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Two-electron quantum dot in a magnetic field: Analytical results

M. Dineykhan and R. G. Nazmitdinov
Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia

~Received 19 August 1996!

Two interacting electrons in a harmonic oscillator potential under the influence of a perpendicular homoge-
neous magnetic field are considered. Analytic expressions are obtained for the energy spectrum of the two- and
three-dimensional cases. Exact conditions for phase transitions due to the electron-electron interaction in a
quantum dot as a function of the dot size and magnetic field are calculated.@S0163-1829~97!00920-X#
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I. INTRODUCTION

In recent years considerable experimental and theore
interest has been focused on the study of artificially str
tured atoms in semiconductors, such as quantum dots, w
few electrons are confined in all three directions~see, for a
review, Refs. 1–3!. In experimentally realized quantum dot
the extension in thex-y plane is much larger than in thez
direction. Assuming that thez extension could be effectively
considered zero, the electronic properties in these nanos
tures have successfully been described~see Refs. 1 and 3 an
references therein! within the model of the single-electro
motion in the two-dimensional harmonic oscillator potent
in the presence of a magnetic field.4 Based on a numerica
solution of the Coulomb interaction between electrons
complex ground state behavior~singlet→triplet state transi-
tions! as a function of a magnetic field has been predicte5,6

~see also the discussion in Ref. 2!. Remarkably, these groun
state transitions for N52 have been observe
experimentally.7

In the present paper we consider an analytically solva
model of two electrons in a quantum dot. The confinem
potential is approximated by a harmonic oscillator poten
and the problem of the Coulomb interaction is treated
actly. Though this case represents the simplest nontri
problem with regard to the electron number, mainly t
ground states of a two-dimensional quantum dot were a
lyzed either quantitatively6 or analytically with some
approximations.8 The role of third dimension (z) is also in-
vestigated and the results on the analysis of the groun
well as excited states are presented.

II. MODEL: GENERAL REMARKS

Our analysis is based on the oscillator representa
method~ORM! developed in Ref. 9. The ORM arisen fro
the ideas and methods of quantum field theory has been
posed to calculate the binding energy of different syste
with fairly arbitrary potentials described by the Schro¨dinger
equation.10 Here, for completeness we present briefly t
main ideas of the ORM.

For any potential admitting the existence of a syst
bound state there is always a transformation of the varia
that leads to a Gaussian asymptotic form for the wave fu
tion at large distances. However, the asymptotic behavio
the Coulomb wave functions for large distances does
550163-1829/97/55~20!/13707~8!/$10.00
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coincide with this behavior. Therefore, we have to mod
the variables in the original Schro¨dinger equation so that th
modified equation should have solutions with the Gauss
asymptotic behavior. In the Coulomb systems, this modifi
tion is performed by going over to the four-dimension
space, where the wave function of the Coulomb system
comes the oscillator one. In an early paper,11 Schrödinger
has noted the existence of such a transformation which tr
forms the three-dimensional Coulomb system into the os
lator one in the four-dimensional space. The explicit form
this transformation has been found in Ref. 12 and used
solve the classical Kepler problem.

In the next stage, it is necessary to represent the canon
variables ~coordinate and momentum! of the Hamiltonian
through the creation and annihilation operatorsa† and a.
From the Hamiltonian the pure oscillator part with some, y
unknown, frequencyv is extracted, i.e.,H5H01HI
5va†a1 higher order terms. The remaining part, i.e., the
interaction HamiltonianHI , is represented in terms of nor
mal products overa† anda. In addition, it is required that
the interaction Hamiltonian does not contain terms quadr
in the canonical variables. This condition is equivalent to
equation

d«0
dv

50, ~1!

which determinesv, the oscillator frequency, in the ORM
and is called theoscillator representation condition~ORC!.9

Similar ideas are used in the Hartee-Fock-Bogoliubov the
to describe different correlations between nucleons mov
in an average nuclear potential~see, for a review, Ref. 13!.

Since we change our space variablerW and a magnetic
quantum numberm will be absorbed by the dimension pa
rameter of the auxiliary space~Ref. 9 and see below!, the
calculation of the wave functionc(rW) would be equivalent to
the calculation of the ground state function of a modifi
Hamiltonian in another dimension. As it has been mention
above, the wave functions in this auxiliary space should h
the oscillator Gaussian asymptotic behavior at large d
tances. This property is quite natural for our purposes du
physical conditions for the confined electron gas in a qu
tum dot. The effective confining potential~oscillator! pre-
vents the tendency caused by the Coulomb forces to a
electrons to escape and, therefore, it should dominate in
phenomena.
13 707 © 1997 The American Physical Society
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The model is described by the Hamiltonian

H5(
j51

2 H 1

2m!S pW j2
e

c
AW j D 21 m!

