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Density-functional calculation of electronic friction of ions and atoms on metal surfaces

A. Liebsch
Institut für Festkörperforschung, Forschungszentrum Ju¨lich, 52425 Ju¨lich, Germany

~Received 16 July 1996!

The electronic friction of ions and atoms adsorbed on metal surfaces is calculated within the time-dependent
density-functional approach. The metal is described within the jellium model and the nonlocal, short-
wavelength response of the surface electrons is treated by using the adiabatic local-density approximation. The
electronic friction is found to be considerably larger than in previous estimates that were based on not fully
consistent descriptions of the creation of low-frequency electron-hole pairs. For Xe on Ag the friction param-
eter is h i'3.43108 s21, in good agreement with the values derived from quartz-crystal microbalance and
surface resistivity measurements. These results confirm earlier suggestions concerning the important role of
electronic processes in friction phenomena on metal surfaces.@S0163-1829~97!00919-3#
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I. INTRODUCTION

Friction phenomena between macroscopic objects h
been investigated for a long time.1 Although this topic is of
great technological importance, surprisingly little is know
about the microscopic processes that give rise to the ma
scopic friction force.2 The recent availability of refined ex
perimental techniques that can probe various contribution
the friction on an atomic scale3,4 has greatly stimulated th
scientific interest in this phenomenon.

There are strong indications that during sliding the int
action of one or a few monolayers of lubrication molecu
with the contact surfaces plays a crucial role. In the case
insulators, the microscopic friction necessarily involves
excitation of phonons while in metals excitation of bo
phonons and low-energy electron-hole pairs is feasible.
relative importance of electron and phonon channels on m
als is still a controversial issue5,6 although very recent ex
perimental and theoretical work suggests that on syst
such as Xe on Ag, the electronic friction process
dominate.7–10

It is well known that the electronic excitations at me
surfaces depend very sensitively on the microscopic na
of the ground-state density distribution and on the nonlo
screening response to the time-varying external fields.11 The
aim of the present work is therefore to determine as ac
rately as possible the probability of creating electronic ex
tations via moving atoms and ions above a metal surfa
The sliding friction of physisorbed atoms had been inve
gated previously using simple surface models.12–14 Persson
and Volokitin9 improved these calculations by relating th
friction coefficient to the surface response functiong(q,v)
for which density-functional results are available.15 These
early results ofg(q,v) were derived from an approximat
expression of the effective surface potential that accounts
Coulomb but not exchange-correlation contributions. In vi
of the sensitivity of surface response properties to mo
assumptions, it seems therefore appropriate to perform
proved response calculations that avoid this approximati

In the present paper, the time-dependent local-den
approximation16 ~TDLDA ! is used to evaluate the surfac
response functiong(q,v). In the adiabatic limit, this treat
550163-1829/97/55~19!/13263~12!/$10.00
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ment is equivalent to a self-consistent LDA description
the surface in the presence of a static external electric po
tial. The important result of these improved calculations
that the incorporation of exchange-correlation terms in
local potential makes the surface electronic density con
erably more polarizable. Accordingly, the electronic frictio
parameters for physisorbed atoms are greatly enhance
the case of Xe sliding on Ag, we obtainh i;3.43108 s
21. The calculated value is in qualitative agreement with
experimental results derived from surface resistiv
measurements4,8 (h i;33108 s21) and from recent quartz
crystal microbalance data17 (h i;83108 s21).

The friction coefficients for the motion of ions near met
surfaces are also found to be much larger within the con
tent description of the electronic surface excitations. In
case of K on Cu and Na on Al, we findh i;1.63109 s21

and ;203109 s21, respectively. These results demonstra
the great sensitivity of surface excitation spectra to the e
tronic properties in the surface region and to the details
the nonlocal dynamical response to time-dependent exte
fields.

The outline of this paper is as follows. In Sec. II, th
friction coefficients for atoms and ions, as well as the dam
ing rate of adsorbed dipoles, are related to the surface
sponse functiong(q,v). Section III summarizes the key as
pects of the time-dependent density-functional approach.
low-frequency, short-wavelength excitations of metal s
faces are discussed in Sec. IV, which forms the main par
this work. In Secs. V and VI, these results are used to de
mine the electronic friction parameters of ions and atoms
summary is given in Sec. VII, together with a suggestion
further theoretical work concerning realistic metal surfac
Hartree atomic units are used throughout unless noted ot
wise.

II. SLIDING FRICTION OF IONS AND ATOMS

Consider an ion or atom of massM moving close to a
metal surface. Because of the finite response time of
semi-infinite electron gas, the screening charge induced
the metal does not follow the particle motion adiabatical
As a result of this time lag the force acting on the particle
13 263 © 1997 The American Physical Society
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13 264 55A. LIEBSCH
a given time differs from its adiabatic value. The friction
force may be written as

fW52M ~h ivW i1h'v'ẑ!, ~1!

where vW is the particle velocity andh i , h' are the fric-
tion coefficients for the motion parallel and normal to t
surface.

A. Ions

In the case of an ion of chargeQ, the friction parameter
h' is given by the expression18

h'52
Q2

M
lim
v→0

1

vE d3r E d3r 8V~rW !Imx~rW,rW8,v!V~rW8!,

~2!

where x(rW,rW8,v) is the exact many-body density-densi
response function of the semi-infinite metal andV(rW) is de-
fined as

V~rW !5¹z

1

urW2dW u
. ~3!

HeredW 5(0,0,d) is the location of the particle relative to th
surface. We assume the ion to be outside the electronic
sity of the metal. In this case, one hash'52h i .

