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Reconstruction of surface morphology from coherent x-ray reflectivity
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The observation of coherent diffraction effects in recent measurements of x-ray reflectivity from Si surfaces
is explained with the development of a simple kinematical theory. Some properties of the derived formalism
are explored. We apply an algorithm developed by Gerchberg and Saxton and demonstrate its application to the
reconstruction of the surface morphology from its coherent diffraction pattern. Initial testing with experimental
data shows the method to be effecti{80163-182807)01320-9

[. INTRODUCTION distribution of intensity near to the specular directiohhis
geometry was very similar to that used previously for study-
Coherent x-ray diffractiofCXD) is a new experimental ing the multilayers, again with the result that the CXD pat-
technique that has emerged from the development of brillian{er was one dimensional. The restriction to Bragg diffrac-

synchrotron-radiation sources of x rays. It has great potentid{on N0 longer applies in the specular reflectivity case and so

for studying structural fluctuations in all kinds of condensed-"€ perpendicular momentum transfgy, can be varied in a

matter systems, and a few pioneering experiments have derﬁ-oggalléo\lfv?thma\?vgir'fomg t\éaggt;)n oc\)/\];etrrf]j vr\;;hrlc?)SSthagje
onstrated thid=® The relaxation times of critical fluctuations " q; P Y

. terize the surface roughnes#n empirical rule was estab-
were qbservegl near to the phase transition QfAF€ The lished for the point of emergence of strongly modulated
Brownian motion of colloidal gold particlésand, more re-

. . . __speckle featuregy,= /o, whereo is the root-mean-square
cently, colloidal palladiuth have been studied to determine 4, ghness. This rule will be explained in the present work.
their diffusion time constants as functions of temperature and e requirements for coherence, necessary for these ex-
momentum transfer. periments to work, have been discussed previctisThe

Static CXD patterns from GahAlAs;_, multilayer  source coherence may be divided conveniently into two
samples have been examined for the purpose of explainingomponents, measured as lengths in the longitudinal and
the diffraction mechanisfiA phase blocknodel was intro-  transverse directions. The longitudinal coherence length,
duced in which the sample was modeled as uniform regiong, is the distance along the incident beam over which dif-
of differing relative scattering phase that gave rise to interferent rays largely retain their relative phases with respect to
ference in the CXD pattern. The finite number of phasesach other. It is limited by the distribution of wavelengths
could be adjusted as least-squares fit parameters to produc@msent AN/, and so is a property of the monochromator
faithful representation of the observed intensity. The diffracused for the experiments, according to¢
tion was observed to be one dimensional in nature; this was \/(AN/X)=\?/AN\. &) is critical in a CXD experiment
justified on the grounds that the beam footprint on thebecause it restricts the maximum path length difference
sample was highly elongated, so that different points of th€PLD) that can be tolerated between different rays passing
sample across its narrow direction could all be assumed tiyom source to detector and is often dominated by beam pen-
have the same phase. Despite the limitations of the arbitrargtration inside the sample. The lateral coherence length,
discrete assumptions in the phase block model, reasonabdg , is the distance across the beam over which all rays trav-
fits to the data resultetin this paper, we develop a more eling from different points in the source largely retain their
general model in which the discreteness is reduced to arelative phases with respect to one another. It is limited by
arbitrarily low level. the source sizey, according to¢, =\D/o, whereD is the

We have recently demonstrated that CXD can also belistance of the experiment from the sourée.is important
used to study surface morphology in the specular reflectivitpecause it determines the maximum size of the beam-
geometry’. While incoherent x-ray reflectivity from a rough defining apertured<¢, , that can be used. Because of the
surface would give rise to a superposition of pure speculatwo coherence lengths, the requirement for coherence limits
and diffuse componentsthe equivalent CXD experiment the maximum total flux that is available in a CXD experi-
yields aspeckle patterrthat intermixes both of these com- ment to an amount that is directly proportional to the bril-
ponents: the specular component becomes broadened by tli@nce of the source. In this paper we will discuss the origin
finite size of the illuminated sample area while the diffuseof the speckle pattern seen in the surface reflectivity experi-
component adopts a finely speckled structure. The experiments, its asymptotic properties, and demonstrate an algo-
mental geometry for surface CXD employed a coherent x-rayithm which can be used timvert it and reconstruct the ac-
beam at grazing-incidence angle and examined the resultingal morphology of the reflecting surface.

0163-1829/97/58.9)/1319310)/$10.00 55 13193 © 1997 The American Physical Society



13194 VARTANYANTS, PITNEY, LIBBERT, AND ROBINSON 55

Il. SPECKLE PATTERNS AND SURFACE MORPHOLOGY sity falls off as|(q,— G,)| ~2. Most importantly, since we are

. . . . concerned with reflectivity, this is also true for the origin of
All diffraction experiments detect the interference of ~_ . - ) 4
- . reciprocal spaceG,=0. The properties oF -1 are dis-

waves scattered by a superposition of scatterers, either atoms

: tUssed elsewheftand are not relevant to the rest of the
or groups of atoms. In a disordered system, an ensemblé . .