2
@v0

2~xj
21yj

2!1vz
2zj

2#J
1

e2

4pee0

1

urW12rW2u
1Hspin, ~2!

whereHspin5g(sW11sW2)BW . Herem
! is the effective electron

mass. Below, we use the units (e5c51). For the perpen-
dicular magnetic field (BW uuz) we choose the gauge describ
by the vectorAW 5@BW 3rW#/25 1

2BW (2y,x,0). Introducing the
relative and center-of-mass coordinates,

rW5rW22rW1 , RW 5
1

2
~rW11rW2!, ~3!

the Hamiltonian, Eq.~3!, can be separated into the center-o
mass and relative-motion terms as~see, also, Refs. 6,8!

H52Hq1
1

2
HQ1Hspin, ~4!

Hq5
1

2
@pW q1AW q#

21
\2

2
~vq

2rq
21vqz

2 qz
2!1

kA\v0

2q
, ~5!

HQ5
1

2
@PW Q1AW Q#21

\2

2
~vQ

2rQ
2 1vQz

2 Qz
2!, ~6!

where vQ52v0, vQz
52vz , vq5

1
2v0, vqz

5 1
2vz , AW Q

5AW (q1)1AW (q2), AW q5
1
2@AW (q2)2AW (q1)#, and AW (q)

5(\/m!)@BW 3qW #. Here we have introduced the variabl
qW 5(Am!/\)rW, QW 5(Am!/\)RW , r5Ax21y2 and defined the
characteristic lengths: the effective radiusa!5aBe(me /m

!)
3@aB54pe0(\

2/mee
2)# and the oscillator length

l 05(\/m!v0)
1/2. These units allow one to define the dime

sionless dot sizek5 l 0 /a
!.6

The separability and the conservation of the angular m
mentum lead to a natural ansatz for the eigenfunction of
Hamiltonian, Eq.~4!,

C5c~qW !f~QW !x~sW1 ,sW2!, ~7!

where the wave functionsc(qW ) andf(QW ) are14

c~aW !5
eimf

A2p
cm~ra ,z! ~8!

and the eigenvalues have the form

E52e r1
1

2
EN,M1Espin. ~9!

Here e r andEN,M are the eigenvalues of the Hamiltonia
Hq andHQ , respectively. According to the Pauli principle,
the spatial part of the total wave function is symmetric~an-
tisymmetric! with respect to the inversionr→2r , x must be
the singlet~triplet! spin state. We now concentrate our ana
sis on the relative motion HamiltonianHr .
-

-
e

-

III. COULOMB PROBLEM

Due to the axial symmetry of the problem, the Schr¨-
dinger equation with the Hamiltonian, Eq.~5!, can be written
in the form

H 2
1

2F d2drq
2 1

1

rq

d

drq
2
m2

rq
2 G2

1

2

d2

dqz
2

1
\2

2
~Vq

2rq
21vqz

2 qz
2!1

kA\v0

2Arq
21qz

2J cm~rq ,qz!

5Umcm~rq ,qz!. ~10!

Here

Vq5vqA11
t2

4
, ~11!

wheret5vc /v0, vc5B/m! is the cyclotron frequency, and

Um5e r2m
\vc

4
, ~12!

wherem is a magnetic quantum number.
According to the ansatz of the ORM for the wave fun

tion, we have to change radial variables so as to obtain
oscillator asymptotic behavior for the wave functions of t
transformed equation and then identify this equation with
radial Schro¨dinger equation in a space with a different d
mension. In addition, our Hamiltonian contains a repuls
centrifugal term, and the wave functioncm(rq ,qz) must de-
crease at small distances. Consequently, the transforma
to the higher dimensional space is realized by9

cm~rq ,qz!5rq
d/221Fm~rq ,qz!. ~13!

The parameterd can be chosen to compensate complet
the repulsion at small distances. The calculation of the w
function Fm(rq ,qz) is equivalent to the calculation of th
ground state wave functions in a spaceRd. The wave func-
tion, Eq. ~13!, is a regular one at short distances. Therefo
our wave function possesses necessary properties at
and large distances, i.e., it is a Gaussian one asr→` and
goes to zero atr→0.

