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Optical near-field response of semiconductor quantum dots

B. Hanewinkel, A. Knorr, P. Thomas, and S.W. Koch
Department of Physics and Material Sciences Center, Philipps-Universita¨t, Renthof 5, D-35032 Marburg, Germany

~Received 3 December 1996!

The near-field response of optically excited semiconductor quantum dots is theoretically investigated for the
collection and illumination mode of a scanning near-field optical microscope. The study includes resolution,
spectral line shape, and field distributions of single and interacting dots. It is shown that in contrast to near-field
excitation of molecules with large dipole moments, the line shape and position of typical semiconductor
quantum dots can be determined without a disturbance if realistic values for the intrinsic linewidth are as-
sumed. The comparison of regular and irregular quantum-dot distributions yields characteristic signatures for
disordered arrays, necessary to understand the optical response of realistic semiconductor quantum dot
samples.@S0163-1829~97!04620-1#
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I. INTRODUCTION

Experimental studies of semiconductor quantum-dot s
tems using conventional optical techniques, such as pu
probe spectroscopy, nonlinear wave mixing, etc., yield
most cases information only of the spatially averaged sys
properties. Since real samples usually contain distributi
of dot sizes, shapes, or composition,1,2 the signals are often
dominated by inhomogeneous broadening, masking man
the signatures of the individual quantum dots. In addition
the experimental preparation of ultimate samples, which c
tain no or drastically reduced distributions, experimental
formation on the optical properties of individual dots can
obtained only by using optical techniques with subwa
length spatial resolution.3,4

A very promising tool for high spatial resolution optic
measurements are the recently developed scanning near
optical microscopes~SNOM’s!.5 Here, modifications of elec
tromagnetic radiation are detected which are caused by
interaction of the microscope tip with an object smaller th
the wavelength of light. Hence SNOM’s seem to be idea
suited to investigate the properties of individual quant
dots within a dot ensemble realized in a realistic structure
order to investigate the potential and limitations of t
SNOM technique we perform model calculations for ide
ized near-field geometries. For such a study it is especi
important to analyze the characteristic signatures of the s
ning near-field source or detector, i.e., the tip of a SNO
and to extract those signatures which are caused by the
teraction with the quantum dot. Since tip and dot are of co
parable spatial dimension, one has to investigate the stro
coupled configuration of quantum dots and tip. In the vic
ity of the tip, electromagnetic fields are strongly altered
the object~quantum dot! and thus, scanning the aperture ov
a sample, subwavelength resolution by means of an op
experiment is achieved. Often, in the experimental setup
aperture is a fiber tip scanning over the sample. In princi
the fiber tip can be used either for collecting the radiation
the sample or for exciting the sample. The use of a
smaller than or comparable to the wavelength of light a
optical source has several features different from the illu
nation by a plane wave or lense focused laser source. F
550163-1829/97/55~20!/13715~11!/$10.00
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there is the strong localization of radiation below the diffra
tion limit, thus allowing an enhanced optical resolution. Se
ond, the near-field creating source is close to the sam
which implies the existence of longitudinal field componen
interacting with the sample. Third, analytical models, like t
Bethe-Bouwkamp solutions6,7 for the electromagnetic fields
behind a small cicular aperture, often used as a model f
fiber tip, suggest a strong enhancement of magnetic fi
components in comparison with the electric fields. This e
hancement of the magnetic fields makes the near-fi
method not only very efficient to study magnetic materi
but it may be possible that for strong enhancement the es
lished multipole ordering of the Hamiltonian could brea
down, because the reduced strength of the magnetic mat
moments in comparison with the electric dipole mome
can be compensated by the magnetic field enhancement.
behavior, however, is only expected for very small apertu
whose diameter is much smaller than the wavelength of
cident light. As shown below, for tips used in current expe
ments, electric and magnetic field show the same orde
magnitude, thus favoring electric field effects.

First calculations and their experimental verification
matter-field interaction have been presented for fi
distributions,8 their polarization dependence,9 and line
shapes of single molecules exposed to fiber tips.10,11 Investi-
gations of the molecule-tip interaction show that the lin
width of a molecule is strongly dependent on the respec
position of tip and molecule, thus allowing for the concl
sion that measured lifetimes are changed in compariso
the intrinsic lifetimes, which in turn are given by spontan
ous emission in the presence of the vacuum field and o
reservoir processes. This behavior results from the str
coupling regime of molecule and tip, due to a large dipo
moment and very long intrinsic lifetimes of the molecu
transitions. Besides these studies of molecular systems re
experiments are also applied to manmade solid state dev
such as quantum dots and wells.12

In this paper, we go beyond preliminary calculations the
retically investigating a SNOM experiment in the vicinity o
a quantum dot array. As a detector/source with a subwa
length aperture we assume a metal coated fiber tip, wh
may collect the scattered radiation after excitation of the
13 715 © 1997 The American Physical Society
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13 716 55B. HANEWINKEL, A. KNORR, P. THOMAS, AND S. W. KOCH
array with a plane wave, thus working in the collectio
mode. Alternatively, this arrangement allows the excitat
of the dots through the tip within the illumination mode.

