
PHYSICAL REVIEW B 15 MAY 1997-IIVOLUME 55, NUMBER 20
Duality near quantum Hall transitions
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A recent experiment by Shaharet al., on the phase transitions between quantum Hall states and the insulator,
found that the current-voltage characteristics in the two phases are related by symmetry. It was suggested in
this work that this is evidence for charge-flux duality near quantum Hall transitions. Here we provide details of
this analysis. We review some theoretical ideas on charge-flux duality in the composite boson description of
the quantum Hall effect, and interpret the data as implying that this duality is a symmetry in the transition
regionand that the Hall response of the bosons vanishes. We observe that duality for composite bosons is
equivalent to a particle-hole symmetry for composite fermions and show that a Landauer analysis of transport
for the latter allows a possible understanding of the reflection symmetry and Hall response beyond the linear
regime. We note that the duality interpretation supports the scenario of superuniversality for quantum Hall
transitions outlined by Kivelson, Lee, and Zhang. Finally, we discuss how to search for the duality at other
transitions in the quantum Hall regime.@S0163-1829~97!00420-7#
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I. INTRODUCTION

Two-dimensional electron systems in the quantum H
~QH! regime, exhibit an extremely complex phase diagr
with a rich set of transitions between various phases. In
cent years, a combination of theoretical and experime
work has led to considerable progress in understanding
complexity. An important milestone was the work of Kive
son, Lee, and Zhang2 ~KLZ ! who proposed a topology fo
the phase diagram~in the disorder-magnetic field plane! on
the basis of a set of correspondence rules. These codified
ideas which are central to the current understanding of
quantum Hall effect~QHE!. The first of these is the existenc
of sets of QH states that are related by flux attachment tr
formations that are the basis of Chern-Simons theories of
QHE ~Ref. 3! and of the work of Jain.4 The second idea is
the hierarchical structure of the set of QH states, i.e., t
starting with a basis of primary~Laughlin! states, one can
construct members of the set by ‘‘condensing’’ quasipa
cles of other members of the set.5 In the bosonic Chern-
Simons framework used by KLZ, quasiparticles are vortic
and hence the hierarchical descendants are obtained as s
points of actions obtained by repeated duality transform
tions. The topology of the phase diagram is then fixed
requiring that neighboring phases be related by the cond
sation ofone set of quasiparticles, or by one duality tran
formation. Experimentally, this expectation has been bo
out fairly well and although there is evidence of systema
departures at low fields and in the reentrant region n
n51/5,6 these are not an issue in the region of interest to
in this paper.

The transitions between the various phases in the QH
550163-1829/97/55~20!/13730~9!/$10.00
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gime have been the focus of another active line of wo
particularly following the contributions of Pruisken7 and
Wei, Tsui, Paalanen, and Pruisken8 who proposed that the
transitions between integer QH states are quantum ph
transitions, i.e., continuousT50 phase transitions. Subse
quent experimental work has supported this identification
transitions between other QH states and has suggested
pothesis of ‘‘super-universality,’’ i.e., thatall such transi-
tions share the same exponents, and a tentative identifica
of the correlation length exponentnj and the dynamic scal
ing exponentz;9,10 remarkably, the value ofnj agrees with
numerical calculations for noninteracting electrons in t
lowest Landau level.11 In the work of KLZ, an explanation
was offered for the superuniversality~along with an exten-
sion to the QH/insulator transition of interest to us! in terms
of a Gaussian analysis of the fluctuations of the Che
Simons field which allowed them to predict a set of critic
conductivities for the various transitions as well. While t
latter predictions have gathered some experimental supp
their neglect of higher order fluctuations has been criticiz
and defended in model calculations.12,13 In Sec. IV we com-
ment on the issues in this debate.

A recent experiment of Shaharet al.,1 on the transition
between the 1/3 QH fluid and the proximate, high field ins
lator, appears to tie these two streams of ideas together
very interesting manner while also lending strong suppor
the account of KLZ of the critical behavior. To recapitulat
the experiment found that for a range of fields near the tr
sition between the QH state and the insulator, the trans
data in the two phases are related by an unanticipated s
metry. More precisely, there exist filling fractions (n,nd) in
the QH and insulating states at which thenonlinear longitu-
13 730 © 1997 The American Physical Society
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55 13 731DUALITY NEAR QUANTUM HALL TRANSITIONS
dinal current density/electric field (j ,EL) characteristics are
related byreflection:

$ j ~nd!,EL~nd!%5H e2h EL~n!,
h

e2
j ~n!J . ~1!