. aper. The second factor in Eq2), which we call the

average takes place over many examples of local configur Speckle amplitude, can be rewritten in the continuum limit as
tions to give statistically meaningful information. The essen-apkin d of F(E)urier t,ransform
tial point of CXD is that the diffraction signal measured from '
a sample under coherent illumination conditions is the mag- A A
nitude squared of the scattering amplitudihout the en- A(q) =2, (0T ayyelaen(.vj),
semble averagingWe simply observe the direct summation !
over all atoms, at positions;, within the illuminated vol-

ume, =J J p(x,y)e' & WYdxdy, (4)
Q
A,(C])OCE feiq~rj' (1) Where
I

X,y) =€V o(x,y)=g,h(x,y). 5
The surface is conveniently defined by a single-valued p(x.y) _ 'QD( Y)=a:h(xy) ®
boundary functiorz=h(x,y), where thez direction is taken This speckle amplitudé(q) is the fundamental representa-
to be perpendicu|ar to the Surface, andyo are the two tion of the surface CXD, which we will be diSCUSSing in the
coordinates in an ideal plane defining the average suffacerémainder of the paper. There are two unusual aspects of this
We impose a rigid periodicity perpendicular to this average-ourier transform compared with the familiar crystallo-

plane so that the position of thieh column of atoms is at 9graphic expressions relating electron density in a structure
ri.;.=(X; .y} asis), whereas is the vertical lattice spacing with its diffraction pattern. The first is that the domain of the
Js=(X,Y; ,a]3), :

unction isfinite, cutoff outside the illuminated regio).

e will assume a square beam for simplicity for whidhis
efined by the edges of the beam at positions
X,y)=(*d/2,+d/2). The second is that the integrand,

p(x,y), is itself a complex function with unit amplitude and

For simplicity, we are assuming a sample made of a singl
kind of atoms of form factorf.

When the surface is present, we can write the sum in E
(1) in the following way:

hxj.yplag _ a position-dependent phase, which depends on both the
A’(q)xz ' 2 fel (A TayYj +aza3i3) height function and the perpendicular momentum transfer.
I == The expression in Eq$4)—(5) is a more general version

Using the substitutionjz=j3+h(x;,y;)/a;s and summing of the model used in fitting the static speckle from the
overj}, we obtain for the scattered amplitulie multilayer? There, it had been assumed that the coherent

beam could be divided into “blocks” that received different
) ) phases after diffracting from the discrete regions of the
A'(q)xFerr(0,) Y '+ ayelantg ), (2 multilayer. The physical interpretation fas(x,y) is clear:

! the x-ray beam incident on the sample at positigyy] be-
where the summation has been reduced in dimension byomes phase shifted by amoupfx,y), which depends on
summation over theolumnsof equally spaced atoms at lat- height in the case of surface CXD, or the position of the
eral positionx; ,y; starting at heighh(x;,y;). The same re- diffracting planes in the case of the multilayer. Tplease
sult could be obtained equivalently in its integral form usingmodulated beam undergoes mutual interference, which then
Green's theorerfi. The momentum transfeg= (q, ,dy,d,) results in theamplitudemodulations seen in the speckle pat-
has also been split into its components parallel to the surfacéern.

dx andqy, and perpendiculag,. The sum in the direction The experimentally measured quantity is the intensity of
is identical for all columns and takes the familiar form seenCXD,
in the analysis of crystal-truncation rod€TR’s), which

gives an amplitude that interpolates between the Bragg peaks L(@)o<|A(a)?. (6)

H 1

nq, So, the measurement loses all the phase information of the
For(a,) =f[1—exp(—ig,as)] 2 ©) amplitudeA(q) and reduces to the classical inversion prob-

lem of reconstructing the object from the intensity distribu-
To continue the derivation for ordinary x-ray diffraction tion of the scattered radiation. This is a more difficult prob-
from surfaces, the next step would be to introduce soméem than the inversion of a diffraction pattern to obtain the
correlation function foh(x,y), and take the ensemble aver- electron density because the quantity sought is itself a phase.
age(|A’(q)|?).® Instead for CXD, we can look directly at For example, we can no longer use the inversion symmetry
|A’(q)|?, which should be compared with what is observedthat arises from the real nature of the electron density. Inver-
in the experiment. sion problems of this kind have been intensively studied in
The expression foA’(q) in Eq. (2) has a very simple the past! and there are some powerful theoretical methods
form. The first factor is the well-known CTR amplitude, available. The most relevant analogy is to the problem of
given in Eq.(3). This tells us that the signal will be large holographic reconstruction: transmission holography is
near to Bragg peaks i, , and gets progressively smaller as achieved by coherent illumination of an transparent object
we move away. Near to a bulk Bragg peakGgt, the inten-  over a finite aperture; the interference of all transmitted
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waves, recorded with sufficient resolution, is the
hologram'>41® Except for the requirement in holography

for a referencewave, this is the same thing as the CXD 20
speckle pattern. If the object modulates the amplitude of the

wave, this amplitude is the argument of the Fourier trans- 02‘
form. But if the object has only phase contrast with no am- 0
plitude change, then the situation is identical to that of Eq. =
(4). For this reason, we propose to employ the image recon- E 220

struction algorithm described below.

