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Diagrammatic method for investigating universal behavior of impurity systems
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The universal behavior of magnetic impurities in a metal is proved with the help of skeleton diagrams. The
energy scales are derived from the structure of the skeleton diagrams. A minimal set of skeleton diagrams is
sorted out that scales exactly. For example, the noncrossing approxirfid@#x) for the Anderson impurity
model can describe the crossover phenomenon. The universal Wilson-number is calculated within the NCA.
The method allows for an assessment of various approximations for impurity Hamiltonians.
[S0163-18297)06520-X

I. INTRODUCTION This method amounts to summing a certain subclass of dia-
grams, with naked propagators. However, the procedure
Magnetic impurities in metals show a universal behaviororeaks down when perturbation theory fails.
at low energies. The Hamiltonian of such systems consists ~For the nonperturbative regiodressedpropagators are
of at least one conduction band of widbh to which the hecessary. This requires the use of skeleton diagrams, other-
impurity couples At temperaturekgT<D, the scaled ob- Wise the definition of a self-energy itself would become am-

servable is independent of details of the host system such &4guous. However, the scaling of the dressed propagators is
its band structure. unknown, precisely because beforehand the Dyson equation

: L ; Id have to be solved.
A long standing question in the physics of such systemé’"Ou ; T e . e
is: How can the observed universal behavior directly be es- In '.[h's loap_er,_t?w <j]c|ff|culj[y IS ove(;comelgdby uuhzmgﬂ;che
tablished from the original model Hamiltonian such as thevar'at'On&1 lpr|n0|pt_a of Luttinger and WardKuramoto, :
And ) it 4 toeth ith bl and Baynmt! by which any observable can be expressed in
nderson-impurity model,together with a reasonanlé accu- yo g of skeleton diagrams. This is exemplified at the

rate description of observables? Hitherto the original Ham“'Anderson—impurity Hamiltonian.

tonian has been replaced by another one which is more ac- |¢ yns out that the skeleton diagrams of the second order

cessible. _ _ are already sufficient to calculate the exact energy scales.
(a) Within the Bethe ansatz the impurity part of the sys-Thjs proves a universal behavior for this model. The second-

tem’s thermodynamics can be derived. However, the originagrder skeleton diagrams are therefore the minimal class of

model has to be replaced by one with linear dispersion. Theliagrams which have to be summed, in order to describe the

spectrum of eigenvalues is cut off@t, which is in general crossover.

notidentical with the bandwidt® of the metallic host in the

original model* A relation betweerD andD’ has so far Il. HAMILTONIAN AND DIAGRAM TECHNIQUE

been established only for the Anderson impurity model.
(b) Within the numerical renormalization grodghe im-

purity is coupled to a half-infinite chain with hopping matrix

As the standard model describing magnetic impurities in
metals, the Anderson-impurity Hamiltonfais considered,
with a half-filled conduction band of constant density of

elements vanishing a4 "",n=1,2,...,A>1. In the limit T ; . o

' et statesp and infinite Coulomb repulsion at the impurity site:
of A=1 one would recover the original model. However, the » P purtty
numerical results have to be extrapolated to that limit be- H=H.+H;+Hq,

cause the length of the chain to be diagonalized numerically
would eventually become too largé.

_ +
Hence both methods do not prove that the observables of Hc_lspgD,m €pCpmCpm>
the original model behave universally. On the other hand, (1)
there are the diagrammatic approaches to the impurity
problem’ They allow us to construct approximations_for all Hi= EfE £ s
observables of the original model. The Dyson equation m
R Y(2)=Ry Y(2)-3(z \4
(2)=Ry (2)=2(2) Hl:J_NPZm(c;mbmerH.c.).

is invariant under a certain rescaling of the propagafors ) o

and R,, self-energiesS, and coupling constants. With the Cpm Creates a conduction electron with internal quantum
help of the diagrammatic renormalization group, perturbativelumberm=1...N, momentump, and energye, which is
results for the propagators, self-energies, and vertex parts agst off at +D. |m)=f |vac) denotes a magnetic configura-
then fitted to the Dyson equation. In that way, scaling lawsion of the impurity and0)=b*|vac) the nonmagnetic one,
for the propagators result, from which the universal behaviotheir energy-difference being; . f,. is a fermionic operator

in the perturbative high-energy regime of the m8dellows.  andb* the Coleman bosotf. F.=f b creates an electron
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at the impurity site. Double occupancy at the impurity site is
suppressed by imposing the constraigt-n;=1. The im-

purity hybridization with the conduction band is proportional m m
to V. The Boltzmann constant is set to unity, so that tem- m
perature is measured in units of energy. - - -

In order to simplify the subsequent derivations, the con-
duction band of mode(l) is assumed to have a constant
density of statep with a sharp cutoff at energiesD, as the _ )
other approaches to scaling #4358 Universal behavior FIG. 1. Vertices for the Anderson model. A dashed line repre-
should not depend on this assumptlo’dlm. Sec. VII it will be §ents the naked propagator of the ogcupiécbonfiguration with
shown that the energy scales of the system indeed do ndttemal quantum numbem. A wavy line represents the naked
change as long as the density of states is finite at the FerrffoPagator of the unoccupield configuration. A solid line repre-
energy, and is sufficiently structureless to have only one er]:§ents the propagator of a conduction electron with internal quantum
ergy S)gaIeD y y numberm. Every diagram has a spine of alternating wavy and

The principal object of concern is the resolvent dashed impurity propagators. The conduction-electron propagators
. . carry no self-energyRef. 14.
R{(2)=(Q(2))., whereQ is defined as

_ T saddle point with respect to variations of tRg,, the func-
Q(2)=z-Lc—HiHy). tional Y equalsZ;, and the Dyson equation holds as a self-
Here the superoperatdy, acts on an operatof of the Hil-  consistency equatidh
bert space ak X=[H,X], and{( ). indicates the thermo-
dynamic average with respecthh, . The propagators for the Ri(z) 1=z—H;—3(2). 4

occupied and unoccupied ionic configurations are ) ) N ) )
For the impurity part of the partition function, the functional

Rimn(2): =(m|R¢(z)|m), is given by
Ro(2):=(0[R¢(2)[0).

dz 1
Y=8Tr 35 me“”z[ > (1— ﬁ)2§”>(z)Rf(z)
With the help of the identit}?

n

e BH— g BllctHi+H)g=BH ) I

z— Hf—; s"(2)

] . (5)

the impurity partZ; of the partition function can then be
represented as a line integral, the path of integration enciHere 2?“) denotes allnth-order self-energy diagrams of
cling all poles of the integrand: R¢, expressed in terms of skeleton diagrams. Skeleton dia-
grams are diagrams where all self-energy insertions have
been removed. Hence a skeleton diagram becomes a func-
tional of the dressed propagators.

