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Diagrammatic method for investigating universal behavior of impurity systems

Kurt Fischer
Max-Planck-Institut fu¨r Physik komplexer Systeme, Bayreuther Strasse 40, 01187 Dresden, Germany

~Received 18 November 1996; revised manuscript received 31 January 1997!

The universal behavior of magnetic impurities in a metal is proved with the help of skeleton diagrams. The
energy scales are derived from the structure of the skeleton diagrams. A minimal set of skeleton diagrams is
sorted out that scales exactly. For example, the noncrossing approximation~NCA! for the Anderson impurity
model can describe the crossover phenomenon. The universal Wilson-number is calculated within the NCA.
The method allows for an assessment of various approximations for impurity Hamiltonians.
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I. INTRODUCTION

Magnetic impurities in metals show a universal behav
at low energies.1 The Hamiltonian of such systems consis
of at least one conduction band of widthD to which the
impurity couples.2 At temperatureskBT!D, the scaled ob-
servable is independent of details of the host system suc
its band structure.

A long standing question in the physics of such syste
is: How can the observed universal behavior directly be
tablished from the original model Hamiltonian such as
Anderson-impurity model,2 together with a reasonable acc
rate description of observables? Hitherto the original Ham
tonian has been replaced by another one which is more
cessible.

~a! Within the Bethe ansatz the impurity part of the sy
tem’s thermodynamics can be derived. However, the orig
model has to be replaced by one with linear dispersion.
spectrum of eigenvalues is cut off atD8, which is in general
not identical with the bandwidthD of the metallic host in the
original model.3,4 A relation betweenD andD8 has so far
been established only for the Anderson impurity model.5

~b! Within the numerical renormalization group,6 the im-
purity is coupled to a half-infinite chain with hopping matr
elements vanishing asL2n,n51,2, . . . ,L.1. In the limit
of L51 one would recover the original model. However, t
numerical results have to be extrapolated to that limit
cause the length of the chain to be diagonalized numeric
would eventually become too large.2,6

Hence both methods do not prove that the observable
the original model behave universally. On the other ha
there are the diagrammatic approaches to the impu
problem.7 They allow us to construct approximations for a
observables of the original model. The Dyson equation

R21~z!5R0
21~z!2S~z!

is invariant under a certain rescaling of the propagatorR
and R0, self-energiesS, and coupling constants. With th
help of the diagrammatic renormalization group, perturbat
results for the propagators, self-energies, and vertex part
then fitted to the Dyson equation. In that way, scaling la
for the propagators result, from which the universal behav
in the perturbative high-energy regime of the model8 follows.
550163-1829/97/55~20!/13575~13!/$10.00
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This method amounts to summing a certain subclass of
grams, with naked propagators. However, the procedu
breaks down when perturbation theory fails.

For the nonperturbative regiondressedpropagators are
necessary. This requires the use of skeleton diagrams, o
wise the definition of a self-energy itself would become a
biguous. However, the scaling of the dressed propagato
unknown, precisely because beforehand the Dyson equa
would have to be solved.

In this paper, this difficulty is overcome by utilizing th
variational principle of Luttinger and Ward,9 Kuramoto,10

and Baym,11 by which any observable can be expressed
terms of skeleton diagrams. This is exemplified at t
Anderson-impurity Hamiltonian.

It turns out that the skeleton diagrams of the second or
are already sufficient to calculate the exact energy sca
This proves a universal behavior for this model. The seco
order skeleton diagrams are therefore the minimal class
diagrams which have to be summed, in order to describe
crossover.

II. HAMILTONIAN AND DIAGRAM TECHNIQUE

As the standard model describing magnetic impurities
metals, the Anderson-impurity Hamiltonian2 is considered,
with a half-filled conduction band of constant density
statesr and infinite Coulomb repulsion at the impurity site

H5Hc1Hf1H1 ,

Hc5 (
uepu<D,m

epcpm
1 cpm ,

~1!

Hf5e f(
m

fm
1 f m ,

H15
V

AN (
p,m

~cpm
1 b1 f m1H.c.!.

cpm
1 creates a conduction electron with internal quant
numberm51 . . .N, momentump, and energyep which is
cut off at6D. um&5 f m

1uvac& denotes a magnetic configura
tion of the impurity andu0&5b1uvac& the nonmagnetic one
their energy-difference beinge f . f m

1 is a fermionic operator
andb1 the Coleman boson.12 Fm

15 f m
1b creates an electron
13 575 © 1997 The American Physical Society
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13 576 55KURT FISCHER
at the impurity site. Double occupancy at the impurity site
suppressed by imposing the constraintnb1nf51. The im-
purity hybridization with the conduction band is proportion
to V. The Boltzmann constant is set to unity, so that te
perature is measured in units of energy.

In order to simplify the subsequent derivations, the co
duction band of model~1! is assumed to have a consta
density of statesr with a sharp cutoff at energies6D, as the
other approaches to scaling do.2,3,8 Universal behavior
should not depend on this assumption.3 In Sec. VII it will be
shown that the energy scales of the system indeed do
change as long as the density of states is finite at the F
energy, and is sufficiently structureless to have only one
ergy scaleD.

The principal object of concern is the resolve
Rf(z)5^Q(z)&c , whereQ is defined as

Q~z!51/~z2Lc2Hf2H1!.

Here the superoperatorLc acts on an operatorX of the Hil-
bert space asLcX5@Hc ,X#, and ^ &c indicates the thermo
dynamic average with respect toHc . The propagators for the
occupied and unoccupied ionic configurations are

Rm~z!:5^muRf~z!um&,

R0~z!:5^0uRf~z!u0&.

With the help of the identity13

e2bH5e2b~Lc1Hf1H1!e2bHc, ~2!

the impurity partZf of the partition function can then b
represented as a line integral, the path of integration en
cling all poles of the integrand:

Zf :5
TrfTrce

2bH

Trce
2bHc

5Trf R dz

2p i
e2bzRf~z!. ~3!

The well-known diagrammatic technique14 follows if Q is
expanded in a geometric series inV; thenLc acting on the
conduction-electron operators inH1 is evaluated to give the
energy denominators

Lc~cpm
1 cqn . . . !5~ep2eq1••• !~cpm

1 cqn . . . !,

and finally Wick’s theorem applied to evaluate the therm
dynamic average with respect toHc . This can be casted in
diagrammatic language. The naked propagators and ver
are shown in Fig. 1. Because the impurity site can alter
tively be empty or singly occupied, every diagram has
spine of alternatingb and f propagators. Consequently, a
diagrams where a conduction-electron propagator wo
have a self-energy are excluded,14 because they do not fulfil
the constraintnb1nf51. Alternative approaches where th
constraint is not exactly enforced will be discussed in S
VIII.

