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Magnetoconductance of Aharonov-Bohm rings with half-bound states
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The effects of half-bound states or zero-energy resonances on the electronic magnetotransport in Aharonov-
Bohm rings are investigated. These states can be obtained by adding attractive impurity potentials within the
ring. In the most symmetric case of attractive impurities located on the two crossings with the leads connecting
the ring to the external reservoirs, the zero-energy resonance condition can be reduced to a simple analytical
expression containing the magnetic field and the impurity parameters. If the resonance occurs at zero magnetic
field, it is pushed into the discrete spectrum for finite fields, and the two bound states become degenerate for
magnetic fluxF5h/2e for arbitrary ring size. This system provides an ideal experimental setup for studying
the particular properties of half-bound states, which correspond to the exceptional solutions of Levinson’s
theorem. It is also shown that the presence of a zero-energy resonance has dramatic consequences in the
magnetic-field dependence of the conductance.@S0163-1829~97!01804-3#
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I. INTRODUCTION

Mesoscopic systems provide the most elegant and inst
tive tool for the study of quantum mechanical phenome
related to the interference effects of one-particle wave fu
tions. The theoretical as well as the experimental deve
ments in this field have been supported by the enorm
recent progress in device technology,1 which in turn has been
pushed forward by the progressive understanding of the
derlying physics. Aharonov-Bohm rings and related str
tures are the most famous examples of such quantum in
ference devices and have been extensively studied during
past.1–7

The theoretical approach commonly used to treat the
transport properties of mesoscopic systems is the Land
theory, which provides a link between transport propert
and scattering theory.8 This approach is particularly suitabl
when elastic scattering is present but can also be extend
include the effects of dissipative inelastic scattering by int
ducing additional scattering side channels that connect
system to ‘‘external reservoirs.’’9,10

In this paper we investigate magnetoconductance
bound-state properties of thead hocAharonov-Bohm ring
~ABR! shown in Fig. 1. It contains two splitters, which pro
vide the connections between the ring and two external
ervoirs held at slightly different chemical potentials. Bou
states are introduced by adding attractive potentials. We
vestigate the case of attractive potentials located directl
the splitters. The principal interest of this ABR configurati
with impurities is that it can support a zero-energy resona
~ZER!, depending on the distance between the crossings
on the penetrating magnetic flux.

The fundamental relationship between the low-ene
limit of the phase of the transmission amplitude and the to
550163-1829/97/55~3!/1353~4!/$10.00
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number of bound states of a given potential is given
Levinson’s theorem.11,12 Here, ZER’s or ‘‘half-bound
states’’ correspond to the exceptional case with nonz
transmission probabilityut r(q)u2 for q→0, t r(q) being the
transmission amplitude of the ABR from the left to the rig
side channel andq5A2mE/\ the free-electron wave vector
Despite the well-established importance of Levinson’s th
rem in quantum mechanics,13 to our knowledge, the implica-
tions of a ZER on the transport properties of a real syst
have not yet been investigated. Semiconductor superlatt
that show narrow resonances near the zero of energy h
been recently investigated by Capasso and co-worke14

Even if these structures can support zero-energy resona
under well-defined conditions,15 the practical realization of
superlattices withexactlya ZER is not straightforward. In
the following we show that the ABR is an ideal system
investigate the effects of a ZER on the transport propert
since the spectrum of the system depends strongly on
magnetic field, which thus can be used totune resonances

FIG. 1. The Aharonov-Bohm ring. The triangles indicate t
splitters with attractive potential.
1353 © 1997 The American Physical Society
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and bound states. We further show that the conductanc
the ABR is dramatically changed in the presence of a ZE
Hence, the ABR provides a convenient and simple exp
mental system to study the exceptional situation
Levinson’s theorem for the ‘‘half-bound state’’ case.

In the following, we first construct a symmetric splitte
with an attractive on-site potential. Then, the scattering m
trix of the most symmetric ABR containing two such spl
ters is calculated using the theoretical approach of Ref. 16
method is proposed to calculate the bound states of a ge
mesoscopic multichannel system from its scattering prop
ties. We derive an analytic expression for the ZER condit
for our specific ABR. Finally, the conductance of the ABR
calculated at different Fermi energies.