The variational principle can be interpreted in the follow-
The well-known diagrammatic technigidefollows if Q is ing fashion: IfY depends on some paramelesuch as the

expanded in a geometric series\t thenL acting on the  hypyridization then, at the saddle point, it depends\oonly
conduction-electron operators Hy is evaluated to give the explicitly, and not implicitly via the propagatdfs

energy denominators

TreTree™ A

Z;:= =T ff 92 g 3
f-— Trce—BHc =11 27T|e f(z)' ()

dy Y . 8Y dRom Y
d\  IN  SRym AN N

Lc(c;mcqn )= (e €qt - ~)(c;,rmcqn ),

and finally Wick’s theorem applied to evaluate the thermo-
dynamic average with respectltt. . This can be casted in a
diagrammatic language. The naked propagators and vertices

are shown in Fig. 1. Because the impurity site can alterna- %_ _ i Tr %Ee—ﬁzg EE(“)(Z)R (2)

tively be empty or singly occupied, every diagram has a dn o da BT 2i ~ nf f

spine of alternatindp and f propagators. Consequently, all

diagrams where a conduction-electron propagator would _i Tr fﬁﬁe_ﬁzR (2)H

have a self-energy are exclud€hecause they do not fulfill ax BT Pon Reti

the constrainhy,+n¢=1. Alternative approaches where this

constraint is not exactly enforced will be discussed in Secwhere thex dependence dR; can be discarded.

VIII. In order to study the dependence &f on a parameter

Within the variational principlé;** a functionalY of the  \, it therefore suffices to consider all skeleton diagrams of
dressed one-particle propagators is defined. Because thiee typeS (R y,. A skeleton diagram foE 'Ry, i.e., of
conduction-electron propagators carry no self-energy, theecond order, is shown in Fig. 2.
variational principle has been adapted to the present dia- Approximations fulfilling the variational principle can be
grammatic techniqu8 such thatY becomes a functional of generated by using a subclass, a so-called family of skeleton-
the dressed one-particle impurity-propagators only. At thediagrams-®> which contains with each skeleton diagram for

Explicitly, from Eq. (5) it follows at the saddle point that
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Te, respectively. The variational principle remains unaf-
fected.Y depends now explicitly off via the prefacto” of

a skeleton diagram ofrzh order, the ternir z in the loga-
rithm, and the integration boundaries as in Ej).change to

= } +D/T. Therefore
2 1 2
d 1 dz g2

Zf Ff_Tﬂ_TFf :ETrf 2_77ie Ef(Z)Rf(Z)

FIG. 2. Skeleton diagram f& ?)(R(2))Ro(2). The last vertex J dz
can be identified with the first because of the trace ovelf then- +Z;D—F;+Tr;H; § __e—ﬁZRf(z)_

figurations in Eq.(5). The double dashed and double wavy lines dD 2mi
represent dressed propagators. (9)

35V Rom all others with cyclic permuted vertices as well. For Inserting Eq.(7) and Eq.(8) into Eq.(9) yields

example, all skeleton diagrams of a given ordéfquoym P P P

form such a family. Fi=|\T—= —2+ef—+D—>Ff. (10)
For instance, if only skeleton diagrams of second al apV J€s JdD

order are kept in Eq(5), this amounts to summing all Thjs equation expresses the scalingFefwith respect to the

d@grams W|th_ bare propggators and noncrossing Condu%'nergy scale®, ¢, andpV?:

tion-electron lines, and is called the NCA.The self-

+pV?

energies of the NCAZP(2)=3@)[Ry(2)] and =P)(z) T
—S@[Ry(2), ... Ry(2)], are then { denotes the Fermi F(T.p Ve, D)=TH 2. 5 )
function)

This is henceforth called the first scaling equation.

2
25?(2)=ng f(€)Ro(z+ €)de,
D

N J_ B. Second scaling equation
(6) The central issue of this work is to prove and describe the
V2, N 5 universal behavior of impurity systems. To show the univer-
@ P I sal behavior foF;, the functionalY is examined for large
20(2) N mzzl f,Df(e) Rm(z+ €)de. but finite D; that is, whenD becomes larger than all other

energy scales of the system, the so-called universal fimit.
Y depends explicitly on the cutoB only via the integra-

Bdz tion boundariegtD of the integration over the conduction-
Y@= \(ﬁTeﬁZ{ 132(2)Ry(2)+ 1D, 3D (2)Rp(2) electron energies, as can be seen in @y for the second-

m m order skeleton diagrams.
At first only those second-order self-energies are kept in
+In[z—2§)2)(z)]+2 In[z— e— 32 (2)]}. Y. With the help of the spectral densitipg,, of Ry, one
m has

The functionalY ) has then the form

To construct a variational principle for other observables, the

e - - J vZp &
Hamiltonian has to be coupled to external fields suitably D_,:(z):_p Je—ﬁwdw Df(uD o
chosen'® This will be discussed in Sec. V. DT NZ mE—ll (uD)lpml @)
u==
lll. ENERGY SCALES X RRy(w+ uD)+ po(w) RRy(w+ uD)],
A. First scaling equation (1)

Y as defined in Eq(5) depends explicitly ore; only via ~ wherefRR,,, denotes the real part &,,,. In the universal
the termH ;= &2 f - f.,. Consequently, one has, for the im- limit, in particular T/D—0, so that only the terms
purity partF;=—T InZ; of the free energy? «f(—D)=1 survive. Furthermore, in this limit the weighted
spectral densitiesa*’;“’povm(w)/zf contribute significantly
only for frequencies less than the impurity part of the
ground-state energf,<0, because”FozZ; tends to 1 for
low temperatures. From perturbation theory it folldfvthat
Y depends eXp|ICIt|y orv VialO the prefactoern of the efﬁ“’pf(w)/zf vanishes asymptotica”y as 0]3 for |a|’ge,
2nth order self-energy (2", negativew. Hence it contributes significantly to the integral

in Eq. (112) only for

dz g2
ZfEf&EfFf: Terf Z_ﬂe Rf(Z). (7)

dz
ZipV2a,v2F =3 Try fﬁme‘ﬁzEf(z)Rf(z). tS) — JD=w=E,.