The paper is organized as follows. The treatment of
electromagnetic field and matter is briefly reviewed and
description of the considered geometry and calculated
servables is given in the following Sec. II. The model for t
interaction of the electromagnetic field of the tip and t
quantum-dot system is outlined in Sec. III. In Sec. IV sp
tially resolved optical properties of single dots and dot arr
are discussed. Our results are summarized in Sec. V. In
appendixes we summarize the main steps of the Green f
tion method to solve the electromagnetic wave equation
the tip ~Appendix A! and we discuss the material equatio
used to describe the quantum-dot system~Appendix B!.

II. GEOMETRY AND OBSERVABLE QUANTITIES

As a realistic model system for near-field optical micro
copy we study an array of resonantly excited semicondu
quantum dots located on a dielectric, nonabsorbing subs
with a fixed and frequency independent refractive ind
Two basic modes for the tip-dot interaction will be analyze
~i! collection mode and~ii ! illumination mode. These con
figurations are schematically shown in Figs. 1~a! and 1~b!,
respectively.

(i) Collection mode.A plane excitation wave under a
angle of total reflection is incident from the bottom of th

FIG. 1. Sketch of SNOM experiment, working in~a! collection
and ~b! illumination mode.
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substrate thus inducing evanescent surface waves trav
on the surface of the substrate10 and interacting with the
quantum-dot ensemble. On top of this geometry, a SNO
detector working in collection mode is applied. The fie
emitted by the quantum dots is collected by the tip. At t
end of the tip (L0) a photodetector measures the energy fl
density~poynting vector! of the radiation integrated over th
whole area of the tipw(L0):

w~L0!5
c

4pE E dxdyRe~E3H* !z . ~1!

In general, these calculations have to be done until the
length and the thickness of the fiber allows for a propagat
mode. However, in the numerical scheme we use~see Ap-
pendix A! this requires immense calculational effort, thus w
restrict the calculations to that length of the fiber tip whe
the flux through different planes of the fiber remains qua
tatively unchanged; besides a gradual decrease due to a
penetration depth. The analysis shows that these condit
are satisfied at a length where the tip diameter has incre
to a value exceeding the wavelengthl. This approach is
consistent with the cut-off wavelength of the fiber and in
cates that the calculated signal is propagated through th
ber, finally arriving at the detector, see Ref. 13.

(ii) Illumination mode.As a second example, the illumi
nation mode is investigated. Here, the tip is used as a n
field source and spatial resolution is obtained by scann
this source over the sample and detecting the resul
changes in the far field. To generate the near field, it is
sumed that a beam with Gaussian profile is propaga
through the fiber until it reaches the tip and its transmiss
through the tip hole yields to an optical near field.

As observable quantity the intensity of the electroma
netic fieldE at a positionr0 in the far field is detected by a
pointlike photodetector. To remove the background, its re
tive change

S~r0!5
uEu22uE0u2

uE0u2
~2!

due to the presence of the sample is calculated. HereE0
denotes the field without the sample,E is the field which
includes the full geometry. Our numerical calculations in
cate that at a distance of 33l the obtained results are a
ready a good approximation of the far field. In this geomet
the absorption line shape, defined by the induced polariza
P(v) is investigated as a function of tip position and co
pling strength between tip and dot.

Now, after having briefly described the basic two intera
tion modes, the corresponding fields must be calculated
obtain the observable quantities. The used equations
their derivation are outlined in the next section.

III. FIELD –QUANTUM-DOT INTERACTION

In this section we briefly sketch the method to solve t
vector Maxwell’s equations for the full electric field in th
linear domain.9 We consider the wave equation of the tot
electric field including transverse and longitudinal comp
nents:
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¹2E2¹¹•E2
1

c2
]2

]t2
E5

4p

c0
2

]2

]t2
P. ~3!

In the strict regime of linear optics, using a linear susc
tibility x, the polarization can be written in the Fourier d
main as

P„r ,v)5x~r ,v!E„r ,v). ~4!

Here, we have assumed that the medium has no optica
isotropy and a local response. The assumption of a lo
response restricts the application to localized carriers, a s
ation well realized in a semiconductor quantum dot wh
the spatial confinement is complete in all spatial direction1

However, in principle this restriction is not necessary, a
can be relaxed, e.g., for the study of semiconductor wi
wells, and bulk materials. The total polarization is sub
vided into nonresonant contributions~background or refer-
ence medium subscriptr ) and the resonant or nonresona
perturbation~subscriptp). Thus we can write the suscept
bility as

x5~x r1xp!. ~5!

Using the definition of the dielectric function« and combin-
ing the susceptibility with the wave equation, we arrive a

¹2E2¹¹•E1
v2

c0
2 @« r~v,r !1«p~v,r !#E50. ~6!

Similarly, for the magnetic field we have the following wav
equation:

¹2B1
v2

c0
2 B54p i

v

c0
¹3P. ~7!

Having solved Eq.~6! the polarization is given by Eq.~4!
and thus the magnetic fieldB can be calculated by Eq.~7!.
The solution of this system of equations can be obtai
numerically by using an efficient calculation scheme p
posed in Ref. 9. The scheme is based on a Green func
approach, which consists of a self consistent set
Lippmann-Schwinger and Dyson-equations for the cor
sponding Green functions of the perturbed and unpertur
system, respectively. This method is briefly reviewed in A
pendix A.

