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Full charge-density scheme with a kinetic-energy correction:
Application to ground-state properties of the 4d metals
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We present a full charge-density technique to evaluate total energies from the output of self-consistent linear
muffin-tin orbitals(LMTO) calculations in the atomic-sphere approximati&sA). The Coulomb energy is
calculated exactly from the complete, nonspherically symmetric charge density defined within nonoverlapping,
space-filling Wigner-Seitz cells; the exchange-correlation energy is evaluated by means of the local-density
approximation or the generalized gradient approximation applied to the complete charge-density; and the ASA
kinetic energy is corrected for the nonspherically symmetric charge density by a gradient expansion. The
technique retains most of the simplicity and the computational efficiency of the LMTO-ASA method, and
calculations of atomic volumes and elastic constants of ttheekments show that it has the accuracy of
full-potential methods[S0163-18207)07420-1

[. INTRODUCTION the purpose of the present paper to provide one answer to
these questions.

For more than two decades the linear muffin-tin orbital In the following, we describe and test an efficient tech-
(LMTO) method~® has been one of the workhorses in elec-nique for total energy calculations based on the LMTO-ASA
tronic structure calculations. In particular, due to its simplic-method in the tight-binding representatioii.According to
ity and extreme computational efficiency, it has been extenthis, we use the complete, non-spherically symmetric charge
sively used in total-energy calculations for close-packeddensity generated in self-consistent ASA calculations to
high-symmetry systems where the atomic-sphere approximavaluate the true energy functional. Our technique represents
tion (ASA) may be applied with sufficient accuracy. How- a substantial improvement of the full charge den$REgZD)
ever, although the LMTO-ASA may be used to calculate themethod!® which was successfully applied in calculations of
electronic pressure, it cannot in its conventional implemensurface energies and work functions af 4nd 5 metalg®!°
tations vyield forces and, if uncorrected, the ASA breaksas well as the ground state atomic volumes of open crystal
down, for instance, when used to calculate elastic sheatructures such as the-phases of the light actinidéS.in
moduli. To increase the number of systems to which thdhese calculations the electrostatic and exchange-correlation
LMTO method may be applied, including systems with low terms of the energy functional were evaluated from a com-
symmetry, one has developed a number of full-poteliBE) plete non—sphericql charge density while the kinetic energy
LMTO techniques®® These techniques are of course Was st_|II o_btalned in the ASA. It.turns out, thqt aIt.hou_gh the
highly accurate but lack the efficiency of the LMTO-ASA ASA k|n.et|c energy is often gswtable approximation, |'g does
method. Hence, they may be used in static but not ifot, for instance, yield sufficiently accurate total energies for

molecular-dynamics calculations, and they cannot be used !,:r‘ge small orthorhombic and tetragonal deformations needed

orderN methods of the kind recently implemented by Abri- in calculations of elastic constants. Hence, there is a need to
kosovet al L8 improve the kinetic energy calculation beyond the ASA and

X h ke th i h func-
According to the theorem of Hohenberg and Kdhthere Eioenrglby take the remaing step towards the true energy func
exists a unique energy functional which is variational in the Thére are several reasons why, to our knowledge, a cor-

dens!ty. Hence, if the functional is evaluateq with a t”al.rection to the ASA kinetic energy of the kind presented here
density close to the exact ground-state de'nsny, the EITOr Ras not been previously attempted. First of all, in most
the total energy is only of second order in the dlfferencel_M-I-O calculations the electrostatic and exchange-

betyve_en the trial density and the ground-state densit_y. Thiéorrelation terms have been evaluated from a spherically

var|at|on_al property means that most of the .CompUtat'ona"ysymmetric charge density and, hence, there is no need for a

demanding self-consistent calculations are in fact superflu

ous, provided an appropriate trial density can be found. Th

guestion is therefore: How does one construct densities

which applied in the true functional yield total energies of

sufficient accuracy? In the context of the LMTO method one occ

has the related question: How does one evaluate the true TASAzE € PASA(r ) ASA(r ) dr, 0
J

