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A recent experiment by Shahar al,, on the phase transitions between quantum Hall states and the insulator,
found that the current-voltage characteristics in the two phases are related by symmetry. It was suggested in
this work that this is evidence for charge-flux duality near quantum Hall transitions. Here we provide details of
this analysis. We review some theoretical ideas on charge-flux duality in the composite boson description of
the quantum Hall effect, and interpret the data as implying that this duality is a symmetry in the transition
region and that the Hall response of the bosons vanishes. We observe that duality for composite bosons is
equivalent to a particle-hole symmetry for composite fermions and show that a Landauer analysis of transport
for the latter allows a possible understanding of the reflection symmetry and Hall response beyond the linear
regime. We note that the duality interpretation supports the scenario of superuniversality for quantum Hall
transitions outlined by Kivelson, Lee, and Zhang. Finally, we discuss how to search for the duality at other
transitions in the quantum Hall regimS0163-18207)00420-7

[. INTRODUCTION gime have been the focus of another active line of work,
particularly following the contributions of Pruiskérand
Two-dimensional electron systems in the quantum Hal\Wei, Tsui, Paalanen, and PruisRemho proposed that the
(QH) regime, exhibit an extremely complex phase diagrantransitions between integer QH states are quantum phase
with a rich set of transitions between various phases. In retransitions, i.e., continuou¥=0 phase transitions. Subse-
cent years, a combination of theoretical and experimentajuent experimental work has supported this identification for
work has led to considerable progress in understanding thisansitions between other QH states and has suggested a hy-
complexity. An important milestone was the work of Kivel- pothesis of “super-universality,” i.e., thatll such transi-
son, Lee, and ZhaRgKLZ) who proposed a topology for tions share the same exponents, and a tentative identification
the phase diagrartin the disorder-magnetic field planen  of the correlation length exponemnt and the dynamic scal-
the basis of a set of correspondence rules. These codified tving exponentz;*° remarkably, the value ob, agrees with
ideas which are central to the current understanding of theaumerical calculations for noninteracting electrons in the
quantum Hall effectQHE). The first of these is the existence lowest Landau level! In the work of KLZ, an explanation
of sets of QH states that are related by flux attachment transvas offered for the superuniversalifglong with an exten-
formations that are the basis of Chern-Simons theories of thsion to the QH/insulator transition of interest tg us terms
QHE (Ref. 3 and of the work of Jaiff. The second idea is of a Gaussian analysis of the fluctuations of the Chern-
the hierarchical structure of the set of QH states, i.e., thatSimons field which allowed them to predict a set of critical
starting with a basis of primarfLaughlin states, one can conductivities for the various transitions as well. While the
construct members of the set by “condensing” quasiparti-latter predictions have gathered some experimental support,
cles of other members of the Setn the bosonic Chern- their neglect of higher order fluctuations has been criticized
Simons framework used by KLZ, quasiparticles are vorticesand defended in model calculatiotfs:®In Sec. IV we com-
and hence the hierarchical descendants are obtained as saddient on the issues in this debate.
points of actions obtained by repeated duality transforma- A recent experiment of Shahat al.! on the transition
tions. The topology of the phase diagram is then fixed bybetween the 1/3 QH fluid and the proximate, high field insu-
requiring that neighboring phases be related by the condetator, appears to tie these two streams of ideas together in a
sation ofone set of quasiparticles, or by one duality trans- very interesting manner while also lending strong support to
formation. Experimentally, this expectation has been borng¢he account of KLZ of the critical behavior. To recapitulate,
out fairly well and although there is evidence of systematicthe experiment found that for a range of fields near the tran-
departures at low fields and in the reentrant region neasition between the QH state and the insulator, the transport
v=1/58 these are not an issue in the region of interest to uslata in the two phases are related by an unanticipated sym-
in this paper. metry. More precisely, there exist filling fractions, ) in
The transitions between the various phases in the QH rehe QH and insulating states at which thenlinearlongitu-
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dinal current density/electric fieldj (E,) characteristics are superconduct. However at a critical density the vortices de-
related byreflection localize and destroy the superconductivity of the bosons.

