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Two-electron quantum dot in a magnetic field: Analytical results

M. Dineykhan and R. G. Nazmitdinov
Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
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Two interacting electrons in a harmonic oscillator potential under the influence of a perpendicular homoge-
neous magnetic field are considered. Analytic expressions are obtained for the energy spectrum of the two- and
three-dimensional cases. Exact conditions for phase transitions due to the electron-electron interaction in a
guantum dot as a function of the dot size and magnetic field are calcUl&@H63-18287)00920-X]

[. INTRODUCTION coincide with this behavior. Therefore, we have to modify
the variables in the original Schiimger equation so that the
In recent years considerable experimental and theoreticahodified equation should have solutions with the Gaussian
interest has been focused on the study of artificially strucasymptotic behavior. In the Coulomb systems, this modifica-
tured atoms in semiconductors, such as quantum dots, whetion is performed by going over to the four-dimensional
few electrons are confined in all three directiqsse, for a space, where the wave function of the Coulomb system be-
review, Refs. 1-3 In experimentally realized quantum dots, comes the oscillator one. In an early pape6chralinger
the extension in the-y plane is much larger than in the  has noted the existence of such a transformation which trans-
direction. Assuming that the extension could be effectively forms the three-dimensional Coulomb system into the oscil-
considered zero, the electronic properties in these nanostrutator one in the four-dimensional space. The explicit form of
tures have successfully been descritezb Refs. 1 and 3 and this transformation has been found in Ref. 12 and used to
references therejinwithin the model of the single-electron solve the classical Kepler problem.
motion in the two-dimensional harmonic oscillator potential In the next stage, it is necessary to represent the canonical
in the presence of a magnetic fiéldased on a numerical variables(coordinate and momentynof the Hamiltonian
solution of the Coulomb interaction between electrons, ghrough the creation and annihilation operatars and a.
complex ground state behavi@singlet—triplet state transi- From the Hamiltonian the pure oscillator part with some, yet
tions) as a function of a magnetic field has been preditfed unknown, frequencyw is extracted, i.e.,H=Hy+H,
(see also the discussion in Ref. Remarkably, these ground =wa'a+ higher order termsThe remaining part, i.e., the
state transitions for N=2 have been observed interaction HamiltoniarH,, is represented in terms of nor-
experimentally’. mal products oven' anda. In addition, it is required that
In the present paper we consider an analytically solvablé¢he interaction Hamiltonian does not contain terms quadratic
model of two electrons in a quantum dot. The confinemenin the canonical variables. This condition is equivalent to the
potential is approximated by a harmonic oscillator potentialequation
and the problem of the Coulomb interaction is treated ex-
actly. Though this case represents the simplest nontrivial %_
problem with regard to the electron number, mainly the do

ground states of a two-dimensional quantum dot were ana- , . .
lyzed either quantitativefy or analytically with some which determinesw, the oscillator frequency, in the ORM

approximationg. The role of third dimensionz) is also in- and is called thescillator representation conditiofORC).°

vestigated and the results on the analysis of the ground aamilar ideas are used in the Hartee-Fock-Bogoliubov theory
well as excited states are presented. to describe different correlations between nucleons moving

in an average nuclear potenti@ee, for a review, Ref. 13

_ Since we change our space variableand a magnetic
Il. MODEL: GENERAL REMARKS quantum numbem will be absorbed by the dimension pa-

Our analysis is based on the oscillator representatiof@meter of the auxiliary spac&ef. 9 and see belowthe
method(ORM) developed in Ref. 9. The ORM arisen from calculation of the wave functiori(r) would be equivalent to
the ideas and methods of quantum field theory has been prthe calculation of the ground state function of a modified
posed to calculate the binding energy of different systemglamiltonian in another dimension. As it has been mentioned
with fairly arbitrary potentials described by the Sctlimger  above, the wave functions in this auxiliary space should have
equatior® Here, for completeness we present briefly thethe oscillator Gaussian asymptotic behavior at large dis-
main ideas of the ORM. tances. This property is quite natural for our purposes due to

