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Density-functional calculation of electronic friction of ions and atoms on metal surfaces
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The electronic friction of ions and atoms adsorbed on metal surfaces is calculated within the time-dependent
density-functional approach. The metal is described within the jellium model and the nonlocal, short-
wavelength response of the surface electrons is treated by using the adiabatic local-density approximation. The
electronic friction is found to be considerably larger than in previous estimates that were based on not fully
consistent descriptions of the creation of low-frequency electron-hole pairs. For Xe on Ag the friction param-
eter is 7~ 3.4X 1% s™1, in good agreement with the values derived from quartz-crystal microbalance and
surface resistivity measurements. These results confirm earlier suggestions concerning the important role of
electronic processes in friction phenomena on metal surfa86463-18207)00919-3

I. INTRODUCTION ment is equivalent to a self-consistent LDA description of
the surface in the presence of a static external electric poten-

Friction phenomena between macroscopic objects havéal. The important result of these improved calculations is
been investigated for a long tinfeAlthough this topic is of  that the incorporation of exchange-correlation terms in the
great technological importance, surprisingly little is knownlocal potential makes the surface electronic density consid-
about the microscopic processes that give rise to the macr@rably more polarizable. Accordingly, the electronic friction
scopic friction forcé® The recent availability of refined ex- Parameters for physisorbed atoms are greatly enhanced. In
perimental techniques that can probe various contributions te case of Xe sliding on Ag, we obtaim~3.4<10° s
the friction on an atomic scalé has greatly stimulated the ~*. The calculated value is in qualitative agreement with the
scientific interest in this phenomenon. experimental results derived from surface resistivity

There are strong indications that during sliding the inter-measurement$ (7~3x 10° s™*) and from recent quartz-
action of one or a few monolayers of lubrication moleculescrystal microbalance datta(7~8x10° s™*).
with the contact surfaces plays a crucial role. In the case of The friction coefficients for the motion of ions near metal
insulators, the microscopic friction necessarily involves thesurfaces are also found to be much larger within the consis-
excitation of phonons while in metals excitation of both tent description of the electronic surface excitations. In the
phonons and low-energy electron-hole pairs is feasible. Thease of K on Cu and Na on Al, we findy~1.6x10° s~*
relative importance of electron and phonon channels on megnd ~20x 10° s~ %, respectively. These results demonstrate
als is still a controversial isst& although very recent ex- the great sensitivity of surface excitation spectra to the elec-
perimental and theoretical work suggests that on systemigonic properties in the surface region and to the details of
such as Xe on Ag, the electronic friction processesthe nonlocal dynamical response to time-dependent external
dominate’~1° fields.

It is well known that the electronic excitations at metal The outline of this paper is as follows. In Sec. Il, the
surfaces depend very sensitively on the microscopic naturkiction coefficients for atoms and ions, as well as the damp-
of the ground-state density distribution and on the nonlocaing rate of adsorbed dipoles, are related to the surface re-
screening response to the time-varying external fitlde  sponse functiomy(q,). Section Il summarizes the key as-
aim of the present work is therefore to determine as accupects of the time-dependent density-functional approach. The
rately as possible the probability of creating electronic excilow-frequency, short-wavelength excitations of metal sur-
tations via moving atoms and ions above a metal surfacdaces are discussed in Sec. IV, which forms the main part of
The sliding friction of physisorbed atoms had been investithis work. In Secs. V and VI, these results are used to deter-
gated previously using simple surface modéig? Persson mine the electronic friction parameters of ions and atoms. A
and Volokitir® improved these calculations by relating the summary is given in Sec. VII, together with a suggestion for
friction coefficient to the surface response functipfy,w)  further theoretical work concerning realistic metal surfaces.
for which density-functional results are availableThese Hartree atomic units are used throughout unless noted other-
early results ofg(q,w) were derived from an approximate Wwise.
expression of the effective surface potential that accounts for
Coulomb bu_t not exchange-correlation contribut_ions. In view Il SLIDING ERICTION OF IONS AND ATOMS
of the sensitivity of surface response properties to model
assumptions, it seems therefore appropriate to perform im- Consider an ion or atom of ma$8 moving close to a
proved response calculations that avoid this approximationmetal surface. Because of the finite response time of the

In the present paper, the time-dependent local-densitgemi-infinite electron gas, the screening charge induced in
approximatioh® (TDLDA) is used to evaluate the surface the metal does not follow the particle motion adiabatically.
response functiog(q,w). In the adiabatic limit, this treat- As a result of this time lag the force acting on the particle at
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a given time differs from its adiabatic value. The frictional e 1 . . . .. .
force may be written as n=— M“m Zf d rf d°r’'Vi(r)Imx(r,r’,w)V;(r'),
w—0

® ©

. _ _ . where the indexi=x,z refers to parallel or perpendicular
v_vhere v is the particle veloc_:lty andp, n, are the fricc  motion of the atom,y is again the density-density response
tion coefficients for the motion parallel and normal to thefunction of the metal. The effective local interaction poten-

surface. tial V;(r) is an approximate representation of the true non-
local potential which results from the second-order processes
A. lons involved in the transitions. Neglecting the electronic screen-
ing during the rapid intermediate virtual transitiong, may
be written as

f=—M(pp+ 70,2,

In the case of an ion of chard@g, the friction parameter
7, is given by the expressith

2
R 1 «(0) 1
Qz' 1 ’ g gl gl Vi(r)= oV (V., ») = V'_, = .
77L=—Vllm;f d3rfd3r V(O Imy(r,r,@)V(r'), i(r)~a(0) '; =l 2 i

@) )
Here «(0) is the static polarizability of the adatom and
&=(0,0,d) is the position relative to the surface.