This causes the bosons to become localized and the original
electronic system becomes insulating as well. The composite
boson picture thus naturally associates the physics of QH/
. . . . insulator transitions with that of field-tuned superconductor/

On the basis of the functional relationship betwegnand insulator transitions?

v, this was identified in Ref. 1 as a manifestation of charge- : C T
’ ; . i . This description is clearly marked bydaality in the roles
flux duality for composite bosons and equivalently, particle- b y y

hol v f ite fermi Thi th @f the bosons/vortices which are localized in the insulating/
ole Ssymmetlry for composite fermions. This was then use perconducting phases, respectively, and are delocalized in
to argue that the Hall response must also be symmetric al

have the particularly simple form of the,E,) characteris- e conjugate phase. This suggests that the problem might be

tics beingli d h d the t i characterized by aymmetrywhich we shall also refer to as
Ics beinglinéar and unchanged across the transition, duality?® that relates the superconducting and insulating

h phases in that the dynamics of the system expressed in terms
Eqn=3=jV, 2 of the bosons at a filling in the QH phase is identical to the
€ dynamics atvyq in the insulating phase expressed in terms of

an expectation borne out by the data presented in Ref. ;[he vortices. The natural candidates for the dual fllllngs are
Similar results hold at the=1 to insulator transitiod*im-  related by
plying that the symmetry is present at the transitions between
primary QH fluids and the insulatdin the rest of the paper, Ny (v) — Np(va) 3)
we shall usereflection symmetrgs a shorthand for the ex- Np(v)  Ny(vg)’
perimentally observed symmetry of the response summ
rized in Eqs.(1) and(2) while reserving the term duality for
the theoretical inference about the underlying dynarhics. _
In this paper we present the theoretical underpinnings of v
the interpretation advanced in Ref. 1. In Sec. Il we describe
these in the language of composite bosons with the help of =
the Chern-Simons resistivity addition law and duality trans- v -k
formations. We comment there on the issue of whether thgxplicitly, vq=(1—kv)/[v+k(1—kr)].} The observation
critical action is Gaussian. Next, in Sec. Il we introduce athat the filling fractions related by the reflection symmetry in
Landauer formulation of the transport in the composite ferthe experiment obey Eq(4) to a good approximation,
mion basis that connects the experimental observations tg:rong|y suggests that the reflection symmetry is a manifes-
particle-hole symmetry for the fermions—which is shown totation of duality.
be equivalent to duality for the bosons. In both cases we note To further this interpretation, we need to examine whether
that an additional postulate, equivalent to the constancy ofhe reflection symmetry follows from an assumption of iden-
the Hall response, needs to be introduced separately. tity between the boson and vortex actionsvaand v, re-
In Sec. IV we switch gears, and adduce purely theoretica§pectively. In order to do this we rederive the well known
evidence that this symmetry is present at long wavelengthghern-Simons resistivity relatihthat relates the bosonic

by revisiting existing studies of QH transitions. In Sec. V, weresponse to the electronic response, in a way that suggests its
discuss how the symmetry is hidden at interplateau transivalidity beyond the linear regime.

tions and show how it can be detected by a deconvolution of
the experimental data. We end with a summary of our argu-
ment and some key open issues in our approach. As our
work draws on much previous work in addition to that re- Our Starting pOint is the bosonic Chern-Simons functional
viewed already, most notably that of FisHeand of Ruzin  integraf® for the “Helmholtz” functional F[A,, ; »],? of the
and Co||ab0rat0r§6,'l7 we comment on these connections in electrons at fl”lng fraction & v<1/k, in the presence of an
the main text. external three-vector gauge fiedd (A =e/c=1),

. e’ h
{J(Vd)rEL(Vd)}:rFEL(V)vgJ(V)]- 1)

%herenb andn, are the boson and vortex densities, respec-
tively. As the vortex density is set by the effective field,
Beft/ po=pp(v~1—K), it follows that

=vgl-k. (4)

B. Chern-Simons resistivity addition

Il. THE BOSONIC APPROACH—DUALITY efF[A#;vlzf D[aﬂ]e%i/Zk)S@efFb[A,ﬁa#:v],
A. Dual filling factors

We begin by recapitulating the composite boson interpre- -
tation of the transition between the primary Hall states and Scs_f Ard7e.na,d,a, ©

the insulator. A Chern-Simons transformatiofiis used to

represent the physical electrons as bosons that éaflyx

guanta gg), k being an odd integer. At the filling factor b

v, the resulting bosons experience a mean magnetic field e F [Aﬁaﬂ;"]:f D[ ple Sm(®Autau) (6)
Be=B(1—Kkv), which vanishes atv=1/k thus enabling

them to condense into a superconducting state. A decreasedefines the free energy of the composite bosons, which is
v results in a nonzerB4, which induces vortices. At first the obtained aftefexactly integrating out the fluctuations of the
vortices are trapped by disorder and the bosons continue teoson field. The observable electromagnetic resp¢esso-

Here,
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response of the bosons to the effective fiélg+a,. In
linear response, the free energies are quadratic in the gauge
fields, with coefficients that are directly related to the con-
ductivity tensor computed in the random phase approxima- pcs(k)=<
tion (RPA). The integration in Eq(5) can be performed

explicitly, resulting in an algebraic relation betweer; albj

of the physical electrons and bosons, respectively. This rel
tion is most simply phrased in terms of tresistivitytensors.
Here we proceed slightly differently, in a manner which
might generalize to nonlinear response.

