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Theory of giant Raman scattering from semicontinuous metal films
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The local electric fields in a semicontinuous metal film are shown to exhibit giant fluctuations in the visible
and infrared spectral ranges, when the dissipation in metallic grains is small. The field fluctuations result in
significantly enhanced Raman scattering from semicontinuous metal films. The scaling analysis is performed to
describe giant Raman scattering in the vicinity of the percolation threshold. A theory of Raman scattering from
these films is developed. A numerical method based on the theory is suggested and used to calculate Raman
scattering from silver semicontinuous films. Results of the simulations are compared with recent experimental
observations.@S0163-1829~97!03119-6#
ve
et
a
ra
th
o
in-
a
ct
ici
of
in
e

A
ith
, t

w
a
or
b
th
u

s
ie
ll-
s

is
of

the

ag-
cat-
v-

le
ts,
ac-

e-
ne
id-
the
s
cal
of
er-
sti-
one
a-
ese

ow
en-
kin

n
m-
I. INTRODUCTION

The optical properties of metal-insulator thin films ha
been intensively studied both experimentally and theor
cally. Semicontinuous metal films with a two-dimension
~2D! morphology are usually produced by thermal evapo
tion or sputtering of metal onto an insulating substrate. In
growing process, first, small metallic grains are formed
the substrate. As the film grows, the metal filling factor
creases and coalescences occur, so that irregularly sh
clusters are formed on the substrate, resulting in 2D fra
structures. The sizes of these structures diverge in the v
ity of the percolation threshold. A percolating cluster
metal is eventually formed, when a continuous conduct
path appears between the ends of the sample. The m
insulator transition~the percolation threshold! is very close
to this point, even in the presence of quantum tunneling.
higher surface coverage, the film is mostly metallic, w
voids of irregular shapes. As further coverage increases
film becomes uniform.

The optical properties of metal-dielectric films sho
anomalous phenomena that are absent for bulk metal
dielectric components. For example, the anomalous abs
tion in the near-infrared spectral range leads to unusual
havior of the transmittance and reflectance. Typically,
transmittance is much higher than that of continuo
metal films, whereas the reflectance is much lower~see Refs.
1–7, and references therein!. Near and well below the
conductivity threshold, the anomalous absorptance can
as high as 50%.6,8–10A number of effective-medium theorie
were proposed for calculation of the optical propert
of semicontinuous random films, including the Maxwe
Garnett11 and Bruggeman12 approaches and their variou
550163-1829/97/55~19!/13234~12!/$10.00
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modifications.5–7,13 The renormalization group method
also widely used to calculate effective dielectric response
2D percolating films near the percolation threshold~see Refs.
14 and 15, and references therein!. However, none of these
theories allows one to calculate the field fluctuations and
effects resulting from these fluctuations.

This paper is concerned with the large local electrom
netic ~em! fields that arise in surface-enhanced Raman s
tering — one of the most intriguing optical effects disco
ered in the past 20 years~see, for example, Refs. 16 and 17!.
Strong fluctuations of the local fields play an important ro
in enhancements of a variety of nonlinear optical effec
such as four-wave mixing, nonlinear absorption and refr
tion, harmonic generation, etc.17,18The field fluctuations tend
to increase significantly Rayleigh scattering from inhomog
neous media.17,19–21 The enhancements of the near-zo
fields can trigger the optical bistability that may be cons
ered as optical analog of the electric transistor with all
basic logic elements.22 Recently, the near-field fluctuation
were directly imaged by using scanning near-field opti
microscopy.23,24 Because semicontinuous metal films are
great interest in terms of their fundamental physical prop
ties and various applications, it is important to study stati
cal properties of the electromagnetic fields in the near z
of these films. In this paper we study the near-field fluctu
tions and enhanced Raman scattering resulting from th
fluctuations.

To simplify theoretical considerations, we assume bel
that the electric field is homogeneous in the direction perp
dicular to the film plane. This assumption means that the s
depth for the metal grains,d>c/(vAu«mu), is much larger
than the grain sizea0, so that the quasistatic approximatio
holds. Note that the role of the skin effect can be very i
13 234 © 1997 The American Physical Society
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55 13 235THEORY OF GIANT RAMAN SCATTERING FROM . . .
portant, resulting, in many cases, in strong alterations of
electromagnetic response found in the quasist
approximation.25–28 Yet, the quasistatic approximation sig
nificantly simplifies theoretical considerations of the fie
fluctuations and describes well the optical properties of se
continuous films providing qualitative~and in some cases
quantitative! agreement with experimental data.5,29–31

Below, we neglect the skin effect so that a semicontin
ous film can be considered as a 2D object. In the opt
frequency range, when the frequencyv is much larger than
the relaxation ratet21 of the metallic component, a sem
continuous metal film can be modeled as a 2DL-R—C
lattice.5,29–31The capacitanceC stands for the gaps betwee
metal grains that are filled by dielectric material~substrate!,
with the dielectric constant«d . The inductive elements,L-
R, represent the metallic grains that for the Drude metal h
the dielectric function

«m~v!5«b2~vp /v!2/~11 ivt /v!, ~1!

where«b is a contribution to« due to interband transitions
vp is the plasma frequency, andvt51/t!vp is the relax-
ation rate. In the high-frequency range considered here,
losses in metal grains are small,v@vt . Therefore the rea
part of the metal dielectric function is much larger~in modu-
lus! than the imaginary part and it is negative for the fr
quencies v below the renormalized plasma frequenc
vp*5vp /A«b. Thus the metal conductivity is almost pure
imaginary and metal grains can be modeled as theL-R ele-
ments, with the active component much smaller than the
active one.

If the skin effect cannot be neglected, i.e., the skin de
d is smaller than the metal grain sizea0, the simple quasi-
static presentation of a semicontinuous film as a 2D arra
the L-R andC elements is not valid. Still, we can use th
L-R — C model in the other limiting case, when the sk
effect is very strong,d!a0.

25,26 In this case, the losses i
metal grains are small, regardless of the ratiov/vt , whereas
the effective inductance for a metal grain depends on
grain size and shape rather than on the material constant
the metal. In this paper we restrict our consideration to
quasistatic case.

The effective properties of the 2DL-R— C lattices have
been intensively studied during the last decade.5,29–31How-
ever, there was not much attention paid to the fact that
spatial distributions of the local fields in such systems c
exhibit rich nontrivial behavior.

