potential
such a way to get a finite two-dimensional coupling consta
In the same limit, the velocity of the collective modex̃ j
approaches the zero-sound velocity of a two-dimensio
Fermi liquid.1,18

As is seen from Eqs.~33! and~36!, in the limitN→` the
temperature exponent vanishes, and the correction to
conductance,dg, becomes temperature independent. T
corresponds to the conductance of a Fermi liquid at low te
peratures in the presence of weak disorder. In the Born
proximation, the lowest order of perturbation theory in im
purity scattering, the temperature-dependent we
localization corrections are not observed. Thus, as
number of occupied channels~or the number of chains! in-
creases, the crossover between a Luttinger liquid and a
Fermi liquid is observed.

B. N52 „electrons with a spin…

Finally, in order to compare theoretical with the expe
mental results,7 the temperature exponent for a two-chann
wire for the case of electrons with a spin is calculated.
include the spin, a boson field for each spin orientat
fs,i (s5↑,↓) is introduced, and the charge and spin fie
are defined as follows:

fc,i5
f↑,i1f↓,i

A2
, ~37a!

fs,i5
f↑,i2f↓,i

A2
. ~37b!

The action in the absence of disorder is

S̃5
\

2E0
b

dtE dxH (
m5c,s

(
j51

2 F 1

Km jvm j
~]tfm j !

2

1
vm j

Km j
~]xfm j !

2G1~V0 /p!]xf1c]xf2cJ , ~38!

where the parametersKm j ,vm j correspond to the charge an
spin Luttinger-liquid parameters28 for both channels. The
backscattering part of the interaction has not been inclu
in Eq. ~38! according to the discussion in Sec. IIC. The p
of the impurity action describing the backscattering in t
topmost (i52) channel has the form

S̃IB5
2\

paE0
b

dtE dx W~x!cos@2kF~2!x

1A4pf2c~x,t!#cos@A4pf2s~x,t!# . ~39!
-
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Following the same procedure as in the spinless case,
temperature exponent of the conductance is

ã2512K2cv2c(
i51

2 A2ic
2

wic
, ~40!

whereAlmc is the matrix used to diagonalize the charge p
of the action andwic are the corresponding eigenvalue
Here, the SU~2! symmetry requirement ofK2s51 has al-
ready been satisfied. In complete analogy with the spin
case, the relation betweenKci ,vci and the Fermi velocity of
a given channel and the equality between the intra- and in
channel interactions are used to solve the eigenvalue e
tion. For completeness, explicit analytic expressions for
eigenvalues and matrix elements are presented,

s1,2
2 5

x1
21x2

2

2
1
g

2
~x11x2!

6
~x1

22x2
2!

2
A11

2g

x11x2
1

g2

~x12x2!
2 , ~41a!

A2 jc
2 5

1

F11
x1
x2

S sj22x2
2

sj
22x1

2D 2G , ~41b!

wherexi5A12( i /z)2, si5wic /vF , andg5V0 /(pvF). In
the one-channel case with a spin,

ã1512Kc1 . ~42!

In order to compare the one- and two-channel cases,
exponentsã1 and ã2 are plotted as a function ofKc1 as an
effective measure of the interaction strength. As is shown
Fig. 1, the value of the exponent for two channels is sma
than for one channel. This is in qualitative agreement w
the experimental observations,7 where the temperature de
pendence of the conducting wire was found to be wea
than in the one-channel case. The arrow indicates the v
of Kc1.0.7 obtained from the analysis of the data on t
conductance of a single-channel wire.6 For this value of
Kc1, ã2 is smaller thanã1 by only about 30%. Thus, al
though the Fermi-liquid-like behavior sets in forN@1, a
Luttinger-liquid behavior is still well-pronounced for a few
channel wire.

V. CONCLUSIONS

The correction to the conductance of anN-channel quan-
tum wire arising from weak impurity scattering is calculate
assuming that the wire can be modeled by a set ofN coupled
Luttinger liquids. The general expression for the scaling
ponent of the temperature-dependent conductance of a q
tum wire is obtained, and it is shown that this exponent
haves as 1/N for N@1. That is, as the number of channe
increases, the temperature dependence diminishes and
ishes in the limitN→`. This temperature-independent co
ductance is characteristic for a Fermi-liquid system. In t
way, the results presented support the idea of a continu
crossover between the Luttinger-liquid and the Fermi-liqu
pictures, as the number of channels~or chains! is increased,
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as has been suggested by several authors.12,18We have also
learned of recent work by Kawabata and Brandes,45 who
have also found a 1/N scaling for the temperature expone
by using a different method.

Finally, the temperature exponent in the two-channel c
is calculated including the electron spin. The result agr
qualitatively with the experimental observations.
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APPENDIX A

In this appendix, the bosonized expression for the im
rity backscattering Hamiltonian for the one-channel case
derived. This calculation is necessary because, as wil
shown below, the effective backscattering potential for
right and left movers is different from the original one. It
shown that even if the original potential is long-ranged,
effective backscattering potential takes the lo
(d-function! form.