The appearance df, in the expression fotp(x,y) pro-
vides us with an opportunity that is specific to the surface -40
CXD problem. If we can measure the amplitudéq) at a
number of different, values, then we would have redundant
information concerning thb(x,y) functions sought, coupled
to the phases(x,y) through different coefficients,. The
additional information could then be used in a reconstruction
procedure.

On the other hand, if the surface morphology, i.e., the
function h(x,y) were known independently, then according
to (4)—(5) the full functionA(q) could be calculated. This is
illustrated at the top of Fig. 1, where the surface morphology
of a silicon wafer was measured with a commercial
profilometer’ The profilometer stylus rides over an approxi-
mately three micrometer-wide strip of surface. The 300-
micrometer traceh(x,0), therefore covers about the same
area as the beam in the surface speckle measurefehes.
speckle intensity  corresponding to this trace
1 (0.0,) =|A(0x,0,0,)|? is plotted for this one-dimensional
case by the direct evaluation d#)—(6). The observed
speckle patterns are horizontal cuts across this diagram, and
the smooth evolution ag, is varied can be seen immedi-
ately. For example, if the speckle pattern is measured at a

particular value ofy,, and the functiorh(x,y) is somehow FIG. 1. Simulated speckle patterns from a one dimensionally
derived from it, then the pattern can be verified at otherough surface specified by tigx) function in the top panel, which
values ofq, as a validity check. was measured from a(@il1) wafer using a profilometer. Theaxis

Even though they, scale in Fig. 1 is a thousand times represents a position across the beam and has been shortened to
wider than that ofg,, the pattern is notably anisotropic, account for the grazing incidence angle, for consistency with the
being strongly streaked in thg, direction. This is a general rest of the paper. Below, logarithmic contourstéfqg) are plotted
characteristic of surface diffraction, and is not changed whems a function ofg, andq,. Note that both top and bottom panels
the Fg term is restored, since that shares the same propise the same 1000:1 aspect ratio, so the ridges in the lower panel
erty. TheV shape of the calculated pattern arises from theare seen to lie perpendicular to the sloped sides of the profile in the
bimodal slope of the profilometer trace, as if there wgoe  toP panel.
cally) two different specular directions, corresponding to the
two characteristic slopes seen in the profilometer trace.  tion, as would be formed by the direct x-ray beam itself.

We can understand some general properties of surfac&/hens/o,<q,<w/0o,, the speckle pattern would be deter-
speckle patterns, and their relation to surface morphology, bynined by the long-range roughness alone, and might still be
the examination of Eqg4)—(5). Any arbitrary rough surface relatively simple, not extending far ig,. At the greatest
can be considered as a superposition of roughness compealues ofq,, whenq,> m/o, the speckle pattern finally is
nents on different length scales, often as a power spectrurgensitive to the short-range roughness as well, and will
Such a description implies a statistical average over an erspread out much further ig,. Thus, by tuning of the ex-
semble of surfaces, and attachesat-mean-square rough- perimental variableq,, patterns of increasing complexity
ness o, which is just the spectral weight expressed as aould be generated and analyzed progressively. The evolu-
height variation, to each length scale. This roughness spetion of complexity is clearly seen in Fig. 1 and corresponds
trum will then determine the qualitative features of theclosely with what was seen experimentdilin practice this
speckle pattern as a function qf. should be done by changing x-ranergy rather than the

For example, if we consider a surface with just two lengthangle of incidence, because the changing angle would also
scales of importance, with long-range roughnessand a change the shape of the beam footprint on the sample. There
short-range roughness,< o, with a finer length scale. The are also severe limitations in the accuracy of diffractometer
CXD pattern, given by Eq$4)—(5), will then split into three  components that make it hard to vary the angle while illumi-
ranges of g,. So long asqg,<w/o; we will have nating exactly the same spot on the sample.
p(Xx,y)=1 and a speckle pattern which is a simple slit func- One further consideration is very important for the design
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of experiments to measure speckle from surfaces: the longi- p(x)=€*™,  o(x)=0q,h(x). (9)
tudinal coherence requirements. According to the formalis
above, the PLD entering into the sum in ER) at g,=0 is

just A o(x,y), which is very small indeed since the diffrac-
tion conditions(i.e., gq,) would be chosen to hawg(x,y) not (i) The rough surface is an ide@hase objectwhich

vary by more than a fewrr. Large PLD'sare present be-  panges only the phagsx) of the reflected beam across the

tween the terms in Eq1), but these all accumulate in the gyface. This implies that the amplitude of the reflected beam
factor Fcrr, Which is common to all terms of Eq2). The s constant.

mWhile deriving expressiong8)—(9) we implicitly assumed
the following:
(i) The incident radiation is a coherent plane wave.