Our strategy is to formally introduce the resistivity tensor
before carrying out the integration ovex, in Eg. (5). We
convert from the Helmholtz functionaF[A;v] to the
“Gibbs” 22 functional G[ J; v] via a functional Fourier trans-
form:

ciated with functional derivatives d¥) is thus related to the ( pP pg)
b_
p 1

b b
“PH PL

are resistivities scaled bly/e?. (We follow this convention
6here::lfter). This is frequently summarized by the statement
that the measured voltage is the sum of the bosonic response
and the Faraday effect stemming from the flux carried by
them. This last interpretation is clearly not limited to linear
response and hence we might expect @4) and some ver-
sion of Eq.(10) to hold in the nonlinear region as we(lThis
extension can also be argued by proceeding from Ehrenfest’s
theorem applied to the operator equations of motion for the
Chern-Simons Lagrangian of Ref. 18. The real problem here,
discussed further in Sec. Il B, is the lack of a fluctuation-
e‘G[J?V]zf D[A]e FlAVIg=I/A-J, (7)  dissipation theorem beyond the linear regime.

In proceeding from Eq(5) to Eq.(11), we have ignored a
(For quadratic actions, this can substitute for the standarfumber of delicate issues regarding disorder averages and
Legendre transform and therefore allows a purely functionafhe order of thek,», and T limits. On the latter point we
integral argument. It is unclear whether something of thishave in mind the ordering<w<T, so that we are in the
kind can be done beyond quadratic order—this will be fur-correct regime for defining transport coefficients and mesos-
ther discussed elsewhet®. Hereon we choose the gauge copic fluctuations are not an issue on account of dephasing
A,=0 for all vector potentials, so that the correspondingProcesses ak#0. Consequently, our functional integrals are

electric fields ardin Fourier spaceE;=iwA, . To quadratic implicitly bounded between=0 and7=7 4. Giving mean-
order, the functional§ andG are given by ing to the boson transport coefficients is more subtle. Outside

of our formal manipulations with functional integrals, the
1 best approach is to think of the conductivities as being given
F[A:V]=f dsQEZ oA(Q)oi(d;v)A(—1d), diagrammatically by the sum of graphs that are one-particle
h irreducible with respect to the Chern-Simons interaction but
are permitted to have an arbitrary set of internal Chern-
G[J;V]=f dsq%E (L) 3i(a)py () 3;(—q),  (8) S.ir.nons, disord_er, and scalar interaction lines. With this defi-
i nition, Eq.(11) is a tautology.

whereq=(w,q) andi,je{x,y}. In the same way, we define
GP[J] for the bosons. We then insert E@) into the defini- _ _
tion of G[J], Eq. (7). Integrating overA,+a,,, and using We now return to our main argument and consider the

the corresponding definition @P[J], this yields implications of duality forp®; in the next section we will
interpret the reflection symmetry in their light. Our discus-

L3 oGO isial si_on here is a generali_zation to the nonlinear case o_f Fisher's
e "nr=e ' f D[a]e™", discussion for the field-tuned superconductor insulator
transition’® By hypothesis, the boson and vortex dynamics
iw are the same at dual fillings except that they see oppositely
Sal= J dsq[ (—
k
The integration ovea then yields 22 =[0Gy v ] (13)

C. Duality and transport: Phenomenology

a(—q)ay(q)+a(—q)-J(q);. (9  directed magnetic fields. Hence the boson and vortex resis-
tivity matrices at these fillings are related by

.1 ~br . 3 . where the explicit dependence on the boson and vortex cur-
CLIvI=G1; V]JFJ’ dq(kl0)I(@)Iy(~a). (10 rents indicates the possibly nonlinear nature of the response.
As bosons and vortices see electric fields and currents oppo-