On the basis of the functional relationship betweennd and
n, this was identified in Ref. 1 as a manifestation of char
flux duality for composite bosons and equivalently, partic
hole symmetry for composite fermions. This was then u
to argue that the Hall response must also be symmetric
have the particularly simple form of the (j ,EH) characteris-
tics beinglinear and unchanged across the transition,

EH53
h

e2
j;n, ~2!

an expectation borne out by the data presented in Re
Similar results hold at then51 to insulator transition,14 im-
plying that the symmetry is present at the transitions betw
primary QH fluids and the insulator.@In the rest of the paper
we shall usereflection symmetryas a shorthand for the ex
perimentally observed symmetry of the response sum
rized in Eqs.~1! and~2! while reserving the term duality fo
the theoretical inference about the underlying dynamics.#

In this paper we present the theoretical underpinnings
the interpretation advanced in Ref. 1. In Sec. II we descr
these in the language of composite bosons with the hel
the Chern-Simons resistivity addition law and duality tran
formations. We comment there on the issue of whether
critical action is Gaussian. Next, in Sec. III we introduce
Landauer formulation of the transport in the composite f
mion basis that connects the experimental observation
particle-hole symmetry for the fermions—which is shown
be equivalent to duality for the bosons. In both cases we n
that an additional postulate, equivalent to the constancy
the Hall response, needs to be introduced separately.

In Sec. IV we switch gears, and adduce purely theoret
evidence that this symmetry is present at long waveleng
by revisiting existing studies of QH transitions. In Sec. V, w
discuss how the symmetry is hidden at interplateau tra
tions and show how it can be detected by a deconvolutio
the experimental data. We end with a summary of our ar
ment and some key open issues in our approach. As
work draws on much previous work in addition to that r
viewed already, most notably that of Fisher15 and of Ruzin
and collaborators,16,17 we comment on these connections
the main text.

II. THE BOSONIC APPROACH—DUALITY

A. Dual filling factors

We begin by recapitulating the composite boson interp
tation of the transition between the primary Hall states a
the insulator. A Chern-Simons transformation2,18 is used to
represent the physical electrons as bosons that carryk flux
quanta (f0), k being an odd integer. At the filling facto
n, the resulting bosons experience a mean magnetic
Beff5B(12kn), which vanishes atn51/k thus enabling
them to condense into a superconducting state. A decrea
n results in a nonzeroBeff which induces vortices. At first the
vortices are trapped by disorder and the bosons continu
-
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superconduct. However at a critical density the vortices
localize and destroy the superconductivity of the boso
This causes the bosons to become localized and the orig
electronic system becomes insulating as well. The compo
boson picture thus naturally associates the physics of Q
insulator transitions with that of field-tuned superconduct
insulator transitions.19

This description is clearly marked by aduality in the roles
of the bosons/vortices which are localized in the insulati
superconducting phases, respectively, and are delocalize
the conjugate phase. This suggests that the problem migh
characterized by asymmetry, which we shall also refer to a
duality,20 that relates the superconducting and insulat
phases in that the dynamics of the system expressed in t
of the bosons at a fillingn in the QH phase is identical to th
dynamics atnd in the insulating phase expressed in terms
the vortices. The natural candidates for the dual fillings
related by

nv~n!

nb~n!
5
nb~nd!

nv~nd!
, ~3!

wherenb andnv are the boson and vortex densities, resp
tively. As the vortex density is set by the effective fiel
rv5Beff /f05rb(n

212k), it follows that

1

n212k
5nd

212k. ~4!

Explicitly, nd5(12kn)/@n1k(12kn)#.1 The observation
that the filling fractions related by the reflection symmetry
the experiment obey Eq.~4! to a good approximation
strongly suggests that the reflection symmetry is a mani
tation of duality.

To further this interpretation, we need to examine whet
the reflection symmetry follows from an assumption of ide
tity between the boson and vortex actions atn and nd , re-
spectively. In order to do this we rederive the well know
Chern-Simons resistivity relation21 that relates the bosoni
response to the electronic response, in a way that sugges
validity beyond the linear regime.

B. Chern-Simons resistivity addition

Our starting point is the bosonic Chern-Simons functio
integral18 for the ‘‘Helmholtz’’ functionalF@Am ;n#,22 of the
electrons at filling fraction 0<n<1/k, in the presence of an
external three-vector gauge fieldAm(\5e/c51),

e2F[Am ;n]5E D@am#e2~ i /2k!Scse2Fb[Am1am ;n] ,

Scs[E drdtemnlam]nal . ~5!