Within the variational principle,9,11 a functionalY of the
dressed one-particle propagators is defined. Because
conduction-electron propagators carry no self-energy,
variational principle has been adapted to the present
grammatic technique10 such thatY becomes a functional o
the dressed one-particle impurity-propagators only. At
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saddle point with respect to variations of theR0,m , the func-
tionalY equalsZf , and the Dyson equation holds as a self
consistency equation10

Rf~z!215z2Hf2S f~z!. ~4!

For the impurity part of the partition function, the functional
is given by

Y5b Trf R dz

2p i
e2bzH(

n
S 12

1

nDS f
~n!~z!Rf~z!

1 lnFz2Hf2(
n

S f
~n!~z!G J . ~5!

Here S f
(n) denotes allnth-order self-energy diagrams of

Rf , expressed in terms of skeleton diagrams. Skeleton di
grams are diagrams where all self-energy insertions ha
been removed. Hence a skeleton diagram becomes a fu
tional of the dressed propagators.

The variational principle can be interpreted in the follow-
ing fashion: IfY depends on some parameterl such as the
hybridization then, at the saddle point, it depends onl only
explicitly, and not implicitly via the propagators10

dY

dl
5

]Y

]l
1

dY

dR0,m

]R0,m

]l
5

]Y

]l
.

Explicitly, from Eq. ~5! it follows at the saddle point that

dZf
dl

52
d

dl
b Trf R dz

2p i
e2bz(

n

1

n
S f

~n!~z!Rf~z!

2
d

dl
b Trf R dz

2p i
e2bzRf~z!Hf ,

where thel dependence ofRf can be discarded.
In order to study the dependence ofZf on a parameter

l, it therefore suffices to consider all skeleton diagrams o
the typeS0,m

(n)R0,m . A skeleton diagram forS0
(2)R0, i.e., of

second order, is shown in Fig. 2.
Approximations fulfilling the variational principle can be

generated by using a subclass, a so-called family of skeleto
diagrams,15 which contains with each skeleton diagram for

FIG. 1. Vertices for the Anderson model. A dashed line repre
sents the naked propagator of the occupiedf 1 configuration with
internal quantum numberm. A wavy line represents the naked
propagator of the unoccupiedf 0 configuration. A solid line repre-
sents the propagator of a conduction electron with internal quantu
numberm. Every diagram has a spine of alternating wavy and
dashed impurity propagators. The conduction-electron propagato
carry no self-energy~Ref. 14!.
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55 13 577DIAGRAMMATIC METHOD FOR INVESTIGATING . . .
S0,m
(n)R0,m all others with cyclic permuted vertices as well. F

example, all skeleton diagrams of a given orderS0,m
(n)R0,m

form such a family.
For instance, if only skeleton diagrams of seco

order are kept in Eq.~5!, this amounts to summing a
diagrams with bare propagators and noncrossing con
tion-electron lines, and is called the NCA.10 The self-
energies of the NCA,Sm

(2)(z)5Sm
(2)@R0(z)# and S0

(2)(z)
5S0

(2)@R1(z), . . . ,Rn(z)#, are then (f denotes the Ferm
function!

Sm
~2!~z!5

V2r

N E
2D

D

f ~e!R0~z1e!de,

~6!

S0
~2!~z!5

V2r

N (
m51

N E
2D

D

f ~e!Rm~z1e!de.

The functionalY (2) has then the form

Y~2!5 R bdz

2p i
e2bzH 1

2S0
~2!~z!R0~z!1 1

2(
m

Sm
~2!~z!Rm~z!

1 ln@z2S0
~2!~z!#1(

m
ln@z2e f2Sm

~2!~z!#J .
To construct a variational principle for other observables,
Hamiltonian has to be coupled to external fields suita
chosen.10 This will be discussed in Sec. V.

III. ENERGY SCALES

A. First scaling equation

Y as defined in Eq.~5! depends explicitly one f only via
the termHf5e f(mfm

1 f m . Consequently, one has, for the im
purity partF f52T lnZf of the free energy,14

Zfe f]e f
F f5 TrfH f R dz

2p i
e2bzRf~z!. ~7!

Y depends explicitly onV via10 the prefactorV2n of the
2nth order self-energyS f

(2n) ,

ZfrV
2]rV2F f5

1
2 Trf R dz

2p i
e2bzS f~z!Rf~z!. ~8!

To determine theT dependence, the internal integration va
ablesz ande as in Eqs.~5! and ~6! are replaced byTz and

FIG. 2. Skeleton diagram forS0
(2)
„Rm(z)…R0(z). The last vertex

can be identified with the first because of the trace over thef con-
figurations in Eq.~5!. The double dashed and double wavy lin
represent dressed propagators.
c-

e
y

Te, respectively. The variational principle remains una
fected.Y depends now explicitly onT via the prefactorTn of
a skeleton diagram of 2nth order, the termTz in the loga-
rithm, and the integration boundaries as in Eq.~6! change to
6D/T. Therefore

Zf S F f2T
]

]T
F f D5

1

2
Trf R dz

2p i
e2bzS f~z!Rf~z!

1ZfD
]

]D
Ff1TrfH f R dz

2p i
e2bzRf~z!.

~9!

Inserting Eq.~7! and Eq.~8! into Eq. ~9! yields

F f5S T ]

]T
1rV2

]

]rV2 1e f
]

]e f
1D

]

]D DF f . ~10!

This equation expresses the scaling ofF f with respect to the
energy scalesD, e f , andrV2:

F~T,r,V,e f ,D !5T fS T

rV2 ,
T

e f
,
T

D D .
This is henceforth called the first scaling equation.

B. Second scaling equation

The central issue of this work is to prove and describe
universal behavior of impurity systems. To show the univ
sal behavior forF f , the functionalY is examined for large
but finiteD; that is, whenD becomes larger than all othe
energy scales of the system, the so-called universal limit3

Y depends explicitly on the cutoffD only via the integra-
tion boundaries6D of the integration over the conduction
electron energies, as can be seen in Eq.~6! for the second-
order skeleton diagrams.

At first only those second-order self-energies are kep
Y. With the help of the spectral densitiesr0,m of R0,m , one
has

D
]

]D
Ff

~2!5
V2r

NZf
(
m51

m561

N E e2bvdv Df ~mD !@rm~v!

3 RR0~v1mD !1r0~v! RRm~v1mD !#,

~11!

whereRR0,m denotes the real part ofR0,m . In the universal
limit, in particular T/D→0, so that only the terms
} f (2D)'1 survive. Furthermore, in this limit the weighte
spectral densitiese2bvr0,m(v)/Zf contribute significantly
only for frequencies less than the impurity part of t
ground-state energyE0,0, becauseebE0Zf tends to 1 for
low temperatures. From perturbation theory it follows16 that
e2bvr f(v)/Zf vanishes asymptotically as 1/v2 for large,
negativev. Hence it contributes significantly to the integr
in Eq. ~11! only for

2AD&v&E0 .

In this frequency interval,RRf(v2D) can be replaced by
its bare counterpart 1/(v2Hf2D)'(21)/D:
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13 578 55KURT FISCHER
D
]

]D
Ff

~2!5
2V2r

NZf
(
m51

N E e2bvdv@rm~v!1r0~v!#.