For any potential admitting the existence of a systenphysical conditions for the confined electron gas in a quan-
bound state there is always a transformation of the variablesim dot. The effective confining potentiébscillaton pre-
that leads to a Gaussian asymptotic form for the wave funcvents the tendency caused by the Coulomb forces to allow
tion at large distances. However, the asymptotic behavior oélectrons to escape and, therefore, it should dominate in the
the Coulomb wave functions for large distances does nophenomena.
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The model is described by the Hamiltonian lll. COULOMB PROBLEM
2 1 e \2 Due to the axial symmetry of the problem, the Sehro
H=, [_*( 51' - _,&J. + —[wi(x3+y?) + wfz.Z]] dinger equation with the Hamiltonian, Eg), can be written
=1 (2m c 2 S . in the form
e 1 fd 1d m] 1 d?
dmee 77 T Hspin @ __[7"'—_7}__7
TEEO [ry—ry) 2[dpy  pqdpq  py| 2dq;
whereHgy=9(s;+5,)B. Herem* is the effective electron 42 K\Fiaog
mass. Below, we use the unitec=1). For the perpen- +?(Qq2p§+ wg )+ PN Ym(pq.02)
dicular magnetic field§||z) we choose the gauge described etz
by the vectorA=[Bxr]/2= %I§(—y,x,0). Introducing the =Un¥m(pq.dz)- (10
relative and center-of-mass coordinates, Here
R - 1. . i2
r=ry=ri, R=3(ritry), () Qq=wq\/1+ 7, (12)

the Hamiltonian, Eq(3), can be separated into the center-of-\yheret = o, /wy, w.=B/m* is the cyclotron frequency, and
mass and relative-motion terms @®e, also, Refs. 6,8

hog
1 Umzer_m 4’ (12)
H=2H,+ EHQ+HSpin, (4)
wherem is a magnetic quantum number.
1 52 k\/m According to the ansatz of the ORM for the wave func-
H :_[5 +A 12+ — (w0 2p2+ 02 q2)+—0 (5)  tion, we have to change radial variables so as to obtain an
g~ 2LPgT Aq 5 (@q Pq™ @4z 29 ' ; ) . )
q oscillator asymptotic behavior for the wave functions of the

transformed equation and then identify this equation with the
1. h radial Schrdin ion i ith a diff di-
_ 2 M0 2 2 ger equation in a space with a different di
Ho=5[PotAgl™+ 5 (wg"pat wg Q7). ®  mension. In addition, our Hamiltonian contains a repulsive
_ centrifugal term, and the wave functiah,(p,q,) must de-
where wg=2w,, szzzwz, wq=%wo, 0q,= 30, Aq crease at small distances. Consequently, the transformation

='&(q1)+5~(q2), qu: %[A(%)—A(ql)], and A(q) to the higher dimensional space is realized by

2

=(h/m*)[|§><ﬁ]. Here we have introduced the variables Ul Pg ,qz):pd’z’ltbm(pq q,). (13
G= (VM IH)F, O= (VM /AR, p=x2+y2 and defined the !
characteristic lengths: the effective radais=age(m./m*)
X[ag=4mes(h?/me?)] and the oscillator length
lo=(A/m*we) Y. These units allow one to define the dimen-
sionless dot siz&=1,/a*.

The separability and the conservation of the angular m
mentum lead to a natural ansatz for the eigenfunction of th
Hamiltonian, Eq.(4),

The parameted can be chosen to compensate completely
the repulsion at small distances. The calculation of the wave
function @ ,(pq,d,) is equivalent to the calculation of the
ground state wave functions in a sp&R& The wave func-
0'gion, Eqg.(13), is a regular one at short distances. Therefore,
gur wave function possesses necessary properties at short
and large distances, i.e., it is a Gaussian ong-asc and

goes to zero ap—0.

— A 2.2 2 According to the definition of the wave function, H33),
V=9 (Qx(51,52), (" \we can transform Eq10) into the equation
where the wave functiong(q) and ¢(Q) are
$(d) and $(Q) (¢ 4-1d) 10
. eme 2 dpé pq dpg| 2 dqg
(@)= ——=¢m(pa,2) 8)
N2 2 o
i 2.2, 2.2 KVhiwg
: +5 (Qq°pgt @y 07) + 75— Pm(pq.02)
and the eigenvalues have the form 2 A ran T o 624 g2 4
q z
1 =U,o 102), 14
E=2¢+ 5 Enm+ Expin ) mPr(Pq.d2) 19
which can be identified with the equation in sp&%®with
Here e, andEy  are the eigenvalues of the Hamiltonians d=2+2|m|. (15)