Here,

e2Fb[Am1am ;n]5E D@f#e2SM~f,Am1am ;n! ~6!

defines the free energy of the composite bosons, whic
obtained after~exactly! integrating out the fluctuations of th
boson field. The observable electromagnetic response~asso-
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ciated with functional derivatives ofF) is thus related to the
response of the bosons to the effective fieldAm1am . In
linear response, the free energies are quadratic in the g
fields, with coefficients that are directly related to the co
ductivity tensor computed in the random phase approxim
tion ~RPA!. The integration in Eq.~5! can be performed
explicitly, resulting in an algebraic relation betweens i j ,s i j

b

of the physical electrons and bosons, respectively. This r
tion is most simply phrased in terms of theresistivitytensors.
Here we proceed slightly differently, in a manner whi
might generalize to nonlinear response.

Our strategy is to formally introduce the resistivity tens
beforecarrying out the integration overam in Eq. ~5!. We
convert from the Helmholtz functionalF@A;n# to the
‘‘Gibbs’’ 22 functionalG@J;n# via a functional Fourier trans
form:

e2G[J;n]5E D@A#e2F[A;n]e2 i*A•J. ~7!

~For quadratic actions, this can substitute for the stand
Legendre transform and therefore allows a purely functio
integral argument. It is unclear whether something of t
kind can be done beyond quadratic order—this will be f
ther discussed elsewhere.23! Hereon we choose the gaug
A050 for all vector potentials, so that the correspondi
electric fields are~in Fourier space! Ej5 ivAj . To quadratic
order, the functionalsF andG are given by

F@A;n#5E d3q
1

2(i , j vAi~q!s i j ~q;n!Aj~2q!,

G@J;n#5E d3q
1

2(i , j ~1/v!Ji~q!r i j ~q;n!Jj~2q!, ~8!

whereq5(v,q) and i , j e$x,y%. In the same way, we defin
Gb@J# for the bosons. We then insert Eq.~5! into the defini-
tion of G@J#, Eq. ~7!. Integrating overAm1am , and using
the corresponding definition ofGb@J#, this yields

e2G[J;n]5e2Gb[J;n]E D@a#eiS[a] ,

S@a#[E d3qH S ivk Dax~2q!ay~q!1a~2q!•J~q!J . ~9!

The integration overa then yields

G@J;n#5Gb@J;n#1E d3q~k/v!Jx~q!Jy~2q!. ~10!

It follows that the dc resistivities of the electrons and boso
are related by the addition of the Chern-Simons resistiv
i.e.,

r5rb1rcs~k!, ~11!

where

r5S rL rH

2rH rL
D ,
ge
-
-

a-

r

rd
l
s
-

s
,

rb5S rL
b rH

b

2rH
b rL

b D ,
rcs~k!5S 0 k

2k 0D , ~12!

are resistivities scaled byh/e2. ~We follow this convention
hereafter.! This is frequently summarized by the stateme
that the measured voltage is the sum of the bosonic resp
and the Faraday effect stemming from the flux carried
them. This last interpretation is clearly not limited to line
response and hence we might expect Eq.~11! and some ver-
sion of Eq.~10! to hold in the nonlinear region as well.~This
extension can also be argued by proceeding from Ehrenfe
theorem applied to the operator equations of motion for
Chern-Simons Lagrangian of Ref. 18. The real problem he
discussed further in Sec. III B, is the lack of a fluctuatio
dissipation theorem beyond the linear regime.!

In proceeding from Eq.~5! to Eq.~11!, we have ignored a
number of delicate issues regarding disorder averages
the order of thek,v, andT limits. On the latter point we
have in mind the orderingk!v!T, so that we are in the
correct regime for defining transport coefficients and mes
copic fluctuations are not an issue on account of depha
processes atTÞ0. Consequently, our functional integrals a
implicitly bounded betweent50 andt5\b. Giving mean-
ing to the boson transport coefficients is more subtle. Outs
of our formal manipulations with functional integrals, th
best approach is to think of the conductivities as being giv
diagrammatically by the sum of graphs that are one-part
irreducible with respect to the Chern-Simons interaction
are permitted to have an arbitrary set of internal Che
Simons, disorder, and scalar interaction lines. With this d
nition, Eq. ~11! is a tautology.

C. Duality and transport: Phenomenology

We now return to our main argument and consider
implications of duality forrb; in the next section we will
interpret the reflection symmetry in their light. Our discu
sion here is a generalization to the nonlinear case of Fish
discussion for the field-tuned superconductor insula
transition.15 By hypothesis, the boson and vortex dynam
are the same at dual fillings except that they see oppos
directed magnetic fields. Hence the boson and vortex re
tivity matrices at these fillings are related by

rb~ j ,n!5@rv~ j v ,nd!#
†, ~13!

where the explicit dependence on the boson and vortex
rents indicates the possibly nonlinear nature of the respo
As bosons and vortices see electric fields and currents o
sitely, their resistivity and conductivity matrices at thesame
filling are related by

rv~ j v ,nd!5sb~E,nd!. ~14!