It is instructive to consider first the film properties at t
percolation thresholdpc , where the exact result for the e
fective dielectric constant«e holds in the quasistatic case:32

«e5A«d«m. If we neglect the metal losses and setvt50, the
metal-dielectric constant«m is negative for frequencie
smaller than the renormalized plasma frequencyvp* . We
also neglect possible small losses in a dielectric substr
assuming that«d is real and positive. Then,«e is purely
imaginary forv,vp* . Therefore a film consisting of loss
free metal and dielectric grains is absorptive forv,vp* . The
effective absorption in a loss-free film means that the e
tromagnetic energy is stored in the system and thus the l
fields could increase unlimitedly. In reality, the local fields
a metal film are, of course, finite because of the losses. If
e
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losses are small, one anticipates very strong field fluct
tions. In this paper we develop a theory of Raman scatte
enhanced by the strong fluctuations of the local fields.

Surface-enhanced Raman scattering~SERS! from rough
thin films is commonly associated with excitation of surfa
plasmon oscillations~see, e.g., Refs. 16 and 33!. Plasmon
oscillations are typically considered in the two limitin
cases:~1! oscillations in independent~noninteracting! rough-
ness features of various shapes and~2! surface plasmon
waves ~polaritons! that laterally propagate along the met
surface~see Refs. 16 and 33, and references therein!. In re-
ality, there are strong light-induced interactions between
ferent features of a rough surface and therefore plasmon
cillations should be treated as collective surface excitati
~eigenmodes! that depend strongly on the surface morph
ogy. Recently, such an approach was applied by Sha
et al. for description of the optical properties of random se
affine thin films34 and Raman scattering from such films.35

Self-affine thin films are produced, for example, by depo
ing an atomic beam onto acoldsubstrate.36,37Contrary to the
case of ‘‘usual’’ roughness, there is no correlation length
self-affine surfaces. This means that the inhomogeneitie
all sizes are present in a self-affine film according to
power-law distribution.38 The eigenmodes of a self-affin
surface are extremely inhomogeneous and tend to
localized.34 The localized areas with high local fields lead
giant field fluctuations and they are primarily responsible
the enhanced Raman scattering from rough self-affine
films.18,35A qualitatively similar picture of SERS in random
small-particle composites~including fractal ones! in a 3D
space was earlier suggested in Ref. 18.

The self-affine surfaces described above~as well as small-
particle composites! should be considered as 3D objec
Brouers, Blacher, and Sarychev obtained similar results
the field distributions on a 2D semicontinuous metal film.20,21

As in the case of disordered 3D systems, on a 2D semic
tinuous film, giant fluctuations of the electromagnetic fiel
were predicted in Refs. 20 and 21. It was shown that
fluctuations are very inhomogeneous and highly correlate
space. A correlation lengthje was introduced in Refs. 20 an
21; by definition,je is the length scale within which electri
fields at different points of a film are correlated. In Refs.
and 21 it was also shown that the smaller the losses in m
grains, the larger the correlation lengthje ; furthermore, a
critical exponentne was introduced for characterization o
the divergence ofje , occurring when a metal component o
the film is loss-free.~Note that the correlation lengthje de-
scribes thefield fluctuations and has nothing to do with th
percolation correlation lengthjp that has a purely geometri
meaning.!

In this paper we investigate the field fluctuations in sem
continuous metal films and the enhancement of Raman s
tering associated with these fluctuations. First, we prese
theory that expresses the enhancement of Raman scatt
in terms of the local field fluctuations. It turns out that th
enhancementA is simply proportional to the fourth power o
the local fields multiplied by the local conductivity square
and averaged over a random film. We develop a very e
cient method for calculating the local fields; the method
based on the real space renormalization group approach
use this method to find the field fluctuations and Raman s
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13 236 55F. BROUERSet al.
tering from silver semicontinuous films and show that
v,vp* ~for silver,vp* corresponds tolp*'0.3mm) Raman
scattering can be enhanced, on average, by more than
orders of magnitude, in the vicinity of the percolation thres
old. The enhancement remains large in the far-infrared ra
up to l<100mm. This enhancement is explained by usi
the percolation theory. We determine the scaling behavio
Raman scattering and provide simple analytical estimati
for the enhancement and the concentration range nea
percolation threshold where the enhancement occurs.
also compare our calculations with recent experimen
observations.39 In the end, we summarize the obtained r
sults.

II. THEORY OF RAMAN SCATTERING
FROM INHOMOGENEOUS MEDIA

We consider the optical properties of a semicontinuo
film consisting of metal grains randomly distributed on
dielectric substrate. The film is placed in the$x,y% plane,
whereas the incident wave propagates in thez direction. The
local conductivitys(r ) of the film takes either the ‘‘metal
lic’’ values, s(r )5sm , in the metal grains or the ‘‘dielec
tric’’ values, s(r )52 iv«d/4p, outside the metal grains
The vectorr5$x,y% has two components in the plane of th
film; v is the frequency of the incident wave. The gaps b
tween metallic grains are filled by the material of the su
strate, so that the«d introduced above is equal to the diele
tric constant of the substrate. We assume that the ele
field in the film is homogeneous in the directionz perpen-
dicular to the film plane; this means that the skin depth
the metal,d>c/(vAu«mu), is much larger than the meta
grain sizea0, and the quasistatic approximation can be a
plied for calculating the field distributions. We also take in
account that the wavelength of the incident wave is mu
larger than any characteristic size of the film, including t
grain size, the gaps between the grains, etc. In this case
local fieldE(r ) can be represented as

E~r !52¹f~r !1Ee~r !, ~2!

where Ee(r ) is the external applied field@to be exact,
Ee(r ) is the macroscopic field; see discussion at the end
this section#, andf(r ) are the local potentials of the fluctu
ating fields inside the film. The current densityj (r ) at point
r is given by Ohm’s law,

j ~r !5s~r !@2¹f~r !1Ee~r !#. ~3!

The current conservation law,¹• j (r )50, has the form

¹•$s~r !@2¹f~r !1Ee~r !#%50. ~4!

We solve Eq.~4! to find the fluctuating potentialsf(r ) and
the local fieldsE(r ) induced in the film by the external fiel
Ee(r ).