We apply this method to study an array of quantum d
interacting with an external electromagnetic field which f
fills the appropriate boundary conditions at the tip and at
quantum dots. To calculate the fields, the susceptibility of
array must be determined. The different quantum dots
well localized in space, their extension is assumed to
much smaller than the variation length of the electrom
netic field. Thus, they are treated as point like particles w
respect to the spatial changes of the light field. Under ra
general assumptions their susceptibility can be cast into
following form ~see, e.g., Ref. 1!:

x~r ,v!5
i

V0
(
i , j ,k

udi j u2f i j
G i j1 i ~Ei2Ej2v!

d~r2rk!. ~8!

Herei , j , denote the different quantum states in the quant
dot, placed atrk , di j are the matrix elements of the dipo
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operator, andV0 is the volume of the elementary cell.G i j are
the intrinsic polarization decay rates and will be chosen to
constant (G i j5G0). f i j denotes a static band filling facto
which is one for small excitation and is negative for inve
sion. For simplicity we discuss the case of resonant or ne
resonant excitation of one transition (1→2), thus neglecting
nonresonant terms. For a detailed discussion of the mat
equations and their validity in the case of near-field inter
tion see Appendix B. Using the susceptibility, Eq.~8!, in the
wave equation~6! the problem of near-field – dot interactio
is formulated self-consistently.

IV. APPLICATIONS

In this section, equations for the electromagnetic field u
der the influence of the coupled material system of fiber
and semiconductor quantum dots are solved for several
narios. First, we characterize the action of the tip on
electromagnetic field and discuss how a plane wa
Gaussian pulse used as excitation field develops into a n
field distribution for both, illumination and collection mode
Second, the interaction of the field with single quantum d
and with various dot arrays is discussed.

A. Characterization of the fiber tip

In the following calculations, the tip is modeled as a me
coated fiber having a quadratic shaped hole, oriented par
to the axes of the coordinate system. Its aperture is 150 n
each direction. The opening angle is 90°. The metallic film
50 nm thick, for the calculation the interior dielectric is ch
sen to be vacuum, assuming that the main influence on
field is given by the metallic coating. In the following w
assume that the field propagates through the fiber from
positivez direction to the negativez direction ~illumination
mode! or in the opposite direction reaching the detector
the end of the fiber tip~compare Fig. 1!. If not mentioned
otherwise, the polarization of the incoming wave is alwa
chosen to be in thex direction.

1. Illumination mode

In this mode, the tip is excited by a Gaussian beam pro
gating into the tip@compare Fig. 1~b!#. The dielectric surface
depicted in this figure is not taken into account in the follo
ing calculations.

In Figs. 2 and 3 we plot the spatial distribution of th
electric and the magnetic field, respectively, after transm
sion through the fiber tip. Figure 2~a! shows the spatial dis
tribution of the field in the propagation direction at differe
(x,y). It can be recognized that the incoming field and t
field reflected from the front of the tip interfere within th
fiber z.0 for (x50, y50). The evanescent field is seen
decay rapidly after its transmission through the hole
z,0. In addition to this we also plot in Fig. 2~a! the field
close to the walls of the tip,x50.1 mm or y50.1 mm, re-
spectively. We clearly recognize a dramatic field enhan
ment near the walls. Figure 2~b! and Fig. 2~c! shows the
spatial field distribution inx,y direction for different dis-
tances outside the tip. One clearly recognizes the differe
of the field structure inx and y direction. Whereas for the
y direction, i.e., perpendicular to the polarization of the
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13 718 55B. HANEWINKEL, A. KNORR, P. THOMAS, AND S. W. KOCH
coming field, a localized distribution is obtained, a doub
peaked structure occurs for thex direction in which the in-
coming field is polarized. This is similar to the field distr
bution in a cicular aperture, where the electric field diverg
in the polarization direction at the rim.7 The z dependence
shows the length within which the evanescent field spati
decays, indicating a decay length ofk215l/2p. The height
of the double peak observed inx direction gradually de-
creases with an increasing distance from the tip.

A similar scenario as discussed for the electric field c
be found for the magnetic field in Fig. 3. Similar to the fie
distribution in an aperture of an ideal conducting plane
magnetic field perpendicular to the polarization direction
enhanced. The ratioB/E depends on the position relative
the tip. It is mostly smaller than one and does not excee
value of three in the observed region. This indicates that
the tip geometry studied here the material interaction w
the magnetic field can be neglected, similar as in the far-fi

FIG. 2. Electric field intensity under a tip in illumination mod
~a! in propagation direction,~b! in polarization direction, and~c!
perpendicular to both directions. The incoming field is modeled
a Gaussian beam with beam waist atx5y50 mm. The intensity is
normalized to the intensity of the incoming field in this point. T
tip has an aluminium coating of 50 nm thickness, its dielec
constant is226.315.2i . The aperture has a diameter of 150 n
The tip ranges vertically fromz50 to z51 mm, horizontally it is
centered inx5y50 mm. The wavelength of the incoming~in a
2z direction! light is 628 nm.
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geometry~see Appendix B for a detailed discussion!.
A characteristic length scale for the variation of both elec

tric and magnetic field is 40 nm. This means that a multipole
expansion as performed in the Hamiltonian~see Appendix
B! is only useful if the sample is smaller than 40 nm, becaus
only in this case higher order multipole terms can be ne
glected. However, for the case of quantum dots with a typi
cal diameter of an excitonic Bohr radius~10 nm! studied
here, the neglect of all but the dipole contributions is an
excellent approximation.