According to the definition of the wave function, Eq.~13!,
we can transform Eq.~10! into the equation

H 2
1

2F d2drq
2 1

d21

rq

d

drq
G2

1

2

d2

dqz
2

1
\2

2
~Vq

2rq
21vqz

2 qz
2!1

kA\v0

2Arq
21qz

2J Fm~rq ,qz!

5UmFm~rq ,qz!, ~14!

which can be identified with the equation in spaceRd with

d5212umu. ~15!

One can see that the magnetic quantum numberm does not
enter into the Schro¨dinger equation, Eq.~14!, in the explicit
form. It is absorbed by the ‘‘dimension’’ parameterd. This
trick allows one effectively to avoid the problem of calcul
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tion of excited states and to perform calculations of
ground state in the auxiliary spaceRd. Therefore, Eq.~14!
contains the oscillator with the coordinaterqPRd and the
other one with the coordinateqzPR1, respectively.

Choosing different~fixed! values ofvz allows us to study
the dependence of the results on the slab thickness. The
dition vz@v0 ensures that we have a genuine tw
dimensional problem implying that no particles occupy
quantum mode in thez direction (nz50). From the analysis
of the far-infrared frequencies in the three-dimensional os
lator potential, it follows15 that the frequency that just forbid
the occupation of a z mode is given by vz

0

>v'(A4N1123)/2, withv' being the average ofvx and
vy .

A. Two-dimensional case

Let us consider the casez50, i.e., the pure two-
dimensional electron gas. For the case under considera
Eq. ~14! can be written as

H2dFm~rq!5UmFm~rq!, ~16!

where

H2d52
1

2F d2drq
2 1

d21

rq

d

drq
G1

\2

2
Vq

2rq
21

kA\v0

2rq
.

~17!

Here the wave functionFm(rq) depends only onrq5ArW q
2.

Therefore, we can identify the operator

d2

drq
2 1

d21

rq

d

drq
[Drq

, ~18!

with the LaplacianDrq
in auxiliary spaceRd if this operator

acts on a function depending on the radius only. The w
function Fm(rq) in Eq. ~17! can be considered as a wav
function of the ground state satisfying the Schro¨dinger equa-
tion

HFm~rq!5«~E!Fm~rq!, ~19!

where

H5
Prq

2

2
1

\2

2
Vq

2rq
21

kA\v0

2rq
2Um . ~20!

Taking into account Eq.~16!, the desired energyE is deter-
mined by the equation

«~E!50. ~21!

Let us express the canonical variablesr and p through the
creation and annihilation operatorsa† anda
e

on-
-

l-

on

e

r j5
1

A2\v
~aj1aj

†!, j51, . . . ,d,

~22!

pj52 iA\v

2
~aj2aj

†!, @ai ,aj
†#5d i j ,

wherev is a new oscillator frequency which is defined b
low. The vacuum stateu0& is defined according to the stan
dard rules,

^0u0&51, aj u0&50. ~23!

Substituting the representation, Eqs.~22!, into the definition
of the Hamiltonian, Eq.~20!, after some transformations

Prq

2

2
1

\2

2
Vq

2rq
25

1

2
~Prq

2 1\2v2rq
2!1

\2

2
~Vq

22v2!rq
2

⇒\v(
j
aj

1aj1\S dv

4
1
d

4

Vq
2

v D
~24!

and

1

rq
5E

2`

` dt

Ap
e2t2rq

2
5E

2`

` dt

Ap
E S dh

Ap
D de2h2e22i t~rqh!

⇒A\vS GS d21

2 D
GS d2D

1E
2`

` dt

Ap
E S dh

Ap
D d

3e2h2~11t2!:e2
22i tA\v~rqh! :D , ~25!

we obtain

H5H01HI1«0 , ~26!

where

H05\v(
j
aj

1aj , ~27!

«05\S d4v1
d

4

Vq
2

v D 2Um1
\

2
Avv0k

GS d21

2 D
GS d2D

, ~28!

HI5
\

2
Avv0khI , ~29!

hI5E
2`

` dt

Ap
E S dh

Ap
D de2h2~11t2!:e2

22i tA\v~rqh! : . ~30!

Here : . . . : means a normal product, and we have introduc
the notatione2

x5ex212x2 1
2x

2. According to the ORM,9
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13 710 55M. DINEYKHAN AND R. G. NAZMITDINOV
the interaction HamiltonianHI does not contain terms qua
dratic in the canonical variables, i.e., proportional to :rq

2 :.
The ORC requirement, Eq.~1!, determines the oscillato

frequencyv which is defined in the following way:

v5x2Vq . ~31!

