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Magnetoconductance of Aharonov-Bohm rings with half-bound states
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The effects of half-bound states or zero-energy resonances on the electronic magnetotransport in Aharonov-
Bohm rings are investigated. These states can be obtained by adding attractive impurity potentials within the
ring. In the most symmetric case of attractive impurities located on the two crossings with the leads connecting
the ring to the external reservoirs, the zero-energy resonance condition can be reduced to a simple analytical
expression containing the magnetic field and the impurity parameters. If the resonance occurs at zero magnetic
field, it is pushed into the discrete spectrum for finite fields, and the two bound states become degenerate for
magnetic flux®d =h/2e for arbitrary ring size. This system provides an ideal experimental setup for studying
the particular properties of half-bound states, which correspond to the exceptional solutions of Levinson’s
theorem. It is also shown that the presence of a zero-energy resonance has dramatic consequences in the
magnetic-field dependence of the conductapn86163-18207)01804-3

I. INTRODUCTION number of bound states of a given potential is given by
Levinson's theorem!'? Here, ZER's or *“half-bound

Mesoscopic systems provide the most elegant and instrustates” correspond to the exceptional case with nonzero
tive tool for the study of quantum mechanical phenomenaransmission probabilityr,(q)|? for g—0, 7,(q) being the
related to the interference effects of one-particle wave functransmission amplitude of the ABR from the left to the right
tions. The theoretical as well as the experimental developside channel and=\2mE/# the free-electron wave vector.
ments in this field have been supported by the enormoubespite the well-established importance of Levinson’s theo-
recent progress in device technoldgyhich in turn has been rem in quantum mechanic¢dto our knowledge, the implica-
pushed forward by the progressive understanding of the urfions of a ZER on the transport properties of a real system
derlying physics. Aharonov-Bohm rings and related struc-have not yet been investigated. Semiconductor superlattices
tures are the most famous examples of such quantum intefhat show narrow resonances near the zero of energy have
ference devices and have been extensively studied during theen recently investigated by Capasso and co-worRers.
past~’ Even if these structures can support zero-energy resonances

The theoretical approach commonly used to treat the degnder well-defined conditior's, the practical realization of
transport properties of mesoscopic systems is the Landaugtperlattices withexactlya ZER is not straightforward. In
theory, which provides a link between transport propertieshe following we show that the ABR is an ideal system to
and scattering theoy/This approach is particularly suitable investigate the effects of a ZER on the transport properties,
when elastic scattering is present but can also be extended $#1ce the spectrum of the system depends strongly on the
include the effects of dissipative inelastic scattering by intro-magnetic field, which thus can be usedttme resonances
ducing additional scattering side channels that connect the
system to “external reservoirs”'t

In this paper we investigate magnetoconductance and
bound-state properties of thed hoc Aharonov-Bohm ring
(ABR) shown in Fig. 1. It contains two splitters, which pro-
vide the connections between the ring and two external res-
ervoirs held at slightly different chemical potentials. Bound
states are introduced by adding attractive potentials. We in-
vestigate the case of attractive potentials located directly at
the splitters. The principal interest of this ABR configuration
with impurities is that it can support a zero-energy resonance
(ZER), depending on the distance between the crossings and
on the penetrating magnetic flux.

The fundamental relationship between the low-energy FIG. 1. The Aharonov-Bohm ring. The triangles indicate the
limit of the phase of the transmission amplitude and the totaéplitters with attractive potential.
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wherer andp are the transmission and reflection amplitudes.
The scattering matrix of the composed sysigsfi-hand side

of Fig. 2) is then obtained by solving the respective multiple-
scattering problem, as explained in Ref. 16. Here, the central
splitter is described by a real symmetric scattering matrix
(see, e.g., Ref. 17 The desired scattering matri of the
attractive local splitterright-hand side of Fig. Ris then
obtained after performing the limd—0. This yields

S= tr t , )
t tor
_ _ ) ) ) with
FIG. 2. Construction of a symmetric splitter with on-site attrac-

tive potential: Three attractivé potentials are put a distanak .
away from the crossingeft). The scattering matrix of this system — 6iy—qa -

: r=——————, t=1+r. 4
is calculated and then the limit of—0 is performed(right). —6iy+3q

and bound states. We further show that the conductance of The bound states of the so-obtained attractive splitter can
the ABR is dramatically changed in the presence of a ZERbe found looking for the poles of the transmission amplitude
Hence, the ABR provides a convenient and simple experiin the complex plane. According ® the splitter has a single

mental system to study the exceptional situation ofpound state at an energy correspondingjge: 2iy.
Levinson’s theorem for the “half-bound state” case.