It is instructive to assume first that the external fie
Ee(r ) is pinlike, Ee(r )5E1d(r2r1), where thed(r ) is the
Dirac delta function. The current density at arbitrary po
r2 is given by the linear relation

j ~r2!5Ŝ~r2 ,r1!E1 , ~5!
r
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defining the nonlocal conductivity matrixŜ(r2 ,r1). This ma-
trix represents the system response at pointr2 to the field
source located at pointr1. The nonlocal conductivityŜ can
be expressed in terms of the Green functionG of Eq. ~4!:

¹•$s~r2!@¹G~r2 ,r1!#%5d~r22r1!, ~6!

where the differentiation with respect to the coordinater2 is
assumed.

Comparing Eqs.~4! and~6! and using the definition of the
nonlocal conductivity given in Eq.~5!, we obtain~see the
Appendix!

Sab~r2 ,r1!5s~r2!s~r1!
]2G~r2 ,r1!

]r 2
a]r 1

b , ~7!

where the Greek indices take values 1 or 2. As follows fro
the symmetry of Eq.~6!, the Green function is symmetri
with respect to the interchange of its argumen
G(r1 ,r2)5G(r2 ,r1). Then, Eq.~7! implies that the nonloca
conductivity is also symmetric:

Sab~r1 ,r2!5Sba~r2 ,r1!. ~8!

The introduction of the nonlocal conductivityŜ considerably
simplifies further calculations of the local field distribution
The symmetry ofŜ given by Eq.~8! is also important for the
following analysis.

Since the wavelength of the incident em wave is mu
larger than all spatial scales in a semicontinuous metal fi
the external field Ee is constant in the film plane
Ee(r )5E0. The local fieldsE(r2) induced by the externa
field E0 can be obtained by using the definition~5! for the
nonlocal conductivityŜ as follows:

E~r2!5
1

s~r2!
E Ŝ~r2 ,r1!E0dr1 . ~9!

The local fieldsE(r2) excite Raman-active molecules th
are assumed to be uniformly distributed over the film. T
Raman-active molecules, in turn, generate the Stokes fie
Es(r2)5k(r2)E(r2), oscillating at the shifted frequencyvs
@k(r2) is the ratio for the Raman and linear polarizabilities
the Raman-active molecule at the pointr2#. The Stokes fields
Es(r2) induce in the film currentsj s(r3) that are given by the
equation similar to Eq.~9!:

j s~r3!5E Ŝ~r3 ,r2!Es~r2!dr2 . ~10!

Since the Stokes-shifted frequencyvs is typically very close
to the frequency of the external field,uv2vsu/v!1, we can
set the nonlocal conductivitiesŜ appearing in Eqs.~9! and
~10! to be the same.

The intensity of the electromagnetic wave,I , scattered
from any inhomogeneous system is proportional to the c
rent fluctuations inside the system,

I} K U E @ j ~r !2^ j &#drU2L , ~11!

where the integration is over the entire system and the an
lar brackets,̂ &, denote the ensemble average. For Ram
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55 13 237THEORY OF GIANT RAMAN SCATTERING FROM . . .
scattering, the mean includes averaging over the fluctua
phases of the incoherent Stokes fields generated by diffe
Raman-active molecules. Therefore the averaged cur
density oscillating atvs is zero,^ j s&50. Then, the intensity
of Raman scattering,I s , from a semicontinuous metal film
acquires the form

I s} K U E j ~r !drU2L 5E ^Sab~r3 ,r2!k~r2!E
b~r2!

3S* ag~r5 ,r4!k* ~r4!E*
g~r4!&

3dr2dr3dr4dr5 , ~12!

where the summation over repeating Greek indices is
plied. All the integrations in Eq.~12! are over the entire film
plane.

Since the Raman field sources are incoherent, we hav

^k~r2!k* ~r4!&5uku2d~r22r4!, ~13!

and Eq.~12! takes the form

I s}E ^Sab~r3 ,r2!S*
mg~r5 ,r2!d

amuku2Eb~r2!E*
g~r2!&

3dr2dr3dr5 , ~14!

where we introduced the Kronecker symboldam to simplify
further considerations. Since a semicontinuous film is m
roscopically homogeneous, Raman scattering is indepen
of the orientation of the external fieldE0; therefore we can
average Eq.~12! over the orientations of theE0 without
changing the result. The averaging of the produ
Eb(r2)E*

g(r2) andE0
bE0*

g results in the expressions

^Eb~r2!E*
g~r2!&05

1

2
^uE~r2!u2&0dbg, ~15!

dam52
^E0

aE0*
m&0

uE0u2
, ~16!

where ^ &0 denotes the orientation averaging. Substitut
Eqs. ~15! and ~16! in Eq. ~14! and noting that the nonloca
conductivity Ŝ is independent of the field orientations, w
obtain for the intensity of the Raman signal the result

^I s&}E Sab~r3 ,r2!S*
mb~r5 ,r2!

3
^E0

aE0*
m&0

uE0u2
uku2^uE~r2!u2&0dr2dr3dr5 . ~17!

~For simplicity, we omit here the sign for the ensemble a
eraging.! Now we can use the symmetry of the nonloc
conductivity given by Eq.~8! to rewrite Eq.~17! as

^I s&}E ^Sba~r2 ,r3!E0
aS* bm~r2 ,r5!E0*

m&0
uku2

uE0u2

3^uE~r2!u2&0dr2dr3dr5 . ~18!

Integrating over the coordinatesr3 andr5 and using Eq.~9!,
we obtain
g
nt
nt

-

c-
nt

s

g

-
l

^I s&}
uku2

uE0u2
E us~r2!u2^uE~r2!u2&0^uE~r2!u2&0dr2 . ~19!

It is easy to show~see the Appendix! that this equation can
be rewritten for a macroscopically isotropic system in t
form

^I s&}
uku2

uE0u2
E us~r2!u2uE~r2!u4dr2 . ~20!

If there were no metal grains on the film, the local fiel
would not fluctuate and one would obtain the following e
pression for Raman scattering:

I s
0}E usdu2uku2uE0u2dr2 . ~21!

Therefore the enhancement of Raman scattering,A, due to
the presence of metal grains on a dielectric substrate, is g
by

A5
^I s&
I s
0 5

^us~r !u2uE~r !u4&
usdu2uE0u4

5
^u«~r !u2uE~r !u4&

«d
2uE0u4

. ~22!