Combining these we find

rb~ j ,n!5@sb~E,nd!#
†, ~15!

which summarizes the implications of duality for the tran
port coefficients in and beyond the linear regime.
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In the linear regime, Eq.~15! can be written explicitly as
a pair of relations between the resistivities,

rL
b~n!5

rL
b~nd!

@rL
b~nd!#

21@rH
b ~nd!#

2 ,

rH
b ~n!5

rH
b ~nd!

@rL
b~nd!#

21@rH
b ~nd!#

2 . ~16!

We see that, in general, these relate eitherrL
b(n) or rH

b (n) to
both rL

b(nd) and rH(nd), i.e., duality does not always pre
serve the longitudinal/Hall distinction.@At the self-dual
critical point, nd5n, Eq. ~16! leads to the constrain
(rL

b)21(rH
b )251 on the critical resistivities.#

D. Duality and transport: Experiments

Turning now to the experimental data, we note that E
~1! and ~2! imply that the longitudinal bosonic respons
obeys

rL
b~n, j !5sL

b~nd ,E! ~17!

( j andE have the same numerical value in our units!, and
that the bosonic Hall response vanishes, i.e.,

rH
b ~n, j !50 ~18!

for all n in the transition region. These evidently satisfy t
constraint in Eq.~15! in a particularly simple way. It follows
then that it is necessary but not sufficient to postulate dua
in order to account for the data—but duality and a vanish
bosonic Hall response are both necessary and sufficient

Let us briefly speculate on possible constraints on
form of the critical point action from the reflection symm
try. If Eq. ~10! could be placed on a secure footing, t
reflection symmetry would suggest that the bosonic Gi
functional, defined as the Legendre transform of the boso
Helmholtz functional, has the separable form,

Gb@J#5Gl
b@Jx#1Gl

b@Jy#, ~19!

with the duality constraint

Gl
b@Jj ;n#5Fl

bF 1iv Jj ;ndG . ~20!

At the critical point this would require a functional form
invariant under a Legendre transform, i.e., a Gaussian.

E. Duality and transport: Duality transformations

In our discussion thus far, we have relied upon the p
nomenology of bosons and vortices familiar from the cont
of superfluidity/superconductivity and the resistivity additi
law with a fixed Chern-Simons coefficient. Now we w
present a derivation of Eqs.~16! from the viewpoint of a
duality transformation in which we trade the bosons a
Chern-Simons field for another set of bosons and a diffe
Chern-Simons field. In doing so we will make a crucial a
sumption, which is less restrictive than the one made by K
in their original analysis but is very much in their spir
which will thus be seen to be equivalent to the assumption
duality.
.
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The formulation of the duality transformation that we w
need is the following. The bosonic Chern-Simons path in
gral expression for the partition function of the electron g
at filling fraction n,

Z@Am#5E D@am#E D@f#e2~ i /2k!Scs~am!2SM~f,Am1am ;n!,

~21!

is believed to be rewritable,24 up to irrelevant terms, as an
other bosonic path integral that differs only in the Che
Simons coefficient, the charge of the bosons and their fill
fraction,

Z@Am#5e2~ i /2k!Scs~Am!E D@ ãm#

3E D@f̃#e2 i ~k/2!Scs~ ãm!2SM [ f̃,~1/k!Am1ãm ;nd] .

~22!

Note that the transformed bosons, which are the vortic
conduct in parallel to the ideal QH fluid withsxy51/k.

It follows from Eq. ~21! that the resistivity atn takes the
form

r~n!5rb~n!1rcs~k!, ~23!

whererb is the boson resistivity. Similarly it follows from
Eq. ~22! that the conductivity atnd can be written as

s~nd!5scs~k!1$k2r̃b~n!1k2rcs~2k!%21, ~24!

wherescs(k)5@rcs(k)#21 is the Chern-Simons conductivit
andr̃b is thedual boson resistivity, i.e., the resistivity of th
bosons in the dual representation. If we make the assump
that this is thesamefunction of filling fraction asrb we find
that r(nd) can be rewritten in the form of Eq.~23! with
rb(nd)5@sb(n)#† as before. We emphasize that this is no
trivial assumption—the two sets of bosons interact w
gauge fields governed by Chern-Simons terms with differ
coefficients and therefore their resistivities might be e
pected to exhibit different functional dependences onn. Of
course, the requirement that ther(n) be the same in both
representations does relaterb(n) with r̃b(nd).