In the following, we first construct a symmetric splitter
with an attractive on-site potential. Then, the scattering ma-
trix of the most symmetric ABR containing two such split-  \We now consider the case of an ABR containing two

ters is calculated using the theoretical approach of Ref. 16. Aqyal attractive splitters, each described Dysee Fig. 1
method is proposed to calculate the bound states of a genefghe |apeling of the scattering channels is indicated in Fig. 1.
mesoscopic multichannel system from its scattering proper ave traveling, e.g., from 2 to 5 acquires a spatial phase
ties. We derive an analytic expression for the ZER conditionacior «=exp(qL). The influence of the magnetic field is
for our specific ABR. Finally, the conductance of the ABR iS gescrined by magnetic factors. For convenience, we

calculated at different Fermi energies. choose a gauge for which is nonzero only along the con-
nection 2-5;* in this case we haveB=exp(2ria),
a=®/d, being the ratio between the magnetic fldx
through the cross section of the ring and the flux quantum
dy=h/e. According to Ref. 16, the scattering matrix of the

potentials are placed on the leads at a distahdeom the composgtlj ABJ:E as depicted in Fig. 1, is given by
crossing point. The scattering matt for a singles poten- S —L(K™"=T)™7ij, whereK is a 6x6 block diagonal
tial can be obtained by solving the Sctimger equation of a  Matrix with the matricesS on its diagonalsi,j={1,6; are
potential sink of deptt and thickness, and calculating the ~the indices of the open channels, ants a matrix containing

constant. We thus obtain between the connections. With the above gauge we obtain

T25:K,3, T52:K/ﬂ, T3,=Tsz=k, Tij:O else.

Ill. THE AHARONOV-BOHM RING

Il. THE ATTRACTIVE SPLITTER

The attractive symmetric splitter is constructed following
the procedure indicated in Fig. 2, where three attractive

p T
55:( ) 1)
T p A. Bound States
with The bound states of the ABR are given by the poles of the
transmission amplituder,=Sg;. Using the substitution
_ q — 1 @ g—ik together with the conventiok>0, we obtain(see
gq—iy’ p ' also Ref. 16 after some algebraic simplifications

4(1+ B)K%k(1—k?)

Ty

T 9(k—27)2—2xk2(k—67)2+ K3 (k+67)2—8Kk2K2co% 2 rax) ’ ®
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and hence the poles of, are given by the zeros of the 1
function

f(k;a,y)=9(k—2y)2—2k?(k—6v)?+ k*(k+67)?
— 8x2K2cog 27 a), (6) =~

where k?=exp(—2kL). For infinite distanceL, we have

«=0, and Eq.6) has a twofold zero d=27y, as it should

be. 0
Equivalently, the bound states of a composed system may 3i

also be determined from the solutions of the equations

Knpiqeqoxd uorsswisuely,

[K™1(k) =N (K)T(K)Jv (k)= 0. (7 FIG. 3. Spectral properties of an ABR witfl = 2/3 (see text

Following the arguments of Ref. 16, it is easily seen that thd®r different magnetic fluxea. For pure imaginaryL, correspond-

bound eigenstates are given by the conditiqgh)=1. One "9 [0 negative energies, the “generalized eigenvaluks(as de-

has simply to recognize that the operakaik) T(k) just cor- scrlbe_d in the textare _shc_)wn. For rez_ﬂ_L c_orrespondmg to positive

. A . energies, the transmission probability is plotted. ket 0.5, the

responds to one scattering cycle; i.e., it transforms the out: e . : :
. . . . ransmission probability vanishes and the bound state X) is

going waves in each channel into outgoing waves for the . degenerate

next scattering cycle. The eigenstate then corresponds to the '

situation where this operation leaves the veetk) invari- o _ o

ant. It is interesting to note that E¢7) gives also a direct Second one with increasing, whereas the transmission

physical meaning to the solutions for fixed remlwith ~ probability decreases dramatically in particular for small