This result was previously obtained by Shalaev and
workers for small-particle composites~including fractal
ones! embedded in a 3D space17,18 and for self-affine thin
films;35 the considerations in all these cases were based
the discrete dipole approximation. Here, formula~22! was
obtained using a different approach, and it generalizes
previous considerations17,18,35 for the case of 2D semicon
tinuous films. Note that the derivation of Eq.~22! is essen-
tially independent of the dimensionality and morphology o
system. Therefore the enhancement of Raman scatte
given by Eq.~22! holds for any inhomogeneous system pr
vided the field fluctuations take place inside it. In particul
Eq. ~22! gives the enhancement for Raman scattering from
rough metallic surface, provided the wavelength is mu
larger than the roughness spatial scales; it can also be us
calculate enhancements for Raman scattering in th
dimensional percolation composites. Our theory implies t
the main sources for the Raman signal are the currents ex
by Raman molecules in the metal grains. This explains w
a significant enhancement for Raman scattering is obse
even for sufficiently flat metal surfaces.16,33,40

We stress that the electric fieldE0 that appears in our
formalism is the average~macroscopic! field inside the film.
When the reflectance of the film is not negligible the fie
E0 differs from the incident fieldEinc even in the quasistatic
limit. For 2D films, the internal fieldE0 can be easily found
in terms of the incident fieldEinc . Let a film be placed in the
planez50, and the em wave, with the electric field paral
to the film plane (s polarization!, be incident from the
z.0 semispace at some angleu to thez axis. The amplitude
of the em field in thez.0 semispace is equal to

E.~r ,z!5Eincexp~2 ikzz2 iq–r !1Rs~u!Einc

3exp~ ikzz2 iq–r !, ~23!

where Einc is the amplitude of the incident wave
k5$q,kz%, kz5kcosu is the wave vector of the inciden
wave,Rs(u) is the reflectance of the film for thes polariza-
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13 238 55F. BROUERSet al.
tion, and r5$x,y% is a vector in the film plane. The field
below the film (z,0) takes the form

E,~r ,z!5Ts~u!Eincexp~2 ikzz2 iq–r !, ~24!

whereTs(u) is the film transmittance for thes polarization.
According to Eq.~24!, the field at the back surface of th
film can be written as

E0~r ,0!5Ts~u!Eincexp~2 iq–r !. ~25!

The same equations are valid for thep-polarized wave. Since
we assume that the film thickness is much smaller than
skin depthd and therefore the field inside the film is hom
geneous in thez direction, Eq.~25! actually gives the aver
age electric field inside the film. All relevant scales in t
film are supposed to be much smaller than the wavelen
l;1/q, and we can omit the factore2 iq–r, when considering
the field distribution in the film. Thus we obtain that the fie
E0 is related to the field of the incident wave,Einc , as

E05Ts~u!Einc ~26!

for the s-polarized wave, and

E05Tp~u!Einccosu ~27!

for the p polarization. Therefore the enhancement~22! for
Raman scattering should be rewritten, in a general case

A~u!s,p5uT~u!s,pu2
^u«~r !u2uE~r !u4&

«d
2uE0u4

. ~28!

For a purely dielectric film~assumed to be transparen!,
we obtain from Eq.~28! the expected result,A51.

For the normal incidence, we have

E05TEinc , ~29!

where the normal transmittanceT5Ts(0)5Tp(0) is given
by the well-known equation~see, e.g., Refs. 10 and 19!

T5
1

112psed/c
[

1

12 ip«ed/l
. ~30!

Hered is the film thickness,se and«e are, respectively, the
effective conductivity and the dielectric constant of the fil
andl is the wavelength of the incident wave. Thus for t
normal incidence Eq.~28! transforms to

An5U12 i
p«ed

l U22 ^u«~r !u2uE~r !u4&
«d
2uE0u4

. ~31!

The transmittance of a semicontinuous film is of the orde
unity, for sufficiently small metal concentrationsp!1. It
takes the valueT>1/4 for the concentrations close to th
percolation threshold, where the anomalous adsorptio
observed.6,8–10 Therefore the presence of the transmittan
factor in Eqs.~28! and ~31! does not change much the e
hancement of Raman scattering. One can still use Eq.~22!
for a qualitative estimation of the enhancement in this c
centration range. However, the transmittance vanishes
fast for p.0.8, and the Raman signal is also anticipated
decrease, in this case. For a pure metallic film,p51, the
transmittance is smalluTnu2'(l/pu«mud)2!1 ~Refs. 6 and
e

h,

s

,

f

is
e

-
ry
o

8–10! even for the case when the skin effect is negligib
considered here. Substituting this result in Eq.~31!, we ob-
tain

An~p51!5S l

p«dd
D 2. ~32!

Since the wavelengthl is much larger than the film thick
nessd there is a significant enhancement, even for pure m
tallic films.

III. NUMERICAL SIMULATIONS
FOR FIELD DISTRIBUTIONS

IN SEMICONTINUOUS METAL FILMS

To calculate Raman scattering from a semicontinuo
metal film, one needs to know the field and current distrib
tions in the film. There exist now very efficient numeric
methods for calculating the effective conductivity of com
posite materials~see Refs. 3 and 5!, but they typically do not
allow calculations of the field distributions. Here we us
instead the real space renormalization group~RSRG! method
that was suggested by Reynolds, Klein, and Stanley41 and
Sarychev42 and then extended to study the conductivity43 and
permeability of oil reservoirs.44 Below we follow the ap-
proach used by Aharony.44 This method can be adapted
finding the field distributions in the following way. First, w
generate a square lattice of theL-R ~metal! andC ~dielectric!
bonds, using a random number generator. As seen in
1~a!, such a lattice can be considered as a set of the ‘‘corn
elements. One of such elements is labeled as~ABCDEFGH!, in
Fig. 1~a!. In the first stage of the RSRG procedure, each
these elements is replaced by the two Wheatstone bridge
shown in Fig. 1~b!. After this transformation, the initia
square lattice is converted to another square lattice, with
distance between the sites two times larger and with e
bond between the two nearest neighboring sites being
Wheatstone bridge. Note that there is a one-to-one co
spondence between thex bonds in the initial lattice and the
x bonds in thex directed bridges of the transformed lattic
as seen in Fig. 1~b!. The same one-to-one corresponden
exists also between they bonds. The transformed lattice i
also a square lattice, and we can again apply to it the RS
transformation. We continue this procedure until the sizel of
the system is reached. As a result, instead of the initial
tice, we have two large Wheatstone bridges in thex and y
directions. Each of them has a hierarchical structure cons
ing of bridges with the sizes from 2 tol . Because the one
to-one correspondence is preserved at each step of the t
formation, the correspondence also exists between

FIG. 1. The real space renormalization scheme.
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55 13 239THEORY OF GIANT RAMAN SCATTERING FROM . . .
elementary bonds of the transformed lattice and the bon
the initial lattice.