For a one-channel quantum wire, the Hamiltonian d
scribing the electron-impurity interaction is

FIG. 1. Scaling exponents of the temperature-dependent co
tion to the conductance as a function ofKc1. Solid line: N52;
dashed line:N51. ForN52, z52.5 ~middle of the plateau!. The
arrow points atKc150.7, the experimental value forN51 ~Ref. 6!.
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H5E dx c†~x!W~x!c~x! ~A1!

or, in momentum space,

H5E
2`

` dq

2p

dQ

2p
c†~q1Q!c~q!W~Q! , ~A2!

where W(x) is the disorder potential, whose correlatio
functionW(x)W(0) is assumed to be known. The operato
of right- and left-moving electrons are introduced and t
contributions to the integral overQ in Eq. ~A2! from the
forward (uQu'0) and backward (uQu'2kF) scattering pro-
cesses are separated. Going back to the real-space repr
tation, the backscattering part of Hamiltonian~A1! takes the
form

HB5E dx

pa
cos~2kFx1A4pf!WB~x! , ~A3!

whereWB(x) is the effective backscattering potential

WB~x!52ReE
2kF2L

2kF1L dQ

2p
W~Q!eiQx , ~A4!

and L51/a!kF is a hard momentum cutoff. Note tha
WB(x) is not equal to the originalW(x) because the integra
tion overQ in Eq. ~A4! is taken over narrow regions nea
2kF only. RepresentingW(x) by a sum of single impurity
potentialsu(x), the correlation functionWB(x)WB(0) takes
the form

WB~x!WB~0!52niE
2kF2L

2kF1L dQ

2p
uu~Q!u2cosQx . ~A5!

To avoid spurious oscillations introduced by a hard cut
procedure, an actual calculation should be performed by
ing the soft cutoff procedure. Therefore, the followin
change is made:

E
2kF2L

2kF1L dQ

2p
. . .⇒E

2`

` dQ

2p
e2~Q22kF!2/2L2

. . . . ~A6!

u(Q) is chosen to be

u~Q!5u0e
2uQul c . ~A7!

This form captures correctly the exponential dependence
u(Q) on Q for a realistic disorder potential in GaA
heterostructures.25 Performing the integration in Eq.~A5!,
one obtains

WB~x!WB~0!5ni~u0e
22kFl c!2@g1L~x!cos~2kFx!

1g2L~x!sin~2kFx!# , ~A8!

where

g1,2L~x!5LA2

p
e2L2l c

2
e2L2x2/23H cos~2L2l cx!

sin~2L2l cx! .

~A9!

The correction to the bosonic propagator is given by

c-
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dGv̄~x2x8!52
2

pa2S 2p

vFb D 2K1E
2L/2

L/2

dx1dx2

3WB~x12x2!WB~0!cos2kF~x12x2!

3@Gv̄
0 ~x2x1!Gv̄

0 ~x12x8!F0~x12x2!

2Gv̄
0 ~x2x1!Gv̄

0 ~x22x8!F v̄~x12x2!#,

~A10a!

F v̄~x!5E
0

b

dt
ei v̄t

@~sinhpx/LT!21~sinpt/b!2#K1
,

~A10b!

whereGv̄
0 (x) is the propagator in the absence of disord

The productWB(x)WB(0)cos2kFx can be separated as

WB~x!WB~0!cos2kFx}g1L~x!1cos~4kFx!g1L~x!

1sin~4kFx!g2L~x! . ~A11!

An estimate of the length scales of the various functio
entering the integrals overx1,2 in Eqs.~A10a!,~A10b! can be
done. First of all, the productWB(x)WB(0)cos2kFx contains
a component oscillating on the scale.1/4kF , whereas the
functions g1,2L(x) in this product oscillate on the sca
.1/(2L2l c) and decay rapidly on the scale.1/L. The
density-density correlation function~A10b! decays on the
a

u

m
b
-

e
e

m

.

s

scale .LT . The propagatorGv̄
0 (x) decays on the scale

.vF /v̄. After the analytic continuation (i v̄→v1 i0) is
performed and the dc limit is taken, this scale becomes i
nite. By the meaning of the cutoff procedure,LT ,l c@1/L.
Also, when comparing the scales of 1/4kF and 1/2L

2l c
2 , one

has to recognize that the limitkF /L→` is to be taken be-
fore the limitL→`. Thus it is possible to establish the fo
lowing hierarchy of scales:

1

4kF
!

1

LS 1

2Ll c
D!

1

L
!LT . ~A12!

This shows that the 4kF-oscillating terms in Eq.~A11! can
be neglected as these oscillations are the most rapid o
whereas the functionF v̄(x) varies slowly compared to
g1L(x). As can be easily checked,g1L(x)uL→`→d(x). The
effective correlation function takes the form

WB~x!WB~0!→ni~u0e
22kFl c!2d~x! , ~A13!

which is the same as for a sum ofd-function impurities with
the exception that the strength of each impurity is renorm
ized. This renormalization is the only effect of the actu
form of the impurity potential on the effective backscatteri
potential. For ad-function original potential (l c50), the
renormalization is absent. For a long-ranged poten
(kFl c.1), such as the present in GaAs heterostructures,
backscattering potential is exponentially weak.
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