Since V;(r) does not satisfy the Laplace equation, it can
only be approximately represented in terms of a superposi-
tion of evanescent plane waves of the form

w—0

where y(r,r’,w) is the exact many-body density-density

response function of the semi-infinite metal aM(f) is de-
fined as

- 1

V(I’)=VZT. (3) N N v s
r—d| Vi) =2 Vi(qeldIm+az ®)

- q
Hered=(0,0d) is the location of the particle relative to the _ - : )
surface. We assume the ion to be outside the electronic dedhe expansion coefficients are given by
sity of the metal. In this case, one hag =27;.*° o

In the following we describe the electronic properties of - o, A-a"=a'q"
the metal in terms of the jellium model. Because of the trans- Vi(q)=2ia(0) | dq qq'q”(q+q’ +q") ’
lational invariance parallel to the surface it is convenient to (9)
use a two-dimensional Fourier representation. Expreg&jon

then simplifies to (]E|(5H|)

where q"=q—q’ and Q"=(q",—iq"). Inserting Eq.(9)
into Eq. (6), one finds

=Q—2Iim ijmdq o?e 29%mg(q,w) (4) e? 1 R
(VRGP ) 7= =y lim =2 [Vi(qp|®

w—0
w—0"" q

where

xfdzf dz' e¥my(z,2',q, w)e??
2 '

g(q,w)z——wf dzf dz'e®my(z,2',q,w)e%* (5) 5
=y im = |Vi(ap| 5, /mg(d, ). (10)

is the so-called surface response functidft 0—0" q

Expressiong4) and(10) show that Img(q,®) is the central
B. Atoms quantity that describes the microscopic electronic excitation

In the case of a neutral physisorbed atom, the instantrocesses that play a role in the sliding friction of atoms and

neous mutual polarization of the atomic and metallic electror{OS near metal surfaces.
densities gives rise to the van der Waals attraction. If the o .
atom is moving the finite response time of the metal leads to C. Vibrating dipoles

a friction force since the induced surface charge density lags fqr completeness we note that the damping of adsorbate
+049,12,14 H H H . . . . . . .

behind-****In principle, both the short-range repulsive and yibrations due to electronic excitations in the metal is closely

long-range attractive interactions can contribute to the fricyg|ated to the friction processes discussed above. For a dipole

tion force but we consider_ here only the_ damping caused b)SsciIIating perpendicular to the surface at a frequeagyhe
the van der Waals attraction. Thus we ignore all effects regamping rate is given 5§

lated to the overlap between the charge densities of metal
and adsorbate. - - -
As recently shown by Persson and Volokilithe friction = —ZJ d3fJ’ d3r’ V() Imx(r,r',0)V(r'), (11
coefficient associated with the van der Waals attraction can
be expressed as with
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R 1 In principle, the exchange-correlation contribution to the
V() =uV,———, (12)  interaction kerneK [the second term in Eq15)] should be
r—d| of the more general formf,(r,r’,w),% i.e., it should be
andu is the dynamic dipole moment. If the dipole is located nonlocal and depend on frequency. The approximate form
outside the range of the equilibrium density of the metal, theised in Eq.(15) is based on the following assumptiors.
damping rate can be expressed as The true f,. is replaced by the corresponding quantity of the
homogeneous electron gas. In addition, both the ground state
and induced densities are assumed to be slowly varying.
These assumptions should be of a similar accuracy as the
] o _ LDA in the ground state. The main problem of the local
'I"hus,' apart from the obvious prefactors, the V|brat_|onal “fe'approximation is the failure to reproduce the asymptotic im-
time is governed by the same surface loss function as thgye potential. Since the image form, however, sets in at dis-

7-*1:2,u2J' dq fe 249Nmg(q, »). (13
0

friction coefficients of atoms and ions. tances where the equilibrium density is rather small, nonlocal
corrections are presumably not very importdiit. The ne-
lIl. TIME-DEPENDENT LOCAL DENSITY APPROACH glect of the frequency dependence excludes all correlation

In order to evaluate the friction coefficientd) and (10), effects that go beyond a mere polarization of the electronic

an approximate expression must be found for the density§ystem. Processe_s such as double excitations or ionization
, s, are neglected. Since we are here concerned with near-
density response functiow(r,r

;). Since the ground state 5 qiapatic excitations, such finite-frequency corrections to

electronic properties of metal surfaces are rather accurately ¢nquid be rather small. Under these assumptions it is jus-
described within the local density approximatitDA) of  iitaq 1o approximate

the exchange-correlation potential, the electronic excitations
induced by the moving particle should be treated within a
proper extension of the LDA. In the adiabatic version of the
time-dependent local density approd€hy is expressed as a
renormalized single-particle response function:

foor,r 0)~f(q=0,0=0)8(r—r"), (18

where fxc(q=0,w=0)=V;c[no(F)] is derived from the ho-
mogeneous electron gas. This limit corresponds to the ex-

.. .. . pression used in the second term of ELp).
X(f,f',w)%)(l(r,f’,wa daflf drox(r.fy,0) If the exchange-correlation contribution to the interaction
kernel K is omitted, the response treatment corresponds to
XK(ry,T)x(Fa,r ), (14)  the random-phase approximatiiRPA). This does not, how-

) ) ) ever, amount to the time-dependent Hartree approximation
where the interaction kernel consists of Coulomb andys |ong as the ground-state properties are treated within the
exchange-correlation contributions LDA. By RPA we therefore mean “LDA-based RPA.” This

1 hybrid electron-electron interaction trea[tgmAent violates certain
> o , > c_> sum rules that are satisfied in the TDLDAObviously, this
K(r.r’) Ir—r’| Vsl No(r)]8(r=17) (15 mixed LDA-RPA response treatment does not give the cor-
. _rect LDA ground state if the excitation frequency approaches
andy represents the independent-electron response functiqie adiabatic limit. Since exchange-correlation terms tend to
. - - e a - reduce the strength of the bare Coulomb interaction poten-
P (DY) o (N P, (r') tial, the surface density profiles appear stiffer in the RPA
: than in the consistent TDLDA. As we will see below, for the
(16)  low-frequency excitations that are relevant in friction phe-
. o o . nomena, the RPA response treatment leads to significant un-
Herefy is the Fermi-Dirac distribution function ang and  derestimates of the probability of creating electron-hole
Yi(r) are the LDA single-particle energies and wave func-pairs.
tions. These quantities include the microscopic aspects of the According to the approximatio(l4), the linearly induced
electronic properties of the semi-infinite metal. Schemati-surface charge density is given by
cally x is given by (we momentarily drop all spatial argu-
ments and integrals

xu(r,r' @)= (fi—fi) _
KK’ ot+e—egtid

nl(F,w)=f B3 (.1, 0) pexlr @)
X1

=y1+xiKxi+---= . 1
X=Xx1+x1Kx1 - Ky, (17) fd?’