III. THE FERMIONIC APPROACH—PARTICLE-HOLE
SYMMETRY

A. Symmetric fillings and equivalence with duality

We will now consider the QH/insulator transitions in th
composite fermion description.25 In this, the electronic state
at n is related by an even flux attachment~Chern-Simons!
transformation to a state of composite fermions at the au
iary filling fraction n85n/@12(k21)n#; herek21, with k
odd, is the number of flux quanta. This mapsn51/k to
n851 and the transition to the insulator has the form of t
depletion of a single filled~pseudo! Landau level, i.e., the
n51→0 transition.~However, the transitions areprima fa-
cie different, as thekÞ1 transitions involve gauge fields no
present in thek51 case.!

As the space of states involved in the transition now
cludes a full Landau level, it becomes possible to formulat
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particle-hole symmetry for the fermions that asserts that
dynamics of the particles at auxiliary fillingn8 is the same as
that of holes at auxiliary fillingnd8512n8. In fact, this sym-
metry is the same as duality for the composite bosons as
be seen by rewriting the particle-hole condition in terms
the filling factor itself and noting its equivalence with th
duality condition derived earlier. Again, without addressi
the microscopic origin of the symmetry, we will explore i
consequences for the electronic transport. In the follow
we will argue that it implies the reflection symmetry, pr
vided that we accept a particular Landauer framework for
analysis of the transport.

B. Particle-hole symmetry and transport

Much as in the bosonic description, transport coefficie
for the electrons and the fermions are related by ano
addition relation,

r5r f~n!1rcs~k21!, ~25!

where r f is the fermion resistivity. Before turning to th
implications of particle-hole symmetry, we will sketch
Landauer theory forr f along the lines of Jain and Kivelson’
treatment of noninteracting electrons.26 Our motivation here
is twofold. First, we take the experiments to date, with th
surprising estimate of a correlation length exponent con
tent with noninteracting calculations, as suggesting tha
composite fermion quasiparticle description continues
hold even in the transition regions so that we can use
effective single particle description for them. Next, we fe
that if the experiments are measuring universal transport
in a critical region, it should not matter exactly how w
compute these quantities; i.e., the universal part of the tra
port might be computable by our idealized Landauer cal
lation even if there are nonuniversal parts sensitive to
actual arrangements of contacts in the device. Needles
say, this assumption needs further study.27

With these caveats, we consider the conductances
disordered QH region sandwiched between two ideal reg
that serve to define incoming and outgoing edge states
linear dispersions.28 We imagine a calculation in the critica
region where the size of the disordered region is set b
dephasing length. The transport through the region is c
acterized by an energy dependent transmission coeffic
T(e). Following Jain and Kivelson, we define the currentI ,
longitudinal voltageVL , and Hall voltageVH for given edge
chemical potentialsm15eF2V/2 andm25eF1V/2 (eF is
the equilibrium chemical potential on the both edges! as

I5E
mL

mR
de T~e!,

VL5~m22m1!2E
mL

mR
de T~e!,

VH5E
m1

m2
de T~e!. ~26!

Evidently, these expressions allow for nonlinear dep
dences of the currents and voltages on the source-drain
ageV5m22m1 and hence on each other; all that this r
e
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quired is forT(e) to have structure on the scale ofV. In the
transition region, this is easily arranged for the variation
T(e) becomes arbitrarily rapid at low temperatures~it is a
step function at zero temperature!. Consequently, one shoul
generically expect nonlinear transport from the proximity
the critical point.

Nevertheless, the most striking feature of Eqs.~26! is the
linear dependence ofVH on I independent ofeF and hence of
n. This striking feature of the experimental data follows a
tomatically from Jain and Kivelson’s Landauer formalism
If, in addition, we postulate particle-hole symmet
(ec50),

T~e!512T~2e!, ~27!

we find that in going between symmetry related filling
eF→2eF ,VL and I simply trade places. Such a treatme
can then account naturally for the symmetry even in the n
linear transport.

However, an important caveat is in order. The Landa
formalism assumes that the dissipation necessary to pro
steady state transport takes place in the reservoirs defi
the edge chemical potentials and hence the nonlinearitie
produces are due to elastic physics alone. In a real sys
one needs to worry about nonlinearities arising from dissi
tive bottlenecks, possibly coming from critical physic
themselves.29 In other words, there is no fluctuation
dissipation theorem for nonlinear response which relate
uniquely to equilibrium correlations and, in principle, it
necessary to include explicit dissipative mechanisms in
culations.

Evidently, we have not done so in our treatment of t
nonlinear response in the bosonic description and have
sen a particular, infinitely efficient, mechanism in the ferm
onic Landauer description. For our purposes, the importa
of the latter is that it is a proof of principle that intrinsi
critical physicscan lead to the nonlinear symmetry observe
in the data.