Hq andHq, respectively. According to the Pauli principle, if

the spatial part of the total wave function is symmefao-  One can see that the magnetic quantum numfbeloes not
tisymmetrig with respect to the inversion— —r, y must be  enter into the Schidinger equation, Eq(14), in the explicit
the singlef(triplet) spin state. We now concentrate our analy-form. It is absorbed by the “dimension” parameter This
sis on the relative motion Hamiltonias, . trick allows one effectively to avoid the problem of calcula-
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tion of excited states and to perform calculations of the 1
groun_d state in t_he auxil?ary spa¥. 'I_'herefore, Eq(14) Pj —(aj+a;r), i=1,...4d,
contains the oscillator with the coordinagpg e RY and the V2fio
other one with the coordinatg, € R, respectively. (22
Choosing differentfixed) values ofw, allows us to study
the dependence of the results on the slab thickness. The con- . [ho + T
o ; pi=—i\/—(a—a), [&a,a]=7
dition w,>wy ensures that we have a genuine two- ] o NI i 19 1o

dimensional problem implying that no particles occupy a

quantum mode in the direction (nZ: O) From the ana'ysis wherew is a new oscillator frequency which is defined be-
of the far-infrared frequencies in the three-dimensional oscillow. The vacuum statg0) is defined according to the stan-
lator potential, it follows® that the frequency that just forl?)ids dard rules,
the occupation of az mode is given by o, _ 10N —
=w, (VAN+1-3)/2, with v, being the average ab, and (0l0)=1. &[0)=0. 3
wy . Substituting the representation, E¢®2), into the definition

of the Hamiltonian, Eq(20), after some transformations

A. Two-dimensional case Pi 2 1 52
a 2 2__ 2 2.2 2 2_ 2y 2
Let us consider the case=0, i.e., the pure two- T“L?Qq pq_E(quJrh w Pq”E(Qq ®%)pq
dimensional electron gas. For the case under consideration 402
Eqg. (14) can be written as + do q
zhw; aj a;+1 Z +4 ”
Haq®m(pg) =Un®m(pg), (16) (24)
and
where d
i:fw Ee—fzpéz fm E (d_ﬂ> e—nze—2if(pqu)
o 1[ @ d-1.d) 42, , kiheo Pa Joom o)
2d 2 dpﬁ Pq dpq 2 Pa qu - F(d_l
an . 2] e (dn)d
= | ——— — —
= d —w
Here the wave functiod ,(p,) depends only om,= \/p—g. F(E) V7 Vm
Therefore, we can identify the operator
d> d-1 d 214 ). —2irEa(pgn)
Ty (18 X @ 1A+ 1) g SITACP) . ) (25
Eg pq dpq Pa 2
with the LapIacianAqu in auxiliary spaceR? if this operator we obtain

acts on a function depending on the radius only. The wave

function ®,(py) in Eg. (17) can be considered as a wave H=Ho+H+eq, (26)
function of the ground state satisfying the Satinger equa- h
tion where
Ho="% aiaj, 2
H® n(pg) = £(E)Prr(pi), (19 o=ho 2 a2 @0

where F( d— 1)
d doi h 2
p2 ) go=nh Zw'f‘zj)—um'f' E\/wwok—d, (28
_ e 1T, 5 KVA@o r\i=
H_7+79q pq+ qu —Up. (20 2
I : : h
Taking into account Eq(16), the desired energl is deter- H, =§\/ww0kh| , (29
mined by the equation
£(E)=0 @p  h= J g L P T
. 700\/; \/; 2
Let us express the canonical variabjesind p through the Here :...: means a normal product, and we have introduced

creation and annihilation operataa$ anda the notationes=e*—1—x— 2x%. According to the ORM,
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the interaction Hamiltoniafd, does not contain terms qua- E2d=2¢,=20 +&C
dratic in the canonical variables, i.e., proportional,ﬁé::.

The ORC requirement, Eql), determines the oscillator hodm 2\ 1/2
frequencyw which is defined in the following way: ng:To §t+(1+ |m|+2n)x?| 1+ 7 } (39
w=Xx20). (31
The quantityx is determined with the following equation ¢ _hwo XK 1+f v BT(% +[ml) onih
which is derived from Eqs(28), (1): e~ 55\ T4 |PTaEm) (nlhy|n) |,
x3 k (3 +|m)) , , N _ _
iy 2 +(m| 1=0. 32 where the matrixXn|h,|n) is defined in Appendix A. In per

turbation theory the effect of Coulomb forces is taken into
account by the second teraf,,,. In our approach the main
terme?,, depends on the Coulomb forces as well. In standard
Itis clear that at zero Coulomb fieltk€ 0) x=xo=1, while  schemes this term corresponds to the noninteracting elec-
for k#0 Eq. (32) defines the effective dependence on thetrons moving in the external confining potenfiaHere,
Coulomb interaction of the oscillator frequenck<(1).  within our model, the interaction modifies the external po-

Considering the quantity expanded as a Taylor series in the tential and results in the effective mean field potential of the
variable k and keeping only first order terms relative motion.