After using the RSRG transformation, we apply an ext
nal field to the system and solve the Kirchhoff equations
determine the fields and the currents in all the bonds of
transformed lattice. Due to the hierarchical structure of
transformed lattice, these equations can be solved exa
Then, we use the one-to-one correspondence between
elementary bonds of the transformed lattice and the bond
the initial square lattice to find the field distributions in th
initial lattice as well as its effective conductivity. The num
ber of operations to get the full distributions of the loc
fields is proportional tol 2 ~to be compared withl 7 operations
needed in the transform-matrix method5 and l 3 operations
needed in the Frank-Lobb algorithm;45 none of those meth
ods give the local field distributions!. With our method, it
takes only a few minutes to calculate the effective cond
tivity and field distributions in a system 100031000 using a
computer like the Pentium-200.

The RSRG procedure is certainly not exact since the
fective connectivity of the transformed system does not
peat exactly the connectivity of the initial square lattice.
check the accuracy of the RSRG, we solved the 2D pe
lating problem using this method. Namely, we calculated
effective parameters of a two-component composite with
real metallic conductivitysm much larger than the real con
ductivity sd of the dielectric component,sm@sd . We ob-
tained the percolation thresholdpc50.5 and the effective
conductivity at the percolation threshold that is very close
s(pc)5Asmsd. These results coincide with the exact on
for 2D composites.32 This is not surprising since the RSR
procedure preserves the self-duality of the initial system. T
critical exponents obtained by the RSRG are also close to
known values of the exponents from the percolation theo5

Therefore we believe that the local fields we obtain here
close to the actual ones.

IV. GIANT FIELD FLUCTUATIONS
AND ENHANCEMENT OF RAMAN SCATTERING

IN SEMICONTINUOUS METAL FILMS

We use the method described above to calculate the
distributions in silver semicontinuous films and the enhan
ment of Raman scattering induced by the field fluctuatio
We model a film by a square lattice consisting of meta
bonds, with the conductivitysm52 i«mv/4p (L-R bonds!
and the concentrationp, and dielectric bonds with the con
ductivity sd52 i«dv/4p (C bonds! and concentration
12p. The external fieldE0 is set to be equal to unity
E051, whereas the local fields inside the system are co
plex quantities. The dielectric constant of the silver gra
has the form of Eq.~1!, with the interband-transition contri
bution «b55, the plasma frequencyvp59.1 eV, and the
relaxation frequencyvt50.021 eV.46

The intensities of the local electric fields,I 2(r )5uE(r )u2
and I 4(r )5uE(r )u4, are obtained by the RSRG method, a
the results are shown in Figs. 2 and 3, for the wavelength
the external em fieldl50.5 mm andl520 mm. The con-
centration of metal particles,p, is chosen to be equal to th
one at the percolation threshold,p5pc50.5. As seen in the
figure, the intensity fluctuations exceed the intensity of
of
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applied field by more than three orders of magnitude,
I 2, and by more than seven orders of magnitude, forI 4. It is
worth emphasizing that these giant fluctuations occur i
macroscopically homogeneous system. This kind of fluct
tion was likely observed in recent experiments.24 Previously,
giant fluctuations were reported for fractal clusters.17,18,23,47

The giant fluctuations can result in large enhancements
number of optical effects.17

Using Eq.~22!, we can find the enhancement of Ram
scattering for the calculated field distributions. The resu
are shown in Fig. 4. As seen in the figure, Raman scatte
is enhanced by more than five orders of magnitude in
vicinity of the percolation thresholdpc . The enhancemen
occurs for frequencies smaller than the renormalized pla
frequency,vp* , and it remains very large up to the far infra
red.

One could anticipate that the local fields experience gi
fluctuations in a semicontinuous film forv<vp* . In this
frequency range, the real part of the metal-dielectric cons
«m is negative and its absolute values are of the order
unity, i.e., they are close to the dielectric constant of the fi
substrate,«d . Therefore the conductivities of theL-R and
C elements in the equivalent network have opposite si
and they are close to each other in absolute values. Th
semicontinuous film, in this case, can be thought of a
system of the contours tuned in resonance with the exte
field frequency. These resonance modes are seen as
spatial fluctuations in the field distributions over the film.

FIG. 2. The electric field intensities on a silver semicontinuo
film at the percolation threshold, for the wavelengthl50.5mm; ~a!
I 2(r )5uE(r )u2 and ~b! I 4(r )5uE(r )u4.
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What might be more surprising is the fact that the gia
fluctuations of the local fields also occur forv!vp* , when
the contrastH5u«mu/«d@1. If the contrastH@1, the con-
ductivities of theL-R andC elements of the equivalent net
work are quite different and a single contour cannot be e
cited by the external field.

To understand the origin of the giant field fluctuations fo
the large contrast,H@1, we invoke scaling arguments of th

FIG. 3. The electric field intensities on a silver semicontinuo
film at the percolation threshold, for the wavelengthl520mm; ~a!
I 2(r )5uE(r )u2 and ~b! I 4(r )5uE(r )u4.