2. Collection mode

To characterize the collection mode, we first calculate th
field distribution only in the presence of the dielectric sub-
strate with no quantum dots on it. Figures 4~a! and 4~b! show
the resulting electric field intensity under the tip. We assum
plane wave excitation with parallel@Fig. 4~a!# or perpendicu-
lar @Fig. 4~b!# polarization with respect to the plane of inci-
dence. The distance of tip to surface is 40 nm, the field i
calculated 20 nm above the surface.

The comparison of Fig. 4~a! and Fig. 4~b! clearly demon-
strates that the field distribution corresponding to parallel o
perpendicular polarization differs drastically in magnitude
To understand these differences we can think of the tip in th
collection mode as dipole induced by the wave traveling o

y

.

FIG. 3. Magnetic field distribution under a tip in illumination
mode, same setting as in Fig. 2.
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55 13 719OPTICAL NEAR-FIELD RESPONSE OF . . .
the substrate. This induced dipole is oriented correspond
to the polarization of the substrate-guided wave which,
turn, is determined by the incident waves. The direction
the induced dipole is perpendicular~parallel! to the surface
for incident waves polarized parallel~perpendicular! to the
plane of incidence. Due to the boundary conditions, the t
field can be approximated by the dipole field plus a mir
dipole field on the other side of the surface, which is orien
parallel in the case of a dipole perpendicular to the surf
and antiparallel otherwise. In the first case direct and mir
field add constructively, whereas they add destructively
the second case. In the following we concentrate on para
incidence, depicted in Fig. 4~a! because a larger field en
hancement is expected to improve the signal from a sou
under the tip. In this case it can be recognized that the e
tric field is strongly enhanced under the metallic edges of
tip. In addition, strong interference effects occur as indica
by the oscillating electric field distribution. The evanesce
surface wave is partly reflected by the tip. Thus, in front
the fiber standing waves occur, whereas behind the fiber
weak, spatially decaying field is observed. This behavio
similar to the transmission of a traveling wave through

FIG. 4. Electric field intensity under a tip in collection mod
Height of tip above the surface: 40 nm, plane of observation 20
The tip is the same as in Fig. 2. The refractive index of the surf
is n51.5. The field is normalized to the intensity of the evanesc
surface wave traveling without the tip,~a! polarization of incoming
wave in plane of incidence (y,z plane!, ~b! polarization of incoming
wave perpendicular to plane of incidence (x direction!.
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barrier. Similar calculations for a dielectric tetrahedral tip
the same experimental setup10 yield a strongly peaked field
distribution, in contrast to our case where we get a fine str
ture resembling the shape of the tip.

For comparison with the electric field distribution, th
magnetic field distribution has been calculated in Fig.
While the electric field is peaked under the edges paralle
the propagation direction of the surface wave (y direction!
the magnetic field distribution peaks under the edges of
tip, perpendicular to the propagation direction. Thus the ra
of electric to magnetic field has a strong spatial depende
The maxima are approximately equal. For even smaller t
where the magnetic field is further enhanced, there may e
spatial areas, where the magnetic and the electric interac
can be comparable.

B. Quantum-dot response

To study the interaction with quantum dots we first a
sume the case of a single dot before quantum-dot arrays
investigated. As before, we analyze the illumination and c
lection mode separately. For simplicity, we restrict the stu
of a dot array to a linear chain of dots extended inx direc-
tion. The susceptibility of the dots is chosen correspond
to Eq. ~8!. Here, we use the following parameter
x054px(v0)/ i denotes the susceptibility under resona
excitation. The values (x050.1,1,10) correspond to a dipol
strengthd53 eÅ, whereas the intrinsic dephasing rateG0 is
varied from G51025, G51026 to G51027 ~in units of
v0) to study the weak and strong coupling regimes betw
the dot and near field. Note that a susceptibility smaller th
zero (x0521) results in inverted quantum-dot levels@nega-
tive f in Eq. ~8!#, thus characterizing optical gain. To obta
realistic values for quantum-dot arrays which are under
perimental study,12 the parameters have to be chosen in
range described above.

1. Illumination mode

(i) Single dots.Figure 6~a! shows the computed far-field
signalS at R05(0,0,22)mm, Eq. ~2!, as a function of the
scanning distancex of the tip with respect to a single dot a

.
e
t

FIG. 5. Magnetic field intensity under the tip in the collectio
mode, parameters as in Fig. 4~a!.
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the positionx50. The different curves represent a set o
different susceptibilities of the dotx050.1,1,10,21. It can
be recognized that an interference pattern is formed due
the superposition of the field of the tip and the induced d
pole of the quantum dot. The main signal contribution
peaked at the dot position because here the induced dip
field is strongest. However, a weak interference pattern
sulting from the interference between the induced polariz
tion and the tip field extends up to several tip diameters aw
from the dot.