II. THE ATTRACTIVE SPLITTER

The attractive symmetric splitter is constructed followi
the procedure indicated in Fig. 2, where three attractivd
potentials are placed on the leads at a distanced from the
crossing point. The scattering matrixSd for a singled poten-
tial can be obtained by solving the Schro¨dinger equation of a
potential sink of depthF and thicknessa, and calculating the
transmission amplitude in the limita→0 keepingg5Fa
constant. We thus obtain

Sd5S r t

t r
D ~1!

with

t5
q

q2 ig
, r5t21, ~2!

FIG. 2. Construction of a symmetric splitter with on-site attra
tive potential: Three attractived potentials are put a distanced
away from the crossing~left!. The scattering matrix of this system
is calculated and then the limit ofd→0 is performed~right!.
of
.
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f

-

A
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wheret andr are the transmission and reflection amplitud
The scattering matrix of the composed system~left-hand side
of Fig. 2! is then obtained by solving the respective multip
scattering problem, as explained in Ref. 16. Here, the cen
splitter is described by a real symmetric scattering ma
~see, e.g., Ref. 17!. The desired scattering matrixS̃ of the
attractive local splitter~right-hand side of Fig. 2! is then
obtained after performing the limitd→0. This yields

S̃5S r t t

t r t

t t r
D , ~3!

with

r5
6ig2q

26ig13q
, t511r . ~4!

The bound states of the so-obtained attractive splitter
be found looking for the poles of the transmission amplitu
in the complex plane. According toS̃, the splitter has a single
bound state at an energy corresponding toqb52ig.

III. THE AHARONOV-BOHM RING

We now consider the case of an ABR containing tw
equal attractive splitters, each described byS̃ ~see Fig. 1!.
The labeling of the scattering channels is indicated in Fig
A wave traveling, e.g., from 2 to 5 acquires a spatial ph
factor k5exp(iqL). The influence of the magnetic field i
described by magnetic factorsb. For convenience, we
choose a gauge for whichb is nonzero only along the con
nection 225;16 in this case we haveb5exp(2pia),
a5F/F0 being the ratio between the magnetic fluxF
through the cross section of the ring and the flux quant
F05h/e. According to Ref. 16, the scattering matrix of th
composed ABR as depicted in Fig. 1, is given
Sc5@(K212T)21# i , j , whereK is a 636 block diagonal
matrix with the matricesS̃ on its diagonals,i , j5$1,6% are
the indices of the open channels, andT is a matrix containing
the phase factors, which are acquired by waves trave
between the connections. With the above gauge we ob
T255kb, T525k/b, T345T435k, Ti j50 else.

A. Bound States

The bound states of the ABR are given by the poles of
transmission amplitudet r5S61

c . Using the substitution
q→ ik together with the conventionk.0, we obtain~see
also Ref. 16! after some algebraic simplifications

-

t r5
4~11b!k2k~12k2!

9~k22g!222k2~k26g!21k4~k16g!228k2k2cos~2pa!
, ~5!
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and hence the poles oft r are given by the zeros of th
function

f ~k;a,g!59~k22g!222k2~k26g!21k4~k16g!2

28k2k2cos~2pa!, ~6!

where k25exp(22kL). For infinite distanceL, we have
k50, and Eq.~6! has a twofold zero atk52g, as it should
be.

Equivalently, the bound states of a composed system
also be determined from the solutions of the equations

@K21~k!2l~k!T~k!#v~k!5 0. ~7!

Following the arguments of Ref. 16, it is easily seen that
bound eigenstates are given by the conditionl(k)51. One
has simply to recognize that the operatorK(k)T(k) just cor-
responds to one scattering cycle; i.e., it transforms the
going waves in each channel into outgoing waves for
next scattering cycle. The eigenstate then corresponds to
situation where this operation leaves the vectorv(k) invari-
ant. It is interesting to note that Eq.~7! gives also a direct
physical meaning to the solutions for fixed reall with
0<l,1. In fact, these solutions correspond to eigenstate
a system for which the matrix elements ofT(k), for given
k5 k̄, are reduced by a common factorl, which may be

written asl5e2u k̄ u l . Therefore, they describe the eigensta
for k5 k̄ in an expanded system, in which all distances in
system are increased byl . Forl50 and finitek̄, d is infinite
and we recover the solutions of the isolated scatterers.
generalized eigenvalue problem Eq.~7!, apart from giving a
further physical information, is evidently easier to hand
when the geometry of the system becomes complicated
the number of interconnected channels increases.

B. Zero-energy resonances

For the ABR considered here, the ZER condition can
obtained analytically from thek→0 limit of Eq. ~5!. Taylor
expansion of Eq.~6! yields

f ~k→0;a,g!54k2$~226gL !222@11cos~2pa!#%.
~8!