Together with Eq.~7!, the following scaling relation is ob-
tained:

D
]

]D
Ff

~2!5rV2~121/N!
]

]e f
F f

~2!2rV2. ~12!

This is called henceforth the second scaling equation. Nex
is shown that in the universal limit all families of higher
order skeleton diagrams ofY are irrelevant, by which is
meant here that their contribution to the logarithmic deriv
tive in Eq. ~12! vanishes asO(1/D). For the proof see Ap-
pendix A, the families of skeleton diagrams being needed
enforce the variational principle.

The result can be made plausible by casting it into t
language of diagrams, as in Fig. 2. Differentiating logarit
mically with respect toD means removing one curved
conduction-electron line and replacing the internal propa
tor by its value at the cutoff}1/D. Therefore this diagram
contributes}D/D to the logarithmic derivative.

For a diagram of higher order than two such as in Fig.
there lie undereachconduction-electron line at least thre
propagators, because otherwise this diagram would hav
self-energy insertion. Hence its contribution to the logarit
mic derivative is}D/D3, and can be neglected for larg
D.

Equation~12! therefore holds as well for theexact Ff . It
describes the Haldane scaling17 for the differenceF f2E0;
that is, it depends onD ande f only via

~F f2E0!~T,V,r,e f ,D !5~F f2E0!~T,V,r,e f* !,

e f*5e f1~121/N!rV2lnD/~rV2!.

By inserting this into Eq.~10!, in the magnetic limit
2e f@rV2 the scaling law

F f2E05Tg~T,V,e f ,D,r!5TgS TG ,
T

TK
D ~13!

follows, with the quantityG5prV2/N and~up to a numeri-
cal factor! the Kondo temperature2

TK5D AN rV2/Dexp@e f /rV
2#. ~14!

This proves the universal behavior for the free energy of
Anderson Hamiltonian, as well as that the energy scalesG
andTK are the exact ones. In particular, it has been sho

FIG. 3. Skeleton diagram of order 6 forS0R0.
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that the NCA preserves theexactenergy scales of the sys
tem. Because the NCA is exact up to ordersV4 and 1/N, an
inclusion of families of skeleton diagrams of higher order
Eq. ~13! will slightly changeg butnot the energy scales, and
consequently will not alter the approximation qualitative
Such an extension of the NCA has been performed,18 and
within the errors of the numerical calculation the scaling la
~13! as well as a slight change in the respective functiong
have been verified.

There holds an analogy to the usual diagrammatic ren
malization group, as described Sec. I. It turns out that from
certain order in perturbation theory on, the energy sca
obtained by that method do not change any more in the
versal limit, while, for an observable the form of its respe
tive functiong can still change. However, the point is th
this scheme can only be used for high temperatu
T@TK , below which perturbation theory breaks dow
Hence a necessary condition for a diagrammatic techniqu
describe the universal behavior of impurity systems is tha
includes families of skeleton diagramsincluding those of
second order. This result can straightforwardly be exten
to the case of finite magnetic fields.

IV. SCALING WITH MAGNETIC FIELD

The influence of a magnetic fieldh on the host metal is of
orderh/D}1/D, and can be neglected. Hence, to the Ham
tonian of Eq.~1!, only

Hf→Hf1gmBh(
m

m fm
1 f m ~15!

is added, whereg denotes theg factor of thef electron, and
mB is the Bohr magneton. The functionalY will explicitly
depend onh only via the new term inHf . Consequently the
first scaling equation~10! changes to

F5T
]

]T
F1rV2

]

]rV2F1e f
]

]e f
F1gmBh

]

]gmBh
F

1D
]

]D
F. ~16!

The second scaling equation~12! remains unaffected. The
scaling law for the magnetizationM (h)52(]/]h)F f there-
fore reads

M ~T,V,e f ,D,r,h!5M S TG ,
T

TK
,
h

G
,
h

TK
D . ~17!

V. PROOF OF UNIVERSALITY

To obtain the scaling of any observable, the Hamilton
H has to be coupled to suitable external fields. Howev
only the skeleton diagram of Fig. 2 is relevant for largeD.
Analogous scaling equations such as Eqs.~10! and ~13! can
thus be derived for any other observable, hence proving
versality for the Anderson model.

As an example, take thef propagator14 as a function of
imaginary timet,

Gfm~t!52^TtFm~t!Fm
1~0!&. ~18!
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Here Tt is the time-ordering operator, and^ & denotes the
thermodynamic average with respect toH. With the help of
Q(z) one can reproduce the well-known integral represen
tion for Gfm which coincides for fermionic Matsubara fre
quencies with the Fourier transform ofGfm(t),

19

Gfm~v!5 R e2bz
dz

2p i
^^0uQ~z!u0&^muQ~z1v!um&&c .

To obtain a variational functional forGfm , H is coupled to
an auxiliary fermionic fieldC:

H1vC1C1VArl~C1b1 f m1H.c.!.

The f propagator is obtained from all diagrams of seco
order in l that is, after removing theC propagator.10 A
functionalYC can be constructed analogously to Eq.~5!, to
give, at the saddle point,

ZC :5
TrfTrcTrCe

2bH

TrcTrCe
2b~Hc1HC! .

Gf follows as

]

]l2 U
l50

FC5rV2f ~v!Gfm~v!. ~19!

The scaling equations forFC , and via Eq.~19! for Gf , can
be established in the same manner as forF f . In particular,
Eq. ~10! now reads

S T ]

]T
1v

]

]v
1e f

]

]e f
1rV2

]

]rV2 1D
]

]D
11DGfm50.

~20!

In the universal limit of largeD, again only theskeleton
diagrams of second orderare relevant, and the analog to E
~12! holds forGf , too:

D
]

]D
Gfm5rV2~121/N!

]

]e f
Gfm .

In the magnetic limit2e f@G, whereG@TK , it follows that
the Abrikosov-Suhl resonance and the impurity part of
resistivity computed within the NCA scale with the exa
Kondo temperature. This was numerically observed in R
20. There, the energy scale was determined as the maxim
value of the spectral density ofGfm(v) in the magnetic limit
of the Anderson model, andassumedto be proportional to
TK . Here this has been proved.

VI. DESCRIPTION OF CROSSOVER: WILSON NUMBER

Within this scaling method the crossover phenomen6

can now be described entirely within a diagrammatic
proach. Even for the skeleton diagrams of second order
analytical solution of the self-consistency equations does
seem possible for finite temperature. However, for zero te
perature the well-known expressions for the ground-state
ergy of the NCA10,21 for the Anderson model can be eval
ated analytically~see Appendix B! in the magnetic limit. In
this limit, it follows from Eq. ~17! that for zero temperature
the scaling law
-

d

e

f.
m

-
an
ot
-
n-

M ~V,e f ,D,r,h!5M S h

TK
D ~21!

holds, which holds as well for the NCA, as shown above. F
low magnetic fields, the low-field energy scaleTL can be
fixed unambiguously by the static magnetic susceptibility
vanishing magnetic field2,

x~0!5 1
3m j

2/TL .