PLD constraint can therefore be written, (iii) The aperture of the entrance slit alone determines the
size of the illuminated region on the sample. The sample is
A[az8h(x,y) +a,d/2]<§|, (7)  in the near field, a short distande, behind the entrance slit
_ _ _ of sized, satisfyingd?>\L.
where sh(x,y) is the excursion of the heighly(x,y), over (iv) The registratior(detection plane is far away. This is

the range—d/2<x<d/2. The second term in Eq7) ac-  the far field approximation which gives rise to the Fraun-
counts for the lateral component of the PLD accumulated afofer |imit of diffraction. This assumption is valid if

the edges of the illuminated area. This latter term ofter)dz<)\|_l whereL, is the distance from the sample to the
dominates the roughness term, and can limit the effectivgetector.

range of scans iny that can be reached before coherence is These assumptions are the reason that expres&@pr®)

lost. £ is the longitudinal coherence length, defined in thegre s simple. However, certain real experimental conditions,
introduction, which is determined in an experiment by thefor example, the finite distance from the entrance aperture to
monochromator or the source characteristics. Even in thehe sample, can be allowed fsee belowwithout changing
case wherg is extremely short, say X0for a raw undulator  the main results of the following analysis. We will now ana-

beam, there will be broadening @ of Fcrr(dZ) in Eq.(3),  lyze what information can be obtained in the framework of
but this is already a slow-varying function. our model in different limiting cases.

More sophisticated approaches to coherence exist in the
optics literature, dealing with the case pdrtial coherence A. Asymptotic behavior asq,—

that occurs when the quantities appearing in inequdifly

become approximately equal. Recent progress has been Integrating(8) by parts we obtain

made to measure the degree of coherence using x-ray diffrac- di2 _
tion method$:*®1” The most important conclusion for the A(qx):f dlze'ﬁ“x)e‘qxxdx
case of surface CXD is that expressiof) is considerably -
less demanding than the PLD constraints on bulk diffraction, @l _g/2
where the large penetration depth can be insurmountable. =e'*°<x)i d/2
Note that we are not necessarily constrained to the small- A
angle case of],~0, if the surface is sufficiently flat. 1 () iU X 7
The effects of longitudinal coherence are seen in the con- Tige )& € (ie"(x)dx, (10

text of the speckle amplitude directly by a suitable construc-

tion in Fig. 1. The definition ofj=\/(AX/\) means that the Wheree’(x) is the spatial derivative of the phase. For large
effect of longitudinal coherence can be considered to be 8x values we can neglect the second term in @Q) relative
radial smearing of the-space diffraction pattern due to the to the first one and we would have for the intensity far from
distribution of wavelengthsAX/\. The features of Fig. 1 the center of the speckle pattern,
that are already streaked in the radial direction will be af- 4 qd+ A
fected very little by this procedure, and so the limited coher- 1 (ay) < |A(Gy)|2=—sir? AETAe
ence will not change the result. Conversely, features that are X 2
diagonal in the diagram, not emanating from the origin, will\yhere A o = (d/2)— o(— d/2)=q,[ h(d/2)— h(—d/2)].

be strongly affected, and eventually washed away by overlap \ve can see from this result that the intensity distribution

: (11)

with their neighbors. in this limit is just a slit function, Io(qy)
= (4/q§)sin2(qxd/2), shifted by the phase valdep. It is pos-
Ill. PROPERTIES OF THE SPECKLE AMPLITUDE sible in principle to determine the phase shiftp directly

| h i flectivit . ts th e i from the shift of the fringes of the intensity distribution rela-
n conerent x-ray refieclivity expenments the Sample ISy, o 14 those of the direct beam, although in the experimental
Situation this would be equivalent to a change in the sample

ment, the footprint of the beam on the sample is highly eIon'alignment. From the shift of the fringes, the height difference

gatedd and its_ spgckleTp;]atterr;] betctc;]mes one gime?;i]onal, toa%ross the sampleh(d/2)—h(—d/2)] could be determined.
good approximation. 'niroughout the remainder ot Ine papefndeed, a change in this height difference is nothing other

we will con_sider only this 1D case. The_ results obtained MaYjan a small rotation of the sample, which leads to a shift of
be generalized to the 2D case in a straightforward manner. Iﬂwe pattern across the detector ’
1D we have for the amplitude If we continue our expansion over the termsq,}/in Eq.
dr2 (10), integrating the second term of E(@LO) by parts, we
A(g) =|A(g,) € a(qx):J p(x)exp(igx)dx, (8) would obtain the next term in the expansion of the intensity
—di2 over small (14,) values



gd+Age )
T}{l—l/qx[go (d2)+¢'(~dI2)]).
(12

4
1(Qy) o< Efsin2

B. Asymptotic behavior asq,—0

The other limiting case to consider is smal| values,

giving the intensity distribution in the center of the speckle
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is the Fourier transform of the height functib(x) itself and
Ao(ay) =(2/gy)sin(.d/2) is the slit function.
This gives for the intensity,

1 (dlx) <[ Ag( ) |*— 20,d Ao( ) IM[H (g, ],

where we have neglected the small quadratic term
|H(qy)|?. Thus the height information iH(q,) appears as a
perturbation from the ideal Fraunhofer diffraction of the di-

(21)

pattern. In this case we can expand the exponent in the intezct peam.

gral of Eq.(8), €9%*=1+ig,x—--- and obtain for the am-

plitude,

dr2
A(gy) = J_dlze""(x)[“iqu]dX=d[Mo+i(qxd)M1].
(13

where the complex numbengl, and M, are the average
value My=(e'*™), and the first moment M,
=((x/d)e'*™) of the functione' ™. Note that the symbols

()4 denotespecificaverages over the finite range of integra-
tion of Eq.(13) andnotensemble averages. Hence we obtai

for the intensity,
() o= d*{|Mo|*~ 2q,dIm[ Mg M4 ]}, (14

where we have neglected the small quadragigf? term.