The signal rises with increasing quantum dot susceptib
ity and changes its behavior qualitatively. For small susce
tibilities the observed signal has only weak modulation
whereas for large susceptibilities a double peaked struct
develops. This double peak structure follows the positions
the tip walls with respect to the quantum dot and is a dire
consequence to the electric field enhancement below
walls of the tip in the strong coupling regime@compare Fig.
2~b!#.

For the dot having optical gain (x0521) we see a more
or less inverted signal with respect to that of an absorbi
dot with the same absolute value ofx0. Thus, we conclude
that within a near-field study the optical absorption and ga
of single dots can be distinguished as long as a single do
covered by the area of the tip focus. This situation is
particular interest for quantum-dot gain media where typ
cally only a fraction of the dots experiences gain after th
arrival of an optical pump or a pump current due to th
inhomogeneous distribution in the dot array.1

A typical difference between near-field and far-field op
tics is that the sources of the incident radiation cannot
neglected in a near-field situation. To study the influence
the sources~in our case the fiber tip!, we compare the full

FIG. 6. ~a! Signal of a dot in the illumination mode for various
x0, the dot is placed atx50 and 40 nm under the tip. The scannin
direction is parallel to the polarization of the incoming light (x
direction!. ~b! Signal of a dot in the illumination mode forx051,
with and without the neglect of the near-field interaction.
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solution with the situation where the interaction of dot a
tip material is neglected@Fig. 6~b!#. We see that without
near-field interaction the signal is much less pronounced,
its maximum is about one order of magnitude smaller. T
ratio of the maximum to the surrounding wiggles is d
creased, so that a detection of the dot is more difficult. O
for increasing distance of dot and tip the interaction becom
weaker and the difference between both signals gradu
decreases. This shows that the sources of the near field
a strong effect on the signal and cannot be neglected.

We also discuss the line shape of the polarization at
position of the dot. The line shape and position contain
formation on the polarization decay and a possible line s
in the presence of a near-field tip. The line shapeL of the dot
is defined as the frequency dependent polarizat
L5uP(v)u at the position of the dot for a pulseE0;d(t)
containing all frequenciesv with a unit amplitude. Note tha
for a dot in a homogeneous surrounding~far field excitation!
the line shape is proportional to~see Ref. 13!

uP~v!u5
3

4p S «21

«12D5xS v2
x0

3
G0D . ~9!

Hence the line shape is determined by the susceptibility, w
a shifted resonance frequency. This line shape shows
width determined by the intrinsic decayG0[G12 of the tran-
sition and the polarization would decay withinG0

21 in a
pulsed excitation.

Because we are interested in the modification of the de
time and the line shape due to the near field we study
situation where the unit fieldE0 has to travel through the tip
before arriving at the position of the dot. Figure 7 shows
line shape for different intrinsic lifetimes, depending on t
distance from the center of the tip. The frequency shift due
Eq. ~9! has been compensated for.

From Fig. 7 it can be recognized that the line shape
presence of the tip depends strongly on the intrinsic life ti
;1/G0. Even for long lifetimes,G051027, x0510 the ob-
served near-field line shape resembles more or less the
field line shape, thus indicating the possibility for an erro
free measurement of the intrinsic line shape. However, if
increase the lifetime even further a line broadening, and
very high couplings, line shape modifications and even
splitting of the lines is observed. The linewidth broadeni
has been observed and theoretically calculated for molec
on a substrate.10 However, to our knowledge, the linewidt
splitting for very high couplings has not been discussed
far.

(ii) Linear quantum dot arrays.In contrast to atomic
physics where the study of single molecules/atoms is de
able, in solid state device optics one is often interested
having a high dot density to optimize the emission and n
linear properties of quantum-dot samples. Here, due to
strong inhomogeneous broadening, which spatially mo
lates the optical properties of the quantum dot sample
near-field study with high spatial resolution is desirable. T
resolution of single dot properties such as optical gain
absorption using the near-field method will strongly depe
on the density of the dots and their interaction strength
reasonable measure of the dot densityN0 is in dots per av-
erage spot size of the near-field tip. A typical sample is, e
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described in Ref. 14 where the dot density is approxima
N050.5. For this situation it should be possible to reso
single dots as long as they are more or less uniformly
tributed. Figure 8~a! shows the computed far-field respon
S(x0) for a scan of a linear quantum-dot array equally d
tributed in x direction at a density ofN0'0.3 (x051,
G051026). At this density the individual quantum dots a
easily resolved and even a line shape analysis yields
same answer as that of a single dot~not shown!. The modi-
fication of the signal due to the presence of several dots
neglegible at the positions of the dot. However, in the
gions between the dots, field interference strongly chan
the signal distribution, because here the induced fields
neighboring dots are comparable. However, the signa
background contrast is even increased due to the destru
interference in the presence of a small dot density.