Fxa(fr o) doef 1, 0). (19
The virtue of the TDLDA approach is that the electron-

electron interactions in the presence of the external perturbdn this mean-field treatment, all many-electron correlations

tion are treated in the same manner as in the ground statafe incorporated in the effective or self-consistently screened

i.e., via the same local exchange-correlation potentiatomplex local potential:

V,Jd n] derived from the homogeneous electron gas. In the

adlabatlc_ limit, this response treatment is equivalent to th_e Dol 1 0) = P T @) + Ping(F, @), (20)

self-consistent LDA ground state in the presence of a static

electric field. where the induced potential is given by
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Gind(T, @)= o, @) + ye(T, ) mation differs from the REA response whlch_ neglects the
induced exchange-correlation potenti#. even in the cal-
- - culation ofn;.
=fd3r’K(r,r’)nl(r’,w). (22) !
IV. LOW-FREQUENCY, SHORT-WAVELENGTH

The electrostatic potential satisfies the Poisson equation EXCITATIONS

V2¢esf T, 0) = —4mny (1, ) (22) A. Transition rate

and the induced exchange-correlation potential is obtained Taking advantage of the translational symmetry of jellium
from a Taylor expansion of the local ground-state exchangesyzsltemS, the golden rule expressi@b) can be simplified
correlation potential: to

Pl 110) =Vid oIy (). 23 wiaw)= 5 | 6 -0 Akl dacdkd . 28

Let us now consider the perturbation of the metal elec- .
trons caused by an external charge distribution. If thesavhere K’ =(k+q,ky,[K2+2w—2k,q—0g?]*?). These rela-
charges do not overlap with the metal electron density, th&ons follow from the conservation of the parallel momentum
external potential is of the general forrqg(gmm) and of the single-particle energy during the electronic tran-
sition, i.e., €; = eg+ w. We takeq along thex direction.

As a result of the occupation factors, the three-
dimensional integral ovek may be further reduced as fol-

. . o . ) oq%s <
The creation of electronic surface excitations via such a pol-oWs First, we make use of the relati Ky=x1, where

_ 2_1L,2_1,2_ 1/2 _ 2 1,27 1,2\1/2 H
tential is determined by the golden rule formula K= (kg —kz—kKy—2w)™* and Kl_(kg kg 1/5’() K is
the Fermi wave vector. Defininge= (kg — k%)%, we have

> 2m Q24 (G- T — wt)
d’ext(ryt):_Fe eltartm el (29)

w(g,w)=2 fe(1—fe)(K'| st K)I? k « p
(q w) 77%, k( k)|< |¢sc14 >| |Ejd3kf;2(1—f|21)"'=f deZJ dkxzf 1dky-~
0 —K Ko
X 0( € — €— ). (25
ke K 2w
Because of screening processes, the amplitudes of the elec- %jo dszf dka—l' r (29)

tronic transitions between the single-particle states are deter-
mined by ¢Scf(F,w) rather than the bare potential The last identity follows from the expansion of, — «, for

¢ext(;,w)_ The transition ratew(q,w) may also be written small w. Let us now introduce the variable via k,=
in terms of the imaginary part of the surface response funck €0Sp- Thus, dk=—«;d¢ and
tion defined in Eq(5):%*

k T
|=f dezf de2w---. (30)
(q.0) = Timg(g,) (26 Co
wW(Q,w)=— ,W).
q The transition rat€28) then takes the form
Finally, using Eq.(19) it is evident that g(q,w) may be 87 o
obtained from the exponential moment of the induced den- w(g,w)=——§&(q), (3D
where w, is the bulk plasma frequency and the coefficient
g(q,w)=f dz €%,(2,q,0). 27y £(q) is defined as
k L
Thus, there are two equivalent expressions that can be used &q)= kF(Z"J Fd sz qui,|<k£|¢scH K. (32
to evaluate the surface excitation spectrathe golden rule T Jo 0 kz

formula for the transition rate/(q,w) that requires the com- This derivation shows that the linearitw(q,w)~ o arises

plex local potential (T, @), and(ii) the surface loss func-  purely from phase space factors. The remaining terms may
tion Img(q,w), derived from the spatial distribution of the therefore be evaluated in the static limit. Thus,=

induced surface charge density(r,w). This density is re- (k2—2kqcosp— )2 and ¢de= ds2,0,0=0). Accord-
lated to the local potentiads via the response equation ing to Eq. (26) the low-frequency behavior of the surface

(19. loss function is given by
It is clear from the above derivation that, in order to be

consistent, the fullp. given by Eqs(20) and(21) must be )

used in the evaluation of the golden rule formula. This con- Img(q,w)zzk—F o 8. (33
sistency requirement had been overlooked in earlier calcula- P

tions of the transition rat&?* where ¢ in Eq. (25) was The quasistatic relatio31) is important since it shows

approximated asp..t+ desr, €VEn though the induced den- that the near-adiabatic region of the surface excitation spec-
sity was evaluated correctly within the LDA. This approxi- trum can be obtained from purely static response quantities.
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We note however that the above derivation holds if the local 0.2 - 1 . l
potential ¢ involves only short-range surface contribu-
tions. This does not apply in the smalllimit, where ¢
acquires also long-range bulklike behavior because of the -
slow decay ofe% Such contributions give rise to additional
terms in w(qg,w) that are also linear inv (Ref. 21 (see
below). Denoting the short-range surface part ¢f; by
¢, the corresponding linear coefficient of the transition rate
in the smallg limit is given by L -~ P _

)

Im g(q,w) (au

o

I

\

\

\
o
[4,]