It follows that the dc resistivities of the electrons and bosongitdy their resistivity and conductivity matrices at theme
are related by the addition of the Chern-Simons resistivity,ﬁ"mg’are related by

i.e.,

p"(jy ,vg) = 0°(E, ). (14
=pP+p*(k), 11
p=p+ 1K) (1o Combining these we find
where o X
p°(j,v)=["(E,vg)]", (15
p:( PL pH>, which summarizes the implications of duality for the trans-
“PH  PL port coefficients in and beyond the linear regime.
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In the linear regime, Eq.15) can be written explicitly as The formulation of the duality transformation that we will
a pair of relations between the resistivities, need is the following. The bosonic Chern-Simons path inte-
b gral expression for the partition function of the electron gas
pL(vq) at filling fraction v,

b =
pLv) [p2(ve) 1P+ [pR(vg) 1%’
Z[AM]=f D[a#]J D[ ¢p]e~ 1120Seda,) ~Su(# A, +a,v)

b
pPr(vg) (16) 21)

b
(v)= :
PR [pR(vg) P+ [pR(vg) I o , ,
_ ] b is believed to be rewritab® up to irrelevant terms, as an-
We see that, in general, these relate eipfé) or pR(v) 0 other bosonic path integral that differs only in the Chern-

both pP(v4) and py(vg), i.e., duality does not always pre- Simons coefficient, the charge of the bosons and their filling
serve the longitudinal/Hall distinction[At the self-dual fraction,

critical point, v4=v, Eq. (16) leads to the constraint
(pP)2+(pP)?=1 on the critical resistivitie$.

Z[AM] = e_(”z")SCS(Au)f D[EM]

D. Duality and transport: Experiments

Turning now to the experimental data, we note that Egs. Xf D[ ¢p]e™' W2 %<) = Sula(1h0AL T3, vl
(1) and (2) imply that the longitudinal bosonic response
obeys (22)
b, b Note that the transformed bosons, which are the vortices,
pL(vj)=0oi(vy,E) (17 conduct in parallel to the ideal QH fluid witin,,= 1/k.
(J and E have the same numerical value in our un|md It follows from Eq (21) that the I’eSiStiVity ab takes the
that the bosonic Hall response vanishes, i.e., form
P2 (v,))=0 (18) p(v)=p°(v)+p™k), (23)

for all v in the transition region. These evidently satisfy theWhere p° is the boson resistivity. Similarly it follows from
constraint in Eq(15) in a particularly simple way. It follows Ed. (22) that the conductivity avy can be written as
then that it is necessary but not sufficient to postulate duality ~b 5 1
in order to account for the data—but duality and a vanishing o(vg) = oK) +{kp (v) +KkPp(=K)} ", (29
bosonic Hall response are both necessary and sufficient. \yhere k) =[p(k)] ! is the Chern-Simons conductivity
Let us briefly speculate on possible constraints on thgng7b is thedual boson resistivity, i.e., the resistivity of the
form of the critical point action from the reflection symme- j550ns in the dual representation. If we make the assumption
try. If Eq. (10) could be placed on a secure footing, thehat this is thesamefunction of filling fraction asp® we find
reflection symmetry would suggest that the bosonic Gibbgy5¢ p(vg) can be rewritten in the form of Eq23) with
functional, defined as the Legendre transform of the bosoniﬁb(yd):[ab(y)]f as before. We emphasize that this is not a
Helmholtz functional, has the separable form, trivial assumption—the two sets of bosons interact with
br 11_ ~b b gauge fields governed by Chern-Simons terms with different
CII=GILId+Gildyl, (19 coefficients and therefore their resistivities might be ex-
with the duality constraint pected to exhibit different functional dependencesvorOf
course, the requirement that tipév) be the same in both

20 representations does relgi®(v) with p°(vy).

1 .
EJJ » Vd

GPLI;;v]=F7

Ill. THE FERMIONIC APPROACH—PARTICLE-HOLE

At the critical point this would require a functional form SYMMETRY

invariant under a Legendre transform, i.e., a Gaussian.
A. Symmetric fillings and equivalence with duality