X=Xo+kx;+--- , we obtain, according to Eq$11), (31),
and (32),

\_5( t2)1’4r(2+|m|) B
1+Z

B. Three-dimensional case

t2 t2 Despite thatw,> w,, in real samples the effect of the third
o=(1+kx)wqa\/1+ Z:Z)q 1+ n (33  direction should be taken into account, and the prediction

based on the pure two-dimensional case is expected to be

where modified.
Taking into account the definition E@l7), Eq. (14) can
1 l/a* I'(:+|m|) be written in the following form:
wg=wgq| 1- 1 \Y*T(@2+|m) (34)
2\/5(14- th | | [(sz_Um)+hz+hres]q)m(Pqyqz)zox (39
When the Coloumb forces are absehtat =0) it follows  Where
thatwy=wq andw=10.
X ) 2 2
According to the ORM, the quantum numberdefines ho— Ed_Jr h_wz 2 (40)
the radial excitatior(see Ref. 9 i.e., the highest oscillator z 2dg; 2 a9z
states,
In)=Cy(afaf)"0), LA . ) "
res— - .
d 112 2 \VoZra? V2
T =
C .= 2 (35) Since the termsl,4 andh, give the main contribution to the
n on d total Hamiltonian, the ternm, is related to a dimension of
27!l §+ n the problem and can be considered as a correction term. Let

_ _ _ ~usintroduce a transformation for the one-dimensional oscil-
Correspondingly, the energy spectrum with radial excitationsator h, similar to the two-dimensional cagsee Eq(22)],

is defined as
[n] = — 1 how
T(=(nlHIn)=ay +az, (39 G =—=(A+A), P~ \[(AT-A). (42

with V2t o,

d d# é After some transformation of the Hamiltonian, E§9), we
ar=|—+2n|ho+ —Upn, (37 obtain
4 4 w
_ h
1" d 1 H=Ho+80+_\(1)(1)0kh|. (43)
% 2 2
(12:_\/(1)(1)()'( <n|h||n>+—
2 T 9 Here
2
Taking into account Eqg11), (32), (36) from Eq. (21), we HozﬁquATA+ﬁw2 aJTa,—, (44)
J

obtain
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d dOf o, 10.0
U=h|l-w+-—+—|—-U
el =h| goty o " Un ; ]
ﬁ 8.0 é l@/a :®w @
+—\/wwokJ' dr(1+ 7)1+ yr2) 22, E
2w o 6.0 1
(45) ]
andh, consists of four termgsee Appendix B Here w is 4.0 _
defined by Eq(31) and y= wl/wq <1. Finally, applying the 3
definition of the radial excitationgsee Eq.(36)] for the ]
three-dimensional case, E¢3), from the condition, Eq. 2.0 E
(21), we obtain the following expression for the lowest en- ] (a)
ergy level withn,=0, 0.0 e e e e e
00 20 4.0 8.0 8.0 100
Enmo= B2+ K (14 i +2F(% + L
(46) ;
where the quantitie®(y), S,(y) are defined in Appendix B. 11.0 - /o =3.0
IV. DISCUSSION 9.0 _
The solution to the Hamiltonian of the center-of-mass mo- ]
tion Hg is well knowrf and the energy can be written as 0 E
t2
Enm=2fwg| (2N+|M|+1) 1+Z 5.0 4
. . L (b)
w ]
+{ 2n,+ = L+ Mt , (47) 3.0 Frrerrer T T AR AR
2)2w9 2 0.0 20 4.0 8.0 8.0 10.0
whereN=0,1, ... andM=0,%£1,... areradial and azi-

muthal quantum numbers, respectively. The spin of the two FIG. 1. The energy spectrum of a two-dimensional quantum dot

electrons leads to an additional Zeeman energy, in units of Zwg as a function. of the magnetic field strength
w¢lwg. The family of states with the quantum numbeis=0,