According to this expression we can determine the imagi-
nary part ofH(q,) from the difference between an experi-
mental curvel®¥q,) and|Aq(q,)|?>, as measured for the
direct beam,

|exp(qx) - |A0(qx)|2
2|Ao(ay)|
In the case of incoherent diffraction from a rough surface

the resulting diffraction pattern clearly separates into the sum
of a 6 function and diffuse components. With coherent dif-

Im[H(ax)]= (22

rlfraction, on the other hand, we generally cannot make this

separation. As shown above, a partial separation is possible
in the limit of small phases, when the surface structure per-
turbs the tails of the slit functiofA,(q,)|?, leaving the cen-

tral part of the intensity nearly unchanged.

From this result we can see that the intensity in the center

of the speckle pattern is determined by the average value,

| (ay) e d?| M| 2= d? (') 4| 2. (15

IV. RECONSTRUCTION OF h(x) FROM STATIC CXD

The ideal CXD experiment we have described is formally
identical to the measurement of the Gabor hologram of the

For example for a rough surface which is flat in the range ofypject under investigatiol?. There an object, usually of spa-

interest so thae(x))y=0, we obtain

(16)

where do(X) = ¢(X) — (¢(X))q and a4 is the specificrough-
ness of the surface averaged over the ranrgd#2<<x<d/2,
since (8¢(x)?)g=q203. So, in this case we have for the
intensity in the center,

Mo=(¢ 6<p(x)>d2e—(1/2)<8qo(x)2)d: e—(l/2)q§o§'

(= 0)od?e™ %%,

(17
which resembles the classidaicoherenktresult. For a rough
surface with a sufficiently largery value we find that
(q,=0)—0.

C. Perturbation limit, o<

In the case of the small phaseswe can expand our
density function,
p(x)=€*X=1+ip(x)—---, (19

and hence obtain the speckle amplitude,

dr2 )
A(gy) = fﬁd/2[1+ Fo(x)]e'9dx=Ao(y) +i(q,d)H(dy),
19

where

1 (di2 ,
H(q,) = aﬁdlzh(x)e'qudx (20

tially varying absorption, is illuminated by coherent radia-
tion, and all scattered waves are collected in the far field,
with a sufficient resolution to resolve all the interference
fringes. In this case, thamplitude of the function p(x)
would represent the absorption, and its phase would be con-
stant, ignoring refraction effects. If the object field is suitably
transparent that a large fraction of the beam passes unmodi-
fied, or alternatively aeference wavés deliberately added,
we would have the equivalent of the small phase approxima-
tion described above, in which the hologram is a perturbation
of the ideal diffraction pattern of the beam itself.

From the considerable literature on the subject of image
reconstruction, we have selected an algoriththat has the
potential of inverting Eq(8) to recover the height function
h(x). In one dimension, the algorithm is summarized by the
pair of equations,

A(qx)ei“(qx):zf B(x)e'*Mexp(iq,x)dx,

) 1 (= )
”(X)elw(x):zﬁf V(g e exp —ig,x)day,
(23

where we have used the symbol=? to mean “is replaced
by.” The method iterates back and forth between real space
and reciprocal space by the repeated application of Eg).

In the numerical application, the Fourier transforms would
be achieved by fast Fourier transfori=T's), as described
below. In both real and reciprocal space, constraints are ap-
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plied to guide the algorithm to find a solution consistent both
with the observed data and with the expected formp©f).
The speckle amplitude in reciprocal spaééq,), generated
during one cycle is overwritten by the observed amplitude,
VvI(ay). Similarly, the amplitude of the real-space density,
p(X), is reset to a predefined real functid®(x), while re-
taining the phase informatiorg(x). For the present discus-
sion, we consideB(x) to be a “box” function, with unit
value within the illuminating aperture, and zero outside.

In the context of holography, the procedure would be
identical if the object being imaged werephase objecthat ok ——" el
modified the phase of the illuminating radiation. More com- ~10 0 10
monly in holographic reconstruction the object under inves- Position across slit [um]
tigation would have an amplitude contrast, often blocking the
beam completely over certain regions. In the latter case, the FIG. 2. The solid curves are the magnitude of the illumination
function p(x) would be constrained to be real in the return function,|B(x)|, for different distanced., of the sample from the
half of the procedure instead by resetting its phase to zerentrance slits: sample near the slitsp); intermediate distancels
upon every cycle of the algorithm. (middle); limit of large distanced.>d?/\ (bottom). Curves are

We experimented with this algorithm and found that therecalculated forx =0.15 nm andd=5 um.
were some important details that needed attention. These are
discussed in the following subsections. They lead to soméagnitude|B(x)| has significant tails. In our fitting proce-
practical constraints on the procedure. dure, these additional phase shifts would be absorbed into
the experimentally determined phagé¢x). Finally, in the
limit of big distancesl.>d?/\ in the bottom panel, the func-