19

In the following we describe the electronic properties
the metal in terms of the jellium model. Because of the tra
lational invariance parallel to the surface it is convenient
use a two-dimensional Fourier representation. Expression~2!

then simplifies to (q[uqW iu)

h'5
Q2

M
lim
v→0

1

vE0
`

dq q2e22qdImg~q,v!, ~4!

where

g~q,v!52
2p

q E dzE dz8eqzImx~z,z8,q,v!eqz8 ~5!

is the so-called surface response function.20,21

B. Atoms

In the case of a neutral physisorbed atom, the insta
neous mutual polarization of the atomic and metallic elect
densities gives rise to the van der Waals attraction. If
atom is moving the finite response time of the metal lead
a friction force since the induced surface charge density
behind.9,12,14In principle, both the short-range repulsive a
long-range attractive interactions can contribute to the f
tion force but we consider here only the damping caused
the van der Waals attraction. Thus we ignore all effects
lated to the overlap between the charge densities of m
and adsorbate.

As recently shown by Persson and Volokitin,9 the friction
coefficient associated with the van der Waals attraction
be expressed as
n-

f
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n

h i52
e2

M
lim
v→0

1

vE d3r E d3r 8Vi~rW !Imx~rW,rW8,v!Vi~rW8!,

~6!

where the indexi5x,z refers to parallel or perpendicula
motion of the atom,x is again the density-density respon
function of the metal. The effective local interaction pote
tial Vi(rW) is an approximate representation of the true no
local potential which results from the second-order proces
involved in the transitions. Neglecting the electronic scre
ing during the rapid intermediate virtual transitions,Vi may
be written as

Vi~rW !'a~0!¹ i(
j

S ¹ j

1

urW2dW u
D 2 5

a~0!

2
¹ i

1

urW2Wdu4
.

~7!

Here a(0) is the static polarizability of the adatom and
dW 5(0,0,d) is the position relative to the surface.

Since Vi(rW) does not satisfy the Laplace equation, it c
only be approximately represented in terms of a superp
tion of evanescent plane waves of the form

Vi~rW !5(
qW i

Vi~qW i!e
iqW i•r

W
i1qz. ~8!

The expansion coefficients are given by

Vi~qW i!52ia~0!E d2q8q
qW 8•qW 92q8q9

q8q9~q1q81q9!
Qi9e

2~q81q9!d,

~9!

where qW 95qW 2qW 8 and QW 95(qW 9,2 iq9). Inserting Eq.~9!
into Eq. ~6!, one finds

h i52
e2

M
lim
v→0

1

v(
qW i

uVi~qW i!u2

3E dzE dz8eqzImx~z,z8,q,v!eqz8

5
e2

M
lim
v→0

1

v(
qW i

uVi~qW i!u2
q

2p
Img~q,v!. ~10!

Expressions~4! and~10! show that Img(q,v) is the central
quantity that describes the microscopic electronic excitat
processes that play a role in the sliding friction of atoms a
ions near metal surfaces.

C. Vibrating dipoles

For completeness we note that the damping of adsor
vibrations due to electronic excitations in the metal is clos
related to the friction processes discussed above. For a di
oscillating perpendicular to the surface at a frequencyv, the
damping rate is given by22

t21522E d3r E d3r 8V~rW !Imx~rW,rW8,v!V~rW8!, ~11!

with
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55 13 265DENSITY-FUNCTIONAL CALCULATION OF . . .
V~rW !5m¹z

1

urW2dW u
, ~12!

andm is the dynamic dipole moment. If the dipole is locat
outside the range of the equilibrium density of the metal,
damping rate can be expressed as

t2152m2E
0

`

dq q2e22qdImg~q,v!. ~13!

Thus, apart from the obvious prefactors, the vibrational li
time is governed by the same surface loss function as
friction coefficients of atoms and ions.

III. TIME-DEPENDENT LOCAL DENSITY APPROACH

In order to evaluate the friction coefficients~4! and ~10!,
an approximate expression must be found for the dens
density response functionx(rW,rW8,v). Since the ground stat
electronic properties of metal surfaces are rather accura
described within the local density approximation~LDA ! of
the exchange-correlation potential, the electronic excitati
induced by the moving particle should be treated within
proper extension of the LDA. In the adiabatic version of t
time-dependent local density approach,16 x is expressed as
renormalized single-particle response function:

x~rW,rW8,v!'x1~rW,rW8,v!1E d3r 1E d3r 2x1~rW,rW1 ,v!

3K~rW1 ,rW2!x~rW2 ,rW8,v!, ~14!

where the interaction kernel consists of Coulomb a
exchange-correlation contributions

K~rW,rW8!5
1

urW2rW8u
1Vxc8 @n0~rW !#d~rW2rW8! ~15!

andx1 represents the independent-electron response func

x1~rW,rW8,v!5(
kW ,kW8

~ f kW2 f kW8!
ckW
* ~rW !ckW~rW8!ckW8~r

W !ckW8
* ~rW8!

v1ekW2ekW81 id
.

~16!

Here f kW is the Fermi-Dirac distribution function andekW and
ckW(rW) are the LDA single-particle energies and wave fun
tions. These quantities include the microscopic aspects o
electronic properties of the semi-infinite metal. Schem
cally x is given by ~we momentarily drop all spatial argu
ments and integrals!

x5x11x1Kx11•••5
x1

12Kx1
. ~17!