(39 e 70

ka kF 1
fs:ﬂ._\’:‘pfo dkzk_ZK kz| ¢s| kz>|21

with ¢s= ds(2,0=0,0=0).
w (eV)
B. Solution of response equation FIG. 1. Surface loss function Ig{q,w) for semi-infinite jel-
Before evaluating the friction coefficients for ions and lium (r¢=3) as a function of frequency for several parallel wave
atoms we discuss in the remainder of this section the behawectors. Solid curves, TDLDA results derived from E®7);
ior of the transition ratew(q,w) and of the linear coefficient straight lines, quasistatic results derived from E3p).
£(q). In practice we solve the response equati®f) for

semi-infinite jellium surfaces by inverting the equation A crucial step is the evaluation of the unscreened induced

density n,(z,9,®) in Eq. (36). In the surface region, Simp-
son integration over’ is adequate. However, it is very im-
portant not to neglect the asymptotic rargje——oc. This
(35 contribution can be taken into account using the asymptotic
forms of the bound states and Green’s functions. By per-
where the unscreened density induced by the bare externtirming first thez’ and then thek,,k, integrations iny; ,
potential is given by one can do the' integration analytically in the asymptotic
region. In order to include the asymptotic region in the in-
ternal integration ofy;K, the Coulomb kernel is written as

nl(z,q,w)—f dz’J dz'x.(z,Z',q,0)K(Z',2",q)

an(z,,’qlw) :n_l(z’q’w)l

_ 2 )
nl(z,q,w)z—FWf dz' x1(z,2',q,w)e% . (39

The Fourier components of the response kernel are defined
as

efq\zfz’|: eq(zfz’)_'_ (efq\zfz’|_ eq(zfz’)).

The integral overy; times the first term on the right-hand
side is related to the unscreened induced demsity.e., the
asymptotic region can be treated analytically as explained
above. The integral ovey,; times the term in parentheses is
limited to z>Zz' since this term vanishes fa<z’. The ac-
curate handling of the asymptotic region ensures stability
down to the adiabatic limit, a feature that is particularly im-
portant for low-frequency excitation phenomena.

2 ,
K(z,2',q)=— Fe‘q‘z‘z l+ViIno(2)18(z—2).
(37)

Discretizing all quantities on a mesh of poirgs, the re-
sponse equation may be written in matrix form as
ny=(1-x;WKw)'n,. (38

Here 1 denotes the unit matrixp;;=ny(z,q,0), Xx1jj
=x1(zi ,z;,9,), etc. The weight factorsV;; andw;; must

be chosen such that the cuspsyefandK for z=z'" are dealt
with accurately.

The Fourier components of the response funciigrare
given by

220112
)
(k|2: _ kf) 1/2

2 (ke (
Xl(z,z',q,w):?fo dkzji dky(kE—KZ—kZ)2

X (2) ¢y (2')[G(2,2' €)
+G(z,2',e_)], (39

where e.=e *(o+is—kq)—g%2. The functions

C. Low-frequency excitations

Figure 1 shows the low-frequency behavior of the surface
loss function Img(qg,w) for several parallel wave vectors.
These results are derived from TDLDA calculations of the
induced densityn;(z,q,w) and using the relatiof27). The
surface excitation spectra are seen to be lineas up to at
least 0.5 eV independently of the valuegpfThe comparison
with the corresponding results obtained from expression
(33), with ¢(z,9,0) in Eq. (32) replaced byp(2,q9,0),
demonstrates the remarkable accuracy of the quasistatic ap-
proximation.

The induced densityn;(z,q,w) is shown in Fig. 2 for
q=0.5 A", »=0.5 eV. For smaller frequencies, the real

¥y (2) are the bound states of the semi-infinite metal anchart of n, is nearly independent ab while the imaginary
G(z,2',e.) the corresponding Green’s functions. Detailedpart decreases linearly. Thus, according to &3), the de-
definitions can be found in Ref. 25. viations of n;(z,q, ) from the static limitn,(z,q,0) lead to
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FIG. 4. Real part of normalized induced surface density
n.(z,9,0)=n4(z,q,0)e" 9% at 0.1 eV as calculated within the
TDLDA (r¢=3). z, is the static image plane position. Solid curve,
q=0.1 A~%; dashed curveq=1.0 A~1.

FIG. 2. Induced surface densityn,(z,q,0) at 0.5 eV and
q=0.5 A1, as calculated within the TDLDAr(=3). Solid curve,
real part; dashed curve, imaginary part.

contributions to Ing(q,w) of O(w®). This behavior forms
the basis for the validity of the quasistatic approximation.
In principle, the density induced at finitg and finite
might exhibit also a propagating “bulk” contribution that
vanishes in the adiabatic limit. Figure 3 shows thevs q

Figure 4 shows the variation of the real part of the in-
duced density with parallel momentum. Plotted are the nor-
malized distributions n,(z,q,w)=n,(z,q,w)e” 94, where
region where bulk excitations are allowed. At smgjithis 21 IS the static image plane position in the lingi=0. This
continuum is limited by the linep=w/(que)=1, where normallgatlon is chosen in order to compensate for the expo-
ve is the Fermi velocity. At the surface, the translationalNential increase of the external potentiak) near the cen-

troid of n,. Because of the rather low frequency, these dis-
tributions are nearly identical to the corresponding static
induced densities obtained previously using a coupled chan-
nels method? In the limit of smallq, n; converges to the

invariance is broken so that, at a finiﬁ@, bulk transitions
may be generated even at frequencies whgrel.

At small g and low w such that »=w/(qug)<1, the
bulklike contribution to the transition rate increases like. ) )
©5.21 At the rather largeg and smalle values of interest induced density calcmljlated by Lang and Kthfu_)r uniform
here, we have not been able to identify any propagating corfi€lds. At q=1.0 A™' the main peak has shifted towards
tribution to n;, even at large distances-60 A) from the the sur_face since h|gr_1er d_en3|ty regions are involved in the
surface. Instead, the induced densities decay lik& fg-  SCreening of t_he _appllec_i field. Also, the wave vector of the
wards the interior as expected from Friedel oscillations. |nFr|e2deI ) 1‘/)252?7'”3“0” increases  according  toa=
the evaluation of the surface response functiég, »), any ~ (4KF—0%)~"."" The decrease in amplitude is caused by the
bulklike components of the induced density would also bereducgd ability of the surface electrons to screen the applied
weighted by the factore%, i.e., their long-range oscillatory Potential.

behavior would be of no special consequence for the surface The function £(q) which according to Eq(31) charac-
excitation spectra. terizes the near-adiabatic surface excitations, is shown in Fig.