1 * W, M =0, n=0, andm=<0 is shown(a) without and(b) including the
Es= g*,uBszzz[l—(—l)m]g*F—hwo. (48)  Coulomb interaction between the two electrons. The arrow indi-
e @o cates the value of the magnetic field streng{fY wg=1.91, where
m is a magnetic quantum number corresponding to the reldhe second “crossing” occurs between the lowest states—1
tive motion andg* is an effective Lande factdg* =—0.44.  andm=-2.
Summing Eqs(47), (48), (38) [or Eq. (46) in the three-
dimensional case, respectivélwe are able to investigate the dot size and the strength of the magnetic field. This ques-
different ground states as a function of the dot sizetion has been nicely discussed for the two-dimensional quan-
k=1y/a* and relative strength of the magnetic field/wy.  tum dots in Ref. 6see, also, Ref.)2 A similar behavior is
Since the center-of-mass quantum numbird1 and the observed for the radial excitations with=1,2, ... .
guantum numbem are conserved by the Coulomb interac-  If the third extensionZ) is taken into account, the ground
tion, the ground state has the quantum numbidrsO, phase transitions are shifted to a higher magnetic fiedd
M =0, n=0. Comparing the energy with differem<0 we Fig. 2). Since the extension of the slab is inversely propor-
can define the ground state energy for a given dot kia¢  tional to the confining frequencyw(,~1/d,), the thicker the
different strength of a magnetic field,/ wg. slab the larger value of the magnetic field that is needed to
In our calculations, we used the effective massobserve the ground state transition—m’. This fact has to
m*=0.067n, of typical quantum dots for GaAs. In Fig(@d  be taken into account in experiments.
the energy spectra without a contribution of the Coulomb The singlet-triplet ground phase transition occurs when
forces are presented. While without the Coulomb forces théhe following condition is fulfilledEq .= Eg -1 (m=0). For
ground state is always the state witlh=0, the Coulomb a negative Lande factor the spin-splitting energy in a mag-
interaction[Fig. 1(b)] leads to a sequence of different ground netic field will lower the energy of the sp®,= +1 compo-
statesm=—1,—2, ... which are an alternating sequence of nent of the triplet states. In particular, the relation
singlet and triplet states. Eom=Eom-1=Eom-2 (m odd defines the point when the
The main mechanism, which defines the optimum quansinglet phase ceases to eXieyond this point we can ob-
tum numbemn of the ground state, is the interplay betweenserve phase transitions between triplet states defined by the
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FIG. 2. Similar to Fig. 1 for the three-dimensional quantum dot
(1/y=w,/w=3) including the Coulomb interaction between the
two electrons. Here, the second ‘“crossing” occurs at
w./w=3.64. The decreasing of the ratioylleads to the “cross-
ing” of levels at higher magnetic field strength.

conditionEq ,=Egn-2 (M odd). Therefore, at strong mag-
netic field w.>w,, i.e., in the limitt—«~ and x—1, for
singlet-triplet phase transitioma—m—1, we obtain

|

LY 5+2|m|
=1+ 5 G=2m)a—2im)

3/2 1

2

*

(O] )1/2(_1)mg*m_
me

We

We

wo

8F(2+|m|)
3T(3 +|m|)

lo

a* fSt( 7) ’

(49

+0(99),

(50

and for triplet-triplet phase transitioms—m—2 (m odd),

'_o_E(@)s/zmﬂmn + 3
a* 3lwe/ (1 +|m[) (5+4m]) w(y), (5D
.7 7+6|m| ,
fn(}’)—l—i BT alm)@E=2/m)a=2/m) +0(y%).

(52
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The model allows the calculation of the magnetization
M=—-dE/dB. Since at low energy the magnetization is
closely related to the slope of the ground energyi, a0 K,
we obtain forn=0,

dEom % x2(|m[+1) t
=" a2 2 1
1+ —t2
4
xk t I(|m|+ 3)
+ fu(y)
1 \¥r(m+1) *
2, LT
g*
+ [1-(—D)" |, (54
2mg
fu()=1+ % =5 +0(?) (55
wY 61-2/m )

As it was mentioned in Refs. 5 and 6, the phase ground state
transitions would be reflected in sharp discontinuities in the
magnetization. The above exact expression can be useful for
the analysis of the experimental features related to the phase
transitions. Also, it allows one to control the approximation
made in the calculations in Refs. 6 and 16.