The virtue of the TDLDA approach is that the electro
electron interactions in the presence of the external pertu
tion are treated in the same manner as in the ground s
i.e., via the same local exchange-correlation poten
Vxc@n# derived from the homogeneous electron gas. In
adiabatic limit, this response treatment is equivalent to
self-consistent LDA ground state in the presence of a st
electric field.
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In principle, the exchange-correlation contribution to t
interaction kernelK @the second term in Eq.~15!# should be
of the more general formf xc(rW,rW8,v),23 i.e., it should be
nonlocal and depend on frequency. The approximate fo
used in Eq.~15! is based on the following assumptions.~i!
The true f xc is replaced by the corresponding quantity of t
homogeneous electron gas. In addition, both the ground s
and induced densities are assumed to be slowly vary
These assumptions should be of a similar accuracy as
LDA in the ground state. The main problem of the loc
approximation is the failure to reproduce the asymptotic i
age potential. Since the image form, however, sets in at
tances where the equilibrium density is rather small, nonlo
corrections are presumably not very important.~ii ! The ne-
glect of the frequency dependence excludes all correla
effects that go beyond a mere polarization of the electro
system. Processes such as double excitations or ioniza
are neglected. Since we are here concerned with n
adiabatic excitations, such finite-frequency corrections t
K should be rather small. Under these assumptions it is
tified to approximate

f xc~rW,rW8,v!' f xc~q50,v50!d~rW2rW8!, ~18!

where f xc(q50,v50)5Vxc8 @n0(rW)# is derived from the ho-
mogeneous electron gas. This limit corresponds to the
pression used in the second term of Eq.~15!.

If the exchange-correlation contribution to the interacti
kernelK is omitted, the response treatment corresponds
the random-phase approximation~RPA!. This does not, how-
ever, amount to the time-dependent Hartree approxima
as long as the ground-state properties are treated within
LDA. By RPA we therefore mean ‘‘LDA-based RPA.’’ This
hybrid electron-electron interaction treatment violates cert
sum rules that are satisfied in the TDLDA.24 Obviously, this
mixed LDA-RPA response treatment does not give the c
rect LDA ground state if the excitation frequency approach
the adiabatic limit. Since exchange-correlation terms tend
reduce the strength of the bare Coulomb interaction po
tial, the surface density profiles appear stiffer in the RP
than in the consistent TDLDA. As we will see below, for th
low-frequency excitations that are relevant in friction ph
nomena, the RPA response treatment leads to significan
derestimates of the probability of creating electron-h
pairs.

According to the approximation~14!, the linearly induced
surface charge density is given by

n1~rW,v!5E d3r 8x~rW,rW8,v!fext~rW8,v!

5E d3r 8x1~rW,rW8,v!fscf~rW8,v!. ~19!

In this mean-field treatment, all many-electron correlatio
are incorporated in the effective or self-consistently scree
complex local potential:

fscf~rW,v!5fext~rW,v!1f ind~rW,v!, ~20!

where the induced potential is given by
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13 266 55A. LIEBSCH
f ind~rW,v!5fest~rW,v!1fxc~rW,v!

5E d3r 8K~rW,rW8!n1~rW8,v!. ~21!

The electrostatic potential satisfies the Poisson equation

¹2fest~rW,v!524pn1~rW,v! ~22!

and the induced exchange-correlation potential is obtai
from a Taylor expansion of the local ground-state exchan
correlation potential:

fxc~rW,v!5Vxc8 @n0#n1~rW,v!. ~23!

Let us now consider the perturbation of the metal el
trons caused by an external charge distribution. If th
charges do not overlap with the metal electron density,
external potential is of the general form (q[uqW iu)

fext~rW,t !52
2p

q
eqzei ~q

W
i•r

W
i2vt !. ~24!

The creation of electronic surface excitations via such a
tential is determined by the golden rule formula

w~q,v!52p(
kW ,kW8

f kW~12 f kW8!z^kW8ufscfukW & z2

3d~ekW82ekW2v!. ~25!

Because of screening processes, the amplitudes of the
tronic transitions between the single-particle states are de
mined by fscf(rW,v) rather than the bare potentia
fext(rW,v). The transition ratew(q,v) may also be written
in terms of the imaginary part of the surface response fu
tion defined in Eq.~5!:21

w~q,v!5
4p

q
Img~q,v!. ~26!

Finally, using Eq.~19! it is evident that g(q,v) may be
obtained from the exponential moment of the induced d
sity

g~q,v!5E dz eqzn1~z,q,v!. ~27!

Thus, there are two equivalent expressions that can be
to evaluate the surface excitation spectra:~i! the golden rule
formula for the transition ratew(q,v) that requires the com
plex local potentialfscf(rW,v), and~ii ! the surface loss func
tion Img(q,v), derived from the spatial distribution of th
induced surface charge densityn1(rW,v). This density is re-
lated to the local potentialfscf via the response equatio
~19!.

It is clear from the above derivation that, in order to
consistent, the fullfscf given by Eqs.~20! and~21! must be
used in the evaluation of the golden rule formula. This co
sistency requirement had been overlooked in earlier calc
tions of the transition rate,15,21 wherefscf in Eq. ~25! was
approximated asfext1fest, even though the induced den
sity was evaluated correctly within the LDA. This approx
d
e-

-
e
e

-

ec-
r-

c-

-

ed

-
a-

mation differs from the RPA response which neglects
induced exchange-correlation potentialfxc even in the cal-
culation ofn1.

IV. LOW-FREQUENCY, SHORT-WAVELENGTH
EXCITATIONS

A. Transition rate

Taking advantage of the translational symmetry of jelliu
systems, the golden rule expression~25! can be simplified
to21

w~q,v!5
4

p3E d3k fkW~12 f kW8!
1

kz8
z^kz8ufscfukz& z2, ~28!

where kW85(kx1q,ky ,@kz
212v22kxq2q2#1/2). These rela-

tions follow from the conservation of the parallel momentu
and of the single-particle energy during the electronic tr
sition, i.e., ekW85ekW1v. We takeqW i along thex direction.