functional rather than the approximate ASA functional? It is ef

more accurate kinetic energy. Secondly, the kinetic energy,
hich is obtained from the Kohn-Sham equation&' as
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where €; are the one-electron energias(r) the electron -

density, and the .«(r) the effective potential, is variational nR(rR):; NRU(TR)YL(TR), (6)

in the potential, and it has often been assumed that the ASA

kinetic energy is in fact sufficiently accurate. Finally, to im- whereL is shorthand notation forl (m), rg=r—R, andY
prove on the ASA kinetic energy one would need to know anis a real harmonic. These atomic-centered charge densities
explicit kinetic energy functional, e.g., in the form of a gra- are normalized within the cells, and the total charge density
dient expansion. However, in view of the relatively slow is continuous and continuously differentiable in all space.
convergence of the known kinetic energy gradient expan- The total-energy functional may now be divided into cell
sions, it is not obvious that this would in fact lead to the contributionsEg[ n]=Gg[ng]+ Fg[n], and the energy den-

required accuracy. sity g corresponding to the function@g[ ng] defined by
One solution to this impasse is to add a single full poten-

tial step at the end of the LMTO-ASA calculation. This _ f

mixed approach avoids the approximate ASA kinetic energy, Grlng]= “Rg([nR],rR)de )

and has been successfully applied by Rodriguez and " . ) .
Methfessé? as well as by Antropov and Harméhin the ~ May, within the density-gradient approximation, be ex-
present paper we take a more consistent route based entirdlj£SSed

on the spherically symmetric ASA potential. Thus we evalu- _

ate the main contribution to the kinetic energy in the ASA, 9([nel.rR) =UINRLrR) + el [NR]TRINR(TR)

and then apply an approximate functional form to evaluate :t(nervnR|21 )
the difference between the ASA and the kinetic energy of the 5
spherically average of the complete charge density. Finally, +exc(Nr,|VNRI, - . )NR(TR)

the remainder, which yields the complete kinetic energy, is =g([ng]) ®)
presumably small, and may be obtained with sufficient accu- R

racy by a gradient expansion. A similar approach based owheret and e,.,n are the kinetic and exchange-correlation
Hartree-Fock densities has been used in atomic calculatiorenergy densities, respectively. For charge densities which de-
by DePristo and Kres¥. The procedure is closely related to viate weakly from spherical symmetrg([ng]) may be rep-

the modern gradient correction to local-density-functionalresented by a Taylor series around the sperically symmetric
theory and as we shall demonstrate the corrected FCBharge densityn3(rg)=(1/\V4m)Nro(rR), i.€.,

method has the accuracy of the full potential methods while

retaining most of the simplicity and efficiency of the LMTO- - ag([ng])
ASA. We note that the correction to the kinetic energy pre- 9([nr]) =g([NR]) +Tix(rg) Inm

0

sented here is independent of the LMTO method, and may "R=NR
also be applied to the recently proposed exact muffin-tin or- a9([nx])
bitals theory?® +VﬁR(rR)V—R
AL P
Il. ENERGY FUNCTIONAL 2
17 n
N _ | RSP (L]
Within density-functional theory the total energy of the 2 RVR 3an 0
system may be decomposed in the f&fm NR=Ng
1 #g([n
E[n]=G[n]+F[n], @ (Va2 o)
o . . - (VNR)™ [ —n2
whereG[ n] is a universal functional consisting of the kinetic
energy‘l_’[n] of the nonintgracting system and the exchange- B - d%g([ng])
correlation energ¥, [ n], i.e., +nR(fR)VﬂR(fR)m 0+ e, (9)
nR:nR
G[n]=T[n]+Exn], ()

whereﬁR(rR)EnR(rR)—ng(rR). As a result, the universal
andF[n] is the Coulomb contribution to the total energy, functional may be expanded in the following form