FIG. 4. The enhancement factorA for Raman scattering from a
silver semicontinuous film as a function of the metal concentrati
p and the wavelengthl.
t

-

r

percolation theory.4 Since Raman scattering has a maximu
near the percolation thresholdpc , we assume, for simplicity,
that the concentration of the conducting particles,p, is ex-
actly equal to the percolation threshold,p5pc . We consider
the case when the frequencyv is much smaller than the
plasma frequency,v!vp , so that the contrast can be a
proximated asH'(vp /v)

2/«d@1. We also assume tha
v@vt , i.e., the losses in the metal grains are relativ
small. To find the field distributions over the system, w
apply the known renormalization procedure,41,42 dividing a
system in squares of sizel and considering each square as
new element. All such squares can be classified by
types. A square that contains a path of conducting partic
spanning over is considered a ‘‘conducting’’ element.
square without such an ‘‘infinite’’ cluster is considered
nonconducting — ‘‘dielectric’’ element. Following the
finite-size arguments,3,4 the effective dielectric constant of
‘‘conducting’’ square,«m* ( l ), decreases with increasing siz
l as

«m* ~ l !5~ l /a0!
2t/np«m , ~33!

wherea0 is the metal grain size, andt andnp are the critical
exponents for the conductivity and the percolation corre
tion length, respectively. For a 2D system,t'np54/3.5,30

The effective dielectric constant of the ‘‘dielectric’’ squar
«d* ( l ), increases with increasing sizel as

«d* ~ l !5~ l /a0!
s/np«d , ~34!

wheres is the critical exponent for the static dielectric co
stant;s'np54/3 for a 2D system.5,30

We now set the square sizel to be equal to

l5 l *5a0~ u«m8 u/«d!np /~ t1s!, ~35!

where«m8 1 i«9m[Re(«m)1 i Im(«m). Then, in the renormal-
ized system, where each square of the sizel * is considered
as a single element, the ratio of the dielectric constants
these new elements is equal to

«m* ~ l * !/«d* ~ l * !>«m /u«m8 u5211 ik, ~36!

with the loss factork5«9m /u«m8 u'v/vt!1. ~Recall that in
the visible and IR spectral ranges the real part of the m
dielectric constant,«m8 , is negative and large in the absolu
values,u«m8 u@«d .)

It follows from Eq.~36! that the renormalized system is
system of theL-R andC elements tuned in the resonanc
Therefore the local electric fieldsE* ( l * ) are significantly
enhanced in comparison with the external fieldE0. As shown
in Refs. 20 and 21, in a 2D system with the ratio of«m to
«d given by Eq.~36!, the fieldE* can be estimated as

E*>E0k
2g/2@E0 , ~37!

where the critical exponentg introduced in Refs. 20 and 21
is about unity,g>1.0. @Note that for small-particle compos
ites the exact result, withg51, was proved in Ref. 47; se
also, for example, Eq.~7.4! in Ref. 17.#

Now we can estimate the field fluctuations in the origin
system. The field is still inhomogeneous for scales less t
l * . There are many finite-size metal clusters, even insid

s
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55 13 241THEORY OF GIANT RAMAN SCATTERING FROM . . .
square of the sizel * that is considered to be a dielectric on
The voltage applied to the square drops mainly in the g
between the metal clusters. Moreover, the field mainly c
centrates at the points where these clusters closely appr
each other, so that the distances between the clusters a
the order of the metal grain sizea0. We assume that the
number of such points with closest approach of clusters d
not depend on the sizel since the film is scale invariant a
p5pc . A typical voltage dropU* across a square of the siz
l * is approximated asU*5E* l * . Therefore the local elec
tric fields Eloc concentrated at the points of the closest a
proach can be estimated as

Eloc}E* l * /a0.E0~ u«m8 u/«d!np /~ t1s!k2g/2. ~38!

Above, we estimated the field fluctuations in the ‘‘diele
tric’’ squares. The structure of the finite clusters in the ‘‘co
ducting’’ squares is basically the same since the only diff
ence between the two types of squares is the presence
conducting path through the square. This path does not a
the largest fields inside the squares. In both cases, the fi
are mainly concentrated in the gaps between finite clust
Therefore the field fluctuations in the ‘‘conducting’’ cluste
can also be estimated by Eq.~38!.

Because the local fields concentrate in the regions of
closest approach~with the size abouta0) of metal clusters,
the averaged fourth power of the local fields can be estima
from Eq. ~38! as

^uEu4&}Eloc
4 /~ l * !25E0

4~ u«m8 u/«d!2np /~ t1s!k22g. ~39!

Taking into account that in the dielectric gaps with larg
local fields«5«d , we ultimately obtain from Eqs.~22! and
~39! the following result for the enhancement of Raman sc
tering:

A}~ u«m8 u/«d!2np /~ t1s!~ u«m8 u/«m9 !2g. ~40!

Substituting the values of the critical exponents for 2D s
tems, t's'np54/3 ~Refs. 4, 30, and 5! and g>1.0,21 we
arrive at the following simple formula for the enhanced R
man scattering in a two-dimensional percolation system:

A}u«m8 u3/~«d«m9
2!. ~41!

If the values of the metal dielectric constant can be appro
mated by the Drude formula~1!, the relation ~41!, for
vp*@v@vt , acquires the form

A}~vpt!2/«d , ~42!

wheret51/vt is the relaxation time. According to Eq.~42!,
at the percolation threshold, the enhancement of Raman
tering in a semicontinuous metal film is independent of
frequency, for the wide spectral rangevp*@v@vt . This
result holds for any semicontinuous film, where the dielec
constant of a conducting component can be approximate
the Drude formula.

There is, of course, a prefactor in Eqs.~41! and ~42! that
cannot be found from the scaling arguments used above
comparing results of calculations for Raman scattering
lowing from Eq.~41! and numerical simulations, we find tha
the prefactor is close to 9.0. Then, Eq.~41! can be rewritten
as
.
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A'9.0u«m8 u3/~«d«m9
2!. ~43!

In Fig. 5, we show results of our Monte Carlo simulations f
Raman scattering from a silver semicontinuous film at
percolation threshold and results of the calculations base
the formula~43!. One can see that Eq.~43! fits the numerical
results for almost all the frequencies, such thatvt@1. At the
small frequencies,vt>1, we observe some deviation from
Eq. ~43!. It is not surprising since the above consideration
based on the assumption that losses are small. We be
that Eq. ~43! can be used to estimate the enhancement
Raman scattering from any kind of semicontinuous me
films as well as for other 2D metal-dielectric percolation sy
tems.

To estimate Raman scattering in the case of a thr
dimensional percolating system, we should putl * 3 instead of
l * 2 in Eq. ~39!. Following then arguments similar to thos
used to obtain Eq.~41!, we find for the enhancement of Ra
man scattering in 3D the formula

A~D53!}S u«m8 u
«d

D np /~ t1s!S u«m8 u
«9m

D 2g

. ~44!