As a result of the occupation factors, the thre
dimensional integral overkW may be further reduced as fo
lows. First, we make use of the relationk0

2<ky
2<k1

2 , where
k05(kF

22kz
22kx

222v)1/2 and k15(kF
22kz

22kx
2)1/2. kF is

the Fermi wave vector. Definingk5(kF
22kz

2)1/2, we have

I[E d3k fkW~12 f kW8!•••5E
0

kF
dkzE

2k

k

dkx2E
k0

k1
dky•••

'E
0

kF
dkzE

2k

k

dkx
2v

k1
•••. ~29!

The last identity follows from the expansion ofk12k0 for
small v. Let us now introduce the variablew via kx[
k cosw. Thus, dkx52k1dw and

I5E
0

kF
dkzE

0

p

dw 2v•••. ~30!

The transition rate~28! then takes the form

w~q,v!5
8p

kF

v

vp
j~q!, ~31!

wherevp is the bulk plasma frequency and the coefficie
j(q) is defined as

j~q!5
kFvp

p4 E
0

kF
dkzE

0

p

dw
1

kz8
z^kz8ufscfukz& z2. ~32!

This derivation shows that the linearityw(q,v);v arises
purely from phase space factors. The remaining terms m
therefore be evaluated in the static limit. Thus,kz85

(kz
222kqcosw2q2)1/2 and fscf[fscf(z,q,v50). Accord-

ing to Eq. ~26! the low-frequency behavior of the surfac
loss function is given by

Img~q,v!52
q

kF

v

vp
j~q!. ~33!

The quasistatic relation~31! is important since it shows
that the near-adiabatic region of the surface excitation sp
trum can be obtained from purely static response quantit
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55 13 267DENSITY-FUNCTIONAL CALCULATION OF . . .
We note however that the above derivation holds if the lo
potential fscf involves only short-range surface contrib
tions. This does not apply in the small-q limit, where fscf
acquires also long-range bulklike behavior because of
slow decay ofeqz. Such contributions give rise to addition
terms in w(q,v) that are also linear inv ~Ref. 21! ~see
below!. Denoting the short-range surface part offscf by
fs , the corresponding linear coefficient of the transition r
in the small-q limit is given by

js5
kFvp

p3 E
0

kF
dkz

1

kz
z^kzufsukz& z2, ~34!

with fs5fscf(z,q50,v50).

B. Solution of response equation

Before evaluating the friction coefficients for ions an
atoms we discuss in the remainder of this section the be
ior of the transition ratew(q,v) and of the linear coefficien
j(q). In practice we solve the response equation~19! for
semi-infinite jellium surfaces by inverting the equation

n1~z,q,v!2E dz8E dz9x1~z,z8,q,v!K~z8,z9,q!

3n1~z9,q,v!5n̄1~z,q,v!, ~35!

where the unscreened density induced by the bare exte
potential is given by

n̄1~z,q,v!52
2p

q E dz8x1~z,z8,q,v!eqz8. ~36!

The Fourier components of the response kernel are defi
as

K~z,z8,q!52
2p

q
e2quz2z8u1Vxc8 @n0~z!#d~z2z8!.

~37!

Discretizing all quantities on a mesh of pointszi , the re-
sponse equation may be written in matrix form as

n15~12x1WKw!21n̄1 . ~38!

Here 1 denotes the unit matrix,n1,i5n1(zi ,q,v), x1,i j
5x1(zi ,zj ,q,v), etc. The weight factorsWij andwi j must
be chosen such that the cusps ofx1 andK for z5z8 are dealt
with accurately.

The Fourier components of the response functionx1 are
given by

x1~z,z8,q,v!5
2

p3E
0

kF
dkzE

2~kF
2

2kz
2
!1/2

~kF
2

2kz
2
!1/2

dkx~kF
22kz

22kx
2!1/2

3ckz
~z!ckz

~z8!@G~z,z8,e1!

1G~z,z8,e2!#, ~39!

where e65ekz6(v1 id2kxq)2q2/2. The functions

ckz
(z) are the bound states of the semi-infinite metal a

G(z,z8,e6) the corresponding Green’s functions. Detail
definitions can be found in Ref. 25.
l

e

e

v-

al
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d

A crucial step is the evaluation of the unscreened indu
density n̄1(z,q,v) in Eq. ~36!. In the surface region, Simp
son integration overz8 is adequate. However, it is very im
portant not to neglect the asymptotic rangez8→2`. This
contribution can be taken into account using the asympt
forms of the bound states and Green’s functions. By p
forming first thez8 and then thekz ,kx integrations inx1 ,
one can do thez8 integration analytically in the asymptoti
region. In order to include the asymptotic region in the
ternal integration ofx1K, the Coulomb kernel is written as

e2quz2z8u5eq~z2z8!1~e2quz2z8u2eq~z2z8!!.

The integral overx1 times the first term on the right-han
side is related to the unscreened induced densityn̄1, i.e., the
asymptotic region can be treated analytically as explai
above. The integral overx1 times the term in parentheses
limited to z.z8 since this term vanishes forz,z8. The ac-
curate handling of the asymptotic region ensures stab
down to the adiabatic limit, a feature that is particularly im
portant for low-frequency excitation phenomena.

C. Low-frequency excitations

Figure 1 shows the low-frequency behavior of the surfa
loss function Img(q,v) for several parallel wave vectors
These results are derived from TDLDA calculations of t
induced densityn1(z,q,v) and using the relation~27!. The
surface excitation spectra are seen to be linear inv up to at
least 0.5 eV independently of the value ofq. The comparison
with the corresponding results obtained from express
~33!, with fscf(z,q,v) in Eq. ~32! replaced byfscf(z,q,0),
demonstrates the remarkable accuracy of the quasistatic
proximation.