V. SUMMARY

Within the proposed model the analytical expressions for
the energy levels and the magnetization of the two-electron
quantum dots are obtained. The Coulomb interaction is
treated exactly and from the analysis of the energy spectrum
it follows that the interplay between the Coulomb forces and
the magnetic field is an important ingredient for the predic-
tion of the ground phase transitions. The Coulomb forces

In these expressions the pure two-dimensional case is redkad to the modification of the external potential and give

ized in the limity—0.

rise to the effective confining potential of the relative mo-

The higher the excitations in the two-electron quantumtion. Their contribution in the properties of single-electron

dots the lesser the influence of the Coulomb forces on th
“crossing” of levels. For example, the value of the param-

states decreases with the increasing of the radial quantum
numbern. Finally, we would like to mention that the third

eterk=1qy/a* for singlet-triplet phase transitions decreasesextension ¢) modifies the value of a magnetic field needed

with increasing radial quantum number In particular, for

to observe the phase transition: the thicker the slab the larger

the two-dimensional system we have obtained the followinghe value of a magnetic field. We hope that the results pre-

relation between parameteks=1,/a* for a singlet-triplet
transition at different,

(lo/a*)n-y 2+ |m]
(lo/a g 7+[m’

(53

While the interplay between the magnetic field and the Cou

lomb forces determines the features of a phase transition

(singlet— triplet) for the ground staten=0) ° mainly the

sented here will be useful for the analysis of the electron
properties in two-electron quantum dots and will allow us to
make a conclusion on a deviation of the real confining po-
tential from the harmonic oscillator one.

APPENDIX A: TWO-DIMENSIONAL CASE:
MATRIX (n|h,|n)

magnetic field leads to the phase transitions for the high- Here we describe some details of the calculations of the

lying statesn>0.

quantity
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d7] 2
(n[hy|n)= 7@J- (J— ACEE
x(n|:e, 7 Feean) |y (A1)

Taking into account the following equations,
eiEéei pa’ _ eiﬁé* eiﬁée—&ﬁ),
glkagteika= g+ 1k, (A2)

era’agg-aata_ ae

the fact that

gn
(aTaT)n: ( _ 1)nme—a(aTaT)

a=0

n d
a T

and Eq.(35), after some transformation, we obtain

a=0
(A3)

<n|:e£iB(aT7/)*iB(a7)):|n>

P & (B2 (at f-4ap)

— 2
_C”aa”aﬂ"j; i (1-4ap)™9?

a,B=0
whereB= 72. Using these results, we have for E41)

3 F(d/2 1/2)

where
_AT(1+n ) 2n 1)“F(k+1/2)
3m Z Fkrdz) M),
and

n

) 22p—kr(k+n—p+d/2)
N D= 2 T p— I (kT

In a particular casen=1, andn=2 for S,,, we have

2 4

570 g2

G

APPENDIX B: THREE-DIMENSIONAL CASE:
DEFINITION OF h,, Q(%), AND S,(y)

Using the same technique as for the two-dimensional case
and omitting tedious calculations, we present the final result:

13713

h|:h1+h2+h3+h4, (Bl)

dr ¢ [dn\®

e \ T “

r 2
X ! 1+ VThqu_ 2.
(l+y7'2)'qz. '

V1+ 'yrz_

(B2)

Jsc dr ( dt )e_tz(sz):eZzif hquy(qzt):

)\ 7

1 ?hw 5
X(1+7-2)d’2[1+(1+72):pq. (B3)
h 42 - dr - i q05
3= (l)qu 7®ﬁ(1+772)3/2(1+72)d/2+1'pq..qz.,
(B4)
d
f dtdr ( )e—72(1+72)—72(1+y72):
,zlf\/m(qzt) —2|T\hw(pq7l) (B5)
O [
Qv=f - -1
o\ (1Y 17 52
y T(Im[+ 2) O+ B6
= 4
2 T(m+n) O o
;
| d
2 « dr dn 2 2
son-———| —| | 2| e
e N
2
—2irVhw(pgn) !
x(nl:e, i n)| —=——=-1
V1+y7?
y T(n+D)T(m+1)2" |
- > (-1
27 T@+[m[+n) =
I'(3+1) . 1+2l )
X—N|(n,d)———+0 .
T(1+1+|m|) {n )1—2|m| e
(B7)
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