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Magnetoplasmons of a two-dimensional electron gas with equilibrium density inhomogeneities

F. A. Reboredo and C. R. Proetto
Centro Atómico Bariloche and Instituto Balseiro, Comisio´n Nacional de Energı´a Atómica, 8400 Bariloche, Argentina

~Received 27 September 1996!

Interedge magnetoplasmons are a class of magnetoplasmons localized at the boundary defined by two
bidimensional metallic domains with different equilibrium densities. They reduce to the usual edge magneto-
plasmons when one of the equilibrium densities is exactly zero. The application of a hydrodynamical theory to
a disk-shaped electron fluid with a central inhomogeneity reveals the existence of both edge and interedge
magnetoplasmons in the high magnetic field regime, whose frequency decreases with magnetic field. If the
equilibrium density of the central inhomogeneity is greater than the equilibrium density of the ring area that
surrounds it, both magnetoplasmons have the same symmetry and anticross strongly. In the low-field regime,
the interedge magnetoplasmon exhibits a cyclotron resonance like dependence on the magnetic field. The
calculations are in qualitative agreement with recent experiments performed in the extremely high-field regime
and suggest new experiments at lower fields and/or different systems.@S0163-1829~97!01719-0#
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I. INTRODUCTION AND HYDRODYNAMIC MODEL
FOR A CONFINED ELECTRON FLUID

The lack of translational symmetry associated with
presence of boundaries or inhomogeneities in a system
lows for the existence of effects which are qualitatively qu
different from those of the bulk case. A striking example
this are the so-called edge magnetoplasmons~EMP’s!, which
are collective density excitations ofconfined two-
dimensional electron gases~2DEG’s! subject to a perpen
dicular magnetic field.1 The characteristic signature of the
EMP’s is that their frequency decreases with an increas
magnetic field. This contrasts with the usual bulk magne
plasma~BMP! modes, whose squared frequency increa
linearly with the squared cyclotron frequency. Besides, in
strong-field limit, EMP’s are spatially localized close to th
confining boundary.

Most of the experimental studies of EMP’s, which inclu
a variety of different geometric configurations, such
dots,2–4 antidots,5,6 and rings,7,8 have been restricted to edg
situations, where the equilibrium density of the confin
2DEG’s changes from a finite value to zero. Theoreti
studies also follow that tendency.9–18 In a very recent experi-
mental study,19 however, magnetoplasmons localized at t
boundary between two classical two-dimensional elect
systems with different~but nonzero! equilibrium electron
densities were observed. By analogy with a thre
dimensional situation, where an interface is a generaliza
of a surface, they were denoted as interedge magneto
mons~IEMP’s!. Their existence was predicted by Mikhailo
and Volkov,20 who analyzed theoretically the problem of tw
half-plane contacting 2D metallic regions with different co
ductivities ~densities!.

Owing to the macroscopic dimensions of the typica
studied samples~0.1–10 mm!, we shall treat the 2DEG as
classical charged fluid subject to the laws of fluid mechan
Generalizing on our previous model,18 in the present work
we will consider the case of an electron fluid confined in
disk of radiusb; the disk, however, has an inner region~of
radiusa) with a static and uniform positive background wi
550163-1829/97/55~19!/13111~7!/$10.00
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charge density per unit areaen1(e.0), while the annular
region betweena and b has background charge densi
en2 . The charge neutrality of the system is provided by
compressible electron fluid with area charge dens
2e@n0(r)1n(r,t)#, where n0(r)5n1u(a2r)1n2u(r
2a)u(b2r) is the equilibrium density andn the collective
mode self-induced density~we will assume thatn!n0). The
system is subject to a perpendicular magnetic field along
z direction and surrounded by dielectric material with diele
tric constant«1 for z.0 and «2 for z,0. This geometry
corresponds quite closely with the experimental configu
tion of Ref. 19. Besides, it contains as a limit several pre
ously considered models: for instance, a disk of rad
b (a) if n15n2 (n250),1,9 an antidot if n150, n2Þ0,
b→`,12–14,16and a ring with inner radiusa and outer radius
b if n150.11,15,17,18

The essential equations governing the dynamics of a c
pressible electron fluid within the hydrodynamic
approach21 are the continuity and Euler equations lineariz
in the velocity of the liquidv and the deviation of the con
centrationn from its equilibrium value,n0,

]n~r,t…

]t
1“r–@n0~r!v„r,t…#50, ~1!

]v„r,t…

]t
2

e

m*
“rf~r,t !2vcẑ3v~r,t…50. ~2!