With the help of the analytical NCA results of Appendix B
ananalyticalexpression forTL is obtained:

TL
NCA5TK /G~121/N!, ~22!

with G being the gamma function. The result coincides up
order 1/N with the resultTL5TKG(111/N), which is be-
lieved to be exact.2

For high magnetic fieldsgmBh@TK , the NCA repro-
duces the perturbation theory up toV4. With the definitions
N52 j11 andJ5V2/ue f u, for the impurity part of the mag-
netization the expansion

M ~h!

jgmB
512

rJ

N
1

~rJ!2

N
ln
gmBh AN e
D AN e f /D

1
~rJ!2

N F 2

N~N21! (m51

N21

m ln~m!G1O~J3!

is obtained. The exact scaling~21! of the NCA renders it
possible to reexpress in the perturbation expansionJ in terms
of h/TK . The high-field energy scaleTH is fixed
unambiguously2 by requiring that terms}1/ln2@gmBh/TH# be
absent in the resulting asymptotic expansion. One arrive
the well-known asymptotic renormalization-group result f
the magnetization in high magnetic fields,

M ~h!

jgmB
512

1

N

1

ln
gmBh

TH

2
1

N2

ln ln
gmBh

TH

ln2
gmBh

TH

1OS ln ln
gmBh

TH

ln3
gmBh

TH

D , ~23!

andTH is given by

TH5TKexpF21/N2
2

N~N21! (m51

N21

m ln~m!G . ~24!

The Wilson numberW5TH /TL characterizes the crossove
from the high-field region, where the impurity reacts as
asymptotically free magnetic moment, to the low-energy
gion where the impurity is screened. Hence the Wilson nu
ber coincides with the exact result up to order 1/N:

WNCA

W
5

1

G~121/N!G~111/N!
511O~1/N2!. ~25!
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13 580 55KURT FISCHER
By a Schrieffer-Wolff transformation,14 this result can be
extended to the Coqblin-Schrieffer model~see Appendix C!.

VII. HOW MUCH DOES SCALING DEPEND
ON BAND STRUCTURE?

The universal behavior of impurity models like th
Anderson model should not depend on details of the ho
density of states as long as its band has a finite densit
states at the Fermi energy.3 This was realized for model~1!
by assuming a constant density of states with a sharp cu
at6D, as the other approaches to scaling do.2,3,8 There it is
assumed that the energy scales of the system do not ch
as long as the density of states is finite at the Fermi ene
and scales asr̃(e)5r(e/D), which means that the band
sufficient structureless to have only one energy scaleD.

Here this is proved: The first scaling equation~10! can be
taken over because of

T
]

]T
r~eT/D !52D

]

]D
r~eT/D !.

For the second scaling equation~12!, the term

Y:5V2E
2`

`

r~e/D !L2~v1e! f ~e!de

as in Eq.~A2! in Appendix A is examined, which represen
an integration over a conduction-electron line.L2 stands for
the real part of them propagators which lie under thi
conduction-electron line. Differentiating logarithmically wit
respect toD and substitutinge:5uD yields

D
]

]D
Y5~2D !E

2`

`

ur8~u! f ~uD!L2~v1uD! du.

The integrand can be neglected outside the inte
2AD&v&0 as in Sec. III B. Ifr is sufficiently smooth
around the Fermi energy, the integrand contributes sign
cantly only for 21&u&1/AD. Therefore one can replac
L2(v1uD) by its asymptotic value 1/(2uD)m, and the
Fermi function by itsT50 values up to terms of orde
1/D. Y scales as

D
]

]D
Y}D12m.

Only the skeleton diagrams of second order (m51) are rel-
evant,

D
]

]D
Y}V2E

2`

0

r8~u!du5V2r~0!.

Thus the second scaling equation is still valid, and depe
on the density of states only through its value at the Fe
energy.

Magnetic impurity in a superconductor

If the density of states of the host has still one ene
scaleD, but the density at the Fermi surface vanishes acco
ing to a power law, this models magnetic impurities
superconductors22 with gap nodes:
’s
of

ff

ge
y,

al

-

ds
i

y
d-

r~v!5~11r !r̄S v

D D r ,
~26!

E
2D

D

r~v!dv52D r̄.

This modifies the scaling law~12! accordingly: Every skel-
eton diagram depends explicitly onD via the integration
boundaries, which sorts out the NCA diagrams as the o
relevant diagrams. In addition, every skeleton diagram
one factorD2r per loop. Hence the second scaling equat
is

D
]

]D
Ff5~11r !~121/N!r̄V2

]

]e f
F f2r r̄V2

]

]r̄V2
F f

2~11r !r̄V2. ~27!

The first scaling equation remains unchanged. In the limi
largeN, this scaling equation is consistent with the results
Fradkin,23

TK5DS 12
r

~11r !Jr̄
D 1/r . ~28!

VIII. ALTERNATIVE DIAGRAMMATIC METHODS

What conclusions can be drawn from this theory as to
reliability of other diagrammatic approaches, especially th
ability to describe the crossover?

A. NCA and the 1/N expansion

If the system hasN internal degrees of freedom and e
hibits local Fermi-liquid behavior, the 1/N expansion be-
comes exact in the limit of largeN.24 Contrary to common
belief,2,25 the 1/N expansion isnot suited for the perturbative
regime of high temperatures or magnetic fields becaus
fails to reproduce the diagrammatic renormalization-gro
results. That is so because the Kondo temperature itself
function of 1/N. Hence it is not possible to describe th
crossoverwithin a finite-order 1/N expansion.

The NCA was considered so far as a ‘‘self-consisten
1/N expansion.14,25 However, this does not explain why th
NCA values for the static magnetic susceptibility relative
their T50 value agree so well with the respectiv
renormalization-group results,26 even forN52. In view of
Eq. ~17!, this now becomes clear.

B. Higher order skeleton diagrams

One may ask whether it is possible to improve the NC
substantially by incorporating inY skeleton diagrams o
higher order. However, one has to be aware that then
numerical problems in solving the self-consistency equati
become formidable.18 To date one has not succeeded to c
culate x(0), and hence the Wilson number up to orde
1/N2 by this diagrammatic approach.
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C. Non-self-consistent methods

One way of incorporating higher-order skeleton diagra
in a theory for impurity systems was put forward by Sas27

in his T-matrix approach. The impurity propagatorsRf were
calculated within the NCA. For an observable, these N
propagators were inserted into the respective skeleton
grams of orders higher than 2. Such an approach canno
derived from a variational principal. Hence it will not co
rectly describe the universal behavior of the impurity.

D. Coleman’s diagram technique

In Coleman’s approach12 to the Hamiltonian~1!, the con-
straintnf1nb51 is enforced by addingl(nf1nb) to H and
sendingl to infinity; consequently,Hf in Eq. ~1! changes to

Hf5~e f1l!(
m

fm
1 f m1lb1b. ~29!