E. Duality and transport: Duality transformations We will now consider the QH/insulator transitions in the

In our discussion thus far, we have relied upon the phecomposite fermion descriptic?ﬁ.ln this, the electronic state
nomenology of bosons and vortices familiar from the contex@t v is related by an even flux attachmei@hern-Simons
of superfluidity/superconductivity and the resistivity addition transformation to a state of composite fermions at the auxil-
law with a fixed Chern-Simons coefficient. Now we will iary filling fraction v’ =v/[1—(k—1)v]; herek—1, with k
present a derivation of Eq$16) from the viewpoint of a odd, is the number of flux quanta. This maps-1/k to
duality transformation in which we trade the bosons andv’=1 and the transition to the insulator has the form of the
Chern-Simons field for another set of bosons and a differendepletion of a single filledpseudg Landau level, i.e., the
Chern-Simons field. In doing so we will make a crucial as-»=1—0 transition.(However, the transitions afgrima fa-
sumption, which is less restrictive than the one made by KLZcie different, as thé# 1 transitions involve gauge fields not
in their original analysis but is very much in their spirit, present in th&k=1 case).
which will thus be seen to be equivalent to the assumption of As the space of states involved in the transition now in-
duality. cludes a full Landau level, it becomes possible to formulate a
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particle-hole symmetry for the fermions that asserts that thguired is for7{e) to have structure on the scale¥f In the
dynamics of the particles at auxiliary filling is the same as transition region, this is easily arranged for the variation of
that of holes at auxiliary fillingyg=1—v". In fact, this sym-  7{¢) becomes arbitrarily rapid at low temperatui@sis a
metry is the same as duality for the composite bosons as catep function at zero temperatiwr€onsequently, one should
be seen by rewriting the particle-hole condition in terms ofgenerically expect nonlinear transport from the proximity to
the filling factor itself and noting its equivalence with the the critical point.

duality condition derived earlier. Again, without addressing Nevertheless, the most striking feature of E@®) is the
the microscopic origin of the symmetry, we will explore its linear dependence &f, on| independent o and hence of
consequences for the electronic transport. In the followingy. This striking feature of the experimental data follows au-
we will argue that it implies the reflection symmetry, pro- tomatically from Jain and Kivelson’s Landauer formalism.
vided that we accept a particular Landauer framework for thef, in addition, we postulate particle-hole symmetry
analysis of the transport. (e.=0),

B. Particle-hole symmetry and transport Te)=1-T(—¢), (27)

Much as in the bosonic description, transport coefficientgve find that in going between symmetry related fillings,
for the electrons and the fermions are related by anothesr— —€g,V, and| simply trade places. Such a treatment
addition relation, can then account naturally for the symmetry even in the non-

linear transport.
p=p'(v)+p=k-1), (25 However, an important caveat is in order. The Landauer
formalism assumes that the dissipation necessary to produce
steady state transport takes place in the reservoirs defining
the edge chemical potentials and hence the nonlinearities it

: i - roduces are due to elastic physics alone. In a real system
treatment of noninteracting electroffsOur motivation here P physics L SY:
one needs to worry about nonlinearities arising from dissipa-

is twofold. First, we take the experiments to date, with theirtive bottlenecks. possibly comina from critical phvsics
surprising estimate of a correlation length exponent ConSiS'hemsere§9 n ’ther W)c/)rds thgre s 1o fluctﬁa%i/on-
tent with noninteracting calculations, as suggesting that a. .~~~ > . .
composite fermion quasiparticle description continues to issipation theorem for nonlinear response which relates it

ol even in the ransiion regions o that we can use afTCSY 10 Sebiu Soecions B b bt e
effective single particle description for them. Next, we feel y P P

. . . . ulations.
that if the experiments are measuring universal transport dafad Evidently, we have not done so in our treatment of the

in a critical region, it should not matter exactly how we ponlinear response in the bosonic description and have cho-
compute these quantities; i.e., the universal part of the transs-en a articulzlr infinitely efficient mechapnism in the fermi-
port might be computable by our idealized Landauer calcu- P . y '

lation even if there are nonuniversal parts sensitive to th&M'e Landauer description. For our purposes, the importance

actual arrangements of contacts in the device. Needless fzgrcittizgl Iart]tesriclzcg;]a};; dIfoathzrzgal?rfegrrlnsCIr?]I%é?ratC;Etsrclar:\s/g: d
say, this assumption needs further stafly. PNy y y

With these caveats, we consider the conductances of '3 the data.

disordered QH region sandwiched between two ideal regions
that serve to define incoming and outgoing edge states with
linear dispersion&® We imagine a calculation in the critical

region where the size of the disordered region is set by a oyr discussion so far has focused on phenomenology in
dephasing length. The transport through the region is chaky 4t we have attempted to translate the experimental obser-
acterized by an energy dependent transmission coeffiCieRktions into the framework of the Chern-Simons description
(¢). Following Jain and Kivelson, we define the currént  of the QH transitions. This has led us to conclude that the
longitudinal voltagev, , and Hall voltagev, for given edge  composite boson description must be marked by duality and
chemical potentialsu; =er—V/2 and u,=e€p+VI2 (e IS 3 vanishing Hall response and the composite fermion de-

where p' is the fermion resistivity. Before turning to the
implications of particle-hole symmetry, we will sketch a
Landauer theory fop" along the lines of Jain and Kivelson's