1( {nmne) GRrlNr]=GRLN&]+GH[Mr,N&1+ GA[MRZ,NZ]+ - -,
F[n]zfv(r)n(r)dr+§f fwdrdr’. (4) (10
which may be used to calculate the total energy, provided
Here,v(r) is an external potential. The total charge densityone knows the energy density functions and the correspond-
n(r) may be given by the sum ing gradients. Unfortunately, this is not the case, and one
must resort to approximations.
Within modern density-functional theory the problem is
n(r)= ER: Nr(rg) (5) solved, as far as the exchange-correlation en&gys[ ng]
is concerned, by means of the local-density approximation
over lattice positiongR of atomic-centered charge densities (LDA) or generalized gradient approximatig8GA) (Ref.
ng(rg) defined within space filling, nonoverlapping cells 26), which yield analytic expressions that may easily be ap-
Qg, which in turn may be written in the one-center féfm plied in conjunction with the full LMTO charge density.
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Thus only the kinetic energyfg[ng] remains to be accu-
rately evaluated. Here the problem is that neither the Kohn- T(zk):J' t@)(r)dr. (19
Sham equatioifl) in the ASA nor a straight density gradient

expansion of the kinetic energy based on the explicit analytitiere t? is a kinetic energy density whictin atomic Ry
expressions given, for instance, in Ref. 27 have sufficientNits) has the explicit forms

accuracy when used separately. However, as we shall show

in the following, one may by a combination of the two tech- t=3(37%)%n%, (16)

nigues in the form of a density-gradient correction to the 1 (Vn)?

ASA, obtain kinetic energies with the desired accuracy. t2=_ (17)
We start by isolating the lowest-order terms in Ef). — 36 n

(10), which may be evaluated in the ASA and the “small for k=0 and 1. In the actual applications the shape correc-
terms” which may be evaluated by the gradient expansiontion has been evaluated by means of the locally truncated
In the ASA the kinetic energy is obtained from the Kohn- gradient series suggested by Pearson and G&tdfmm

Sham one-electron equations in forfh), which depends 5iomic calculations, which also ensures convergence of the

only on the spherical average of the charge density, becauggpansion in regions of space with large gradients and small
the effective one-electron ASA potential is spherically sym-gensities. The kinetic-energy part of the higher-order terms
metric. Hence, viewed as a functional of an arbitrary density, Eq. (10), i.e., those of first and second-orderTig and

Eq. (1) would give the same value for any nonspherically v " have been evaluated by means of the second order
symmetric charge. densl.ty having th'e sphencal aver&gdt' energy density functionaf®([ng]) +t@([ng]).
may therefore be identified as the kinetic energy belonging 1o The total electrostatic contribution belonging to the cell at

the charge densiny%. Thus we write the kinetic-energy con- R is the sum of the intracell and intercell terms
tribution to the first term in Eq(10) as

Fr[n]=FR"ng]+Fg°[n]. (18)
Or 07 TASA[ ASA 0 ASA
TrlNR]~ T TNr™"]+ ALNR.NR™], 1D The intracell energy
whereT2>* is the kinetic energy obtained in the ASA from a . Zn
spherical symmetric self consistent calculation, and the sec- thra[nR]Ef ( - r—) n(rg)drg
ond term is a “small” shape-correction connected with the Or R
fact that the kinetic energ)T%[ng] corresponding to the 1 N(re)n(ry)
. i o9 ) - rRINTIR ,
spherically symmetric charge densmg is defined within +—J’ J ———drgdrg, (19
2)agtag Ire—rgl

the Wigner-Seitz cell aR while the ASA kinetic energy is
defined inside the corresponding atomic sphere. Within thgvhere Z; is the atomic number, may be determined by