It is difficult to estimate the enhancement of Raman scat
ing for three-dimensional percolating systems since
critical exponentg is unknown, in this case. The expone
g must be positive for a 3D system since the large fi
fluctuations are anticipated to occur in a 3D network of t
L—C elements tuned in resonance with the external field~in
the same manner as in 2D systems!. On the other hand, the
value of the exponentg for the 3D case probably does no
exceed that in the 2D case. This is because in tw
dimensional systems the fluctuations are typically larger t
in three-dimensional systems. The combination of the criti
exponentsnp /(s1t) in Eq. ~44! is about 1/3~Refs. 4 and 5!
and it is smaller than 2np /(s1t)'1.0 appearing in Eq.~40!
for D52. Therefore the enhancement of Raman scatte
given by Eq.~44! can be smaller for a 3D percolating syste
than in the 2D case. Still, the enhancement of Raman s
tering in three-dimensional metal-dielectric systems at
percolation threshold is anticipated to be huge in the visi

FIG. 5. The enhancement factorA for Raman scattering from a
silver semicontinuous film at the percolation threshold. The po
are results of the numerical simulations; the solid line represe
results of calculations based on Eq.~43!.
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13 242 55F. BROUERSet al.
and infrared spectral ranges. Observation of Raman sca
ing in a 3D percolating system could give important info
mation on the field distributions and the nature of the me
dielectric transition which is still not completely understo
~see discussion in Ref. 48, and references therein!.

Note that the above results for surface-enhanced Ra
scattering from percolation systems are different from th
for SERS from fractal aggregates of particles obtained p
viously by Shalaev and co-workers.17,18This is not surprising
since a small-particle fractal aggregate is, of course, v
different from a percolation system. In particular, for a fra
tal, p→0 with the increase of a cluster size, whereas fo
homogeneous, on average, percolation systemp;1. Also, it
is worth noting that the fractality provides strong mode
calization and therefore the field fluctuations are especi
large.17,47 In accordance with this, SERS from fractals
larger than from percolation systems. We stress that in all
cases, for fractals and percolation systems, the enhance
occurs because of the strong field fluctuations.

Now we evaluate the concentration range where the e
mations~40!–~43! for a semicontinuous film are valid. Equa
tions ~40!–~43! give the enhancements of Raman scatter
at the percolation threshold,p5pc . But they should also be
valid in some vicinity ofpc , where the sizel * of the renor-
malized squares is smaller than the percolation correla
length,jp>a0(up2pcu/pc)2np, that diverges at the percola
tion threshold. Equating the values ofl * andjp , we obtain
the following estimation for the concentration range whe
the giant enhancement of Raman scattering predicted by
~43! can be observed:

up2pcu/pc<~«d /u«m8 u!1/~ t1s!. ~45!

~It is interesting to note that the same range has been
mated in Ref. 31 for the anomalous absorption.! For 2D
semicontinuous metal films, the critical exponents
s't'np54/3, and the above relation acquires the form

up2pcu/pc<~«d /u«m8 u!3/8. ~46!

For the Drude metal, in the frequency rangevp*@v@vt ,
relation ~46! can be rewritten as

up2pcu/pc<«d
3/8~v/vp!

3/4. ~47!

As follows from Eq. ~47!, the concentration range for th
enhanced Raman scattering shrinks when the frequency
creases much below the renormalized plasma freque
vp*5vp /A«b. This result is in agreement with our comput
simulations~see Fig. 4!.

From the above analysis, it also follows that the resu
presented in Fig. 5 are valid in a relatively large interv
about pc . It is also interesting to note that the theoretic
prediction that SERS is almost frequency independent in
long-wavelength part of the spectrum@see Eq.~42! and Fig.
5# is in agreement with experimental observations.16,33
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The above scaling analysis for Raman scattering in a p
colation system was performed in the quasistatic limit; s
cifically, we assumed that the skin effect is negligible in t
metal grains. As mentioned in the Introduction, in the oth
limiting case, when the skin effect is very strong and the s
depthd is much smaller than the grain size,d!a0, one can
represent a metal-dielectric percolating composite as a
tem of theL — C elements. In this case, the inductance o
metal grain depends on its size and shape, rather than o
values of the metal dielectric constants. The losses in
metal grains are proportional to the ratiod/a0!1, i.e., they
are negligible in this case too. Therefore, near the percola
threshold, giant Raman scattering can be observed for
kind of percolating composites, even for the case of stro
skin effect. The prime candidates here are composites c
taining strongly elongated metal inclusions. As shown
Ref. 49, the giant field fluctuations occur in these comp
ites, at least in the microwave range.

As follows from the above discussion, the field intensiti
in a semicontinuous film,uE(x,y)u2, can be viewed as peak
with the amplitudesEloc

2 separated by the distancesl * given
by Eqs. ~38! and ~35!, respectively. The amplitudes of th
peaks, as well as a typical distance between them,l * , in-
crease with decreasing frequency,v. This picture is in quali-
tative agreement with Figs. 2 and 3.

Note that despite the large distances between the fi
peaks,l *@a0, the field fluctuations are highly correlated
space. Indeed, the field fluctuations are correlated even
the ‘‘resonance’’ system, with the«m /«d'211 ik, as
shown in Refs. 20 and 21. The corresponding correlat
length is equal toje*.a0k

2ne, wherene.0.4 is a critical
exponent introduced in Refs. 20 and 21. The correlat
lengthje tends to infinity, when the system’s losses vani
This correlation length corresponds to the renormalized s
tem. In the original system, the correlation length for t
field fluctuations, je , can be estimated a
je5je* ( l * /a0).a0(vp /v)(v/vt)

ne. Therefore it is much
larger than a typical distance between the peaks in the l
field distribution. Note that the strong field fluctuations in
semicontinuous film are associated with excitation of the c
lective eigenmodes of the film.