_ tion becomes real again and would itself look like a real-

Over the course of the cycle, the rgal—spacg densnyi,;p(.j\Ce slit functiom(x) = sin(8x)/(8X), whereg=md/\L. In
p(x), leaks outside the ranged/2 and requires cutting off; thjs |imit, the illumination is diffraction limited, with width

however, if this is done abruptly, strong fringes will appeary | /d, and no longer resembles the shape of the defining slit
in the diffraction. These fringes are the desired Fraunhofeg; 41 |n practice, this large-limit would not be interesting

fringes of the speckle pattern, but in the experiment they arg, experiments requiring a small illuminated area on the

smeared by the detector resolution and imperfect beam CQample, because larger apertured, could have been used

herence. These effects can be partly accounted for by choogs, 5 gain in flux and would have resulted inrarrower

ing in Eqg.(23) an appropriate filter functioB(x), such as a jjjumination function.

rounded box function. Instead of calculating the exact illumination function,
This filter function can also be used to account for theB(X) for a particular experimental setup, and because

change of the illuminated area on the sample due to its flnlt%(x) also needs to include the aforementioned filters, we

separation from the defining aperture. The formBix)  cnoose to approximate it with fairly good accuracy as a prod-
would then depend on the distaniceof the sample from the ot of 3 pair of Fermi functions,

entrance slits, in a way that can be predicted. The derivation
requires retaining the quadratic terms in the Fresnel limit of B(x)=f(x—d/2)f[ — (x+d/2)] (25)
diffraction?® In this near-field approximatior, <d?/\, we '
obtain the following expression for the illumination acrosswheref(x)=1/[1+ expf/w)] and the slope parameterde-
the sample: termines the sharpness of the edge. The width of this filter
function B(x) is equal to the width of the slits and the slope
1 ) parametew= 1\AL takes into account the smearing effects
B(x)= E{[C(ZZ)_C(Zl)]+'[5(22)_s(zl)]}' (24 of the distance of the sample from the beam-defining aper-
ture. The expression fav was obtained by differentiation of

T

D
T

-
T

lllumination function, B(x)

A. lllumination filter function

whereC(z) andS(z) are Fresnel integrals, |B(x)| at the slit edgex= +d/2. These approximate illumi-
nation functions are superimposed on the exact ones as
z [mt? z [ t? dashed curves in Fig. 2. Clearly this approximation is good
C(Z)Zf CO{T)dt, S(z)= fo sm(T)dt, only for values ofL<d?/\, which ensures the sample is in

the near field of the slisee Fig. 2

andz;=\2/\L(x—d/2), z,=J2/\L(x+d/2). Having definedB(x) we can extend the limits of our Fou-
As we can see from this expression, the funcB(x) is  er transform(8) to infinity,

complex, meaning that the illumination changes phase across

the sample and is no longer an ideal plane wave. In Fig. 2 we _ f” :

plot the absolute valugB(x)|, as solid curves for different AT %p(x)expﬂqxx)dx, 26

distancesl.. For small distancels<d?/\, as in the top panel

of Fig. 2, the phase is almost constant across the central pashere

of the aperture,—d/2<x<d/2. Important phase deviations _

start whenL~d?/\, shown in the middle panel, and the p(x)=B(x)e'*™, (27)
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We have constructed a new density function which adoptshem between cycles to see if they are supported, as part of
the amplitude of the illumination functiofp(x)|=|B(x)|  the general application procedure.
#const and its argument into the sought-after pha&e) .

C. Data sampling

B. Uniqueness problem In the real experimental situation, data are measured

The question of uniqueness must always be taken intavithin a finite region of reciprocal Spacemin=<0yx=<Omax-
consideration when we are dealing with inverse problems itHowever, the domain of the inverse Fourier transformation
which the phase information is lost in an experiment. Whermust extend to infinity. The data must, therefore, be ex-
we have one solution t8)—(9), we can always generate a tended smoothly beyond the range of measurement. It is
second one, the so-callelial solution using the properties clear that, if they are cutoff abruptly, this will give rise to
of the Fourier transformation. If a complex function additional oscillations in real space which have no physical

p(X)=|p(x)|e'*™ is the first solution, then meaning. According to the properties of the Fourier trans-
_ form, the far tails in reciprocal space will influence only the
PX)=p*(—x)=|p(—x)|e "¢ —d2<x<d/2 higher spatial-frequency features in real space. One of the
(28)  simplest ways to extend the data is just to smoothitpffthe

long tails.
A more accurate way of extending the experimental data

. . ould be to make use of the asymptotic behavior of speckle
The general mathematical problem of the construction o ymp P

lex funcii ) ” qul dth aul it ntensity asq,— o0, which we derived in Eq(11). We could
a compiex function given its moduius and thé moaulus ot 1S, i, 1o oy experimental data smoothly outside the range
Fourier transform as well as the problem of the umquenes%

is its dual.p(x) gives the identical intensity in the speckle
pattern.