0<\<1. In fact, these solutions correspond to eigenstates iglectron energies. Far=1/2, the two bound states are de-

a system for which the matrix elements Bfk), for given ~ generate and the ABR becomes nontransparent for all incom-

k=k, are reduced by a common factar which may be ing partic!e energies. It is interesting to note that, for the
. _—[K]i . . latter choice of parameters, the two bound states are degen-
written ash=e . Therefore, they describe the eigenstates, i« for all\ values (6=\<1); i.e., they remain degenerate
for k=k in an expanded system, in which all distances in thejo an arbitrary expansion of the systésee Fig. 3, dashed-
system are increased byFor A =0 and finitek, d is infinite dotted ling. This result can be easily checked by evaluating
and we recover the solutions of the isolated scatterers. Thgq. (6) for a=1/2. In this particular case the magnetic flux
generalized eigenvalue problem K@), apart from giving @  acts as an infinite distandéo be added td.) between the
further phySical information, is eVidently easier to handletwo bound states, whereas at the same time, the open chan-

when the geometry of the system becomes complicated angkls {1,6! are completely decoupled by quantum interfer-

the number of interconnected channels increases. ence. We note that this situation is specific for magnetic-field
coupling, and cannot be realized by variation of the distance
B. Zero-energy resonances L

For the ABR considered here, the ZER condition can be In practice it will be difficult to realize a device for which
obtained analytically from th&— 0 limit of Eq. (5). Taylor Fhe condition Eq(9) is satisfied at zero magnetic field. This
expansion of Eq(6) yields is, however, not necessary. If for a given distahcee have _

a bound state ando ZER, we can modulate the magnetic
f(k—0;a,y)=4k?{(2—6yL)2—2[1+cog2ma)]}. flux until the ZER condition Eq(9) is fulfilled, provided that
(8) the attractive potential is sufficiently strong such that the
condition Eq.(10) be satisfied. In other words, the presently
discussed ABR provides a convenient system for the study of
(2—6yL)2—2[1+cog2ma)]=0. (9)  the particular ZER situation.
) N ) The magnetotransport properties of the ABR discussed
For given lengtfL and(positively counteglattractive poten-  pere are quite interesting. In order to see this, we calculate
tial v, a ZER can thus only be obtained by varying the mag+the conductance of the ABR between the open channels 1
netic flux if and 6 (see Fig. 1L According to the Landauer theory, the
(10) conductance of the ABR is given .®1,§=(2€2/h)|_si,e|2-

The « dependence o6 is plotted in Fig. 4 for different
Obviously, for large distancek this condition cannot be Fermi wave vectors|. The ABR parameters are the same as
satisfied; in this case, the two bound states are progressiveiy Fig. 3. For smallg, i.e., for small Fermi energies, the
decoupled with increasing and become independent of the conductance decays rapidly when increasing the magnetic
magnetic field. flux. The ABR thus provides a magnetic switch in this case.

If we chooseyL =2/3, the system has exactly one boundIt should be noted, however, that switching is only obtained
state and a ZER fotr=0. This situation is shown in Fig. 3 for Fermi energies near the bottom of the conduction band.
(solid line), where the “eigenvaluesX are shown forimagi- States at these energies are sensitive to potential fluctuations
nary gL, whereas for reaijL (corresponding to positive en- caused by, e.g., defects. Thus, the electronic transport could
ergy) we have plotted the transmission probability|?>. For ~ be suppressed by localization effects. Therefore, the experi-
a#0 the ZER becomes a bound state that approaches theental observation of the switching will be generally diffi-

Therefore, the condition for a ZER reads

wIN

yL=
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Conductance(Zezlh)

FIG. 4. Conductance of the ABR as a function of the magnetic
flux « for different Fermi wave vectorg|L=0.01 (solid line),
0.05 (dashed ling 0.1 (dotted ling, and 0.5(dashed-dotted line
The ABR parameters are the same as in Fig. 3.
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IV. CONCLUSIONS

In conclusion, we have investigated the magnetotransport
and the bound-state properties of an ABR with on-site attrac-
tive potentials on each splitter. This system has the interest-
ing property that it can support a half-bound state or ZER.
Thus, it provides an ideal basis to study the properties of
these particular states, which are known to be the exceptional
solutions of Levinson’s theorem. The necessary condition for
the existence of the ZER has been given analytically. Fur-
thermore, the presence of a ZER has been shown to have
dramatic consequences on the magnetotransport of the ABR.
We note that the presented results do not critically depend on
any particular choice for the spatial location of splitters and
scattering potentials; qualitatively the same results are found
for different geometrical arrangements of splitters and attrac-
tive potentials.

cult. On the other hand, at variance with three- or two-

dimensional systems the importance of long-range potential
fluctuations is considerably reduced by screening effects at
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