The induced densityn1(z,q,v) is shown in Fig. 2 for
q50.5 Å21, v50.5 eV. For smaller frequencies, the re
part of n1 is nearly independent ofv while the imaginary
part decreases linearly. Thus, according to Eq.~27!, the de-
viations of n1(z,q,v) from the static limit n1(z,q,0) lead to

FIG. 1. Surface loss function Img(q,v) for semi-infinite jel-
lium (r s53) as a function of frequency for several parallel wa
vectors. Solid curves, TDLDA results derived from Eq.~27!;
straight lines, quasistatic results derived from Eq.~33!.
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13 268 55A. LIEBSCH
contributions to Img(q,v) of O(v3). This behavior forms
the basis for the validity of the quasistatic approximation.

In principle, the density induced at finiteq and finitev
might exhibit also a propagating ‘‘bulk’’ contribution that
vanishes in the adiabatic limit. Figure 3 shows thev vs q
region where bulk excitations are allowed. At smallq, this
continuum is limited by the lineh5v/(qvF)51, where
vF is the Fermi velocity. At the surface, the translationa
invariance is broken so that, at a finiteqW i , bulk transitions
may be generated even at frequencies whereh.1.

At small q and low v such that h5v/(qvF),1, the
bulklike contribution to the transition rate increases lik
v5.21 At the rather largeq and smallv values of interest
here, we have not been able to identify any propagating co
tribution to n1, even at large distances (;50 Å! from the
surface. Instead, the induced densities decay like 1/z2 to-
wards the interior as expected from Friedel oscillations.
the evaluation of the surface response functiong(q,v), any
bulklike components of the induced density would also b
weighted by the factoreqz, i.e., their long-range oscillatory
behavior would be of no special consequence for the surfa
excitation spectra.

FIG. 2. Induced surface densityn1(z,q,v) at 0.5 eV and
q50.5 Å21, as calculated within the TDLDA (r s53). Solid curve,
real part; dashed curve, imaginary part.

FIG. 3. Electron-hole continuum of three-dimensional electro
gas. The boundary is determined by the functionq/kF5
(v/vF11)1/221, which approachesh5v/(qvF) for q!kF .
l

n-

n

e

ce

Figure 4 shows the variation of the real part of the
duced density with parallel momentum. Plotted are the n
malized distributions n̄1(z,q,v)5n1(z,q,v)e

2qz1, where
z1 is the static image plane position in the limitq50. This
normalization is chosen in order to compensate for the ex
nential increase of the external potential~24! near the cen-
troid of n1. Because of the rather low frequency, these d
tributions are nearly identical to the corresponding sta
induced densities obtained previously using a coupled ch
nels method.15 In the limit of smallq, n1 converges to the
induced density calculated by Lang and Kohn26 for uniform
fields. At q51.0 Å21 the main peak has shifted toward
the surface since higher density regions are involved in
screening of the applied field. Also, the wave vector of t
Friedel oscillation increases according toa5
(4kF

22q2)1/2.27 The decrease in amplitude is caused by
reduced ability of the surface electrons to screen the app
potential.

The function j(q) which according to Eq.~31! charac-
terizes the near-adiabatic surface excitations, is shown in
5 for several bulk densities. These results are obtained f
the slopes of Img(q,v) calculated within the TDLDA for
v;0.1 eV. Quasistatic evaluations ofj(q) based on Eq.
~32! using fscf(z,q,0) are in excellent agreement with the
results. At smallq, the functionsj(q) extrapolate very well
to the coefficientsjs ~34! derived in the long-wavelength
limit.28 This region will be discussed in Sec. IV D.

At large q, the surface response is seen to become v
small whenq'1.5kF . Such a cutoff is to be expected sinc
the metal electrons are no longer able to screen the rap
varying external potential;eqz. Moreover,q should not ex-
ceed the decay constant of the electronic states and Gre
functions in the vacuum. In any case, largeq vectors are not
important except at very short particle-surface distances.
assumption of negligible overlap with the metal states th
ceases to be valid.

The maximum ofj(q) at intermediate values ofq is a
consequence of the increasing amplitude offext near the
centroid of the induced charge density. If this effect is a
proximately accounted for by multiplyingj(q) by e22qz1,

n

FIG. 4. Real part of normalized induced surface dens
n̄1(z,q,v)5n1(z,q,v)e

2qz1 at 0.1 eV as calculated within the
TDLDA ( r s53). z1 is the static image plane position. Solid curv
q50.1 Å21; dashed curve,q51.0 Å21.
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55 13 269DENSITY-FUNCTIONAL CALCULATION OF . . .
the productj̄(q) is indeed a monotonically decreasing fun
tion of q, just as one would expect on physical grounds.

It is well known that, because of the neglect of the latt
potential, the jellium model has certain shortcomings t
affect the shape of the surface density profiles. In particu
for r s,4, the work functions are too small. Accordingly, th
density profiles are too diffuse and too polarizable. The
called stabilized jellium model29 includes the pseudopoten
tial of the metal ions in an average manner and leads
significantly improved work functions.

In Fig. 6 the equilibrium densities of the standard jelliu
model are compared with those of the stabilized jelliu
model. Although the differences might appear small, th
nevertheless have a considerable influence on the elect
surface excitation spectra. This is illustrated in Fig. 5, wh
also shows the coefficientj(q) for the stabilized jellium
model for r s52 andr s53 ~the results forr s54 are nearly
unchanged!. ~See also Table I.! Since the equilibrium density
of these surfaces is less diffuse than for standard jellium,
probability of exciting electron-hole pairs is reduced. F
r s52, the maximum ofj(q) is about a factor of 2 smaller
while for r s53, the reduction is about 25%. These resu
demonstrate the remarkable sensitivity of the surface
function to the electronic surface properties. Finite or infin
potential barrier models tend to have far too stiff dens
profiles and grossly underestimate the probability
electron-hole pair creation.