LMTO-ASA method the kinetic energy may be expressed bysolving thel-dependent Poisson equation or by numerical
means of the ASA Hamiltoniahi*S#, and the one-electron integration using, for instance, the shape function

wave functionsys;(rg) as® techniqueé®*®3 The intercell energy may be written in the-
following form®1-32
occ
TRA=2 f i (rR)HASA Y (rr)drg interr 1 _ L 1 (beer)
R FREINI=— 552 R§R2I+1 s

— | ng3A(r g re)drg, (12 ~
st R (NR)ver([NR™],rr)drg (12 XYL(bRR’)LZL” Qru/[NR]
ASA Y

wherev ([ ng™"],rr) is the effective one-electron potential, 4w (21— 1)1
Sk the atomic Wigner-Seitz radius, amd>*(rg) the ASA
charge density normalized within the atomic sphere which is
equivalent tcn%(rR) inside of the cell and sphere. This form

L
><(2| —D2r -1 CLr b isr

may include the so-called combined correctiGfi. X E SRUR + b L”QrrLr[ MR, (20
The shape-correction term in E¢L1) may be obtained L
from the expression whereSg g/ - is the conventional LMTO structure constant,
CtL a real harmonic Gaunt coefficier@ the average atomic
A[ng néSA]:f t([ng])drR—f t([néSA])drR radius, andQg, the multipole moments defined as
R Sr |
(13) _ AT [ (Tr F oy dre—
QriLNr]= 21+1)0,\'S NR(rR)YL(rr)drg—ZgdLo-

based on the density-gradient expansion of the Kkinetic- 21)
energy function&l
In Eq. (20), bgr is given by?

Tn]l=TOM]+T?[n]+---, (14 R_R!
with brr = |R_—R/|bRR’y (22
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TABLE I. Equilibrium atomic radiusS, bulk modulusB, and elastic shear constar@$ and C,, calcu-
lated by the FCD technique in the local-density and generalized gradient approximations.

DF Y Zr Nb Mo Tc Ru Rh Pd Ag
Structure hcp hcp bcc bcc hcp hcp fcc fcc fcc
S (Bohn) LDA 3.684 3307 3.052 2908 2825 2773 2782 2830 2.959
GGA 3.785 3.373 3.104 2949 2869 2824 2836 2904 3.053
B (Mbar) LDA  0.40 1.10 1.95 3.06 3.50 3.63 3.18 2.24 1.44
GGA 0.39 0.99 1.82 2.79 3.04 3.15 2.59 1.74 0.94
C’ (Mban LDA 0.49 1.49 1.18 0.28 0.23
GGA 0.51 1.52 1.16 0.29 0.24
Cy4 (Mbar) LDA 0.20 1.20 1.77 0.82 0.62
GGA 0.12 1.01 1.69 0.71 0.57
1 IV. APPLICATIONS
brr = 1+2—)(s§+s;,)—|R—R'|, (23 _ o
a In the following we present the results, summarized in

Table I, of a series of test calculations of the ground-state
atomic volumes and the elastic constants of tlderdetals
where Sg is the circumscribed sphere radius of the cell atyemonstrating the accuracy of the FCD technique including
R, and « is a parameter. An optimal choice far is dis-  the kinetic-energy correction outlined in Sec. Il. We point
cussed in Ref. 32. In the present calculation we use@ut that, provided one uses the same exchange-correlation
a=0.27. functional and potential, it is the comparison with the full-
potential calculations which is the issue here, and not the
agreement with the experimental values.

Ill. CALCULATIONAL DETAILS

In the calculations we used the scalar-relativistic, second-A. Ground-state volume and bulk modulus of the 4 metals