The scaling equations~10! and ~12! are rederived with the
help of this diagram technique, and then Coleman’s te
nique is used to discuss the conserving slave-boson appr
by Krohaet al.28

Now that the unperturbed partHc1Hf is a one-particle
Hamiltonian, the standard Matsubara-perturbation theory
be developed. The naked propagators from which the
gram technique is built are given by

Rm
~0!~ ivn!51/~ ivn2e f2l!,

R0
~0!~ ivn!51/~ inp2l!, ~30!

Rcm
~0!~ ivn!5rE

2D

D 1

ivn2e
de.

Here ivn52p(n11/2)T and inp52pnT are the fermionic
and bosonic Matsubara frequencies, respectively. The v
ces are displayed in Fig. 1. Again, a dashed line deno
Rm
(0) , a wavy lineR0

(0) , and a solid line represent the prop
gator of a conduction electronRcm

(0) . This propagator already
contains the sum over all momenta because of the loca
teraction with the impurity.

Skeleton diagrams can be defined as above as conta
no self-energy insertions. The variational principle follow
with the help of the functional

2
Ỹ

T
:5 (

m,n,v
S 32

2

v DSm
~v !~ ivn!Rm~ ivn!1(

mn
@ ln„ivn2e f

2l2Sm~ ivn!…2 ln~ ivn2e f2l!#

1(
mn

$ ln„@Rcm
~0!#212Scm~ ivn!…2 ln@Rcm

~0!#21%

2(
p,v

F ln„inp2l2S0~ inp!…2(
p
ln~ inp2l!G .

~31!

The factor 322/v arises because every termS (v)R contains
3v/2 propagators. It is straightforward to show thatỸ is
stationary with respect to variations of the propagators if
s

ia-
be

-
ch

n
a-

ti-
es

n-

ing

e

Dyson equations hold. By rearranging the internal summ
tion frequencies, one has the following identity:

(
m,n

Sm~ ivn!Rm~ ivn!5(
m,n

Scm~ ivn!Rcm~ ivn!

5~21!(
p

S0~ inp!R0~ inp!,

~32!

the minus sign in the second line coming from the additio
fermion loop.12

As in Luttinger’s original approach,9 one shows thatỸ is
equal to the difference of the interacting and noninteract
free energyF:

Ỹ5F~V!2F~0!5:DF. ~33!

The Hilbert space is a sum of eigenspaces of the num
operatorn5(mfm

1 f m1b1b. The partition function can then
be represented as a sum over these subspaces. The sub
n50 describes the noninteracting system. In Colema
original approach, the physical subspacen51 is projected
out by

lim
l→`

]

]e2bl

2DF

T
5 lim

l→`

Zf~l!5Zf . ~34!

The limit is approached smoothly so that

lim
l→`

]

]l
Zf~l!50. ~35!

1. First scaling equation

Analogously to Sec. III A, the explicit derivatives wit
respect torV2, e f , andl are

rV2
]

]rV2

DF

T
5 (

m,n,v
@Sm

~v !~ ivn!Rm~ ivn!#, ~36!

]

]e f

DF

T
5(

m,n
Rm~ ivn!, ~37!

]

]l

DF

T
5(

m,n
Rm~ ivn!2(

p
R0~ inp!. ~38!

To determine theT dependence ofỸ, one has to bear in mind
that each Matsubara frequency is proportional toT, that each
summation over Matsubara frequencies gives a factorT, and
that in a diagram of orderv there arev/2 such summations
Furthermore,Rcm

(0) depends onT andD only via D/T. To-
gether with Eqs.~32!, ~36!, ~37!, and~38!, it follows that

DF5S T ]

]T
1e f

]

]e f
1rV2

]

]rV2 1l
]

]l
1D

]

]D DDF.

~39!

By using Eqs.~34! and~35!, the analog of the scaling equa
tion ~10! follows:
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S T ]

]T
1e f

]

]e f
1rV2

]

]rV2 1D
]

]D DZf50. ~40!

2. Second scaling equation

The functionalỸ depends on the cutoffD only via the
integration boundaries6D in Rcm

(0) . Hence

D
]

]D

DF

T
5(

mn
@Rcm

~0!~ ivn!#
~22!S D

ivn1D
1

D

ivn2D D
3@Rcm~ ivn!2Rcm

~0!~ ivn!#. ~41!

The propagator differenceRcm2Rcm
(0) can be expanded as

Y:5~Rcm2Rcm
~0!!@Rcm

~0!#~22!5Scm1ScmRcm
~0!Scm1•••.

~42!

In either case discussed below, it will turn out that only t
second-order term

Scm
~2!~ ivn!5

V2rT

N (
p
Rm~ ivn1 inp!R0~ inp!

is relevant in the universal limit of largeD. The propagators
R0,m have the spectral decomposition

R0,m~z!5E dx

z2x2l
r0,m~x!, ~43!

and are centered12 aroundl. After performing Matsubara
summations, this gives

D
]

]D

DF ~2!

T
5
V2r

N
Db (

m,s561
E E dx dy rm~x!r0~y!

3
@ f ~x1l!1b~y1l!#@ f ~sD !2 f ~x2y!#

sD2x1y
,

~44!

with f andb the Fermi and Bose functions, respectively. T
coefficient ofe2bl in Eq. ~44! for largeD, when combined
with Eqs. ~37! and ~38!, yields, because of Eq.~34!, the
desired scaling equation~13!.

In Eq. ~42! higher-order terms inS are of higher order in
e2bl, and vanish relatively toScm in the limit of largel. By
the same arguments as given in Sec. III B, one can show
skeleton diagrams of higher order inScm are irrelevant:
Higher-order skeleton diagrams in Eq.~42! contain at least
three impurity propagators which have to be evaluated
ivn56D to make a contribution}1/D2, or they are of
higher order ine2bl.

E. Conserving slave-boson approach

Kroha et al.28 developed, for the Anderson model,
method quite similar to the NCA. It is constructed from sk
eton diagrams within Coleman’s slave-boson techniq
Kroha et al., however, imposed the constraint only in th
averagê nf1nb&H51. Their method then does not viola
the gauge symmetries of the model like the usual sla
boson mean-field approach.28 The boundary condition for the
free energy is
at

at

-
e.

-

]

]l
F5^nf1nb&H51. ~45!

This includes unphysical states. Consequently, the cond
tion electrons acquire a self-energy. The first scaling eq
tion ~39! now reads

DF5S T ]

]T
1e f

]

]e f
1rV2

]

]rV2 1D
]

]D DDF

1l2l
]

]l
F~0!. ~46!

In order to obtain anyobservable, DF has to be differenti-
ated once more with respect to an external field. Hence
equation is the analog to Eq.~10!.