IV. THEORETICAL EVIDENCE FOR DUALITY/
PARTICLE-HOLE SYMMETRY AND A CONSTANT rH

Our discussion so far has focused on phenomenolog
that we have attempted to translate the experimental ob
vations into the framework of the Chern-Simons descript
of the QH transitions. This has led us to conclude that
composite boson description must be marked by duality
a vanishing Hall response and the composite fermion
scription by particle-hole symmetry and a constant Hall
sponse. In this section we will review previous theoretic
work which, though it did not anticipate the particular stri
ing features of the data, does suggest that our inferen
would arise naturally in a microscopic theory of the Q
phase transitions.

Duality. In Sec. II E we noted the belief, based on t
work of Lee and Fisher,24 that the bosonic Chern-Simon
action with coefficientk for particles of charge 1 at filling
fraction n, could be written as another, dual Chern-Simo
action with coefficient 1/k for particles of charge 1/k at fill-
ing fractionnd . The caveats necessary here are~a! that their
arguments on the irrelevance of other terms generated in
dual action are compelling deep in the QH phases, but do
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take account of any anomalous dimensions that would
produced near aT50 critical point, and~b! that the intro-
duction of disorder should be expected to change the pre
functional connection betweenn andnd . We also noted tha
for duality to be a symmetry in the sense of Eqs.~16!, it is
necessary that the dual actions lead to the samerb(n).

The latter assumption was made by KLZ, formally bas
on a problematic RPA treatment of the disorder which
nores any internal Chern-Simons lines in the diagrams
contribute torb. This treatment was subsequently called in
question by calculations on undisordered systems that
gested that the Chern-Simons term is generically a marg
perturbation and gives rise of a line of fixed points w
continuously varying exponents;12 diagrammatically, they
showed that the neglect of internal Chern-Simons lines is
always justified.

Nevertheless, there is a second, qualitative argumen
support of the claim by KLZ that appears more robust a
has been the inspiration for some recent, competing, m
calculations for the defense.13 If we accept the long wave
length form invariance of the original and dual actions, th
it follows that universal quantities computed from them,
ternal gauge field lines and all, can depend only upon
filling fraction ~or the appropriate scaling field!, the charge
of the bosons, and the Chern-Simons coefficient. As b
actions describe the same transition, it follows that they m
yield the same correlation length/time exponents despite
differing charge and statistics. That suggests, though it d
not dictate, that they yield the same scaling functions for
resistivities; indeed, for particle-hole asymmetric disord
the converse would seem to be a serious possibility~see be-
low!. At any rate it calls into question the relevance of c
culations where the exponentsdo vary with the Chern-
Simons coupling.~These calculations12 perturb in the Chern-
Simons coefficient and hence are inconclusive on the la
coefficient shiftk→1/k at issue in the question of duality
Recent model calculations13 have attempted to show tha
models that do exhibit duality do not display any statist
dependence of exponents at all.!

We should mention here also the work of Lu¨tken and
Ross30 who were concerned with a description of QH sy
tems on the basis of actions in which the scale depen
resistivities appear as parameters~along the lines of localiza-
tion theory7! and postulated that a complexified duality
modular invariance operates on them. Theiransatzis equiva-
lent to that of KLZ for our purposes.

Particle-hole symmetry. Within the framework of the fer-
mionic Chern-Simons theory, there are analogous issue
the ones discussed above. However it is possible to g
some insight by studying the problem of noninteracting el
trons in a random potential which is already nontrivial and
the very least may be a solution~in the Hartree-Fock sense!
of the interactingn51 to insulator transition, as suggeste
by some theoretical work.31

In particular, one can check if microscopic asymmetr
of the random potential are irrelevant at the fixed point
the problem. In some measure this was done by Huo, He
and Bhatt32 in their numerical studies which found that crit
cal conductivities were insensitive to departures from mic
scopic particle-hole symmetry. The contrast between th
calculations of the density of states, a microscopic quan
e
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and the long wavelength Hall conductivity~see Figs. 2 and 3
in their paper! also supports the conclusion that departu
from particle-hole symmetry are indeed irrelevant. A seco
piece of evidence to this effect is the structure of the netw
model of Chalker and Coddington33 which is believed to be
in the same universality class. The network model clea
exhibits a symmetry between the QH and insulating pha
in the absence of boundary effects inessential to the b
physics, they are chirally reversed translates of each oth

Constancy ofrH. The possibility of a quantized Hall re
sistivity into the insulator was implicit in the work of Jai
and Kivelson26 and KLZ who first suggested the idea of
Hall insulator whererH would be finite. This was later stud
ied in detail by Dykhne and Ruzin16 and Ruzin and Feng.17