Therefore, the condition for a ZER reads

~226gL !222@11cos~2pa!#50. ~9!

For given lengthL and~positively counted! attractive poten-
tial g, a ZER can thus only be obtained by varying the ma
netic flux if

gL< 2
3 . ~10!

Obviously, for large distancesL this condition cannot be
satisfied; in this case, the two bound states are progress
decoupled with increasingL and become independent of th
magnetic field.

If we choosegL52/3, the system has exactly one bou
state and a ZER fora50. This situation is shown in Fig. 3
~solid line!, where the ‘‘eigenvalues’’l are shown for imagi-
naryqL, whereas for realqL ~corresponding to positive en
ergy! we have plotted the transmission probabilityut r u2. For
aÞ0 the ZER becomes a bound state that approaches
ay
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second one with increasinga, whereas the transmissio
probability decreases dramatically in particular for sm
electron energies. Fora51/2, the two bound states are d
generate and the ABR becomes nontransparent for all inc
ing particle energies. It is interesting to note that, for t
latter choice of parameters, the two bound states are de
erate for alll values (0<l,1); i.e., they remain degenerat
for an arbitrary expansion of the system~see Fig. 3, dashed
dotted line!. This result can be easily checked by evaluati
Eq. ~6! for a51/2. In this particular case the magnetic flu
acts as an infinite distance~to be added toL) between the
two bound states, whereas at the same time, the open c
nels $1,6% are completely decoupled by quantum interfe
ence. We note that this situation is specific for magnetic-fi
coupling, and cannot be realized by variation of the dista
L.

In practice it will be difficult to realize a device for which
the condition Eq.~9! is satisfied at zero magnetic field. Th
is, however, not necessary. If for a given distanceL we have
a bound state andno ZER, we can modulate the magnet
flux until the ZER condition Eq.~9! is fulfilled, provided that
the attractive potential is sufficiently strong such that t
condition Eq.~10! be satisfied. In other words, the presen
discussed ABR provides a convenient system for the stud
the particular ZER situation.

The magnetotransport properties of the ABR discus
here are quite interesting. In order to see this, we calcu
the conductance of the ABR between the open channe
and 6 ~see Fig. 1!. According to the Landauer theory, th
conductance of the ABR is given byG1,65(2e2/h)uS1,6

c u2.
The a dependence ofG is plotted in Fig. 4 for different
Fermi wave vectorsq. The ABR parameters are the same
in Fig. 3. For smallq, i.e., for small Fermi energies, th
conductance decays rapidly when increasing the magn
flux. The ABR thus provides a magnetic switch in this ca
It should be noted, however, that switching is only obtain
for Fermi energies near the bottom of the conduction ba
States at these energies are sensitive to potential fluctua
caused by, e.g., defects. Thus, the electronic transport c
be suppressed by localization effects. Therefore, the exp
mental observation of the switching will be generally dif

FIG. 3. Spectral properties of an ABR withgL52/3 ~see text!
for different magnetic fluxesa. For pure imaginaryqL, correspond-
ing to negative energies, the ‘‘generalized eigenvalues’’l ~as de-
scribed in the text! are shown. For realqL corresponding to positive
energies, the transmission probability is plotted. Fora50.5, the
transmission probability vanishes and the bound state (l51) is
twofold degenerate.
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cult. On the other hand, at variance with three- or tw
dimensional systems the importance of long-range poten
fluctuations is considerably reduced by screening effect
small energies in one dimension, which is the case con
ered here.

FIG. 4. Conductance of the ABR as a function of the magne
flux a for different Fermi wave vectorsqL50.01 ~solid line!,
0.05 ~dashed line!, 0.1 ~dotted line!, and 0.5~dashed-dotted line!.
The ABR parameters are the same as in Fig. 3.
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IV. CONCLUSIONS

In conclusion, we have investigated the magnetotrans
and the bound-state properties of an ABR with on-site attr
tive potentials on each splitter. This system has the inter
ing property that it can support a half-bound state or ZE
Thus, it provides an ideal basis to study the properties
these particular states, which are known to be the excepti
solutions of Levinson’s theorem. The necessary condition
the existence of the ZER has been given analytically. F
thermore, the presence of a ZER has been shown to h
dramatic consequences on the magnetotransport of the A
We note that the presented results do not critically depend
any particular choice for the spatial location of splitters a
scattering potentials; qualitatively the same results are fo
for different geometrical arrangements of splitters and attr
tive potentials.
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