D. Long-wavelength limit

At finite frequency, the surface response functi
g(q,v) has the long-wavelength expansion20,21

g~q,v!5
e21

e11S 11
2e

e11
qd~v!1••• D . ~40!

Heree(v) is the Drude dielectric function of the bulk met
andd(v) the centroid of the screening charge induced b

FIG. 5. Variation of j(q) with parallel momentum for severa
bulk densities. Solid curves, standard jellium model; dashed cur
stabilized jellium model. The symbols atq50 denote the standar
jellium values ofjs defined in Eq.~34!. The Fermi wave vectors ar
kF51.8, 1.2, and 0.9 Å21 for r s52, 3, and 4, respectively.
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uniform electric field oriented normal to the surface. At low
frequencies~as long asq!v/vF , i.e.,h@1), the above ex-
pansion simplifies to

g~q,v!5112 qd~v!1•••, ~41!

and the imaginary part ofd(v) may be parametrized as

Imd~v!5
v

kFvp
j. ~42!

TABLE I. j(q) for stabilized jellium surfaces as calculated
within the TDLDA.

q ~Å21) r s52 r s52.67 r s53 r s54

0.0 1.70 1.35 1.19 1.02
0.1 1.82 1.45 1.30 1.14
0.2 1.97 1.55 1.44 1.25
0.3 2.11 1.65 1.54 1.34
0.4 2.24 1.74 1.62 1.40
0.5 2.35 1.81 1.68 1.42
0.6 2.42 1.85 1.69 1.38
0.7 2.48 1.84 1.67 1.30
0.8 2.52 1.81 1.61 1.18
0.9 2.51 1.75 1.53 1.02
1.0 2.48 1.66 1.41 0.84
1.2 2.38 1.42 1.12 0.47
1.4 2.17 1.12 0.81 0.21
1.6 1.90 0.80 0.47
1.8 1.60 0.50 0.28
2.0 1.26 0.30
2.2 0.94
2.4 0.67
2.6 0.50

s,

FIG. 6. Ground state density profiles for semi-infinite jellium
surfaces. Solid curves, standard jellium; dashed curve, stabilize
jellium.
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The coefficientj is given by the golden rule expression

j5
kFvp

p3 lim
v→0

E
0

kF
dkz

1

kz8
z^kz8ufscfukz& z2, ~43!

with kz85(kz
212v)1/2.

As shown by Persson and Zaremba,21 at low frequencies,
the local potential may be separated asfscf5fs1fb ,
where the short-range surface potential can be taken in
static limit, i.e.,fs(z,q50,v50), and the long-range bulk
potential is given by fb(z,q50,v)524pz/(e11). Ac-
cording to this decomposition, the coefficientj may be split
into surface, bulk, and interference terms as

j5js1jb1j i . ~44!

Sincejs can be derived from Eq.~43! by settingkz85kz , this
term coincides with the coefficient defined in Eq.~34!. Thus,
as pointed out above, the functionsj(q) plotted in Fig. 5
extrapolate at smallq to the valuesjs . The reason is tha
j(q) is evaluated at sufficiently smallv that h!1. On the
other hand, the totalj corresponds to first taking the sma
q limit and subsequently lettingv become small, such that
h@1. Because of the discontinuity of the bulklike excit
tions at h51, these two limiting processes differ. At th
frequency at which the results shown in Fig. 5 are evalua
~0.1 eV!, this discontinuity occurs atq50.01 Å21, i.e., in a
range that is irrelevant for the friction phenomena conside
in this paper.

E. Approximate response treatments

In a previous paper,15 the low-frequency electronic exci
tations of jellium surfaces had been investigated followin
different procedure: In the first step, rather than using a
sponse formulation, the static induced densityn1(rW) was cal-
culated by including the periodic potentialfext(rW)5
2(2p/q)eiq

W
i•r

W
i1qz in the LDA ground-state Hamiltonian

As mentioned above, this procedure gives densities in ex
lent agreement with the real part of those obtained at
v by solving the response equation~19!. In the second step
the coefficientj(q) of the transition rate was evaluated fro
Eq. ~32!, with fscf constructed fromn1 and approximating
fscf'fext1fest.

In order to illustrate the importance of the omitte
exchange-correlation potentialfxc for the surface excita-
tions, we compare in Fig. 7 the new consistent results
j(q) with the previous approximate ones.@Note that in Ref.
15 j(q) is normalized in such a manner that the origin of t
z coordinate is placed at the positionz1 of the static image
plane, i.e., the functionsj̄(q)5j(q)e22qz1 are plotted. We
do not use this normalization here.# The neglect offxc is
seen to cause a significant underestimate of the surface
function. As illustrated in Fig. 8, in the surface regio
z521,...,4a0, where the electronic transition occurs,fxc is
negative so that the fullfscf is much larger than the Coulom
part of it. For r s52 the consistentj(q) near its maximum
is about twice as large as the approximate function, while
r s53 the newj(q) is nearly four times larger. The differ
ences become even larger for lower bulk densities.
he
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ss
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Another commonly made approximation uses the RP
where the induced exchange-correlation potential is n
glected also in the evaluation of the induced density.
shown in Fig. 9, this approximation leads to an apprecia
underestimate ofj(q) since the effective interaction poten
tial in the RPA is too strong. The surface density then a
pears much less polarizable than in the TDLDA, with a
cordingly smaller excitation probabilities. These discre
ancies underline again the importance of employing a co
sistent response description.

V. SLIDING FRICTION OF IONS: K ON Cu

At large ion-surface separations, the electronic friction
dominated by bulk processes. The surface response func
can then be expressed in terms of the bulk dielectric fun
tion. In the case of a Drude metal one has forv!vp

FIG. 7. Variation of j(q) with parallel momentum for standard
jellium surfaces~from top: r s52,3,4). Solid curves, TDLDA;
dashed curves, quasistatic results withfscf replaced by
fext1fest.