5 for several bulk densities. These results are obtained from
the slopes of Ig(q,w) calculated within the TDLDA for
w~0.1 eV. Quasistatic evaluations of(q) based on Eq.
(32 using ¢<(z,q,0) are in excellent agreement with these
plasmons results. At smallg, the functionsé(q) extrapolate very well
to the coefficientség (34) derived in the long-wavelength
’ limit.?® This region will be discussed in Sec. IV D.
7 At large q, the surface response is seen to become very
small wheng~1.5kg. Such a cutoff is to be expected since
. the metal electrons are no longer able to screen the rapidly
varying external potential- 9% Moreover,q should not ex-
- ceed the decay constant of the electronic states and Green'’s
! functions in the vacuum. In any case, lag®&ectors are not
0 0.5 1 important except at very short particle-surface distances. The
assumption of negligible overlap with the metal states then
a/ ke ceases to be valid.
The maximum ofé(q) at intermediate values df is a
FIG. 3. Electron-hole continuum of three-dimensional electronconsequence of the increasing amplitude ¢gf; near the
gas. The boundary is determined by the functicgke= centroid of the induced charge density. If this effect is ap-
(w/we+1)Y2—1, which approaches= w/(qug) for g<kg. proximately accounted for by multiplying(q) by e 29%,

w/ wr
-
I

electron—hole pairs
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£(q)

ne(z)

a (A

FIG. 5. Variation of £(q) with parallel momentum for several
bulk densities. Solid curves, standard jellium model; dashed curves,
stabilized jellium model. The symbols gt=0 denote the standard z (ao)
jellium values ofég defined in Eq(34). The Fermi wave vectors are

ke=1.8, 1.2, and 0.9 A for rg=2, 3, and 4, respectively. . i L
FIG. 6. Ground state density profiles for semi-infinite jellium

— ) ) surfaces. Solid curves, standard jellium; dashed curve, stabilized
the producté(q) is indeed a monotonically decreasing func- jg|jiym.

tion of g, just as one would expect on physical grounds.

It is well known that, because of the neglect of the latticeyniform electric field oriented normal to the surface. At low

potential, the jellium model has certain shortcomings thagequenciegas long agj<w/ve, i.e., >1), the above ex-
affect the shape of the surface density profiles. In particularyansjon simplifies to

for r¢<4, the work functions are too small. Accordingly, the
density profiles are too diffuse and too polarizable. The so- g(q,w)=1+2qd(w)+- -, (41
called stabilized jellium mod#! includes the pseudopoten-
tial of the metal ions in an average manner and leads tand the imaginary part al(w) may be parametrized as
significantly improved work functions.

In Fig. 6 the equilibrium densities of the standard jellium
model are compared with those of the stabilized jellium Imd(w)=
model. Although the differences might appear small, they
nevertheless have a considerable influence on the electronic . -
surface excitation spectra. This is illustrated in Fig. 5, whichwit;ﬁ‘?rlf leféi)_ for stabilized jelium surfaces as calculated
also shows the coefficieng(q) for the stabilized jellium

£ (42

kap

model forrs=2 andr=3 (the results for;=4 are nearly 4 (41 ro=2 =267 r.=3 ro=4
unchangej (See also Table)l Since the equilibrium density
of these surfaces is less diffuse than for standard jellium, th8.0 1.70 1.35 1.19 1.02
probability of exciting electron-hole pairs is reduced. For0.1 1.82 1.45 1.30 1.14
r,=2, the maximum of(q) is about a factor of 2 smaller, 0.2 1.97 1.55 1.44 1.25
while for r=3, the reduction is about 25%. These results0.3 211 1.65 1.54 1.34
demonstrate the remarkable sensitivity of the surface 10s8.4 2.24 1.74 1.62 1.40
function to the electronic surface properties. Finite or infiniteg.5 2.35 1.81 1.68 1.42
potential barrier models tend to have far too stiff densityp.e 2.42 1.85 1.69 1.38
profiles and grossly underestimate the probability forg 7 2.48 1.84 1.67 1.30
electron-hole pair creation. 0.8 252 1.81 161 1.18
0.9 2.51 1.75 1.53 1.02
D. Long-wavelength limit 1.0 2.48 1.66 141 0.84
- . 1.2 2.38 1.42 1.12 0.47
At finite frequency, the surface response function
g(q,») has the long-wavelength expansiofAt 14 2.17 1.12 0.81 0.21
' 1.6 1.90 0.80 0.47
1 5 1.8 1.60 0.50 0.28
_& € 2.0 1.26 0.30
9(q,w)= 1 1+ 6+1qd(w)+ cee (40 e 0.94
2.4 0.67
Here e(w) is the Drude dielectric function of the bulk metal 2 g 0.50

andd(w) the centroid of the screening charge induced by &
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The coefficientt is given by the golden rule expression

Krw, ke 1
ng_?:pllm JO dsz|<kz|¢scﬁkz>|zv (43
z

T -0

with k.= (k2+2w)Y2

As shown by Persson and Zarenfbat low frequencies,
the local potential may be separated aS = ¢+ ¢y,
where the short-range surface potential can be taken in the
static limit, i.e., ¢4(z,q=0,0=0), and the long-range bulk
potential is given by ¢,(z,g=0,0)=—4mz/(e+1). Ac-
cording to this decomposition, the coefficighmay be split

¢(q)

into surface, bulk, and interference terms as 3
E=Et byt (44) 7 4
Since¢, can be derived from Ed43) by settingk, =k, , this FIG. 7. Variation of ¢(q) with parallel momentum for standard

term coincides with the coefficient defined in E§4). Thus, jellium surfaces(from top: r¢=2,3,4). Solid curves, TDLDA;

as pointed out above, the functiogéq) plotted in Fig. 5 dashed curves, quasistatic results witlhs; replaced by
extrapolate at smalyj to the valuesés. The reason is that Pextt dest-