The quantityx is determined with the following equatio
which is derived from Eqs.~28!, ~1!:

x41
x3

A2
k

S 11
t2

4 D 1/4
G~ 1

2 1umu!
G~21umu!

2150. ~32!

It is clear that at zero Coulomb field (k50) x[x051, while
for kÞ0 Eq. ~32! defines the effective dependence on t
Coulomb interaction of the oscillator frequency (k!1).
Considering the quantityx expanded as a Taylor series in th
variable k and keeping only first order term
x5x01kx11••• , we obtain, according to Eqs.~11!, ~31!,
and ~32!,

v5~11kx1!vqA11
t2

4
5ṽqA11

t2

4
, ~33!

where

ṽq5vq•S 12
1

2A2
l /a!

S 11
1

4
t2D 1/4

G~ 1
2 1umu!

G~21umu! D . ~34!

When the Coloumb forces are absent (l /a!50) it follows
that ṽq5vq andv5Vq .

According to the ORM, the quantum numbern defines
the radial excitation~see Ref. 9!, i.e., the highest oscillato
states,

un&5Cn~aj
†aj

†!nu0&,

Cn5F GS d2D
22nn!GS d21nD G

1/2

. ~35!

Correspondingly, the energy spectrum with radial excitatio
is defined as

e [n]~U ![^nuHun&5a11a2 , ~36!

with

a15S d412nD\v1
d

4

\Vq
2

v
2Um , ~37!

a25
\

2
Avv0kS ^nuhI un&1

GS d21

2 D
GS d2D D .

Taking into account Eqs.~11!, ~32!, ~36! from Eq. ~21!, we
obtain
s

Enm
2d 52e r5«nm

0 1«nm
c ,

«nm
0 5

\v0

2 Fm2 t1~11umu12n!x2S 11
t2

4 D 1/2G , ~38!

«nm
c 5

\v0

2

xk

2A2
S 11

t2

4 D 1/4F3G~ 1
2 1umu!

G~11umu!
12^nuhI un&G ,

where the matrix̂nuhI un& is defined in Appendix A. In per-
turbation theory the effect of Coulomb forces is taken in
account by the second term«nm

c . In our approach the main
term«nm

0 depends on the Coulomb forces as well. In stand
schemes this term corresponds to the noninteracting e
trons moving in the external confining potential.8 Here,
within our model, the interaction modifies the external p
tential and results in the effective mean field potential of
relative motion.

B. Three-dimensional case

Despite thatvz@v0, in real samples the effect of the thir
direction should be taken into account, and the predict
based on the pure two-dimensional case is expected to
modified.

Taking into account the definition Eq.~17!, Eq. ~14! can
be written in the following form:

@~H2d2Um!1hz1hres#Fm~rq ,qz!50, ~39!

where

hz52
1

2

d2

dqz
2 1

\2

2
vqz
2 qz

2 , ~40!

hres5
kA\v0

2 S 1

Arq
21qz

2
2

1

Arq
2D . ~41!

Since the termsH2d andhz give the main contribution to the
total Hamiltonian, the termhres is related to a dimension o
the problem and can be considered as a correction term
us introduce a transformation for the one-dimensional os
lator hz similar to the two-dimensional case@see Eq.~22!#,

qz5
1

A2\vz

~A†1A!, pz5 iA\vz

2
~A†2A!. ~42!

After some transformation of the Hamiltonian, Eq.~39!, we
obtain

H5H01«01
\

2
Avv0khI . ~43!

Here

H05\vqz
A†A1\v(

j
aj
†aj , ~44!
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«0~U !5\S d
4

v1
d

4

Vq
2

v
1

vz

2
D 2Um

1
\

2Ap
Avv0kE

2`

`

dt~11t2!2d/2~11gt2!21/2,

~45!

andhI consists of four terms~see Appendix B!. Herev is
defined by Eq.~31! andg5v/vqz

!1. Finally, applying the
definition of the radial excitations@see Eq.~36!# for the
three-dimensional case, Eq.~43!, from the condition, Eq.
~21!, we obtain the following expression for the lowest e
ergy level withnz50,

Enm05Enm
2d 1

\xk

2A2
F S 11

t2

4 D 1/4Q~g!12
G~ 1

2 1umu!
G~11umu!