To determine thd dependence, the internal integration vari- In this frequency interval)iR;(w—D) can be replaced by
ablesz and e as in Egs.(5) and(6) are replaced bffz and its bare counterpart 1d(—H;—D)~(—1)/D:
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FIG. 3. Skeleton diagram of order 6 farR,.

-V2p

b -
T NZ &

dD

f e P’dwpm(®)+ po(®)].

Together with Eq(7), the following scaling relation is ob-
tained:

J J
D——F{?=pV3(1- 1/N)a—6F§2)— pV2. (12
f

aD
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that the NCA preserves thexactenergy scales of the sys-
tem. Because the NCA is exact up to ordefsand 1N, an
inclusion of families of skeleton diagrams of higher order in
Eq. (13) will slightly changeg but not the energy scaleand
consequently will not alter the approximation qualitatively.
Such an extension of the NCA has been perforiieaind
within the errors of the numerical calculation the scaling law
(13) as well as a slight change in the respective function
have been verified.

There holds an analogy to the usual diagrammatic renor-
malization group, as described Sec. I. It turns out that from a
certain order in perturbation theory on, the energy scales
obtained by that method do not change any more in the uni-
versal limit, while, for an observable the form of its respec-
tive functiong can still change. However, the point is that
this scheme can only be used for high temperatures
T>Tyg, below which perturbation theory breaks down.
Hence a necessary condition for a diagrammatic technique to
describe the universal behavior of impurity systems is that it
includes families of skeleton diagramiscluding those of
second order. This result can straightforwardly be extended

This is called henceforth the second scaling equation. Next 0 the case of finite magnetic fields.

is shown that in the universal limit all families of higher-

order skeleton diagrams of are irrelevant by which is

meant here that their contribution to the logarithmic deriva-

tive in Eq. (12) vanishes a©(1/D). For the proof see Ap-

pendix A, the families of skeleton diagrams being needed t

enforce the variational principle.

IV. SCALING WITH MAGNETIC FIELD

The influence of a magnetic fieldon the host metal is of
orderh/D<1/D, and can be neglected. Hence, to the Hamil-

Qonian of Eq.(1), only

The result can be made plausible by casting it into the

language of diagrams, as in Fig. 2. Differentiating logarith-

mically with respect toD means removing one curved

Hi—Hi+gugh> m £ f, (15)
m

conduction-electron line and replacing the internal propagais added, wherg denotes they factor of thef electron, and

tor by its value at the cutoffc1/D. Therefore this diagram
contributes<D/D to the logarithmic derivative.

ug is the Bohr magneton. The functiondl will explicitly
depend orh only via the new term irH; . Consequently the

For a diagram of higher order than two such as in Fig. 3first scaling equatiori10) changes to

there lie undereach conduction-electron line at least three
propagators, because otherwise this diagram would have a
self-energy insertion. Hence its contribution to the logarith-
mic derivative is«D/D3, and can be neglected for large

D.

Equation(12) therefore holds as well for thexact i . It
describes the Haldane scaltfidor the differenceF;—Ey;
that is, it depends o® ande; only via

(Ff_Eo)(T,V,p,Ef vD):(Ff_EO)(Tvv!p!E’fk)u

€f =€+ (1—1IN)pV2nD/(pV?).

By inserting this into Eq.(10),
— ;> pV? the scaling law

in the magnetic limit
TT
Ff_EO:Tg(T!VIEfaDup):Tg F,T_ (13)
K

follows, with the quantity” = pV2/N and (up to a numeri-
cal facto) the Kondo temperatufe

Tx=D NpV?Dexd e /pV?]. (14)

T—F+ VZ—Z& Ft e F+ gugh——
P Ef& gug (3’9 h
]
+D—<F.

D (16)

The second scaling equatigfi2) remains unaffected. The
scaling law for the magnetizatidd (h) = — (d/oh)F; there-
fore reads

TThh)

M(T,V,e&,D,p,h)= M(F T T

17

V. PROOF OF UNIVERSALITY

To obtain the scaling of any observable, the Hamiltonian
H has to be coupled to suitable external fields. However,
only the skeleton diagram of Fig. 2 is relevant for laige
Analogous scaling equations such as HA$§) and(13) can
thus be derived for any other observable, hence proving uni-
versality for the Anderson model.

As an example, take the propagatot* as a function of

This proves the universal behavior for the free energy of thémaginary timer,

Anderson Hamiltonian, as well as that the energy schles

and Tk are the exact ones. In particular, it has been shown

Gim(7)=—(TFu(1)Fn(0)). (18)
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Here T, is the time-ordering operator, arf{d) denotes the
thermodynamic average with respectHo With the help of

Q(2) one can reproduce the well-known integral representa-
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(21)

h
M(V,ef,D,p,h)=M(—
Tk

tion for G, which coincides for fermionic Matsubara fre- holds, which holds as well for the NCA, as shown above. For

quencies with the Fourier transform 6,,(7),*°

dz
Gin()= § &85 2 ((0IQEI0NmIQz+ w)lm)e.

To obtain a variational functional fd&;,,, H is coupled to
an auxiliary fermionic field¥:

H+oW¥ W+ VpN(¥ b f,+H.c).

The f propagator is obtained from all diagrams of second

order in \ that is, after removing thel' propagator® A
functional Yy can be constructed analogously to Eg), to
give, at the saddle point,

o T TrTrye A
v Tr Trge AHc Hy) -

G; follows as

Fy=pV?f(0)Gim(w).
A=0

X 19
The scaling equations fd¥y , and via Eq.(19) for G;, can

be established in the same manner asHpr In particular,
Eq. (10) now reads

Ta+ c?+ Jd
T %

J
Z +D-—+ -0.
Jo e Db 1)6““ 0

(20

In the universal limit of largeD, again only theskeleton

+ 2

diagrams of second ordare relevant, and the analog to Eq

(12) holds forG¢, too:

low magnetic fields, the low-field energy scalg can be
fixed unambiguously by the static magnetic susceptibility at
vanishing magnetic fiefd

X(0)=3ufIT.
With the help of the analytical NCA results of Appendix B,
an analytical expression foiT| is obtained:

TYA=TIT(1-1N), (22

with I" being the gamma function. The result coincides up to
order 1N with the resultT =T¢I'(1+1/N), which is be-
lieved to be exadt.