. ! . . . min= 0x= Qmayx USiNg expressiofil1). Then the inverse Fou-
oo et e o e o g ool TEr_UanSIomalon 1 e range- <G, <y and
luti ; ‘7 o ) Omax<0y<<ce can be performed analytically with this
utions, without other prior knowledge, it is impossible to . .
choose between them. There are some situations where tﬁgymptonc f_unct|on. . Lo
problem can be avoidéd however. For example, if we hav In numerical calculathns, Fourier .|ntegrals such as Eq.

) S AT T ?8) are calculated as discrete Fourier transfor(Bd=T),

data in the form of &ime seriesin which one scan is only . : .

: . . : which are Fourier series,
slightly different from the previous one, the internal self-
consistency could help to establish the uniqueness of the N-1
solution. Similarly, as mentioned above, if data are measured A = > pmex;{
on the same area of the sample but with diffegnvalues, m=0
the fact that all measurements must correspond to the same (29
h(x) function can under some circumstances constrain th
uniqueness, as we will discuss next.

The phase obtained from any calculation of this kind will
always be bounded in some range such-as<¢(X)<nr.
At any position, the phase valug(x) is indistinguishable
from the phase value(x)+2n7. For this reason the de-
rived phase function will be highly degenerate. The real
heig_ht_ function,h(x), is of course not necesgarily bou_nd_ed, space we havax=X/N and Aq=2m/X or for their prod-
but it is expected to be a continuous function. In prmmpleuct
this could be used to resolve any ambiguity in the mapping
o(X)=g,h(x), except for a single arbitrarily chosen phase AxAq=2m/N. (30)
point. In practice, the problem is not so straightforward be-
cause of the finite spacing of tiggpoints(see belowand the  Due to relationshig30) the steps in the real and reciprocal
effective coupling between them due to application of thespace are correlated and strictly cannot be taken indepen-
Fourier transforms in applying the algorithm. dently. In practice, the intervalq is fixed by the step size in

Let us consider an example of how this last kind of nonu-scanning the diffraction pattern, or the pixel size of the de-
nigueness could cause problems in trying to invert surfacéector, but we are usually free to choose the sampling inter-
CXD data. If the surface height functidn(x) happened to val Ax with which we represent the real-space functions.
contain a fairly abrupt steph which resulted in a localized A related practical consideration of using the DFT is the
phase jump ofd¢=q,6h=27, this would be almost invis- problem ofaliasing which arises from the periodic boundary
ible in measurements at that particutgr. The fitting algo-  conditions inherent in Eq29). This is usually avoided by
rithm (23) could find a solution in which the step was omit- choosing a suitably large value Nf, and retaining a healthy
ted, and the agreement with the data would be already quitemount of empty space within both the real- and reciprocal-
good, but not perfect. There would be little chance of such @pace unit cells. This also allows room for the smooth con-
feature being introducegradually by the cycling of the al- tinuation of the diffraction pattern outside the measured
gorithm because a broad or smaller version of the step woulthnge, mentioned above. Relationst®8) will then guaran-
fit much worse than the fulbh. To avoid this problem with tee that the spacindx is sufficiently small that the dis-
safety, it would be necessary either to have data at more thametely sampled numerical functiorp(x), will be over-
oneq,, or to include testing for phase jumps, by insertingsampled and will therefore appear to be smooth.

_2mmn
*i

, mn=0,... N—-1,

fhereN is the total number of points of calculation, usually
with small prime factors, as in the FFT. According to Eq.
(29), the real and reciprocal spaces are connected to each
other. Really, theath point in real space is equal to a fraction

of some unit cell lengthX, by x,=Xn/N, so themth point

in the reciprocal space according to EQ9) is equal to
dm=27m/X. So, for the steps in the real and reciprocal
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FIG. 3. Test of the Gerchberg-Saxton algorithm applied to a FIG. 4. Test of the algorithm on profilometer data. Top: derived
simple height function in the form of a Gaussian phase bump. Topspeckle patterfipointy and eventual fit. Middle: assumed illumina-
derived speckle patter(pointg and eventual fit. Middle: derived tion as a function of position across the incident beam and eventual
illumination as a function of position across the incident beam forfit. Bottom: starting height function and reconstructed version.

two reconstruction attempts. Bottom: starting height functgmiid) ) ) ) ) )
and two versions of the reconstructi(ﬁdashed and dash_ddb_ _d/2<X<d/2 SII’lCe the phase haS I|tt|e We|ght OUtSIde thIS

gether with their duals. The two versions, which differ substantiallywindow region, it does not contribute much to the data and
only outside the illuminated aperture, were obtained using differen80 iS poorly constrained there.
random starting phases. The convergence of the algorithm was found to be data
dependent. It has been reported that if the solution and its
dual start to resemble each other, this can interfere with the
convergencé! This is a well-documentestagnationfailure