In contrast to this idealized configuration, in real samp
local clusters of dots may complicate the analysis even if
average dot density is low. Figure 8~b! shows a scan for five
dots at a distance of 100 nm which is comparable to
densityN052.5. The observed signal indicates that the d
react as a cluster of dipoles within the tip spot. A stro
interference of the individual dot signals modulate the to

FIG. 7. Line shape study. Each curve represents the line sh
of a dot placed in distancex ~in polarization direction! from the
center of the tip, the line shape is given in units of the intrin
linewidth and the curves are normalized to a maximum of one.
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response. The spatial width of the observed signal is 2–
times larger than the tip width. From such an experiment
measurement it could only be concluded that several dots a
distributed within the focus.

In general, the analysis of a quantum dot ensemble
difficult not only for large dot densities but also due to the
occuring inhomogeneous size distribution which modulate
the transition energies and thus the susceptibilities. To mod
this behavior we have studied a regular sample of dots whe
the properties of one irregularly positioned dot is different i
comparison to the surrounding dots. Figure 8~c! shows a plot
where the surrounding dots have the same parameters a
Fig. 8~a!, however, the dot that was originally positioned a
x050 is now shifted to the positionx05500 nm. In addition
the shifted dot has a different susceptibility
x50.1,1,10,21. If the shifted dot has a much smaller sus
ceptibility (x051) than the surrounding dots it can hardly be
detected. If the two closely spaced dots have the same s
ceptibility (x051) they show again the cluster effect and a
broader spatial width than the tip size, whereas for differe

pe FIG. 8. Far-field signalS for different arrays of dots.~a! Regular
array of 1, 3, 5 dots with a distanceDx50.7 mm. The dots are at
x50 mm; at x521.4 mm, 0 mm, 1.4mm and atx521.4 mm,
20.7 mm, 0 mm, 0.7 mm, 1.4 mm. ~b! Five dots with distance
Dx5100 nm, centered inx50. ~c! Disordered array, one dot is
assumed to be displaced. The different curves correspond to diff
ent susceptibilities of the displaced dot.
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susceptibilities (x0510) the dot in the weak coupling re
gime is strongly surpressed in comparison to the dot with
high susceptibility. In the case that the shifted dot has g
due to interference effects, the signal of the other dot is
hanced. However, the field distribution of the individu
dots, surrounding the distortion is not strongly altered.

Figure 9 presents the calculated results for a two dim
sional scan over five dots at the positions (20.4,20.4)mm,
(20.3,20.3)mm, ~0,0.3!mm, ~0,0.4!mm, and ~0.3,0.2!mm
with x051. We see that the two pairs of closely spaced d
cannot be resolved, they appear as one dot with a slig
higher susceptibility. In principle, using our calculations a
making assumptions on the linewidthG0, experimentally ob-
served mappings of quantum dot arrays could be rec
structed.

2. Collection mode

(i) Single dots.Figure 10 presents the calculated ener
flux Eq. ~1! for different relative positions of the tip an
sample in thex-y plane having one quantum dot position
at the origin of thex-y plane. The height of the tip and of th
dot over the plane are 40 nm and 20 nm, respectively.
figure shows that the obtained signal is strongly enhan
under the edges of the tip indicating that the resolution
given by the diameter of the tip. Figure 11 presents the sig
for a scan iny direction atx50 mm for different parameters
In Fig. 11~a! different linewidths are considered, showing
approximately linear dependence of the coupling to the p
ticular susceptibility. For a medium with gainx0521 the
observed signal shows a sign change in comparison to
absorbing casex051.

Figure 11~b! compares different scanning heights~40 nm,
50 nm, 60 nm! implying different distances of tip and samp
~20 nm over the surface!. The results show that the dot in
duced signal strongly decreases relative to the surroun
interference pattern when the tip has a larger distance f

FIG. 9. Signal of five dots in the collection mode, the dots a
placed in (20.4,20.4)mm, (20.3,20.3)mm, (0,0.3)mm,
(0,0.2)mm, and (0,320.2)mm.
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the surface. The oscillating variations of the signal a
caused by the interference of the incoming wave and fi
scattered by the sample~negativey in Figs. 11! and the
interference of the incoming wave and field scattered by
tip ~positivey in Fig. 11!. Only if these variations are smal
in comparison with the signal due to the direct interaction
tip and sample can the sample be analyzed in a useful w
This is the case if the distance between tip and dot is in
region of the diameter of the sample.

(ii) Dot arrays. Figure 12 shows a two dimensional sca
over three dots at the positions (20.4,0.4)mm, (0,0.3)mm,
and (0.3,0.2)mm. The signal is strongly influenced by inter
ferences between incoming surface wave and waves s
tered by the quantum dots. However at the density assum
the dots are easily resolved and each dot is characterized

FIG. 11. Signal of one dot placed atx,y50 in the collection
mode for ~a! different susceptibilities and~b! different scanning
heights.

FIG. 10. Signal of one dot, detected in the collection mode, t
dot with susceptibilityx051 is placed in (0,0).
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a double peak, which has approximately the size of the
The maxima of the peaks are twice as high as the maxim
of the surrounding wiggles. However this contrast depe
strongly on the dot density due to a competition effect
tween interfering fields which enhance the contrast for
creasing dot density and the overlap of the main peaks u
the tip walls@similar to Fig. 8~a!#.