Sn~g!G ,
~46!

where the quantitiesQ(g), Sn(g) are defined in Appendix B

IV. DISCUSSION

The solution to the Hamiltonian of the center-of-mass m
tion HQ is well known4 and the energy can be written as

EN,M52\v0F ~2N1uM u11!A11
t2

4

1S 2nz1 1

2
D vz

2v0

1
1

2
MtG , ~47!

whereN50,1, . . . andM50,61, . . . areradial and azi-
muthal quantum numbers, respectively. The spin of the
electrons leads to an additional Zeeman energy,

ES5g!mBSz5
1

4
@12~21!m#g!

m!

me

vc

v0
\v0 . ~48!

m is a magnetic quantum number corresponding to the r
tive motion andg! is an effective Lande factor~q*520.44!.

Summing Eqs.~47!, ~48!, ~38! @or Eq. ~46! in the three-
dimensional case, respectively# we are able to investigat
different ground states as a function of the dot s
k5 l 0 /a

! and relative strength of the magnetic fieldvc /v0.
Since the center-of-mass quantum numbersN,M and the
quantum numberm are conserved by the Coulomb intera
tion, the ground state has the quantum numbersN50,
M50, n50. Comparing the energy with differentm<0 we
can define the ground state energy for a given dot sizek at
different strength of a magnetic fieldvc /v0.

In our calculations, we used the effective ma
m!50.067me of typical quantum dots for GaAs. In Fig. 1~a!
the energy spectra without a contribution of the Coulo
forces are presented. While without the Coulomb forces
ground state is always the state withm50, the Coulomb
interaction@Fig. 1~b!# leads to a sequence of different grou
statesm521,22, . . . which are an alternating sequence
singlet and triplet states.

The main mechanism, which defines the optimum qu
tum numberm of the ground state, is the interplay betwe
-

-

o

a-

e

s

b
e

-

the dot size and the strength of the magnetic field. This qu
tion has been nicely discussed for the two-dimensional qu
tum dots in Ref. 6~see, also, Ref. 2!. A similar behavior is
observed for the radial excitations withn51,2, . . . .

If the third extension (z) is taken into account, the groun
phase transitions are shifted to a higher magnetic field~see
Fig. 2!. Since the extension of the slab is inversely prop
tional to the confining frequency (vz;1/dz), the thicker the
slab the larger value of the magnetic field that is needed
observe the ground state transitionm→m8. This fact has to
be taken into account in experiments.

The singlet-triplet ground phase transition occurs wh
the following condition is fulfilledE0,m5E0,m21(m<0). For
a negative Lande factor the spin-splitting energy in a m
netic field will lower the energy of the spinSz511 compo-
nent of the triplet states. In particular, the relatio
E0,m5E0,m215E0,m22 (m odd! defines the point when the
singlet phase ceases to exist.6 Beyond this point we can ob
serve phase transitions between triplet states defined by

FIG. 1. The energy spectrum of a two-dimensional quantum
in units of \v0 as a function of the magnetic field streng
vc /v0. The family of states with the quantum numbersN50,
M50, n50, andm<0 is shown~a! without and~b! including the
Coulomb interaction between the two electrons. The arrow in
cates the value of the magnetic field strengthvc /v051.91, where
the second ‘‘crossing’’ occurs between the lowest statesm521
andm522.
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13 712 55M. DINEYKHAN AND R. G. NAZMITDINOV
conditionE0,m5E0,m22 (m odd!. Therefore, at strong mag
netic field vc@v0, i.e., in the limit t→` and x→1, for
singlet-triplet phase transitionsm→m21, we obtain

l 0
a! 5

8

3

G~21umu!

G~ 1
2 1umu!

F S v0

vc
D 3/211

2S vc

v0
D 1/2~21!mg!

m!

me
G f st~g!,

~49!

f st~g!511
g

6

512umu
~322umu!~122umu!

1O~g2!, ~50!

and for triplet-triplet phase transitionsm→m22 (m odd!,

l 0
a! 5

8

3S v0

vc
D 3/2G~31umu!

G~ 1
2 1umu!

4

~514umu!
f tt~g!, ~51!

f tt~g!512
g

2

716umu
~514umu!~322umu!~122umu!

1O~g2!.

~52!

In these expressions the pure two-dimensional case is
ized in the limitg→0.

The higher the excitations in the two-electron quant
dots the lesser the influence of the Coulomb forces on
‘‘crossing’’ of levels. For example, the value of the param
eter k5 l 0 /a

! for singlet-triplet phase transitions decreas
with increasing radial quantum numbern. In particular, for
the two-dimensional system we have obtained the follow
relation between parametersk5 l 0 /a

! for a singlet-triplet
transition at differentn,

~ l 0 /a
!!n51

~ l 0 /a
!!n50

5
21umu
71umu

. ~53!