IV. THEORETICAL EVIDENCE FOR DUALITY/
PARTICLE-HOLE SYMMETRY AND A CONSTANT py

the equilibrium chemical potential on the both edges scription by particle-hole symmetry and a constant Hall re-
. sponse. In this section we will review previous theoretical
| :f de T(e), work which, though it did not anticipate the particular strik-

uL ing features of the data, does suggest that our inferences

would arise naturally in a microscopic theory of the QH
MR phase transitions.
VL= (e py) = " de Te), Duality. In Sec. Il E we noted the belief, based on the
work of Lee and Fishe? that the bosonic Chern-Simons
s action with coefficientk for particles of charge 1 at filling
VH:f de T(e). (26)  fraction v, could be written as another, dual Chern-Simons
= action with coefficient K for particles of charge k/at fill-
Evidently, these expressions allow for nonlinear depening fractionvy. The caveats necessary here @kethat their
dences of the currents and voltages on the source-drain vol&rguments on the irrelevance of other terms generated in the
ageV=pu,—u, and hence on each other; all that this re-dual action are compelling deep in the QH phases, but do not
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take account of any anomalous dimensions that would band the long wavelength Hall conductivitgee Figs. 2 and 3
produced near =0 critical point, and(b) that the intro- in their papey also supports the conclusion that departures
duction of disorder should be expected to change the precigeom particle-hole symmetry are indeed irrelevant. A second
functional connection betweenandv,. We also noted that piece of evidence to this effect is the structure of the network
for duality to be a symmetry in the sense of E¢5), itis ~ Model of Chalker and Coddingtdhwhich is believed to be
necessary that the dual actions lead to the safe). in the same universality class. The network model clearly
The latter assumption was made by KLZ, formally based®Xhibits a symmetry between the QH and insulating phases;
on a problematic RPA treatment of the disorder which ig_ll”l thge absence of bpundary effects inessential to the bulk
nores any internal Chern-Simons lines in the diagrams th(,Rhysms, they are chirally reversed translates of each other.

contribute top®. This treatment was subsequently called into . C.:o.nst.ancy 0?).”' The pOSSibi."ty (.)f. a quantized Hall re-
question by calculations on undisordered systems that sug-'sw'ty into the insulator was implicit in the work of Jain
gested that the Chern-Simons term is generically a margin Hmljl _Klvellsoﬁ a;]nd KLZ WTg ;lrsft_ s_ugg_l_ehsted th? idea o:‘ja
perturbation and gives rise of a line of fixed points with all insulator wherep,, would be finite. This was later stud-

continuously varying exponent?; diagrammatically, they I€d in detail by Dykhne and Ruzifiand Ruzin and Fend.
showed that the neglect of internal Chern-Simons lines is n

an this work it is phrased in terms of a “semicircle law”
always justified. relatingo (v) andoy(v). In the special case of a transition

Nevertheless, there is a second, qualitative argument ifOM @ 1k QH state to an insulator, this law states
support of the claim by KLZ that appears more robust and o2+ o2 = ou K (29)
has been the inspiration for some recent, competing, model LT UHTTH
calculations for the defeng.If we accept the long wave- and is equivalent to the constancy pf,, while in other
length form invariance of the original and dual actions, thencases it reflects the constancy @f for the “upper” fluid
it follows that universal quantities computed from them, in-defined in the next section. Equati¢®8) was proved both
ternal gauge field lines and all, can depend only upon théor a classical two fluid model and within the network model,
filling fraction (or the appropriate scaling figldthe charge assuming linear response. Recently, it has been shown in a
of the bosons, and the Chern-Simons coefficient. As botlelassicized (i.e., noninterfering version of the network
actions describe the same transition, it follows that they mustnodel that the constancy can persist beyond the linear re-
yield the same correlation length/time exponents despite theponse regimé&* As argued in previous chapters, in terms of
differing charge and statistics. That suggests, though it doesomposite bosons this semicircle law corresponds to a van-
not dictate, that they yield the same scaling functions for théshing Hall resistance. It is enlightening to point out, that a
resistivities; indeed, for particle-hole asymmetric disorderproof of p,=0 is in fact included in Ref. 17, though in a
the converse would seem to be a serious possilisiée be- different language. In their formulation, they introduded
low). At any rate it calls into question the relevance of cal-cal current densitiesj; andj,, for the two phases in the
culations where the exponentio vary with the Chern- transition region and showed that their average values are
Simons coupling(These calculatiort perturb in the Chern- perpendicular to each other—a property that is proved nec-
Simons coefficient and hence are inconclusive on the largessary and sufficient for the semi-circle law to be obeyed.
coefficient shiftk—1/k at issue in the question of duality. Translating this to the bosonic Chern-Simons representation,
Recent model calculatiofs have attempted to show that |iquids 1 and 2 correspond to mobile bosons and vortices,
models that do exhibit duality do not display any statisticshencej, andj, are the charge and vortex current densities.
dependence of exponents at)all. The latter has the significance of an electric field in the per-