£(q) is evaluated at sufficiently smad) that »<<1. On the

other hand, the totad corresponds to first taking the small-  Another commonly made approximation uses the RPA,
g limit and subsequently letting become small, such that  where the induced exchange-correlation potential is ne-
7>1. Because of the discontinuity of the bulklike excita- glected also in the evaluation of the induced density. As
tions at »=1, these two limiting processes differ. At the shown in Fig. 9, this approximation leads to an appreciable
frequency at which the results shown in Fig. 5 are evaluatednderestimate o£(q) since the effective interaction poten-
(0.1 eV), this discontinuity occurs ag=0.01 A™!,i.e.,ina tial in the RPA is too strong. The surface density then ap-
range that is irrelevant for the friction phenomena consideregears much less polarizable than in the TDLDA, with ac-

in this paper. cordingly smaller excitation probabilities. These discrep-
ancies underline again the importance of employing a con-
E. Approximate response treatments sistent response description.

In a previous papel the low-frequency electronic exci-
tations of jellium surfaces had been investigated following a
different procedure: In the first step, rather than using a re-
sponse formulation, the static induced denﬂiiyf)) was cal- At large ion-surface separations, the electronic friction is
culated by including the periodic potentia‘{bext(F): dominated by bulk processes. The surface response function
—(2m/q)€91 19 in the LDA ground-state Hamiltonian. can then be expressed in terms of the bulk dielectric func-

As menti . . e }ion. In the case of a Drude metal one has for w,
oned above, this procedure gives densities in excel-

lent agreement with the real part of those obtained at low

w by solving the response equati@td). In the second step, 2

the coefficientt(q) of the transition rate was evaluated from

Eq. (32), with ¢4 constructed frorn; and approximating

Dsct™ PextT Pest:

In order to illustrate the importance of the omitted
exchange-correlation potentiap,. for the surface excita-
tions, we compare in Fig. 7 the new consistent results for
£(q) with the previous approximate onddlote that in Ref.

15 £(q) is normalized in such a manner that the origin of the
z coordinate is placed at the positian of the static image -
plane, i.e., the functions(q) = £(q)e 292 are plotted. We ,
do not use this normalization hefelhe neglect ofe,. is _‘10
seen to cause a significant underestimate of the surface loss

function. As illustrated in Fig. 8, in the surface region 2 (ao)

z=-1,...,4a,, where the electronic transition occuts,. is

negative so that the fulb.;is much larger than the Coulomb FIG. 8. Solid curve, real part of the self-consistent local poten-
part of it. For r¢=2 the consistent(q) near its maximum tialg¢(z,g,w) at 0.1 eV andy=0.5 A~%, as calculated within the

is about twice as large as the approximate function, while fomMDLDA (rs=3); dashed curve, Coulomb potentiabe,+ est;
rs=3 the newé(q) is nearly four times larger. The differ- dotted curve, exchange-correlation potentigh,.; dot-dashed
ences become even larger for lower bulk densities. curve, induced density;.

V. SLIDING FRICTION OF IONS: K ON Cu

¢ (z,0,w) (a.u.)
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¢(a)
F(d)

q (&) d (R)

FIG. 9. Variation of £(q) with parallel momentum for standard
jellium surfaces(from top: rs=2,3,4). Solid curves, TDLDA,
dashed curves, RPA response treatment.

FIG. 10. lonic friction integralF(d) (48) as a function of ion-
surface separation for several bulk densities. The metal is described
using the stabilized jellium model and the dynamical response is
treated within the TDLDA.

e(w)—1 dowwg

ML) =M1 KTl “9 7j=0.57, ~1.6x10°s%, 49
times shorter than the value derived by PersSom=
Q% 1 4dwwr 2.7x10°° s. About half of this difference is caused by the
= WW (46) neglect of the exchange-correlation potential in the golden
P

rule formula. The remaining factor of 2 originates in the

This contribution to the damping rate accounts for bulkincorrect reading of the function£C(d—z;)/(d—
electron-hole pair creation due to impurities, phonons, and:)*=F(d)/d* from Fig. 3 of Ref. 15[At d=5a,=2.65 A,
the lattice potential. C(d—z;)=~0.5 rather than 0.23 as quoted in Ref.]30.

At short distances, surface contributionso that arise The new value ofr is of a similar size as the lifetime
from the nonlocal response of the metal become importangstimated by Persson for a “covalent” bond model
Using the low-frequency form aj(q,w) given in Eq.(33), (7=~0.7x107° §).%° In the latter case, the K stlevel is

the friction coefficient can be expressed as broadened into a resonance due to the hybridization with the
electronic states of the Cu substrate. This interaction leads to
Q? 2 6 a damping since the partial filling of the resonance changes

TN Kewy WF(d% (47 during the oscillatory motion of the ion.

P We note here that there is an interesting relationship be-
whered is measured with respect to the jellium edge and théween the parallel friction coefficient and the surface resis-
dimensionless ionic friction integrdl(d) is defined as tivity associated with the adsorption of atoms on metal sur-

faces. As shown by Perssdh,
(2d)* [ _
Fld)=—¢ f dq g’e™21%(q). (48) e? n?
0 MN= P (50
a

This expression indicates that, for a givénthe surface loss
function is required at] values at least up to d/ The func-
tion F(d) is shown in Fig. 10 for various bulk densities. At
large ion-surface distanceb(d) approaches defined in
Eq. (34).