For high magnetic fieldgugh>Ty, the NCA repro-
duces the perturbation theory up V4. With the definitions
N=2j+1 andJ=V?|e], for the impurity part of the mag-
netization the expansion

M(h) _ pd (pD)? gush Ve
jgue N N "pVe/D
J 2 2 N—-1
LT 2 s o)

N [N(N=Dm=1

is obtained. The exact scalin@1) of the NCA renders it
possible to reexpress in the perturbation expandimnterms
of h/T¢x. The high-field energy scaleTy is fixed
unambiguousl§ by requiring that terms: 1/In¥gugh/T,] be
absent in the resulting asymptotic expansion. One arrives at
the well-known asymptotic renormalization-group result for

' the magnetization in high magnetic fields,

P P gush
2 InIn
D —=Gin=pV(1—1IN)—Gs,,. M (h) 1 1 1 Ty
oD (?Ef - =1—— -
o ) 19uB N gugh N gugh
In the magnetic limit— e;>T", whereI'> T, it follows that In T, In T
the Abrikosov-Suhl resonance and the impurity part of the
resistivity computed within the NCA scale with the exact gugh
Kondo temperature. This was numerically observed in Ref. In In "
20. There, the energy scale was determined as the maximum +0 auh (23
value of the spectral density &,(w) in the magnetic limit |n39£
of the Anderson model, andssumedo be proportional to Th
Tk . Here this has been proved. andT,, is given by
VI. DESCRIPTION OF CROSSOVER: WILSON NUMBER N—-1
- . . Ty=Tkexg —IN— ——— min(m)|. (24
Within this scaling method the crossover phenoménon HooK N(N_l)mE:l (m) 4

can now be described entirely within a diagrammatic ap- i ]
proach. Even for the skeleton diagrams of second order, ahh® Wilson numbetV=Ty /T, characterizes the crossover
analytical solution of the self-consistency equations does ndfom the high-field region, where the impurity reacts as an
seem possible for finite temperature. However, for zero tem@Symptotically free magnetic moment, to the low-energy re-
perature the well-known expressions for the ground-state erfion where the impurity is screened. Hence the Wilson num-
ergy of the NCA®? for the Anderson model can be evalu- Per coincides with the exact result up to ordeN1/

ated analytically(see Appendix Bin the magnetic limit. In
this limit, it follows from Eq.(17) that for zero temperature
the scaling law

WN CA 1

_ _ 2
W - TA=TNT(ILDN) LT OANY.

(29
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By a Schrieffer-Wolff transformatiof{. this result can be o\’
extended to the Cogblin-Schrieffer modeke Appendix © plw)=(1+ f);fa ,
VIl. HOW MUCH DOES SCALING DEPEND (26)
ON BAND STRUCTURE? o
The universal behavior of impurity models like the JiDP(w)deZD?

Anderson model should not depend on details of the host's

density of states as long as its band has a finite density ofyis mogifies the scaling lawl2) accordingly: Every skel-
states at the Fermi energyThis was realized for modéll) ton diagram depends explicitly db via the integration

byfssumlnr? a cr?nstant denﬁlty of statﬁs V‘gtg ahsharp' cuto oundaries, which sorts out the NCA diagrams as the only
at +D, as the other approaches to scalingd8There itis  gjoyant diagrams. In addition, every skeleton diagram has

assumed that the energy scales_of _th_e system do not change factord " per loop. Hence the second scaling equation
as long as the density of states is finite at the Fermi energy,

and scales ap(e)=p(e/D), which means that the band is
sufficient structureless to have only one energy sEale 5 5
Here this is proved: The first scaling equatid) can be D F.=(1+ — 2 2
—Fi=(1+1)(1-1N)pV?—F;—rpV?—
taken over because of ap M= (L )P ge P dpV?

Fs

d d —(1+r)pV2. 2
T—=p(€T/D)=—D—=p(€T/D). (1+0p @

_ . The first scaling equation remains unchanged. In the limit of
For the second scaling equati(t), the term largeN, this scaling equation is consistent with the results of

Fradkin?®
Y: =V2f p(elD)Ay(w+e)f(e)de

1
. . . . . . Tk=D|1——=] . 2
as in Eq.(A2) in Appendix A is examined, which represents K ( (1+r)J9 @8
an integration over a conduction-electron lie, stands for
the real part of them propagators which lie under this
conduction-electron line. Differentiating logarithmically with ~ VIIl. ALTERNATIVE DIAGRAMMATIC METHODS

respect toD and substitutings: =uD yields What conclusions can be drawn from this theory as to the

reliability of other diagrammatic approaches, especially their

D%Y=(—D)fw up’ (W) f(UD)A,(w+uD) du. ability to describe the crossover?
The integrand can be neglected outside the interval A. NCA and the 1/N expansion

—VD=w=0 as in Sec. lliB. Ifp is sufficiently smooth | e system had\ internal degrees of freedom and ex-
around the Fermi energy, the integrand contributes signifippiie |ocal Fermi-liquid behavior, the I/ expansion be-

cantly only for _,15“51/‘/5; Therefore one can replace comes exact in the limit of larghl.>* Contrary to common
Ay(w+uD) Dby its asymptotic value 1£uD)", and the  pejief225the 1N expansion isiot suited for the perturbative
Fermi function by itsT=0 values up to terms of order (egime of high temperatures or magnetic fields because it

1/D.Y scales as fails to reproduce the diagrammatic renormalization-group
results. That is so because the Kondo temperature itself is a
DiYoch—m_ function of 1N. Hence it is not possible to describe the
D crossoverwithin a finite-order 1IN expansion.

The NCA was considered so far as a “self-consistent”
1/N expansiort*2° However, this does not explain why the
NCA values for the static magnetic susceptibility relative to

9 0 their T=0 value agree so well with the respective
D(?—DYocvzf p' (U)du=V?3p(0). renormalization-group result§,even forN=2. In view of
_°° Eq. (17), this now becomes clear.
Thus the second scaling equation is still valid, and depends
on the density of states only through its value at the Fermi B. Higher order skeleton diagrams
energy.

Only the skeleton diagrams of second order=(1) are rel-
evant,

One may ask whether it is possible to improve the NCA
substantially by incorporating i skeleton diagrams of
higher order. However, one has to be aware that then the

If the density of states of the host has still one energynumerical problems in solving the self-consistency equations
scaleD, but the density at the Fermi surface vanishes accordeecome formidablé® To date one has not succeeded to cal-
ing to a power law, this models magnetic impurities inculate x(0), and hence the Wilson number up to order
superconductofd with gap nodes: 1/N? by this diagrammatic approach.