We should mention here also the work oftken and  pendicular direction; Ruzin and Feng'’s statement therefore
Ross® who were concerned with a description of QH sys-implies that the current and voltage in the bosonic descrip-
tems on the basis of actions in which the scale dependetiion areparallel—i.e., the Hall coefficient vanishes.
resistivities appear as parameténg the lines of localiza- Finally, we should note that for the similar problem of the
tion theory) and postulated that a complexified duality or field tuned superconductor/insulator transition it has been ar-
modular invariance operates on them. Ttaisatzs equiva-  gued by Fishe?® that an asymptotic particle-hole symmetry
lent to that of KLZ for our purposes. at the critical point might lead to a vanishing Hall coefficient

Particle-hole symmetryWithin the framework of the fer-  as suggested by some datarhis does suggest the possibil-
mionic Chern-Simons theory, there are analogous issues g that, in the QH system, both duality and the vanishing

the ones discussed above. However it is possible to gaipjall response might ultimately be consequences of the same
some insight by studying the problem of noninteracting elecunderlying principle.

trons in a random potential which is already nontrivial and at

the very Ieast_may be a s_olutioi'nn the He}r_tree-Fock senge V. DUALITY NEAR OTHER QUANTUM HALL
of the interacting v= 1 to insulator transition, as suggested PHASE TRANSITIONS

by some theoretical work:

In particular, one can check if microscopic asymmetries The hierarchical principle was invoked in Ref. 2 to argue
of the random potential are irrelevant at the fixed point forthat all QH transitions are, in a precise sense, transitions
the problem. In some measure this was done by Huo, Hetzeltom principal QH states to insulators. Qualitatively, they all
and Bhatt? in their numerical studies which found that criti- consist of a “lower” (parenj fluid that is inert across the
cal conductivities were insensitive to departures from microtransition and an “upper’(quasiparticlg fluid that under-
scopic particle-hole symmetry. The contrast between theigoes a transition to an insulator. For example, #ve2— 1
calculations of the density of states, a microscopic quantitytransition is thev=1—0 of the spin down lowest Landau
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level while the spin up Landau level remains inert. tries, not manifest microscopically, to emerge because the
It follows that the symmetries of the transport observed inoperators that break them are irrelevant at the underlying
Ref. 1 should be present at all transitions if one can identifyfixed point. In other words, critical points can provide a ro-
the transport coefficients of the upper fluid. This is straight-bust rationale for long wavelength symmetries. Nevertheless,
forward for the conductivities. As the fluids conduct in par- we should remark that this is not the only possibility. While

allel,
o (E,v)=0a{(E,v),

on(E,v)=0c¥(E,v)+ 0oy, (29)

where the lower fluid contributes only a fixed, quantized Hall
conductivity independent of filling fraction and electric
field3” As typical Hall bar measurements yield resistivities
and, more importantly, the symmetry itself would be mani-
fest in the resistivities of the upper fluid we need a prescrip

convert the measured, and py to o and oy by matrix
inversion, obtaino}' and o}, from Eq.(29), and invertthem
to getp; andpy).

the asymptotic low temperature regi@hit can be accessed
on realistic time scalgsfor large samples should be gov-
erned by critical physics one has to leave open the possibility
that the accessible temperature range might involve more
complicated finite temperature effects and lead to some of
the same physics for more classical reasons as in Refs. 16,34.
For the samples studied to date that exhibit the reflection
symmetry, the temperature range that shows evidence for
scaling is too small for us to rule out such a possibility.