In this work it is phrased in terms of a ‘‘semicircle law
relatingsL(n) andsH(n). In the special case of a transitio
from a 1/k QH state to an insulator, this law states

sL
21sH

2 5sH /k ~28!

and is equivalent to the constancy ofrH , while in other
cases it reflects the constancy ofrH for the ‘‘upper’’ fluid
defined in the next section. Equation~28! was proved both
for a classical two fluid model and within the network mod
assuming linear response. Recently, it has been shown
classicized ~i.e., noninterfering! version of the network
model that the constancy can persist beyond the linear
sponse regime.34 As argued in previous chapters, in terms
composite bosons this semicircle law corresponds to a v
ishing Hall resistance. It is enlightening to point out, tha
proof of rH

b 50 is in fact included in Ref. 17, though in
different language. In their formulation, they introducedlo-
cal current densities,j1 and j2, for the two phases in the
transition region and showed that their average values
perpendicular to each other—a property that is proved n
essary and sufficient for the semi-circle law to be obey
Translating this to the bosonic Chern-Simons representat
liquids 1 and 2 correspond to mobile bosons and vortic
hencej1 and j2 are the charge and vortex current densiti
The latter has the significance of an electric field in the p
pendicular direction; Ruzin and Feng’s statement theref
implies that the current and voltage in the bosonic desc
tion areparallel—i.e., the Hall coefficient vanishes.

Finally, we should note that for the similar problem of th
field tuned superconductor/insulator transition it has been
gued by Fisher,35 that an asymptotic particle-hole symmet
at the critical point might lead to a vanishing Hall coefficie
as suggested by some data.36 This does suggest the possib
ity that, in the QH system, both duality and the vanishi
Hall response might ultimately be consequences of the s
underlying principle.

V. DUALITY NEAR OTHER QUANTUM HALL
PHASE TRANSITIONS

The hierarchical principle was invoked in Ref. 2 to arg
that all QH transitions are, in a precise sense, transitio
from principal QH states to insulators. Qualitatively, they
consist of a ‘‘lower’’ ~parent! fluid that is inert across the
transition and an ‘‘upper’’~quasiparticle! fluid that under-
goes a transition to an insulator. For example, then52→1
transition is then51→0 of the spin down lowest Landa
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level while the spin up Landau level remains inert.
It follows that the symmetries of the transport observed

Ref. 1 should be present at all transitions if one can iden
the transport coefficients of the upper fluid. This is straig
forward for the conductivities. As the fluids conduct in pa
allel,

sL~E,n!5sL
u~E,n!,

sH~E,n!5sH
u ~E,n!1sH

l , ~29!

where the lower fluid contributes only a fixed, quantized H
conductivity independent of filling fraction and electr
field.37 As typical Hall bar measurements yield resistiviti
and, more importantly, the symmetry itself would be ma
fest in the resistivities of the upper fluid we need a presc
tion to go between them. In linear response this is simple:
convert the measuredrL and rH to sL and sH by matrix
inversion, obtainsL

u andsH
u from Eq. ~29!, and invertthem

to getrL
u andrH

u .
Beyond linear response one needs explicit expression

the current carried by the upper fluid, which isnotparallel to
the net current, and for the electric fields resolved along
perpendicular to it. Consider a Hall bar geometry wher
current densityj flows along the bar. Voltage measuremen
yield the longitudinal and Hall electric fieldsEL ,EH and
hence the~in general! nonlinear resistivitiesrL( j ), rH( j ).
Let us denote the Hall angle between the current and the
electric field of magnitudeE5AEL

21EH
2 by u, so that

EL5Ecosu,EH5Esinu. Denoting the current density an
Hall angle for the upper fluid byj u anduu, Eq. ~29! can be
recast as

jcosu5 j ucosuu,

2 jsinu52 j usinuu1s lE. ~30!

The two equations in Eq.~30! suffice to determinej u and
uu, and henceEL

u and EH
u , in terms of the appliedj and

measuredrL andrH . After some algebra we obtain,

j u5 j H rL
21@rH1sH

u ~rL
21rH

2 !#2

rL
21rH

2 J 1/2,
EL
u5

j 2

j u
rL ,

EH
u 5

j 2

j u
@rH1sH

u ~rL
21rH

2 !#2. ~31!

Plots of EL
u and EH

u as functions ofj u should then be ex-
pected to resemble theI -VL ,I -VH characteristics reported i
Ref. 1.