order LMTO-ASA Hamiltonian within the frozen-core ap- oy first test case is the ground state atomic volume of the
proximation, and included the combined correctid.We 44 metals. Here, we compare with the FP-LMTO calcula-
treated the # semicore stateffirst pane) together with the  tions by Ozolins and Kaing ,*° who used the code due to
4d, 5s, 5p, and 4 states(second panglas band states. In  Methfessel and co-workets;** which has been used exten-
the first panel we down-foldéd thes, d, andf states, andin  sively in total-energy calculations and therefore is well
the second only thé states. This procedure accounts cor-tested. For their LDA calculations Ozolins and kg used
rectly for the important weak hybrization in the occupiedthe parametrization by Vosko, Wilk, and Nusiiof the
parts of the band structure, and reduces the rank of the einany-body data of Ceperley and Aldénvhich gives results
genvalue problem to that of the number of active orbitalsyery similar to the parametrization by Perdew and Zuftyer
i.e., three for the lower panel and nine for the upper panel.used by us. For the GGA Ozolins and #ing used the
The valence electrons were treated self-consistentlfPW91, as is also used in the present calculations.
within the LDA by means of the Perdew-Zunger |In Fig. 1 we compare the results for the equilibrium
parametrizatioft of the data of Ceperley and Aldérfor the  atomic radii of the 4 metals. In this comparison, one should
exchange-correlation potential and energy, and in the GGAote that although full-potential techniques are highly accu-
by the functional described in Ref. 26 and referred to asate they do have their own set of numerical approximations
PW91. Thek-point sampling was performed on a uniform which will lead to uncertainties in the calculated ground-
grid in the irreducible wedge of the Brillouin zonéi8Z). state volumes. It is, however, difficult to estimate the error
For fcc metals we used 1930points in the IBZ of the body- bars connected with such calculations, but based on our ex-
centered-orthorhombic structure; for bcc metals we usegerience an uncertainty of the orderofl% in terms of the
2058k points in the IBZ of the face-centered-orthorhombic atomic radius may not be unreasonable. With this in mind
structure; and for hcp metals we used &48oints in the IBZ  the agreement between the two sets of LDA calculations as
of the hexagonal-close-packed structure. well as between the two sets of GGA calculations seen in the
The cell integrations were performed by means of thefigure may be considered quite satisfactory.
shape function technique using a linear radial mesh between Inspection of Fig. 1 shows that the LDA tends to overes-
the inscribed and the circumscribed spheres. In the ondimate the binding at both ends of the 4eries, and that the
center expansioi6) we included terms up tb,,,=8, and resulting deviation from the experimental values shows a
for the shape function we usdg,,,=40. Normalization of parabolic variation with atomic number. In contrast, the
the charge density was ensured by the technique described ®GA results exhibit only a weak linear deviation from the
Sec. Il A of Ref. 18, and corrected for double counting in theexperimental results, showing that this is in fact an improve-
region of atomic sphere overlap by means of thinction = ment over the LDA. We note that the trends are obeyed by
technique described in Sec. Il B of Ref. 20. the FCD as well as FP calculations, and that the FCD-GGA
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FIG. 1. Relative deviations of the calculated and experimental
equilibrium atomic radii for the d series using LDA and GGA h ¢ th | ‘ ; horh .
energy functionals. The full-potential results are those of Ozolins FIG. 3. C ange o the tqta energy o _MO or ort or ombic
and Kaling (Ref. 35, and the experimental values are taken from shear deformation as a function of the relative deformation param-
' eterd.

Young (Ref. 37.

results exhibit a particularly smooth variation with atomic ment(see, e.g., Ref.)7one may ask what effect the kinetic-
number, indicating that the physical as well as the numericabnergy correction has for the calculated values of these
aproximations are well controlled in the implementation Ofground-state properties. For Y, Zr, Nb, and Mo, we find that

the FCD teché"nique. < the bulk modulus of , the kinetic-energy correction changes the atomic radii by less
Our second test case is the bulk modulus of tHenktals than 0.2%, while for the later elements it increases the

and again we compare with the FP-LMTO calculations by - o : o Qirmi .
Ozolins and Koling.®® In Fig. 2 we show bulk moduli cal- atomic radii by approximately 0.5%. Similarly, for the earlier

culated in the GGA at the calculated equilibrium volumes4d elements the kinetic-energy correction leads to a less than