V. CONCLUSIONS

In conclusion, we have discussed the equations of mo
for an array of quantum dots interacting with the near-fi
distribution of a fiber tip. Within these equations, a sing
quantum dot couples with the other quantum dots and
near-field tip via the self-consistent electric and magne
field at the position of the dot. In contrast to the situation
far-field excitation where the magnetic field is often n
glected, the magnetic field may be enhanced in compar
to the electric field if very small apertures are used. Hen
more interaction terms than the well known electric dipo
coupling may be important in the material equations~com-
pare with the appendix!. However, for the tips used in thes
calculations, which come close to the tips used in rec
experiments, the magnetic field enhancement turns out t
negligible. Thus, the numerical solutions presented here
cus on the material coupling to the electric field.

The investigation of a single dot indicates that the ne
field induces strong line shape changes only if the ratio of
intrinsic linewidth and the transition frequency is smal
than 1029. For extremely small ratios even a splitting of th
line which results from the strong coupling between the
and dot is observed. The field distributions in the collect
and illumination mode show that the signal is strongly e
hanced at the metallic edges of the tip. The investigation
an array of dots shows that as long as the dot density i
low as one per tip extension in the scanning direction
dots can be measured independently. In this case the em
fields can be viewed as a linear superposition of individ

FIG. 12. Signal of three dots in collection mode. The dots
placed in (20.4,20.4)mm and (0,0.3)mm, and (0.3,20.2)mm.
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dots. The analysis is more complicated if the dot density
larger, especially if the dots have different oscillat
strengths, which is the case, e.g., for dots with a size dis
bution. In this case interference effects prevent a unique
terpretation of the obtained signal and a supporting calc
tion of the tip-dot interaction must be carried out.

We compare the two modes regarding the strength of
signal, which is the relative change of energy density or
ergetic flux induced by the presence of the dot. For a re
nantly excited dot withx051 the signal has a maximum o
0.0002 in the illumination mode and 0.0007 in the collecti
mode. For the collection mode, on the other hand, there
strong interference effects from the scattering of the surf
wave by the dot. The variations of the signal due to t
effect make the detection of the dot impossible, unless
distance of the tip and sample is very small. A numeri
analysis indicates that the illumination mode is not limit
by this. In both cases the resolution is of the order of the
diameter. In general, it seems that the resolution could
improved by using imperfect metalliced tips, where only o
wall guides the field to the object. In this case, the resolut
of the tip is of the order of the wall width.
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APPENDIX A: GREEN FUNCTION METHOD

In this appendix we briefly review a recently publishe
Green function method9 to solve the wave equation Eq.~6!

for the electric field. The Green functionĜ ~here a 333
tensor! for the electric field in the wave equation is define
by

$¹22¹¹•1k2@« r~r !1«p~r !#%Ĝ~r ,r 8!5d̂~r2r 8!,
~A1!

where the dyadic d function is given by
d̂(r )5d(r )(d i jei ^ej . In the following Ĝr denotes the
Green function for the reference system only, this means
solution of Eq. ~A1! for «p50. The division of« into a
reference system, described by« r and a perturbation«p is
done in such a way that for the reference system the Gr
function Ĝr is known, and also a solution of the homog
neous wave equationE0, representing the incident field.

Let S be the region to which the perturbation is restricte
this meansep vanishes outside ofS. The full Green function
can then be calculated via the standard Dyson equation:

Ĝ~r1 ,r2!5Ĝr~r1 ,r2!
~A2!

2k2E
S
Ĝr~r1 ,r 8!«p~r 8!Ĝ~r 8,r2!dr 8.

With the help ofĜ electric fields within the perturbation

e
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E~r !5E0~r !2k2E
S
Ĝ~r ,r 8!«p~r 8!E0~r 8!dr 8 ~A3!

as well as outside ofS,

E~r !5E0~r !2k2E
S
Ĝr~r ,r 8!«p~r 8!E~r 8!dr 8, ~A4!

can be calculated. The computational problem is to solve
Dyson equation~A2! for G(r ,r 8) with r ,r 8 in the source
regionS. An effective scheme to solve the Dyson equati
has been proposed in Ref. 9. The key idea is the follow
feature inherent to the structure of the Dyson equation: If
perturbation«p is split into two parts«p5«p

11«p
2 , the Dyson

Eq. ~A2! can be solved for«p5«p
1 , defining the Green func

tion Ĝ1 of the perturbationep
1 alone.Ĝ1 can be regarded as

new reference system, thus insertingĜ1 for Ĝr and «p
2 for

«p into Dyson equation~A2! now defines the totalĜ. This is
an alternive way for solving Eq.~A2! in two steps instead o
one. This procedure works not only for splitting into tw
parts but for splitting into arbitraryn.