While the interplay between the magnetic field and the C
lomb forces determines the features of a phase trans
~singlet→ triplet! for the ground state (n50),6 mainly the
magnetic field leads to the phase transitions for the hi
lying statesn.0.

FIG. 2. Similar to Fig. 1 for the three-dimensional quantum d
(1/g5vz /v53) including the Coulomb interaction between th
two electrons. Here, the second ‘‘crossing’’ occurs
vc /v53.64. The decreasing of the ratio 1/g leads to the ‘‘cross-
ing’’ of levels at higher magnetic field strength.
al-

e

s

g

-
n

-

The model allows the calculation of the magnetizati
M52dE/dB. Since at low energy the magnetization
closely related to the slope of the ground energy, atT50 K,
we obtain forn50,

m52
dE0m

dB
5

\

2F m1
x2~ umu11!

2

t

A11
1

4
t2

1
xk

2A2

t

S 11
1

4
t2D 3/4

G~ umu1 1
2 !

G~ umu11!
f m~g!

1
g!

2me

@12~21!m#G , ~54!

f m~g!511
g

6

1

122umu
1O~g2!. ~55!

As it was mentioned in Refs. 5 and 6, the phase ground s
transitions would be reflected in sharp discontinuities in
magnetization. The above exact expression can be usefu
the analysis of the experimental features related to the ph
transitions. Also, it allows one to control the approximati
made in the calculations in Refs. 6 and 16.

V. SUMMARY

Within the proposed model the analytical expressions
the energy levels and the magnetization of the two-elect
quantum dots are obtained. The Coulomb interaction
treated exactly and from the analysis of the energy spect
it follows that the interplay between the Coulomb forces a
the magnetic field is an important ingredient for the pred
tion of the ground phase transitions. The Coulomb forc
lead to the modification of the external potential and g
rise to the effective confining potential of the relative m
tion. Their contribution in the properties of single-electro
states decreases with the increasing of the radial quan
numbern. Finally, we would like to mention that the third
extension (z) modifies the value of a magnetic field need
to observe the phase transition: the thicker the slab the la
the value of a magnetic field. We hope that the results p
sented here will be useful for the analysis of the elect
properties in two-electron quantum dots and will allow us
make a conclusion on a deviation of the real confining p
tential from the harmonic oscillator one.

APPENDIX A: TWO-DIMENSIONAL CASE:
MATRIX ŠnzhI zn‹

Here we describe some details of the calculations of
quantity

t

t
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^nuhI un&5E
2`

` dt

Ap
E S dh

Ap
D de2h2~11t2!

3^nu:e2
22i tA\v~rqh! :un&. ~A1!

Taking into account the following equations,

eik
WaWeip

WaW 1
5eip

WaW 1
eik

WaWe2~kWpW !,

eik
WaWaW 1e2 ikWaW5aW 11 ikW , ~A2!

eaaW 1aWaWe2aaW 1aW5aWe2a,

the fact that

~a†a†!n5~21!n
dn

dan e
2a~a†a†!U

a50

5~21!n
dn

danE S dh

Ap
D de2h222iAa~a†h!U

a50
~A3!

and Eq.~35!, after some transformation, we obtain

^nu:e2
2 iB~a†h!2 iB~ah! :un&

5Cn
2 ]2n

]an]bn (
j52

2n
~B2h2! j

j !

~a1b24ab! j

~124ab! j1d/2 U
a,b50

,

whereB5tA2. Using these results, we have for Eq.~A1!

^nuhI un&5
3

4

G~d/221/2!

G~d/2!
Sn , ~A4!

where

Sn5
4G~11n!

3Ap
(
k52

2n
~21!kG~k11/2!
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Nk~n,d!,

and

Nk~n,d!5 (
p50

n
22p2kG~k1n2p1d/2!

~n2p!! ~2p2k!! @~k2p!! #2
.

In a particular case,n51, andn52 for Sn , we have

S15
2

d
, S25

4

d~d12!Fd1
19

8 G .
APPENDIX B: THREE-DIMENSIONAL CASE:

DEFINITION OF hI , Q„g…, AND Sn„g…

Using the same technique as for the two-dimensional c
and omitting tedious calculations, we present the final res
se
lt:

hI5h11h21h31h4 , ~B1!
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