0 . =) ;
shown in Fig. 1. The agreement between the two sets 0:I;/o change in the bulk modulii, while for the later elements it

calculations is near perfect and we believe that this agreeqecreases the bulk moduli by approximately 5%. One may

ment together with the volume results strongly indicates that"€réfore conclude that in comparison with earlier LMTO-
the FCD technique with kinetic-energy correction has the*SA results the present implementation of the FCD tech-

accuracy normally only found in full-potential calculations. Nique leads to small but systematic improvements of the cal-
Since LMTO-ASA calculations normally yield atomic culated atomic volume and bulk modulii.
volumes and bulk modulii in good agreement with experi-

B. Elastic constants of the 4 metals

' Our third test case is the shear elastic constaritand
—@— FCD-GGA

1 C,,4 of the cubic 4l metals which is chosen because, al-
—©O-- FP-GGA though the LMTO method yield€’ values in reasonable
O Expt. agreement with experimerts;*! the LMTO-ASA yields in-
] correct results when applied in the calculatiorCgf,. This is
demonstrated in Fig. 3, where we show various approxima-
tions to the total energy of a bcc Mo crystal under the ortho-
rhombic shear deformations which were also used yeBo
lind et al*? to determine this elastic constant. We observe
that in the pure ASA the calculate@,, is negative and,
hence, the bcc structure of Mo will be unstable against such
an orthorhombic distortion.
The situation is somewhat improved if the electrostatic
00 and exchange-correlations parts of the energy functional are
. P ———— calculated from the complete nonspherically symmetric
Y 2r Nb Mo Te Ru Rh Pd Ag charge density. This corfesponds tl?:) the grigixal FCD
method, and is sufficiently accurate to yield surface
FIG. 2. Bulk moduli for the 4 elements. The full-potential energie¥®°and atomic volumes of open crystal structuf®s.
results are those of Ozolins and #ing (Ref. 39, and the experi- However, the ASA kinetic energy is obviously not suffi-
mental values are taken from Yougef. 37. ciently accurate to render the bcc structure of Mo stable. It is

by
o

w
o
r

Bulk modulus (Mbar)
N
o

e
(=]
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FIG. 4. Elastic constants for tetragonal shear for the cubic 4  FIG. 5. Elastic constants for orthorhombic shear for the cubic
elements. The full potential results are bydgdindet al. (Ref. 42, 4d elements. The full potential results are bydsdind et al. (Ref.
who also listed the experimental values. 42), who also listed the experimental values.

N L . now evaluate the true functional rather than an ASA func-
only when the kinetic-energy correction is applied that &jona| The technique has been tested in calculations of the
positive C4g is obtained which is, in fact, very close to the gqyilibrium atomic volumes and elastic constants of tde 4
measurecC44 value. . elements, and the results compared with those of full poten-

In Figs. 4 and 5 we compare our elastic constants for theja| calculations. The comparison shows that the FCD tech-
cubic 4d metals with the results of the FP-LMTO calcula- nique, including the kinetic-energy correction, leads to small
tions by Salerlind et al** Again the agreement between the but significant improvements in the calculated atomic vol-
FCD and FP calculations are quite satisfactory. More imporumes and bulk modulii relative to conventional LMTO-ASA
tantly, in contrast to all those earlier implementations of thecalculations. Furthermore, the technique yields accurate elas-
LMTO method, which is based on the ASA and which yieldstic shear constants, and thereby completely cures the well-
negative elastic shear modulii, the kinetic-energy correctiorknown failure of LMTO-ASA calculations which leads to
presented here allows us to calculated shear elastic constamggative shear modulii. We find that the present implemen-
not only with the correct sign but also in agreement with full tation of the FCD-LMTO method has the accuracy of a full
potential results. potential description, while the required computational effort

is not significantly larger than in conventional spherically
symmetric LMTO-ASA calculations.
V. CONCLUSIONS
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