With this caveat, we have argued that the reflection sym-

é‘netry can be naturally interpreted as duality/particle-hole

Symmetry combined with a vanishing/constant Hall response
in the composite boson/fermion descriptions of the QH to
insulator transitions. We expect that this is a feature of all
continuous QH transitions and have indicated how to search

Beyond linear response one needs explicit expressions Qg it at other transitions. We have also reviewed the theo-

the current carried by the upper fluid, whichnist parallel to

retical evidence in support of these inferences and find that

the net current, and for the electric fields resolved along ang,,,gh not dispositive, it is certainly encouraging; at least for
perpendicular to it. Consider a Hall bar geometry where g gninteracting electrons, it is easy to visualize calculations
current density flows along the bar. Voltage measurementsinat can test them furthéf.Overall, we find that the experi-

yield the longitudinal and Hall electric fieldg, ,E4 and
hence the(in general nonlinear resistivitiesp (j), pu(j)-

mental data through the interpretation of duality offer the
strongest evidence yet that the general framework of KLZ of

Let us denote the Hall angle between the current and the totgl njversal bosonic transition underlying the QH transitions

electric field of magnitudeE=\/E2L+ EZH by 6, so that

E_=Ecos9,E4=Esind. Denoting the current density and

Hall angle for the upper fluid by* and ¢“, Eq. (29) can be
recast as

jcosd=jYcos",
(30)

The two equations in Eq.30) suffice to determing" and
¢, and henceE}' and E}}, in terms of the applied and
measureg, andp,, . After some algebra we obtain,

—jsing=—jYsing"+ ¢'E.

2 2 2 12
| pE+Tpnt+at(pi+pi) 12"

7, 2
pLt PH

j'=

Eﬁ=j—u[pH+oﬂ<pE+pa>]2. (31)

Plots of E;' and E}}, as functions ofj" should then be ex-

pected to resemble tHeV, ,I-Vy characteristics reported in

Ref. 1.

VI. SUMMARY AND OPEN QUESTIONS

is correct.

The fit between our analysis and the data, though compel-
ling, is not perfect. In particular, the derivation of the rela-
tionship betweenyy and v should be strictly valid only for a
system that exhibits duality down to the microscopic length
scale, e.g., for noninteracting electrons this is the case for
microscopically particle-hole symmetric disorder in the low-
est Landau level. For systems where duality is recovered
only at long wavelengths, the relationship should be more
complicated. Indeed, in the strict scaling limiT, and
v—ve—0 with x=(v— )/ TV fixed, it matters very little
what we pick. Nevertheless, this doest mean that duality
is without consequence. For example, it would still imply
that, as a function of the scaling variabdethe current and
voltage trade places at dual values and would have the con-
sequence thaif = 1. We feel that the correct perspective on
our analysis is that we have approximately identified a non-
linear scaling field ¢’ — v/ in the fermionic descriptionthat
allows the symmetry to be identified over a wider range of
v at accessible values af. It would however be very useful
to get some quantitative understanding of wiy- v/ con-
tinues to be such a good scaling field even wirgritself is
shifted from its symmetric value of 1/2 by as much as 20%.
This problem becomes more serious if the transition out of
the QH state is studied as a function of disorder at fixed
filling. While the formulation in terms of the scaling variable
remains valid it is not obvious how one might interpret any

In this paper we have followed a single line of argumentdata, away from the scaling limit, that might become avail-

in interpreting the experimental results, i.e., we have asable for this transition. A second problem, which is difficult
sumed that the physics in the transition region is governed bto pin down experimentally given the difficulty of accurately
a zero temperature quantum critical point. A great virtue ofmeasuringpy deep into the insulator, is that the reflection
such an interpretation is that measured quantities becomsymmetry for the longitudinal response appears to hold over
properties of a scaling limit where it is possible for symme-a larger range of fillings than those over which the Hall re-
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sponse is constant. We do not have a good understanding tife theoretical expectatibhis that it shouldnot be charac-
this difference. terized by duality as the bosons and vortices interact with
A different issue is the nature of the nonlinear responsedifferent potentials. Unfortunately, the data here is not com-
We have suggested that the nonlinear response is a congaetely consistent, particularly on the question of universal
guence of intrinsic, critical physics. It is not difficult to imag- values for the critical resistivities; further studies with an
ine getting the same result from a heating scenario in whickemphasis on the current-voltage characteristics might there-
the electron gas equilibrates at a different temperature fronfore be quite useful. There is also the observation of a reflec-
the lattice. What one needs for this purpose is the reflectiotion symmetry at the puzzling zero-field transition observed
symmetry of the linear response plus an effective electroniby Kravchenkoet al3 which does not have any natural in-
temperature that depends upon the dissipation in the bulterpretation in our framework. We expect these cross com-
alone, i.e., on the produgg, which is the same between parisons to be very instructive in evaluating the correctness
dual points on the longitudinal characteristics. The reason wef the analysis outlined in this paper.
are suspicious of this mechanism is that it ignores the dissi-
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