Magnetic impurity in a superconductor
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C. Non-self-consistent methods Dyson equations hold. By rearranging the internal summa-
One way of incorporating higher-order skeleton diagramdion frequencies, one has the following identity:
in a theory for impurity systems was put forward by Sdso

in his T-matrix approach. The impurity propagatd®s were > Su(iog)Ry(io,) = E S em(i@n) Rem(i @)
calculated within the NCA. For an observable, these NCA m,n

propagators were inserted into the respective skeleton dia-

grams of orders higher than _2. Such an app_roa_ch cannot be :(_1)2 S o(ivp)Ro(ivp),
derived from a variational principal. Hence it will not cor- p
rectly describe the universal behavior of the impurity. (32)
D. Coleman’s diagram technique the minus sign in the second line coming from the additional

fermion loop!? B

As in Luttinger’s original approachpne shows thaY is
equal to the difference of the interacting and noninteracting
free energyF:

In Coleman’s approachto the Hamiltonian(1), the con-
straintn;+n,=1 is enforced by addiny(n;+n,) to H and
sending\ to infinity; consequentlyH; in Eq. (1) changes to

Hi=(e+N) > fifn+Abh. (29) Y=F(V)—F(0)=:AF. (33)

) ) ) ] The Hilbert space is a sum of eigenspaces of the number
The scaling equation&l0) and (12) are rederived with the operatom==3.f*f, +b*b. The partition function can then
help of this diagram technique, and then Coleman’s techb m

nigue is used to discuss the conserving slave-boson approaﬁh

0 describes the noninteracting system. In Coleman’s
by Krohaet al?® g sy

. . original approach, the physical subspacel is projected
Now that the unperturbed pak.+H; is a one-particle '?by PP Phy P pro)
Hamiltonian, the standard Matsubara-perturbation theory can

be developed. The naked propagators from which the dia- P
gram technique is built are given by lim

= lim Zf()\):Zf. (34)

——y ——
Nyl T N

RO (iwy)=1iw,— €—\),
m (lon) =10y~ €=0) The limit is approached smoothly so that

Ry (iwn)=1(iv,—N\), (30)

J
. Juinwﬁzf(x)=o. (35)
de.

D
(0)
RO wy) = pf o
1. First scaling equation

Hereiw,=2m(n+1/2)T andiv,=27nT are the fermionic
and bosonic Matsubara frequencies, respectively. The vertj
ces are displayed in Fig. 1. Again, a dashed line denotes
R a wavy lineR{”, and a solid line represent the propa- ) AF_
gator of a conduction eIectrdﬁ(c?%. This propagator already pV V2 T
contains the sum over all momenta because of the local in- p mmo
teraction with the impurity.

Analogously to Sec. IllIA, the explicit derivatives with
Fespect topV?2, €, and\ are

[SW(iwy)Ru(iwn)], (36

Skeleton diagrams can be defined as above as containing 7 A_F: R (i ;) (37)
. . . . . . m n/»
no self-energy insertions. The variational principle follows des T mmn
with the help of the functional
~ Jd AF . )
¥ 2\ | | T =2 Ralio) =2 Ro(ivg).  (38)
== 2 | 3= |2 (0 Ryliwn) + 2 [0y~ e mn P
T m,n,v v mn ~
) _ To determine th@ dependence oY, one has to bear in mind
N =Zp(iog)—In(fw,—€—N)] that each Matsubara frequency is proportional téhat each
summation over Matsubara frequencies gives a fatt@nd
+2 {IN(RPT -3 (iwy)—IN[R] Y} that in a diagram of order there arev/2 such summations.

Furthermore R(2) depends of and D only via D/T. To-
gether with Eqs(32), (36), (37), and(398), it follows that

INGivp—X\—So(ivp))— X Ini vp—x)}.
p

A 4D~ |AF
(31 Py

- 2
aT e, apVZ " N oN
The factor 3- 2/v arises because every tef@f")R contains (39)

3v/2 propagators. It is straightforward to show thdtis By using Eqs(34) and(35), the analog of the scaling equa-
stationary with respect to variations of the propagators if thdion (10) follows:

e represented as a sum over these subspaces. The subspace
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J J J J J
_ I 2 N = — _F= =
, , This includes unphysical states. Consequently, the conduc-
2. Second scaling equation tion electrons acquire a self-energy. The first scaling equa-
The functionalY depends on the cutofd only via the  tion (39) now reads
integration boundaries D in R{%). Hence 9 P , d P
AF= Tﬁ'ﬁ‘ff&—ef'i‘pv (9pV2+D5 AF
DiA_FZE [R(O)(iw )](—2) b + b
oD T mn cm n |(Dn+D |(1)n_D J
—H\_)\XF(O)' (46)

X[Rem(i@n) — RO (i wp)]. 41

[Ren(1en) = Rem(1@n)] 4y In order to obtain anybservable AF has to be differenti-

The propagator differenc®.,,— Ré?% can be expanded as  ated once more with respect to an external field. Hence this

equation is the analog to E¢LO).

Y:=(Rem— ROVROIT2 =3+ S (RIS - - - The second scaling equation can be derived from(&4).
(42 in the limit of largeD. First it is summed oves. Only the
term «f(oD) survives, because the propagat&shave a
spectral weight centered aroundfiaite value of A, and
S,limp_.D/(cD—x+y)=0. With Egs. (37), (38), and

In either case discussed below, it will turn out that only the
second-order term

V2pT (45), one has
S én(ion)= —2 Ru(iontivp)Rolivy) 2 AF® \2pp
D25 = ES [ [ ax dy puonoty)
is relevant in the universal limit of large. The propagators m
Rom have the spectral decomposition X[F(X+N)+Db(y+\)]
om(2)= | =5 Pom(X), (43 =(1-1N)V Poe T —V2ppB.

and are centeréfl around\. After performing Matsubara More generally, becausg, limp_...D/(iw,+oD)=0 in ev-
summations, this gives ery propagator of Eq41) the Matsubara frequendw, can
be replaced byoD with an overall factorf(aD). In the
5 AF® V2pD > dx d magnetic limit one haa=|e| to enforcé® both ni~1 and
D T N 'Bm,(,:ﬂ X dy pm(X)po(y) n,~0. Therefore higher-order terms in E(2) are irrel-
evant, because they are eitl&1/D), or of higher order in
[f(x+N)+b(y+N)][f(oD)—f(x~y)] e PN
x oD —x+y ' Hence the approximation also preserves the exact scaling
(44) laws. This explains why their results for tfigoropagator are
so similar to the respective NCA resultsMoreover, one
with f andb the Fermi and Bose functions, respectively. Thecan now predict that taking into account more skeleton dia-
coefficient ofe”#* in Eq. (44) for largeD, when combined grams will not alter the picture qualitatively.
with Egs. (37) and (38), yields, because of Eq34), the
desired scaling equatiof.3). IX. SUMMARY