FIG. 8. Solid curve, real part of the self-consistent local pote
tialfscf(z,q,v) at 0.1 eV andq50.5 Å21, as calculated within the
TDLDA ( r s53); dashed curve, Coulomb potentialfext1fest;
dotted curve, exchange-correlation potentialfxc ; dot-dashed
curve, induced densityn1.
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Img~q,v!5Im
e~v!21

e~v!11
5
4vvF

kFlvp
2 , ~45!

wherel is the electronic mean free path. Thus

h'5
Q2

M

1

4d3
4vvF

kFlvp
2 . ~46!

This contribution to the damping rate accounts for bu
electron-hole pair creation due to impurities, phonons, a
the lattice potential.

At short distances, surface contributions toh' that arise
from the nonlocal response of the metal become importa
Using the low-frequency form ofg(q,v) given in Eq.~33!,
the friction coefficient can be expressed as

h'5
Q2

M

2

kFvp

6

~2d!4
F~d!, ~47!

whered is measured with respect to the jellium edge and th
dimensionless ionic friction integralF(d) is defined as

F~d!5
~2d!4

6 E
0

`

dq q3e22qdj~q!. ~48!

This expression indicates that, for a givend, the surface loss
function is required atq values at least up to 1/d. The func-
tion F(d) is shown in Fig. 10 for various bulk densities. A
large ion-surface distances,F(d) approachesjs defined in
Eq. ~34!.

As an application we consider the damping of the parall
frustrated translation of a charged alkali atom adsorbed on
metal surface.30 The adatom is treated as a point charge
magnitudeQ that oscillates parallel to the surface with a
frequencyv. In the case of a low coverage of potassium
atoms on Cu~100!, the distance of the K nucleus from the
effective jellium edge~half a lattice constant above the firs
plane of nuclei! is about d52.65 Å. From the measured
work function change at low coverage one can determine t
effective charge asQ'0.88ueu. With these parameters we
find for stabilized jellium@r s52.67, F(d)51.65#

FIG. 9. Variation of j(q) with parallel momentum for standard
jellium surfaces~from top: r s52,3,4). Solid curves, TDLDA;
dashed curves, RPA response treatment.
d
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h i50.5h''1.63109 s21, ~49!

so that t51/h i'0.631029 s. This lifetime is about four
times shorter than the value derived by Persson,30 t5
2.731029 s. About half of this difference is caused by th
neglect of the exchange-correlation potential in the gold
rule formula. The remaining factor of 2 originates in th
incorrect reading of the function jsC(d2z1)/(d2
z1)

4[F(d)/d4 from Fig. 3 of Ref. 15.@At d55 a052.65 Å,
C(d2z1)'0.5 rather than 0.23 as quoted in Ref. 30.#

The new value oft is of a similar size as the lifetime
estimated by Persson for a ‘‘covalent’’ bond mod
(t'0.731029 s!.30 In the latter case, the K 4s level is
broadened into a resonance due to the hybridization with
electronic states of the Cu substrate. This interaction lead
a damping since the partial filling of the resonance chan
during the oscillatory motion of the ion.

We note here that there is an interesting relationship
tween the parallel friction coefficient and the surface res
tivity associated with the adsorption of atoms on metal s
faces. As shown by Persson,30

h i5
e2

M

n2

na
l fra , ~50!

whereM is the mass of the adsorbed atoms,n the electronic
density of the substrate,na the number of adatoms per un
area, andl f the thickness of the metal film. The overlaye
induced resistivityra can be expressed in terms of thed
parameter for tangential surface currents via

ra5
v

l fn
Imdi~v!, ~51!

so that

h i5
e2

M

n

na
vImdi~v!. ~52!

For realistic Na layers adsorbed on jellium withr s52
~corresponding to an Al substrate! Ishida and Liebsch31

FIG. 10. Ionic friction integralF(d) ~48! as a function of ion-
surface separation for several bulk densities. The metal is descr
using the stabilized jellium model and the dynamical response
treated within the TDLDA.
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13 272 55A. LIEBSCH
evaluated the frequency dependence ofdi(v) and obtained
at lowv Im di(v)5zvp /v, with 103z56.2a0 at a cover-
agec51/4. The lattice constant of the overlayer square
tice atc51 is ai56.684a0 and the distance of the Na nu
clei from the substrate jellium edged53a051.59 Å. With
these parameters, the lateral friction coefficient is

h i5
m

M

vp
3

4pna
z5231010 s21, ~53!

i.e., t51/h i'0.5310210 s. This lifetime is about one orde
of magnitude smaller than the one derived above for K io
on Cu. In part, this reduction is caused by the sho
adsorbate-metal distance which according to Eq.~47! de-
creasest like d4. Thus, (dNa/dK)

45(3/5)4'0.13. Other
contributions should arise from the stronger broadening
the Na 4s resonance due to the hybridization with the me
states.

More recently, Ishida32 has calculated the surface resisti
ity ra for a variety of chemisorbed overlayers and adsorb
atoms. Since these calculations include the covalent natu
the bond, it would be interesting to compare them with
present approach appropriate for ions outside the equilibr
density of the metal. In this manner one could separate
contributions to the friction coefficient due to bond form
tion and due to external charges.