Raman scattering from a silver semicontinuous film w
studied in recent experiments by Gadenne, Gagnot,
Masson39 ~at the wavelengthl50.458mm!. The authors ob-
tained giant enhancements for Raman scattering in the
centration rangeDp50.55 around the percolation threshol
pc20.35,p,pc10.2. We use Eq.~46! to estimate the
rangeDp. Substituting the known values for the dielectr
constants of silver grains, «m527.05810.213i at
l50.470mm ~Ref. 50! and for a glass substrate,«d52.2,
we obtainDp.0.6, in good agreement with the experimen
observations. The experimental results also agree with
calculations shown in Fig. 4. One can see that for the wa
lengthl50.5 mm, the SERS has a plateau nearpc . More-
over, our calculations reproduce a fine structure in the
hancement of Raman scattering observed in the experime
The enhancement has two small maxima, below and ab
pc , with a minimum in between. Outside the plateau, Ram
scattering drops down by several orders of magnitude. N
that for quantitative comparison with the experiment it
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55 13 243THEORY OF GIANT RAMAN SCATTERING FROM . . .
necessary to multiply the enhancement by the film transm
tance squared,uTs,p(u)u2 @see Eqs.~28! and ~31!#. This will
decrease the enhancement for the large metal concentra
p>0.8.

As mentioned, the concentration range for the enhan
ment of Raman scattering is close to the metal concentrat
for which the anomalous absorptance is observed.6,8–10 In
Refs. 25, 26, 31, and 51, the anomalous absorptance
semicontinuous metal film was interpreted as a result of li
localization in the film. The em excitations are associa
with the resonance collective modes located in different p
of a film. The mode localization also leads to strong fie
fluctuations over the film.25,35 Similar arguments were use
in Refs. 17, 18, and 31 to explain the enhanced absorptio
3D small-particle composites.

In some cases, one can also observe small peaks in
man scattering for concentrations far belowpc . We attribute
them to the excitation of finite metal clusters. This proba
accounts for the experimental results on SERS from the l
concentration granular Ag films.52

V. CONCLUSIONS

In this paper we developed a theory expressing Ram
scattering in terms of the field fluctuations in inhomogene
media, such as 2D semicontinuous films. We showed tha
enhanced Raman scattering is proportional to the avera
fourth power of the local fields. It follows from the theor
that the main sources for the Raman signal are the curr
inside the metal grains excited by the Raman-active m
ecules.

We also studied the field distributions in the near zone
a semicontinuous metal film, for the visible and IR ranges
very efficient numerical method based on the renormal
tion group approach is used for direct calculations of
field fluctuations in a percolation system. The local field d
tributions were then used to calculate the enhanced Ra
scattering based on the obtained theoretical formula.
showed that near the percolation threshold of a semicont
ous metal film, Raman scattering is enhanced, on averag
more than six orders of magnitude. The local enhancem
can exceed the average one by many orders of magnit
The enhancement covers a large spectral range, from
visible to the far infrared.

We also performed the scaling analysis for the field flu
tuations and obtained analytical expressions for estima
SERS from a semicontinuous metal film. At the percolat
threshold, in a wide spectral range, the enhancement is
portional to the square of the product of the plasma f
quency and the relaxation time and is independent of
frequency of the applied field. Our scaling analysis sho
that the enhancement of Raman scattering is associated
excitations of the collective eigenmodes~consisting of spa-
tially separated sharp peaks! on a semicontinuous film. We
also estimated the concentration range near the percola
threshold, where Raman scattering is significantly enhan
This range shrinks with decreasing the frequency and
lapses to the percolation threshold itself in the far-infra
range.
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APPENDIX

In this appendix we derive Eq.~7! for the nonlocal con-
ductivity matrixSab(r2 ,r1). For this purpose, we rewrite Eq
~4! in the following way:

¹•@s~r !¹f~r !#5¹•@s~r !Ee~r !#. ~A1!

The solution of this equation can be expressed in terms of
Green functionG, given by Eq.~6!, as

f~r2!5E G~r2 ,r !¹•@s~r !Ee~r !#dr . ~A2!

Integrating in Eq.~A2! by parts, we obtain

f~r2!52E G~r2 ,r !

]r b @s~r !Ee
b~r !#dr , ~A3!

where the summation over repeating Greek indices is
plied. Substituting the external fieldE1d(r2r1) applied at
the coordinater1 and integrating over the coordinater , we
obtain

f~r2!52s~r1!
G~r2 ,r1!

]r 1
b E1

b ~A4!

for the potential at the coordinater2. The current density a
the coordinater2 is equal to

j a~r2!5s~r2!s~r1!
G~r2 ,r1!

]r 2
a]r 1

b E1
b . ~A5!

Comparing this equation with the definition of the nonloc
conductivity Ŝ given by Eq.~5!, we arrive at Eq.~7!, which
expresses the nonlocal conductivity in terms of the Gre
functionG.

Below, we show how Eq.~20! can be obtained from Eq
~19!. For this, we rewrite Eq.~20! in the form

^I s&}
uku2

uE0u2
E us~r !u2Ea~r !E* a~r !Eb~r !E* b~r !dr ,

~A6!

where the integration is over the entire film plane. Using E
~9!, we can rewrite Eq.~A6! in terms of the applied field
E0

a as

^I s&}
uku2

uE0u2
E us~r !u22Sag~r ,r1!S*

ad~r ,r2!

3Sbl~r ,r3!S*
bm~r ,r4!E0

gE* 0
dE0

lE* 0
mdr1dr2dr3dr4dr .

~A7!
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For the macroscopically isotropic systems considered h
Raman scattering does not depend on the direction of
applied fieldE0. Therefore we can average Eq.~A7! over the
orientations of the fieldE0, without changing the result. Th
only term in Eq.~A7! to be averaged over the orientations
the productE0

gE* 0
dE0

lE* 0
m since the nonlocal conductivity

matrix Ŝ defined by Eq.~5! is independent of the fieldE0.
The applied fieldE0 is supposed to be linearly polarized an
therefore its amplitude can be chosen to be real. Thus
obtainE0

gE* 0
dE0

lE* 0
m5E0

gE0
dE0

lE0
m . After the averaging over

the orientations this product takes the form
ev

s.

in

v.

n

un

ys

P

on

A

p.

,

s

e,
e

e

^E0
gE0

dE0
lE0

m&05
1

2
~^E0

gE0
d&0^E0

lE0
m&01^E0

gE0
l&0^E0

dE0
m&0

1^E0
gE0

m&0^E0
dE0

l&0!. ~A8!

Substituting the decomposed average^E0
gE* 0

dE0
lE* 0

m&0 in
Eq. ~A7! and integrating over the coordinatesr1 ,r2 ,r3 ,r4,
we obtain Eq.~19!. This proves that Eqs.~19! and ~20! are
equivalent.
v.

v,
St.
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w,

ev.

ev.

v.
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