The second scaling equation can be derived from Eq.~44!
in the limit of largeD. First it is summed overs. Only the
term } f (sD) survives, because the propagatorsR have a
spectral weight centered around afinite value of l, and
(slimD→`D/(sD2x1y)50. With Eqs. ~37!, ~38!, and
~45!, one has

D
]

]D

DF ~2!

T
5

2V2rb

N (
m

E E dx dy rm~x!r0~y!

3@ f ~x1l!1b~y1l!#

5~121/N!V2r
]

]e f

DF ~2!

T
2V2rb.

More generally, because(slimD→`D/( ivn1sD)50 in ev-
ery propagator of Eq.~41! the Matsubara frequencyivn can
be replaced bysD with an overall factorf (sD). In the
magnetic limit one hasl*ue f u to enforce28 both nf'1 and
nb'0. Therefore higher-order terms in Eq.~42! are irrel-
evant, because they are eithero(1/D), or of higher order in
e2bl.

Hence the approximation also preserves the exact sca
laws. This explains why their results for thef propagator are
so similar to the respective NCA results.14 Moreover, one
can now predict that taking into account more skeleton d
grams will not alter the picture qualitatively.

IX. SUMMARY

The Anderson-impurity model shows, in a nutshell, t
difficulties when dealing with strong correlations. One e
counters the same problems as in high-energy physics:
perturbation theory of observables at energiesT in the cou-
pling constant diverges logarithmically,} lnD/T. The limit of
zero energyT in solid-state physics corresponds to the lim
of infinite cutoff D in high-energy physics. If the Hamil
tonian can be shown to be renormalizable, it means that th
are finitely many energy scales in the system, at least in
perturbative region. If there is but one scale, the system
be described by a ‘‘running’’ coupling constantJ(D), ex-
pressed with the help of theb function

b~J!5
d J~D !

d lnD
. ~47!

Reducing the cutoffD of the system does not change i
physics as long as the effective couplingJ(D) is changed
according to Eq.~47!, to keep the energy scale consta
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However, outside the energy regime where the perturba
theory is valid it has never been shown that such ab func-
tion exists at all.

In this paper, the variational functional of Luttinger an
Ward was used to prove both theexistenceand form of the
b function, or, in other words, the exact energy scales of
impurity system were determined. It turned out that negle
ing the vertex corrections~NCA! suffices to prove universa
behavior, and that families of higher-order skeleton diagra
do not alter the energy scales.

The method differs therefore from the convention
renormalization-group approach. Within that approach,
fixed points of a flow of effective Hamiltonians is studie
perturbatively as the energy scales of the system are va
The crossover is inaccessible by that method.

In comparison to that, the skeleton diagrams can desc
the crossover very well, as was demonstrated. However,
theory cannot predict the nature of the fixed-point Ham
tonian.

Further work on this subject will concentrate on the qu
tion of whether the NCA can also be justified as a mean
solve the effective impurity model onto which the infinit
dimensional versions of correlated electron systems can
mapped.29,30 In particular, one would like to learn whethe
the periodic Anderson Hamiltonian exhibits heavy fermi
behavior in this limit, or if this is only an artifact of the
approximations used. Also, it should be within the reach
the theory to decide which class of diagrams should be u
to describe the problem of two impurities in a metal.
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APPENDIX A: IRRELEVANCE OF HIGHER-ORDER
SKELETON DIAGRAMS

The proof uses the spectral decomposition of the io
propagatorsRf . Every skeleton diagram depends explicit
on D only via the integration boundaries6D coming from
integration over the conduction-electron lines, as shown
Eq. ~6!. For a50, . . . ,N, let Sa

(2n)Ra be such a skeleton
diagram of 2nth order withp closed fermion loops andn
ionic propagatorsRi :

R dz

2p i
e2bzSa

~2n!~z!Ra~z!

5
rnV2n

Nn2p R dz

2p i

3e2bz)
j51

n E
2D

D

f ~e j !de j)
i51

n

RiS z1(
j

~ i !

e j D . ~A1!

Here *de j denotes the integration over thej th conduction-
electron line. Furthermore, the term( j

( i ) in the argument of
Ri indicates that the sum runs overj if the i th propagator sits
n

n
t-

s

l
e

d.

be
he
-

-
to

be

f
ed

-
.
l
-

c

in

under thej th conduction-electron line, as in Fig. 3, the num
bers indicating thee j . The i th propagatorRi of the respec-
tive skeleton diagram has the spectral decomposition

RiS z1(
j

~ i !

e j D 5E
2`

`

dl ir i~l i !Y S z1(
j

~ i !

e j2l i D .
For that reason, the line integral gives only contributio
from the real poles,

z5vk5lk2(
j

~k!

e j .

For realv, there holds the relation

RR0,m~v!5E
2`

` r0,m~l!

v2l
dl,

where the Cauchy-principal value of the integral has to
taken. Hence thekth pole of the line integrals gives

)
j51

n E
2D

D

f ~e j !de jE
2`

`

dv e2b Sv2( j
~k! e j Drk~v!

3)
iÞk

n

RRiS v2(
j

~k!

e j1(
j

~ i !

e j D .
Because off (e j )e

be j5 f (2e j ), one shifts those variable
e j to 2e j , which occur in( (k) but not in( ( i ):

)
j51

n E
2D

D

f ~e j !de jE
2`

`

dv e2bvrk~v!)
iÞk

n

RRiS v1(
j

~ i !

e j D ,
where now( j

( i ) runs overj if the propagatorRi sits under
the j th conduction-electron line in the respective skelet
diagram with cyclic permutated vertices. In such a diagra
the propagatorRk is the outer one.

Exactlyhereone uses the fact that only whole families
skeleton diagrams are considered: It was just shown tha
every familyF of 2nth-order skeleton diagrams their contr
bution to the line integral in Eq.~5! is

Trf R dz

2p i
e2bzS f

~2n,F !~z!Rf~z!

52nE dv e2bv3Fr0~v!ReS0
~2n,F !~v!

1(
m

rm~v!ReSm
~2n,F !~v!G .

Here, the operator Re is defined to replaceeverypropagator
in its argument by its real part. The factor 2n arises because
every skeleton diagram occurs in a family 2n times. InY,
every skeleton diagram of order 2n depends explicitly on
D only via the integration boundaries6D of its n integra-
tions over the conduction-electron lines. Thei th integral over
a conduction-electron line can be written as

ReS f
~2n,F !~v!5S E

2D

D D n21

L1~v!E
2D

D

de i f ~e i !L2~v1e i !,

~A2!
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where the partL1 of the respective diagram does not depe
on e i ; that is, its ionic propagators are lying on the left or t
right of the i th conduction-electron line. The propagators
part L2 lie under thei th conduction-electron line. (*)n21

hints at the othern21 integrations, weighted with the re
spective Fermi functions. One differentiates with respec
D by evaluating the integral over thei th conduction-electron
line e i at its integration boundaries6D,

2n (
s561

E dv e2bvr0,m~v!

3@L1~v!Df ~sD !L2~v1sD !#.