For completeness we mention here that the lifetime of
CO stretch vibration on Cu evaluated in Ref. 15 should
decreased by about a factor of 1.6 as a result of the consi
response description. The new value for stabilized jelli
(r s52.67) is t'3.2310212 s, if the dipole is assumed no
to overlap with the surface electron density, andt'
6.0310212 s, if the dipole is located slightly within the den
sity region. This latter lifetime agrees well with the TDLD
results by Eguiluz.33 The shorter measured valu
t'1.3310212 s ~Ref. 34! is presumably caused by the a
ditional damping due to the partial filling of the CO 2p*
level.35

VI. SLIDING FRICTION OF PHYSISORBED ATOMS:
Xe ON Ag

Inserting the low-frequency behavior of Img(q,v) given
in Eq. ~33! into the friction coefficient~10! for physisorbed
atoms, we find thath i can be written in the form9 ( i5i ,')

h i5
e2

M

2

2pkFvp
(
qW i

uVi~qW i!u2q2j~q!

5
e2

a0

@kF
3a~0!#2

~kFd!10
m

M

vF

vp
kFa0I i~d!, ~54!

whered is the distance of the atom from the jellium edg
The proportionalityh i;1/d10 agrees with the one found b
Schaich and Harris.12 The dimensionless atomic friction in
tegralsI i(d) are defined as
t-

s
r

f
l

d
of
e
m
e

e
e
ent

.

I i~d!5
4d10

p2 E d2q q4j~q!

3U E d2q8
qW 8•qW 92q8q9

q8q9~q1q81q9!
Qi9e

2~q81q9!dU2.
~55!

These functions are shown in Fig. 11 for various bulk de
sities. At large atom-surface distances, theI i(d) scale like
the coefficientsjs defined in Eq.~34!. Note that these func-
tions are very much larger than the ones given in Ref. 9. T
increase is partly caused by the inclusion of the exchang
correlation potential in the golden rule formula and, eve
more importantly, by the fact that in Ref. 9 the normalize
coefficient j̄(q)[e22qz1j(q) instead of the fullj(q) was
used in the evaluation of Eq.~55!.

In the case of Xe atoms physisorbed on Ag~111! one has
d52.4 Å. The static polarizability of Xe isa(0)54.0 Å3.
Using the TDLDA results forj(q) shown in Fig. 5, we find
for stabilized jellium (r s53) the parallel friction coefficient
h i;3.43108 s21 in contrast toh i;0.43108 s21 in Ref.
9. The friction coefficient for the perpendicular motion i
h i;17.43108 s21 instead ofh i;2.53108 s21 using the
approximatej(q).

The calculated parallel friction coefficienth i is in ap-
proximate agreement with the values obtained from expe
ments for Xe on Ag: surface resistivity data yield
h i;33108 s21,4,8 while recent quartz-crystal microbalance
measurements giveh i;83108 s21.17 For phonon-related
friction, on the other hand, Persson and Nitzan10 estimated

FIG. 11. Atomic friction integralsI'(d) and I i(d) ~55! as a
function of atom-surface separation for several bulk densities. T
metal is described using the stabilized jellium model and the d
namical response is treated within the TDLDA.
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h i;0.63108 s21 for isolated Xe atoms on Ag. This valu
should also be a reasonable approximation for fluid ad
bate layers. For incommensurate solid adsorbate layers
the other hand, the phonon contribution to the friction
expected to vanish.36 The friction coefficient arising from the
van der Waals attraction is also significantly larger than
contribution due to the Pauli repulsion. The latter has b
estimated by Persson at abouth i;0.63108 s21.30

The theoretical value ofh i given above presumably rep
resents a slight overestimate since the Xe atom is not c
pletely outside the range of the electronic density profi
Moreover, the derivation of expression~6! implies some un-
certainty. Also, as a result of thes-d hybridization, the sur-
face polarizability of real Ag might be slightly smaller tha
that of the corresponding jellium model. We note, in ad
tion, that for Xe there might exist some friction due
‘‘chemical’’ effects which result from the broadening of th
Xe 6s level. Estimates of this mechanism yieldh i;
1.53108 s21.30 For the lighter rare gas atoms, this effe
should be negligible since the lowest unoccupieds level does
not extend down to the Fermi energy.

VII. SUMMARY

The low-frequency electronic excitations at jellium su
faces were evaluated within the time-dependent dens
functional approach. The consistent description of electr
electron interactions in the presence and absence of
external perturbation yields much larger excitation probab
ties than approximate~and inconsistent! interaction treat-
ments. For Xe sliding above a Ag surface, the friction co
ficient associated with the van der Waals attraction is fou
to be in good agreement with recent experimental res
obtained from surface resistivity and quartz-crystal microb
ance measurements. The friction of alkali atoms on m
surfaces is also much larger than in previous approxim
o-
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treatments. These results demonstrate the importance o
electronic friction mechanism for atoms adsorbed on me
surfaces.

The dynamical response calculations discussed in
present work are carried out within the jellium model. W
have found that, to excellent numerical accuracy,
TDLDA excitation spectra at smallv and finiteq can be
derived either from the golden rule expression~32! involving
the local potential fscf(z,q,v), or from the surface loss
function Img(q,v) which involves the induced densit
n1(z,q,v). This equivalence is of considerable practical im
portance for future evaluations ofj(qW i) for realistic metals.
Since the self-consistent potentialfscf in the golden rule ex-
pression can be taken in the static limit, it can be deriv
from an extension of existing ground state electronic str
ture codes by applying a weak static potential of the fo
;eiq

W
i•r

W
i1qz.

Such external potentials represent a periodic perturba
in the surface region. IfqW i is chosen as a simple fraction o
the surface reciprocal lattice vectors, it should be relativ
straightforward to find the static induced densityn1(rW) and
the corresponding local potentialfscf(rW,v50). In view of
the computational difficulties of evaluating the dynamic
response of realistic metals, static response calculation
finite qW i should therefore be highly valuable for the analy
of phenomena involving low-frequency electronic excit
tions at metal surfaces. Such calculations might well beco
the next generation of surface response work. They wo
significantly complement the dynamical response of sim
metal surfaces that has been of primary interest in the p
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