In Eq. (42) higher-order terms i are of higher order in The Anderson-impurity model shows, in a nutshell, the
e”#*, and vanish relatively td., in the limit of largeX. By ifficulties when dealing with strong correlations. One en-
the same ayguments as given in Sec. llI B, one can show thabnters the same problems as in high-energy physics: the
skeleton diagrams of higher order Mcn are irrelevant:  herryrhation theory of observables at enerdies the cou-
Higher-order skeleton diagrams in E@2) contain at least jing constant diverges logarithmicallyJnD/T. The limit of
three impurity propagators which hav;z to be evaluated &fqrq energyr in solid-state physics corresponds to the limit
lo,==D to make a contributiorr1/D*, or they are of ot jnfinite cutoff D in high-energy physics. If the Hamil-

i ine— A\ ; ) .
higher order ine”"". tonian can be shown to be renormalizable, it means that there
are finitely many energy scales in the system, at least in the

E. Conserving slave-boson approach perturbative region. If there is but one scale, the system can

Kroha et al?® developed, for the Anderson model, a P€ described by a “running” coupling constad(D), ex-
method quite similar to the NCA. It is constructed from skel- Préssed with the help of thg function
eton diagrams within Coleman’s slave-boson technique. d J(D)
Kroha et al, however, imposed the constraint only in the ﬁ(J)zm. (47)
average{n¢+ny)y=1. Their method then does not violate
the gauge symmetries of the model like the usual slaveReducing the cutofD of the system does not change its
boson mean-field approaéfiThe boundary condition for the physics as long as the effective couplid(D) is changed
free energy is according to Eq.47), to keep the energy scale constant.
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R,

(k)
VAS wk=7\k—; €j .

However, outside the energy regime where the perturbatioonder thejth conduction-electron line, as in Fig. 3, the num-
tion exists at all. tive skeleton diagram has the spectral decomposition
In this paper, the variational functional of Luttinger and () (i
B function, or, in other words, the exact energy scales of an z+ - fj) = fwd)\ipi()\i)/ z+; fj_hi)-
impurity system were determined. It turned out that neglect-
behavior, and that families of higher-order skeleton diagram&om the real poles,
do not alter the energy scales.
renormalization-group approach. Within that approach, the
fixed points of a flow of effective Hamiltonians is studied
The crossover is inaccessible by that method. " ()
In comparison to that, the skeleton diagrams can describe RR, m(w):f Pom dx,
the_ory cannot predict the nature of the fixed-point Hamil-\\hare the Cauchy-principal value of the integral has to be
tonian. taken. Hence th&th pole of the line integrals gives

theory is valid it has never been shown that sugh func-  bers indicating thes;. Theith propagatoiR; of the respec-
Ward was used to prove both tlegistenceand form of the
ing the vertex correction@€NCA) suffices to prove universal For that reason, the line integral gives only contributions
The method differs therefore from the conventional
perturbatively as the energy scales of the system are variefOr réalw, there holds the relation
the crossover very well, as was demonstrated. However, the —w @\
Further work on this subject will concentrate on the ques-

tion of whether the NCA can also be justified as a means to n D % @\
solve the effective impurity model onto which the infinite- H f(sj)de]f dw e_ﬁ(“’_Ei fj)pk(w)
dimensional versions of correlated electron systems can be j=1J-D ‘°°
mapped®3° In particular, one would like to learn whether n (k) (i)
the periodic Anderson Hamiltonian exhibits heavy fermion XH ERR((»—E €.+2 6.)

o SRRV e e ; _ i — €T €.
behavior in this limit, or if this is only an artifact of the i#k j i

approximations used. Also, it should be within the reach of,
the theory to decide which class of diagrams should be use
to describe the problem of two impurities in a metal.

ecause off(ej)eﬁfi:f(—ed?, one shifts those variables
€ to —¢;, which occur in=® but not in=:

n D © n
ACKNOWLEDGMENTS -H1 J’ Df(ej)de,f do e*ﬁ“’pk((u)l;[k RR,
j= — — I

()
w-i-}j: ej),
It was a pleasure to discuss the intricacies of diagram- h s () L th R si d
matic approaches with Tom Schork and Professor V. ZevinVN€r€ NOW=; runs over] If the propagatoiR; sits under
| would like to thank Professor P. Fulde and G. Zwicknaglthe jth conduction-electron line in the respective skeleton
for suggesting that | investigate the NCA, and for their con-diagram with cyclic permutated vertices. In such a diagram,

stant interest in the progress of this work. the propagatoR, is the outer one. -
Exactly hereone uses the fact that only whole families of

skeleton diagrams are considered: It was just shown that for
every familyF of 2nth-order skeleton diagrams their contri-
bution to the line integral in Eq5) is

The proof uses the spectral decomposition of the ionic dz
propagatorsR; . Every skeleton diagram depends explicitly Tr é—.e*ﬁzE?”’”(z)Rf(z)
on D only via the integration boundariesD coming from 2mi
integration over the conduction-electron lines, as shown in
Eq. (6). For a=0,... N, let YR, be such a skeleton =2nf do e Pox
diagram of Zth order withp closed fermion loops and
ionic propagators, :

APPENDIX A: IRRELEVANCE OF HIGHER-ORDER
SKELETON DIAGRAMS

pol @) REF" P (w)

+2 pm(@)REE P (w)

d
ﬁg —Zie‘ﬁzzif”)(zma(z)

2 Here, the operator Re is defined to replaserypropagator

in its argument by its real part. The facton 2rises because

2
_ p"V" %E every skeleton diagram occurs in a family Zmes. InY,

NP J 27i every skeleton diagram of ordem2depends explicitly on

D only via the integration boundariesD of its n integra-

() ; - . -
2+ e (A1) tions over the conduction-electron lines. Titie integral over
T ) a conduction-electron line can be written as

n D n
Xe_BZH f f(GJ)dE]H Ri
j=1 J-p =1

Here [de; denotes the integration over thith conduction- Ré?zn'”(a))z(f

n—-1 D
. 0 A def(e)Ay(w+€),
electron line. Furthermore, the terﬁf') in the argument of ) 1(w)f_o af(e)Az(wte)
R; indicates that the sum runs oveif the ith propagator sits (A2)
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where the parf\ ; of the respective diagram does not depend 0 — pV? .
on e ; that is, its ionic propagators are lying on the left or the T Ym= 1= Yo
right of theith conduction-electron line. The propagators of

part A, lie under theith conduction-electron line.[{" !
hints at the othen—1 integrations, weighted with the re-

spective Fermi functions. One differentiates with respect to

D by evaluating the integral over thth conduction-electron
line ¢ at its integration boundaries D,

n S [ doe Ppono)
o=*1

The inverse propagators have the asymptotic forms

Yn(w)~—ow+e€;,
(B3)