The integral is to be weighted with 1/Zf in order to yield the
D derivative of the respective contribution to the free ener
BecauseebE0Zf goes for low temperatures to 1, the spect
densitiesr0,m are weighted witheb(E02v). For low tempera-
turesT!D, this weighted spectral density contributes to t
integral only for frequenciesv&E0. Because the other inte
grations over conduction-electron linese j are weighted with
Fermi functions f (e j ), respectively, for low temperature
T!D the real part of a propagatorRRf(v2D1( je j ) con-
tributes inL2(v2D) only for frequencies

v2D&E02D,2D.

In this frequency interval one can replaceRRf by its naked
counterpart 1/(v2Hf2D), and hence can estimate its co
tribution toF f from above as 1/D. The term} f (D) does not
contribute forT!D. It therefore can be estimated as

1

Z
D

]

]D
S f

~2n!Rf}D/D
mi.

Hence at least onemi must equal 1, otherwise the skeleto
diagram is irrelevant. However, such a diagram is a skele
only if it is of second order; otherwise it would have a se
energy insertion. Equation~12! follows.

APPENDIX B: NCA AT ZERO TEMPERATURE

1. NCA differential equations

The NCA equations~6! together with the Dyson equation
~4! constitute a self-consistent system of equations wh
have been solved numerically.20 For T50 the NCA integral
equations~6! in a magnetic field are transformed into diffe
ential equations by substituting for the Fermi function a s
function,21,16,14 by introducing the negative, inverse of th
propagatorsR0,m ,

Y0~z!5S0
~2!~z!2z,

~B1!

Ym~z!5Sm
~2!~z!1e f2z,

andYm5Ȳm1mgmBh for 2 j<m< j5(N21)/2,

]

]v
Y05212

rV2

N (
m

1

Ȳm1mgmBh
,

~B2!
d

f

o

.
l

n

h

p

]

]v
Ȳm5212

rV2

N
Y0

21 .

The inverse propagators have the asymptotic forms

Ȳm~v!'2v1e f ,
~B3!

Y0~v!'2v

for large, negativev. The NCA differential equations have
up to terms of orderO(1/D), the integral

Y0

rV2 1
1

N
lnU Y0

rV2 U5 Ȳm

rV2 1
1

N(
m

lnU Ȳm1mgmBh

rV2 U2 e f*

rV2 ,

e f*5e f1S 12
1

ND rV2ln
D

rV2 . ~B4!

The value ofe f* follows by inserting Eq.~B3!. Terms of
orderO(1/D) are neglected because the universal beha
of the system is investigated. The integral of the NCA d
ferential equations contains the energy scalesrV2 and TK
via21 ln(TK /rV

2)5ef* /rV
2. It is a nontrivial task to solve this

differential equations numerically in the universal, magne
limit

D→`, e f→2`,

lim
D→`

e f
D

50,
V2

ue f u
5J5const.

2. What is the ground-state energy of the NCA?

The ground-state energy of the NCA is defined as

E0
NCA5 lim

T→0
F f
NCA. ~B5!

However, one has not yet succeeded in deriving an exp
sion for E0

NCA via that route, but merely solves the NC
differential equations~B2!. It has been conjectured14 that the
lowest, real zeros of the inverse propagatorsY0,m define the
NCA ground-state energy. This is now proved: Because
Eq. ~B5!, E0

NCA fulfills

15 lim
T→0

ebE0
NCAE e2bvFr0

NCA~v!1(
m

rm
NCA~v!Gdv.

Hence, forT50, there exist the~positive! spectral densities

r̂0,m
NCA~v!5eb~E0

NCA
2v!r0,m

NCA~v!, ~B6!

and therefore the spectral densitiesr0,m
NCA vanish forT50 and

v,E0
NCA . This means that the inverse propagatorsY0,m are

real for those frequencies. In addition,r̂0,m
NCA vanish for

v.E0, becauser0,m
NCA remain finite. However, from the ex

istence theorem for solutions of the differential equatio
~B2!, it follows that there exists at least one valuev0 such
that the following hold.

~1! Y0,m have a zero inv0 and become complex above,
they are real for large, negativev—which they are in view
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of Eq. ~B3!. Because it was just shown that theY0,m are real
for v,E0

NCA , they are real forv,v0 as well.
~2! r0,m

NCA vanish forv,v0; thereforev0<E0
NCA .

~3! r̂0,m
NCA vanish forv.v0; thereforev0>E0

NCA .
To sum up:v0 is the lowest common zero forY0,m , and

at the same time the NCA ground-state energy.

3. Parametrization of the NCA ground-state energy

Hence the well-known expression for the common zero
Y0,m

21,16,31,32can be used as the NCA ground-state ener
and is parametrized in the following manner: Define theW
function for positivex as

W~x!exp@W~x!#5x for x>0, ~B7!

with asymptotic behavior

W~x!5x1o~x2! for x→01,

W@exp~x!#5x2 ln~x!1o~1! for x→`. ~B8!

The integral~B4! can be solved forY0 because bothY0 and
Ym are positive forv,E0

NCA :

NV22Y05WSNexpF ~Ȳm2e f* !
N

rV2

1(
m

ln
Ȳm1mgmBh

rV2 G D . ~B9!

E0
NCA can now be parametrized with the help of

E05D1E
2D

E0
dv5D1E

Ȳm~2D !

jgmBh dv

dȲm
dȲm ,

the NCA differential equations~B2!, and Eq.~B9! as
n

o
re
f
y,

E05e f2 jgmBh2E
jgmBh

D1e f
dv

3
1

11WSNexpF ~v2e f* !
N

rV2 1(
m

ln
v1mgmBh

rV2 G D .
~B10!

For vanishing magnetic field there exists another parame
zation, becauseYm can be written as a function ofY0 with
the help of theW function:

E052E
0

D dv

11WS expF ~v1e f* !
1

rV2 1
1

N
ln

v

rV2G D .
~B11!

The NCA ground-state energy fulfills Eqs.~10! and ~12!, as
can be checked with the help of Eq.~B11!. The ground-state
energy isnot a universal function because of the consta
term2rV2 in Eq. ~12!. The ground-state energy up to ord
1/N and 1/D follows as2

E05e f1rV2WF D

rV2 expS e f
rV2D G1

1

NE0
D W~y!

@11W~y!#3
ln
x

D
dx

1O~1/D !1O~1/N2!,

y5
D

rV2 expS x1e f
rV2 D . ~B12!

4. An analytical expression for the static magnetic
susceptibility of the NCA

a. Universality

With the help of the Kondo temperature~14!, Eq. ~B10!
reads, in the magnetic limitTK /rV

2→0 after the substitu-
tion v/TK5x,
E05e f2 jgmBh2TKE
jgmBh/TK

~D1e f !/TK
dx

1

11WHN expF(
m

lnS x1
mgmBh

TK
D G J . ~B13!
for

ly
After differentiating with respect to the magnetic fieldh, the
integrand decays rapidly enough so that one can replace
upper limit of integration bỳ . Hence the magnetizatio
scales as a function ofh as

M ~h,D,e f ,V,N!5M S gmBh

TK
D . ~B14!