All involved functions are discretized in real spa
f i5 f (r i) into n components, and the perturbation«p is split
into n parts«p

l , l51,n where the components are chosen
be «pi

l 5«p(r i)d i l , i51,n. In this case the summation in th
Dyson equation vanishes and the followingn equations have
to be solved:

Ĝi j
l 5Ĝi j

l212k2Ĝi l
l21« lVlĜl j

l , ~A5!

starting from l51 to l5n, with Ĝ05Ĝr and Ĝm5Ĝ. Vl
denotes the volume of the site l. Each Eq.~A5! is solved for
j5 l first ~this is only a 333 linear equation system!, insert-
ing Ĝi l

l again leaves us withĜi j
l for abitrary i , j .

This method does not require that the value«p is small,
however, for each step the whole fieldĜi j

l is required. Nu-
merically this is mainly a storage problem, e.g., a mesh
500 points with 16 byte per complex number leaves us w
about 35 MB. So the regionS of the source has to b
bounded and the scheme is most effective for a locali
perturbation.

APPENDIX B: MATERIAL EQUATIONS

In this appendix, the material equations for electrom
netic near-field excitation of a quantum dot are derived an
comparison of the results with far-field excitation is give
The Hamiltonian for a system of charge carriers in exter
potentialsA,U read:

H5
1

2m(
i

S pi1e

c
A~r i ,t ! D 22(

i
eU~r i ,t !1H int ,

~B1!

where the HamiltonianH int contains the internal electromag
netic interaction of the electrons with chargee and their
interaction with the ion background. Because the carriers
well localized in a quantum dot, one can take advantage
Poincare´-gauge transformation for the external potenti
~see Ref. 15!. The Poincare´ gauge requires the new potentia
to have the form:
e

g
e

f
h

d

-
a
.
l

re
a

A852E
0

1

dur3B~ur !, U852E
0

1

dur•E~ur !.

After a multipole expansion the Hamiltonian for a sing
quantum dot atR50 reads

H5H02d•E~0,t !2m•B~0,t !, ~B2!

where d52e( ir i is the electric dipole moment andm5
2 (e/c) ( ir i3pi is the magnetic dipole moment of the do
The HamiltonianH0 contains the internal electromagnet
interaction of the particles as well as their kinetic energ
Note, that the occuringE field is the total electric field which
contains longitudinal and transverse components. To p
ceed, the formalism of the second quantization is applied
the material dipole moments which are expanded in
eigenfunctions of the HamiltonianH0:

H5(
i
Eiai

†ai2(
i j

di jE~ t !ai
†aj2(

i j
mi jB~ t !ai

†aj .

~B3!

Here, ai
† ,ai are the construction and destruction operat

for a electron within the quantum statei which is supposed
to be an eigenstate of the HamiltonianH0.

At this point it is worth while to discuss an importan
difference between far-field and near-field optics. For f
field excitation the multipole expansion is usually truncat
after the electric dipole term, thus neglecting the magne
term, with the following argument. For transverse fields~far
fields! one hasuEu'uBu, and the related interaction energie
in the Hamiltonian can be estimated to be different by
fine structure constanta, modified by semiconductor mate
rial parameters,di j •E/mi j •B'a!1. In the case of an opti-
cal near field, the estimation of the different parts in t
Hamiltonian is more difficult because the electrical and
magnetic fields are not necessarily on the same order of m
nitude. However, a rough estimate is possible if the Bet
Bouwkamp solution7 is used to estimate the fields in a sma
circular aperture. The magnetic fields are enhanced by a
tor (ak)21, uEu/uBu'ak, with a being the aperture radiu
andk5v/c the wave number of the incident light. For rea
istic apertures this may be of the order of 12100. Thus,
electric and magnetic terms in the Hamiltonian~B2! may be
of the same order of magnitude. These estimations are
valid in the case ofak!1, and it is questionable to genera
ize them for tips used in todays experiments. Therefore,
did calculations of the magnetic field. They indicate that t
magnetic terms can indeed be neglected~see section on the
characterization of the tip, Fig. 5!. As indicated by these
numerical calculations, the used apertures are still too la
to make the magnetic field important. Thus only the elec
dipole interaction will be considered in the following.

In the strong quantization limit~small dots! where we
neglect the formation of excitons and biexcitons, the qu
tum numberi contains the conduction or valence band nu
ber m5c,v, as well as the subband numbern of the enve-
lope function in a confinement potential:u i &5jnium i

. In this
case, the dipole moments are given by the following in
grals over the volume of the dot:
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dm1m2

n1n2 52eE
V0

dVum1
* rum2

dn1 ,n2

2eE
dot
dVjn1

* ~R!Rjn2~R!dm1 ,m2
. ~B4!

Here,V0 is one elementary cell. As can be recognized,
electric field induces intersubband transitions within the
lence and the conduction band. In this paper, we focus on
lowest subband in the quantum confined potential only
restrict the calculations to a two band model with a str
s-like conduction band and ap-like valence band, henc
2,

ts

D

e
-
he
d
t

ni5c,v only. To derive the susceptibility which enters in th
wave equation as a source, the equation for the polariza
P has to be derived:

P5 (
m1 ,m2

am1

† am2
dm1 ,m2

. ~B5!

Calculating the Heisenberg equations of motion and tak
the expectation value of the polarization, the standard
pression for the susceptibility Eq.~8! is obtained. The gen-
eralization for many quantum dots at different positions
straightforward.
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