Yo(w)~—w

for large, negativaen. The NCA differential equations have,
up to terms of orde©(1/D), the integral

X[A1(@)Df(0D)Ay(w+0oD)]. Yo 1 |Yo| Yn 1 Yo+mough| €
ntearal ahted witha - AN v Tt N T v |
The integral is to be weighted withZ/ in order to yield the P p p m p p
D derivative of the respective contribution to the free energy.
Because?FoZ; goes for low temperatures to 1, the spectral . 1, , D
densitiesp,, are weighted witre?(Fo~ ). For low tempera- ef=et|1-g/pV Inpvz‘ (B4)

turesT<<D, this weighted spectral density contributes to the

integral only for frequenciee <E,. Because the other inte-
grations over conduction-electron linesare weighted with
Fermi functionsf(e;), respectively, for low temperatures
T<D the real part of a propagat@iR;(w—D +Zje;) con-
tributes inA,(w—D) only for frequencies

w—D=<Ey,—D<-D.

In this frequency interval one can repla®dR; by its naked
counterpart 1/p—H;—D), and hence can estimate its con-
tribution toF; from above as I. The termef(D) does not
contribute forT<D. It therefore can be estimated as

1 9
D=3

D -5 3" Re=D/D™.

Hence at least onm; must equal 1, otherwise the skeleton

diagram is irrelevant. However, such a diagram is a skeleton

only if it is of second order; otherwise it would have a self-
energy insertion. Equatiofl12) follows.
APPENDIX B: NCA AT ZERO TEMPERATURE

1. NCA differential equations
The NCA equation$6) together with the Dyson equations

(4) constitute a self-consistent system of equations whictFa-

have been solved numericaflyFor T=0 the NCA integral
equationg6) in a magnetic field are transformed into differ-

ential equations by substituting for the Fermi function a step

function?21814 by introducing the negative, inverse of the
propagatorsly

Yo(2) =2 (2) -2,
(B1)
Yu(2)=32(2)+ ¢—z,

andY,=Y,+mgugh for —j<m=j=(N—1)/2,

1

__Y —_—
Jo ° N ‘& Y,,+mgugh

(B2)

The value ofef follows by inserting Eq.(B3). Terms of
orderO(1/D) are neglected because the universal behavior
of the system is investigated. The integral of the NCA dif-
ferential equations contains the energy scal®$ and Ty
via®! In(T«/pV?)=€fIpV2. It is a nontrivial task to solve this
differential equations numerically in the universal, magnetic
limit

D*)OO’ ef—)—OO,
. €¢ V2
lim—-=0, —=J=const.

2. What is the ground-state energy of the NCA?
The ground-state energy of the NCA is defined as

ENCA_

NCA
0 - .

lim F;
T—0

(B5)

However, one has not yet succeeded in deriving an expres-
sion for EN* via that route, but merely solves the NCA
differential equation$B2). It has been conjecturé&tithat the
lowest, real zeros of the inverse propagatdgs, define the
NCA ground-state energy. This is nhow proved: Because of

(B5), Ey“* fulfills

. NCA 3
1= lim ef%o J e Be
T—0

pQCA(wH—% meA(w) dow.
Hence, forT=0, there exist thépositive spectral densities

~ NCA_

Pom (@) =e"F" = p5T w), (B6)
and therefore the spectral densitjgl," vanish forT=0 and
w< EB‘CA. This means that the inverse propagatdgg, are

real for those frequencies. In additiopys vanish for

w>Eo, becausepy/ remain finite. However, from the ex-
istence theorem for solutions of the differential equations
(B2), it follows that there exists at least one valwg such
that the following hold.

(1) Yom have a zero invy and become complex above, if

they are real for large, negative—which they are in view
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of Eq. (B3). Because it was just shown that tifg,, are real

for o<ENCA | they are real forw< wy as well.
0 0
NCA

(2) pYSA vanish fore< wo; thereforew,<E}

om
(3) pos vanish forw> wg; thereforew,=E§".

To sum up:wy is the lowest common zero fof,,, and

at the same time the NCA ground-state energy.

3. Parametrization of the NCA ground-state energy

Hence the well-known expression for the common zero ot]Z:

21,16,31,32
YO,m

function for positivex as

W(x)exdW(x)]=x  for x=0, (B7)
with asymptotic behavior
W(x)=x+o0(x?) for x—0",
Wexpx)]=x—In(x)+0(1l) for x—wo. (B8)

The integral(B4) can be solved fol, because botly, and
Y., are positive foro<EN“":

N
szvozw( Nexp[(vm— e;*)p—v2

(B9)

E)“" can now be parametrized with the help of

Eo jgugh dw —
E0=D+f dw=D+ﬁ —dY,,
-D Yn(—D) dYp,

the NCA differential equationéB2), and Eq.(B9) as

Eosz_ngBh_TKf

jgmgh/Tg

After differentiating with respect to the magnetic fidddthe

(D+ep)/ Ty

13 585
) D+ e¢
Eosz—lgﬂsh—f do
jgugh
1
x N w+mgugh|\’
B
1+W| Nex —€F)—>+ In————
F{(w ef)sz Em: pV? )
(B10)

or vanishing magnetic field there exists another parametri-
ation, becaus¥, can be written as a function of, with

can be used as the NCA ground-state energyy,q help of thew function:
and is parametrized in the following manner: Define Wie

R e

0 *N__ N
1+W exp{(aﬂref )pV2+N|an2
(B11)

The NCA ground-state energy fulfills Eq&.0) and (12), as
can be checked with the help of E@11). The ground-state
energy isnot a universal function because of the constant
term — pV? in Eq. (12). The ground-state energy up to order
1/N and 1D follows ag

E VAW D €5 1ID W(y) | xd

o= e TPV R ovE] | TN [T Wy P D X
+0(1/D)+0O(1/N?),

_ D X+€f B12

y_ szeX pv2 . ( )

4. An analytical expression for the static magnetic
susceptibility of the NCA

a. Universality

With the help of the Kondo temperatu(&4), Eq. (B10)
reads, in the magnetic limif /pV?—0 after the substitu-
tion /T =X,