As an application we consider the damping of the paralle
frustrated translation of a charged alkali atom adsorbed on a

whereM is the mass of the adsorbed atomghe electronic
density of the substrate, the number of adatoms per unit
area, and; the thickness of the metal film. The overlayer
induced resistivityp, can be expressed in terms of tde
Parameter for tangential surface currents via

metal surfacé® The adatom is treated as a point charge of pa=i|de((v), (51
magnitudeQ that oscillates parallel to the surface with a I

frequencyw. In the case of a low coverage of potassiumso that

atoms on C(100), the distance of the K nucleus from the

effective jellium edgghalf a lattice constant above the first 2 n

plane of nuclei is about d=2.65 A. From the measured vy n_a“’lmdll(“’)' (52

work function change at low coverage one can determine the
effective charge a®Q~0.84¢e|. With these parameters we For realistic Na layers adsorbed on jellium with=2
find for stabilized jellium[rs=2.67, F(d)=1.65| (corresponding to an Al substratéshida and Liebsch
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evaluated the frequency dependencedpfw) and obtained
atlow o Imdj(w)={w,/w, with 10°/=6.2a, at a cover-
agec=1/4. The lattice constant of the overlayer square lat-
tice atc=1 is a=6.684, and the distance of the Na nu- 50 —
clei from the substrate jellium edgd=3a,=1.59 A. With
these parameters, the lateral friction coefficient is

1(d)

3

m wp 0 -1
=— —(=2X
Uil M 47Tna =2 10 s , (53)

i.e., 7=1/5~0.5x 10 s. This lifetime is about one order
of magnitude smaller than the one derived above for K ions 10
on Cu. In part, this reduction is caused by the shorter
adsorbate-metal distance which according to Ety) de-
creasesr like d* Thus, @na/dk)*=(3/5)*~0.13. Other
contributions should arise from the stronger broadening of
the Na 4 resonance due to the hybridization with the metal
states.

More recently, Ishidi¥ has calculated the surface resistiv- 0
ity p, for a variety of chemisorbed overlayers and adsorbed
atoms. Since these calculations include the covalent nature of d (R)
the bond, it would be interesting to compare them with the
present approach appropriate for ions outside the equilibrium
density of the metal. In this manner one could separate the F!G- 11. Atomic friction integralsl, (d) and 1(d) (55) as a
contributions to the friction coefficient due to bond forma- function of atom-surface separation for several bulk densities. The
tion and due to external charges. meta_ll is described_ using the gta_bilized jellium model and the dy-

For completeness we mention here that the lifetime of th&'@mical response is treated within the TDLDA.
CO stretch vibration on Cu evaluated in Ref. 15 should be
decreased by about a factor of 1.6 as a result of the consistent > 4
response description. The new value for stabilized jellium i(d)=—= [ d*aq°é(q)
(r=2.67) is 7~3.2x10 12 5, if the dipole is assumed not

Iu(d)

10

2

to overlap with the surface electron density, ame: ., q-9"-q'q" g
6.0x 10 s, if the dipole is located slightly within the den- X f dq T arg +q) e 4
sity region. This latter lifetime agrees well with the TDLDA

results by EguiluZ® The shorter measured value (55
7~1.3x10 2 s (Ref. 34 is presumably caused by the ad-
ditional damping due to the partial filling of the COn2 These functions are shown in Fig. 11 for various bulk den-
level 3® sities. At large atom-surface distances, théd) scale like
the coefficientst defined in Eq.(34). Note that these func-
tions are very much larger than the ones given in Ref. 9. The
VI. SLIDING FRICTION OF PHYSISORBED ATOMS: increasg is partly .CaL.Jsed by the inclusion of the eXChange-
Xe ON Ag correlation potential in the golden rule formula and, even
more importantly, by the fact that in Ref. 9 the normalized
Inserting the low-frequency behavior of §t0,w) given  coefficient £(q)=e2921£(q) instead of the full £(q) was
in Eq. (33) into the friction coefficient(10) for physisorbed ;sed in the evaluation of EG55).
atoms, we find tha; can be written in the forfh(i=|,L) In the case of Xe atoms physisorbed on(AHl) one has
d=2.4 A. The static polarizability of Xe ise(0)=4.0 AS.
) Using the TDLDA results fog(q) shown in Fig. 5, we find
_& 2 D V(G| 2a2(q) for stabilized jellium ¢s=3) the parallel friction coefficient
KOV 2mkewy, a qpraretq 7~3.4x10° s™ in contrast to ~0.4x10° s~ * in Ref.
9. The friction coefficient for the perpendicular motion is

e [KEa(0)]* m we 7~17.4x10 s~ instead of 7 ~2.5x10® s~! using the
2 kd)® M w_kaaOI i(d), (54 approximates(q).

The calculated parallel friction coefficieng is in ap-
proximate agreement with the values obtained from experi-
whered is the distance of the atom from the jellium edge.ments for Xe on Ag: surface resistivity data yield
The proportionality 7~ 1/d'° agrees with the one found by 7;~3x 1% s~**8 while recent quartz-crystal microbalance
Schaich and Harri¥2 The dimensionless atomic friction in- measurements givey ~8X 10® s~ 1Y For phonon-related
tegralsl;(d) are defined as friction, on the other hand, Persson and NitZa@stimated
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7~ 0.6X 10° s~ for isolated Xe atoms on Ag. This value treatments. These results demonstrate the importance of the
should also be a reasonable approximation for fluid adsorelectronic friction mechanism for atoms adsorbed on metal
bate layers. For incommensurate solid adsorbate layers, @urfaces.
the other hand, the phonon contribution to the friction is The dynamical response calculations discussed in the
expected to vanisff. The friction coefficient arising from the present work are carried out within the jellium model. We
van der Waals attraction is also significantly larger than théhave found that, to excellent numerical accuracy, the
contribution due to the Pauli repulsion. The latter has beelTDLDA excitation spectra at smalb and finiteq can be
estimated by Persson at aboyf~0.6X 108 s~ 1.3 derived either from the golden rule express{88) involving

The theoretical value ofy; given above presumably rep- the local potential ¢s(z,9,0), or from the surface loss
resents a slight overestimate since the Xe atom is not confunction Inmg(q,») which involves the induced density
pletely outside the range of the electronic density profilen;(z,q,w). This equivalence is of considerable practical im-

Moreover, the derivation of expressi¢8) implies some un-  portance for future evaluations df(qy) for realistic metals.
certainty. Also, as a result of theed hybridization, the sur-  sjnce the self-consistent potentigl. in the golden rule ex-
face polarizability of real Ag might be slightly smaller than pression can be taken in the static limit, it can be derived
that of the corresponding jellium model. We note, in addi-from an extension of existing ground state electronic struc-

tion, that for Xe there might exist some friction due 10 tyre codes by applying a weak static potential of the form