VI. SUMMARY AND OPEN QUESTIONS

In this paper we have followed a single line of argume
in interpreting the experimental results, i.e., we have
sumed that the physics in the transition region is governed
a zero temperature quantum critical point. A great virtue
such an interpretation is that measured quantities bec
properties of a scaling limit where it is possible for symm
n
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tries, not manifest microscopically, to emerge because
operators that break them are irrelevant at the underly
fixed point. In other words, critical points can provide a r
bust rationale for long wavelength symmetries. Neverthele
we should remark that this is not the only possibility. Wh
the asymptotic low temperature region~if it can be accessed
on realistic time scales! for large samples should be gov
erned by critical physics one has to leave open the possib
that the accessible temperature range might involve m
complicated finite temperature effects and lead to some
the same physics for more classical reasons as in Refs. 1
For the samples studied to date that exhibit the reflec
symmetry, the temperature range that shows evidence
scaling is too small for us to rule out such a possibility.

With this caveat, we have argued that the reflection sy
metry can be naturally interpreted as duality/particle-h
symmetry combined with a vanishing/constant Hall respo
in the composite boson/fermion descriptions of the QH
insulator transitions. We expect that this is a feature of
continuous QH transitions and have indicated how to sea
for it at other transitions. We have also reviewed the th
retical evidence in support of these inferences and find
though not dispositive, it is certainly encouraging; at least
noninteracting electrons, it is easy to visualize calculatio
that can test them further.27 Overall, we find that the experi
mental data through the interpretation of duality offer t
strongest evidence yet that the general framework of KLZ
a universal bosonic transition underlying the QH transitio
is correct.

The fit between our analysis and the data, though com
ling, is not perfect. In particular, the derivation of the rel
tionship betweennd andn should be strictly valid only for a
system that exhibits duality down to the microscopic leng
scale, e.g., for noninteracting electrons this is the case
microscopically particle-hole symmetric disorder in the lo
est Landau level. For systems where duality is recove
only at long wavelengths, the relationship should be m
complicated. Indeed, in the strict scaling limit,T and
n2nc→0 with x5(n2nc)/T

1/nz fixed, it matters very little
what we pick. Nevertheless, this doesnotmean that duality
is without consequence. For example, it would still imp
that, as a function of the scaling variablex, the current and
voltage trade places at dual values and would have the
sequence thatrL

c51. We feel that the correct perspective o
our analysis is that we have approximately identified a n
linear scaling field (n82nc8 in the fermionic description! that
allows the symmetry to be identified over a wider range
n at accessible values ofT. It would however be very usefu
to get some quantitative understanding of whyn82nc8 con-
tinues to be such a good scaling field even whennc8 itself is
shifted from its symmetric value of 1/2 by as much as 20
This problem becomes more serious if the transition out
the QH state is studied as a function of disorder at fix
filling. While the formulation in terms of the scaling variab
remains valid it is not obvious how one might interpret a
data, away from the scaling limit, that might become ava
able for this transition. A second problem, which is difficu
to pin down experimentally given the difficulty of accurate
measuringrH deep into the insulator, is that the reflectio
symmetry for the longitudinal response appears to hold o
a larger range of fillings than those over which the Hall
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55 13 737DUALITY NEAR QUANTUM HALL TRANSITIONS
sponse is constant. We do not have a good understandin
this difference.

A different issue is the nature of the nonlinear respon
We have suggested that the nonlinear response is a co
quence of intrinsic, critical physics. It is not difficult to imag
ine getting the same result from a heating scenario in wh
the electron gas equilibrates at a different temperature f
the lattice. What one needs for this purpose is the reflec
symmetry of the linear response plus an effective electro
temperature that depends upon the dissipation in the
alone, i.e., on the productjEL which is the same betwee
dual points on the longitudinal characteristics. The reason
are suspicious of this mechanism is that it ignores the di
pation at the contacts, where the Hall voltage is dropped
which is very asymmetric between dual points. This
clearly an important issue and we expect to make prog
on it by further analysis of the data in the near future. W
should note that even if a heating scenario is correct,
symmetries of the linear response would still require an
planation.

Finally, we would like to draw attention to the possibilit
of analogous symmetries near other interesting transitio
The most closely related one is the field-tuned transition
two-dimensional disordered superconducting films.19 Here
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the theoretical expectation15 is that it shouldnot be charac-
terized by duality as the bosons and vortices interact w
different potentials. Unfortunately, the data here is not co
pletely consistent, particularly on the question of univer
values for the critical resistivities; further studies with a
emphasis on the current-voltage characteristics might th
fore be quite useful. There is also the observation of a refl
tion symmetry at the puzzling zero-field transition observ
by Kravchenkoet al.38 which does not have any natural in
terpretation in our framework. We expect these cross co
parisons to be very instructive in evaluating the correctn
of the analysis outlined in this paper.
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