1+W

(B13)

N ex;{z |n<x+

b. Small magnetic fields

integrand decays rapidly enough so that one can replace the Using the parametrizationB10), the magnetization
upper limit of integration bye. Hence the magnetization M (h) = — 9,,E, vanishes foh=0 because oE,,m=0. The

scales as a function df as

M) . (B14)

M(h,D,ef,V,N)=M(
Tk

second derivative gives the static magnetic susceptibility for
h=0. With the abbreviatiotf

%MJZN=(9MB)2% m?,

This shows explicitly that already the skeleton diagrams ofrom Eq. (B10) one has, after substitutin Yo/pVZ=W,
second order give the exact energy scale for the spin degreesing the NCA differential equations, and finally partially

of freedom.

integrating,
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(0)= Ly [P AW Y=8 fﬁ—e - (1— 1) (M(2)Rpn(2)
XT3 M A o Wiy [+ Wiy) BT m (Z)Fm
x |\ N Ty X 2 ) (n (n
Y A A 1-—|II'"(2)Ry(2) +1In| z— 2 20(2)
In the magnetic limity is very small forx<|ef | because of 1= M c2
—€f > pV?2, and above thatv>1 and the integrand is small. : zn: @] (€2

Therefore one can replace thé function by its argument,

and extend the integration to: The saddle-point property of is shown as by Bicker¥:

2. Skeleton diagrams of second order

1
NCA( () — —ty— LNt — il
XH0)= 3’“1 Tk j tdt= 3’“' Tk F(l 1N). The analog to the NCA is called the “self-consistent lad-
(B16)  der approximation.™ The NCA equations follow from Eq.
The exact result (6) after projecting as in the last paragrafh:

pJd
_1,1 1 n()=—15| ez
X(O)—gﬂjT—Km (B17) NJ 1-TI(z+e)

was obtained by fitting the results of the Bethe ansatz to
perturbation theory in the nonmagnetic limiBoth results
coincide up to order N, because the NCA contains all dia-
grams up to that order. This contradicts the claim of Kura-The first scaling equation follows as in Sec. Il A,
moto and Kojima? that the NCA would yield the exact result

H(z)=—%§ f_DDf(e)Rm(z—Fe)de. (C3

. T J J
for x(0) in the magnetic limit. =T— _
x(0) 9 Fi=T-<F+D-5Fr. (C4)
APPENDIX C: COQBLIN-SCHRIEFFER MODEL The asymptotic behavior of the self-energies is estimated
1. Variational functional from Eq. (C3) for |("|<D as
The Schrieffer-Wolff transformatidfi projects—up to a S m(w—D)=—pID/N+0(J?), cs
constant—the Anderson model onto the Cogblin-Schrieffer (C9)
model in the magnetic limite;——, and constant [I(o—D)=0(J InD).
—\/2
=V e, Because of Eq(C1), z has to be shifted in every propagator
pJD by —2pJD/N, to describe the Cogblin-Schrieffer model.
H—Hecs—2——— N Therefore
3 Ryw-D)=————— for |w|<D,
_ + + + 1+pJ/IN D
HCS_@ED,m €xCpmCpmT Npqz;nn cpmcqnfn fm. (C1 p (C6)

N e Ro(w—D)=1 for |w|<D.
For that the spectrum &1 is shifted at - €;) by shifting the

argumentz in Y at e;, and the propagators and self-energiesHigher orders inJ are irrelevant as will be shown below. It

are transformed &% follows within the NCA that
1 dz Ro(2)
il — e Bzl N7
6f20(2+ €r)—11(2), D D —-pBJ o € 1+ pdIN DR(2)|.
Hence the scaling equation for the impurity part of the free
1 1 :
—Ry(2)= o, energy is
14 z 1 S (74 1-1I(z)
e_f e_f O(Z Ef) D FNCA (pJ)Z J FNCA pJ -D (C7)
1+pJIN dpd N
Rn(z+ ;) —Rp(2)= P ETR This equation does not change in the universal lis&D if
z— 3z

higher orders of] in Eq. (C6) are taken into account. The
following scaling law holds therefore for the impurity part of

A 2nth-order diagram carries the prefacter 1)"(pJ)". Be-
J P D)) the free energy:

cause |e|>D,|z|, the term z/le; was neglected in
€;Ro(z+ €¢), and such the charge degrees of freedom of the T
impurity are projected out. The variational functiofalinow (Fs—Eg)N°A(T,D,J)=(F¢— EO)NCA(T_CS) . (C9
reads K
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with the Kondo temperature of the Cogblin-Schrieffer 9 pd
modef —Ym=—(1—pJIN)— —Y; ().
w N
TSS=DNpJexd — 1/pJ]. (C9)

) With Y,=Y,+mgugh and D=D(1-pJD/N) the NCA
For other observables, one has to coupléo suitable exter-  {ifferential equations have, up to terms of ordeb 1the
nal fields. In particular, the Kondo resonance is reproduceghtegral

qualitatively correctly.

Y_m+ mgugh

The two limitsD—o and e;— —c0 are not interchange- pd N
able, as can be seen by comparing the Kondo temperatures of 1 1
Egs.(14) and (C9). Skeleton diagrams of higher order than (
two are relevant inY. The reason for that is the asymptotic
behavior ofR, which goes toone at the cutoff. If the dia- ) )
gram in Fig. 3 is logarithmically differentiated with respect 1he ground-state energy is expressible as
to D, the contribution of the second conduction-electron line
does not vanish for largbp. In particular it is not possible to Eo
prove now that the energy scal€9) is the exact one by Eo= _A+f Ad‘”'
considering only skeleton diagrams of second order. In fact,
the NCA still predicts forN=1 a low-energy scal€¢C9)
although there is none.

3. Skeleton diagrams of higher order 0(i 1) + %'nYo: %E In
m

+pJ ik

(C1D)

where A is a still arbitrary constant. IfJ<A<D and
limp_,.A=00, the integralC11) can be used as in Appendix
B to yield, in the universal limit of smalpJ,

4. NCA at zero temperature

The derivations are as in Appendix B. The inverse of the

pseudopropagatdid is defined to beYy=1—1II. The NCA ¥NCA0) = EMZLCSLUN) (C12)
differential equations are, up to terrmdl/D, 37Ty Ve
d —pJ -1 which is up toO(1/N?) identicaf to the result of Rasul and
— Y= Y , C10 P .
do % N % m (@) (€19 Hewson, wherd’(1—1/N) is replaced by 17(1+ 1/N).
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