“chemical” effects which result from the broadening of the — gld)Tj+az

Xe 6s level. Estimates of this mechanism yielg~ S ) : P .
: . uch external potentials represent a periodic perturbation

1.5x10% s71.39 For the lighter rare gas atoms, this effect . P P P P

should be negligible since the lowest unoccusdevel does in the surface rggion. L] .is chosen asa simple fraction. of
not extend down to the Fermi energy the surface reciprocal lattice vectors, it should be relatively

straightforward to find the static induced densitMF) and

VIl. SUMMARY the corresponding local potentia;luscf(F,w=O). In view of
the computational difficulties of evaluating the dynamical

The low-frequency electronic excitations at jellium sur- response of realistic metals, static response calculations at

faces were evaluated within the time-dependent densitys . ‘iH should therefore be highly valuable for the analysis
functlonal' appro:?\ch. The consistent description of eIectronbf phenomena involving low-frequency electronic excita-
electron Interactions In the presence and_ ak_)sence Of.tmeons at metal surfaces. Such calculations might well become
external perturbation yields much larger excitation probabili-

i . . . . ) he nex neration of surf r nse work. They woul
ties than approximatéand inconsistentinteraction treat- the next generation of surface response wo ey would

ments. For Xe sliding above a Ag surface, the friction Coef_5|gn|f|cantly complement the dynamical response of simple

ficient associated with the van der Waals attraction is foundm etal surfaces that has been of primary interest in the past.

to be in good agreement with recent experimental results
obtained from surface resistivity and quartz-crystal microbal-
ance measurements. The friction of alkali atoms on metal Itis a pleasure to acknowledge useful discussions with Bo
surfaces is also much larger than in previous approximat@ersson.

ACKNOWLEDGMENT

1F.P. Bowden and D. TaboFEriction and Lubrication(Methuen, 1A, Liebsch, Electronic Excitations at Metal Surfacé®lenum,
London, 1967. New York, 1997.

2physics of Sliding Frictionedited by B.N.J. Persson and E. To- »W.L. Schaich and J. Harris, J. Phys.1@, 65 (1981).
satti (Kluwer, Dordrecht, 1996 Fundamentals of Friction: 3L.S. Levitov, Europhys. Leti8, 499 (1989.
Macroscopic and Microscopic Processeslited by I.L. Singer  %J.B. Sokoloff, Phys. Rev. B2, 5318(1995.

and H.M. Pollock(Kluwer, Dordrecht, 1992 15A. Liebsch, Phys. Rev. Letb4, 67 (1985.
3J. Krim, D.H. Solina, and R. Chiarello, Phys. Rev. L&6, 181  °A. Zangwill and P. Soven, Phys. Rev. 21, 1561 (1980; M.J.
(1991); J. Krim and A. Widom, Phys. Rev. B8, 12 184(1988. Stott and E. Zarembabid. 21, 12 (1980; G. Mahan,ibid. 22,
4C. Holzapfel, W. Akemann, and D. Schumacher, Surf. 32i, 1780(1980.

123 (1990; D. SchumacherSurface Scattering Experiments 7J. Krim (unpublishedl
with Conduction ElectronsSpringer Tracts in Modern Physics 18w.L. Schaich, Solid State Commurl5, 357 (1974; E.G.

Vol. 128 (Springer-Verlag, Berlin, 1992 D’Agliano, O. Kumar, W.L. Schaich, and H. Suhl, Phys. Rev. B
Sm. Cieplak, E.D. Smith, and M.O. Robbins, Scien2@5 1209 11, 2122(1975; B.N.J. Persson, J. Phys. 11, 4251(1978.
(1994); M.O. Robbins, inPhysics of Sliding FrictionRef. 2. 193, Harris and R.O. Jones, J. Phys.6C3585 (1973; 7, 3751
®B.N.J. Persson, Comments Condens. Matter Ph§s281(1995. (1974.
C. Daly and J. Krim, Phys. Rev. Left6, 803(1996); J. Krim and 20p 3. Feibelman, Prog. Surf. S&i2, 287 (1982.
C. Daly, in Physics of Sliding Frictior(Ref. 2. 21B.N.J. Persson and E. Zaremba, Phys. Re®1B1863(1985.
8D. schumacher, ifPhysics of Sliding FrictionRef. 2. 22R.R. Chance, A. Prock, and R. Silbey, Adv. Chem. Pi3%.1
9B.N.J. Persson and A.l. Volokitin, J. Chem. Phy€3 8679 (1978; B.N.J. Persson and W.L. Schaich, J. Physl4; 5583
(1995. (1981).

10B.N.J. Persson and A. Nitzan, Surf. S867, 261(1996. Z3E K.U. Gross and W. Kohn, Phys. Rev. Lei§, 2850(1985; 57,



13274 A. LIEBSCH 55

923E) (1986; N. Iwamoto and E.K.U. Gross, Phys. Rev3B, 30B.N.J. Persson, Phys. Rev.4, 3277(199).

3003(1987. 31H. Ishida and A. Liebsch, Phys. Rev.45, 6171(1992.
24A. Liebsch, Phys. Rev. B2, 6255(1985. 324, Ishida, Phys. Rev. B9, 14 610(1994; 52, 10 819(1995;
A, Liebsch, J. Phys. @9, 5025(1986. Surf. Sci.363 354 (1996.
?°N.D. Lang and W. Kohn, Phys. Rev. B 3541(1973. 3A.G. Eguiluz, Phys. Sci36, 651 (1987).
273.F. Dobson and G.H. Harris, Phys. Rev2R 6542(1983. 34R. Ryberg, Surf. Scil14, 627 (1982.
?°A. Liebsch, Phys. Rev. B6, 7378(1987). 35B.N.J. Persson and M. Persson, Solid State Comr86n175
29J.P. Perdew, H.Q. Tran, and E.D. Smith, Phys. Re¥2Bl1 627 (1980).

ggg% H.B. Shore and J.H. Rose, Phys. Rev. Lé®, 2519 383.B. Sokoloff, Phys. Rev. B2, 760(1990.