This shows explicitly that already the skeleton diagrams
second order give the exact energy scale for the spin deg
of freedom.
the

f
es

b. Small magnetic fields

Using the parametrization~B10!, the magnetization
M (h)52]hE0 vanishes forh50 because of(mm50. The
second derivative gives the static magnetic susceptibility
h50. With the abbreviation14

1
3m j

2N5~gmB!2(
m

m2,

from Eq. ~B10! one has, after substitutingNY0 /rV
25W,

using the NCA differential equations, and finally partial
integrating,
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x~0!5
1

3
m j
2 1

r2V4E
0

D 2W~y!11

W~y!@11W~y!#3
dx,

y5S x

rV2D 1/N TK
rV2 expS x

rV2D . ~B15!

In the magnetic limit,y is very small forx,ue f* u because of
2e f*@rV2, and above thatW.1 and the integrand is smal
Therefore one can replace theW function by its argument,
and extend the integration tò:

xNCA~0!5
1

3
m j
2 1

TK
E
0

`

e2tt21/Ndt5
1

3
m j
2 1

TK
G~121/N!.

~B16!

The exact result

x~0!5
1

3
m j
2 1

TK

1

G~111/N!
~B17!

was obtained by fitting the results of the Bethe ansatz
perturbation theory in the nonmagnetic limit.5 Both results
coincide up to order 1/N, because the NCA contains all dia
grams up to that order. This contradicts the claim of Ku
moto and Kojima32 that the NCA would yield the exact resu
for x(0) in the magnetic limit.

APPENDIX C: COQBLIN-SCHRIEFFER MODEL

1. Variational functional

The Schrieffer-Wolff transformation14 projects—up to a
constant—the Anderson model onto the Coqblin-Schrie
model in the magnetic limit e f→2`, and constant
J5V2/ue f u,

H°HCS22
rJD

N
,

HCS5 (
uepu,D,m

epcpm
1 cpm1

J

N (
pq,mn

cpm
1 cqnf n

1 f m . ~C1!

For that the spectrum ofH is shifted at (2e f) by shifting the
argumentz in Y at e f , and the propagators and self-energ
are transformed as14

1

e f
S0~z1e f !→P~z!,

1

11
z

e f
2
1

e f
S0~z1e f !

→R0~z!5
1

12P~z!
,

Rm~z1e f !→Rm~z!5
1

z2Sm~z!
.

A 2nth-order diagram carries the prefactor (21)n(rJ)n. Be-
cause ue f u@D,uzu, the term z/e f was neglected in
e fR0(z1e f), and such the charge degrees of freedom of
impurity are projected out. The variational functionalY now
reads
o

-

r

s

e

Y5b R dz

2p i
e2bzH(

m,n
S 12

1

nDSm
~n!~z!Rm~z!

1(
n

S 12
1

nDP~n!~z!R0~z!1 lnFz2(
n

Sm
~n!~z!G

1 lnF12(
n

P~n!~z!G J . ~C2!

The saddle-point property ofY is shown as by Bickers.14

2. Skeleton diagrams of second order

The analog to the NCA is called the ‘‘self-consistent la
der approximation.’’14 The NCA equations follow from Eq.
~6! after projecting as in the last paragraph:14

Sm~z!52
rJ

N E
2D

D

f ~e!
1

12P~z1e!
de,

P~z!52
rJ

N(
m

E
2D

D

f ~e!Rm~z1e!de. ~C3!

The first scaling equation follows as in Sec. III A,

F f5T
]

]T
F f1D

]

]D
Ff . ~C4!

The asymptotic behavior of the self-energies is estima
from Eq. ~C3! for uvu!D as

Sm~v2D !52rJD/N1O~J2!,
~C5!

P~v2D !5O~J lnD !.

Because of Eq.~C1!, z has to be shifted in every propagat
by 22rJD/N, to describe the Coqblin-Schrieffer mode
Therefore

Rm~v2D !5
1

11rJ/N

21

D
for uvu!D,

~C6!

R0~v2D !51 for uvu!D.

Higher orders inJ are irrelevant as will be shown below.
follows within the NCA that

D
]

]D
Zf52bJ R dz

2p i
e2bzS R0~z!

11rJ/N
2DRm~z! D .

Hence the scaling equation for the impurity part of the fr
energy is

D
]

]D
Ff
NCA5

~rJ!2

11rJ/N

]

]rJ
F f
NCA2

rJ

N
D. ~C7!

This equation does not change in the universal limitJ!D if
higher orders ofJ in Eq. ~C6! are taken into account. Th
following scaling law holds therefore for the impurity part o
the free energy:

~F f2E0!
NCA~T,D,J!5~F f2E0!

NCAS T

TK
CSD , ~C8!
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with the Kondo temperature of the Coqblin-Schrieff
model2

TK
CS5DAN rJexp@21/rJ#. ~C9!

For other observables, one has to coupleH to suitable exter-
nal fields. In particular, the Kondo resonance is reprodu
qualitatively correctly.

3. Skeleton diagrams of higher order

The two limitsD→` and e f→2` arenot interchange-
able, as can be seen by comparing the Kondo temperatur
Eqs. ~14! and ~C9!. Skeleton diagrams of higher order tha
two are relevant inY. The reason for that is the asymptot
behavior ofR0 which goes tooneat the cutoff. If the dia-
gram in Fig. 3 is logarithmically differentiated with respe
to D, the contribution of the second conduction-electron l
does not vanish for largeD. In particular it is not possible to
prove now that the energy scale~C9! is the exact one by
considering only skeleton diagrams of second order. In f
the NCA still predicts forN51 a low-energy scale~C9!
although there is none.

4. NCA at zero temperature

The derivations are as in Appendix B. The inverse of
pseudopropagatorP is defined to beY0512P. The NCA
differential equations are, up to terms}1/D,

]

]v
Y05

2rJ

N (
m

Ym
21~v!, ~C10!
s

d

of

e

t,

e

]

]v
Ym52~12rJ/N!2

rJ

N
Y0

21~v!.

With Ym5Ȳm1mgmBh and D̃5D(12rJD/N) the NCA
differential equations have, up to terms of order 1/D, the
integral

Y0S 1rJ2
1

ND1
1

N
lnY05

1

N(
m

lnU Ȳm1mgmBh

D̃
U

1S 1rJ2
1

ND . ~C11!

The ground-state energy is expressible as

E052A1E
2A

E0
dv,

where A is a still arbitrary constant. IfJ!A!D and
limD→`A5`, the integral~C11! can be used as in Appendi
B to yield, in the universal limit of smallrJ,

xNCA~0!5
1

3
m j
2 1

TK
CS

G~121/N!

AN e
. ~C12!

which is up toO(1/N2) identical2 to the result of Rasul and
Hewson, whereG(121/N) is replaced by 1/G(111/N).
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