Our first test was simply to show that a simple structureof the Gerchberg-Saxton method when it becomes stuck with
could be recovered from simulated data. This is shown ira function that adopts features of both the solution and its
Fig. 3 for a Gaussian-shaped phase bump as the test strugual?! Stagnation was apparently not a problem in this
ture. The simulated speckle pattern is shown in the uppesimple test case, perhaps because of the particular choice of
panel as data points and the line passing through them wasst function used.
obtained using the Gerchberg-Saxton fitting algorithm we Our second test, shown in Fig. 4, was more demanding.
have described. The real-space amplitude and phase awée considered a different example of a real surface mor-
shown in the lower panel. The data were generated using gohology as measured with a profilomefeA typical 300
illumination functionB(x) given by Eq.(25) with a width  um trace was compressed into &2n to represent the graz-
d=11 um and slope parametev=1.25 um. This same il- ing incidence angle of the beam on the sample. A rounded
lumination function was asserted on every cycle of the algoFermi-function illumination functionB(x), was assumed as
rithm, except a slope parameter=1um was used instead, in Eq. (25). The speckle amplitude was generated and then
as a test. For starting phases, a random number was chosesed, together with the san®(x) and random starting
for each value ok with — 7<<¢(x) <. The procedure con- phases to recover the surface height. The data are only
verged within 40 iterations to the correct solution or to itsshown in the center of the pattern, but have important small
dual (about half the time for eaghdepending on the starting features extending far beyond the edges of the figure; retain-
phase set. ing these is important for the fitting to work. The recovered

For a simple function as in this example, the method wasurface structure as well as the initial one are shown in the
fairly reproducible, even when the illumination function was bottom panel of Fig. 3. Clearly, the coarser features of the
not chosen exactly the same as the true one. The two exyrofile have been largely recovered by the algorithm but
amples of reconstructed profiles shown in Fig. 3 by dashethere remain some differences on a finer scale, which might
and dash-dot curves were obtained with different startindbe attributed to the finite range of the reciprocal-space Fou-
phases. They are not quite the same: they both resemble thier transform.
original in the center, but begin to diverge dramatically out- The final test was on the reconstruction of @amknown
side the range where the illumination function is large,surface structure from an example of data from silicon wafer

D. Tests of the algorithm



55 RECONSTRUCTION OF SURFACE MORPHOLOGY FROM ... 13201

formalism. The expression for the reflected amplitude factor-
izes into a crystal-truncation part and an integral of a phase
factor that depends on the height functitrx), describing

the surface. One consequence of this factorization is that the
reflection geometry is very favorable from the point of view
of longitudinal coherence, so wide-band optics can be uti-
' lized for a considerable advantage in flux.

Interesting mathematical properties of the derived formal-
ism were explored. An expression was derived for the far
Wb ] tails of the diffraction pattern, which are oscillatory but
= shifted in phase by an amount that depends on the overall
= A height difference across the sample. In the perturbation limit,

0

A it was discovered that there is a threshold value of the per-

Intensity [10 “c/s]

-10 0 10
Parallel Momentum Transfer [pni']

601 ] pendicular momentum transfeg,= m/o, beyond which a
= 90f f T surface of a given roughness, will start to produce strong
— 401 iy speckle features in its coherent diffraction pattern. This was
= 30f ] already seen experimentally.
=R ] Finally, we tested the possibility of using a reconstruction
= 10f ] algorithm, proposed by Gerchberg and Saxton, and widely
) T used in the optics literature since. The algorithm switches
6-4-20 2 4 6 back and forth between real space and reciprocal space, as-
Position across beam [um] serting a sample illumination functioB(x), in the former

_ _ _ and the observed data in the latter. The illumination function

FIG. 5. Fit of a height functiorn(x) to a 1D speckle pattern  gjso acts as a filter to allow for partial coherence and the

obtained by reflection from a silicon wafer at the ESRF using thefinjte detector resolution. Our tests showed that images of

methods deS_C['bEd in Ref. 7. A perpendicular momentum transfeg, tace morphology could be recovered from simulated data,
of g,=0.2 A™%, a nominal pinhole ofi=7um and wavelength 5 that satisfactory fitting of real data could be achieved.
A=0.136 nm were used. Three examples of reconstructions areé ., yqr investigations of the capabilities of this data-
shown superimposed. fitting algorithm are in progress. We intend to pursue the

rguestions of the uniqueness of the solution from the empiri-

samples, shown in the top panel of Fig. 5. These data we Igal direction, and to explore the sensitivity to errors in the

measured at ID10 of the European Synchrotron Radiatiodata and in the illumination function. We will investigate
Facility (ESRB using the methods described in Ref. 7. The . . o 9
other kinds of real-space intervention in the Gerchberg-

llumination function was assumed to be of the fo(@b) Saxton cycle, which might improve the convergence. We can
with parameters estimated from the dimensions of the ex: ycle, 9 P 9 :

perimental setupd=7 xm andw=0.8 wm. In our fitting extend the application to other kinds of data, for example,
procedure we made sgveral attemﬁﬁm/:ting with random 2D speckle or §peckle dge to antiphase doma'ins rather than a
phasesto fit the data and the solution was regarded as founiOntlnuous height function. We would also like to look at

when y? values for both the real-space amplitude constrain me-series andj,-dependent data. We believe the methods

o > ) i .outlined here will help to establish CXD as a powerful ana-
2[le(x)|~|B(x)|]* and the reciprocal-space data Cor]Stramtlytical tool for probing the structure of matter on the nanom-

S{\1°9q,) — |A(qy)|}? became small. Of course we have

no independent way of checking the validity of the derivedeter length scale.

surface profile, so we show three independent solutions, ob- ACKNOWLEDGMENTS
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