Here, r is a two-dimensional vector in thex-y plane,
vc5eB/m* c is the cyclotron frequency, andf the mode
self-induced potential produced by the density fluctuat
n; it should be noted thatf extends over all three
dimensional space~however, only its projection on thex-y
plane enters in the equations above!, while the remaining
physical magnitudesn0, n, and v are restricted to the 2D
sheet atz50.22

The azimutal symmetry of our model allows us to assu
that all the unknown quantitiesn, f, v have an angular and
time dependence of the formf (r) ei (l u2vt), wherel is an
13 111 © 1997 The American Physical Society
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13 112 55F. A. REBOREDO AND C. R. PROETTO
integer andv the frequency of the fluid normal modes, st
to be found. The pair of bulk equations~1! and~2! should be
supplemented by boundary conditions at the inner and o
edges atr5a and r5b, respectively; from physical argu
ments, we are led to choose that there is no accumulatio
charge at the internal edge,n1 vr(r5a2)5n2 vr(r5a1),
and that the flux of charge across the external edge mus
zero,n2 vr(r5b2)50.

Using ~2!, these boundary conditions are mathematica
equivalent to

n1S v
]

]r
1
l vc

r Df~r!U
r5a2

5n2S v
]

]r
1
l vc

r Df~r!U
r5a1

,

~3!

and

n2S v
]

]r
1
l vc

r Df~r!U
r5b2

50, ~4!

respectively.
To proceed further, it is useful to combine Eqs.~1! and

~2! in a single integrodifferential equation; after some alg
bra we obtain

~v22vc
2!n~r!14pv0

2n0~r!

n2
S ]2

]r2
1
1

r

]

]r
2
l 2

r2 D
3E

0

b

dr8r8K l ~r,r8!n~r8!50 ~5!

for the self-induced electron density. The kernelK l (r,r8) in
the equation above is given by

K l ~r,r8!5E
0

`

Jl ~kr!Jl ~kr8!d~kb!, ~6!

with Jl being thel th order Bessel function of the first kind
while v0

25e2n2 /m* b(«11«2) is a natural unit of frequency
for our model. Two observations should be made concern
the derivation of Eq.~5!

~i! The boundary conditions~3! and~4! have been used to
eliminate extra terms involving derivatives of the equili
rium electron densityn0(r); within our steplike model for
the equilibrium density profile, such derivatives would gi
rise tod function types of charge accumulation at the edg
atr5a andr5b. An alternative way of getting Eqs.~3! and
~4! is to impose them as a way of avoiding such patholog
~for a two-dimensional situation! localization of charge.1

~ii ! The self-induced potentialf(r) has been related to
the self-induced density by using the integral version of
Poisson equation, which after integration over thez8 coordi-
nate reads

f~r!52
4pe

~«11«2!
E
0

b

dr8r8Kl~r,r8!n~r8!. ~7!

At this stage, the problem has been reduced to finding
solutions of Eq.~5! subject to the boundary conditions~3!
and ~4!: while there are several methods available to so
this problem, as in our previous work in rings we find
useful to compress these three equations into just one w
satisfies automatically the boundary conditions.
er
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Accordingly, we find it convenient to study the followin
integral equation:

en0~r!

m*
f~r!1~v22vc

2!F E
0

a

dr8r8G1~r,r8!n~r8!

1E
a

b

dr8r8G2~r,r8!n~r8!G50, ~8!

whereG1(r,r8) andG2(r,r8) are Green’s functions which
satisfy different equations depending on the value of th
arguments.

If 0<r8 ,a, we have

S ]2

]r2
1
1

r

]

]r
2
l 2

r2 DG1~r,r8!52
d~r2r8!

r8
~0<r,a!,

~9a!

S ]2

]r2
1
1

r

]

]r
2
l 2

r2 DG1~r,r8!50 ~a,r,b!, ~9b!

while if a,r8,b,

S ]2

]r2
1
1

r

]

]r
2
l 2

r2 DG2~r,r8!50 ~0<r,a!, ~9c!

S ]2

]r2
1
1

r

]

]r
2
l 2

r2 DG2~r,r8!52
d~r2r8!

r8
~a,r,b!.

~9d!

With these definitions ofG1 andG2, it can easily be checked
by the application of the operator]2/]r21]/r]r2l 2/r2 to
Eq. ~8! that our original Eq.~5! is obtained at once. The
boundary conditions on the self-induced potentialf(r) can
be incorporated in turn as boundary conditions for the
plicit calculation of the Green functions, this being the ma
practical advantage of the method. While the evaluation
G1 andG2 is, in principle, straightforward under the abov
guidelines, the resulting expressions are rather cumberso
so we prefer to relegate their explicit evaluation to the A
pendix.

Before embarking on a detailed numerical calculatio
some comments on the results obtained so far are in or
First, it is interesting to note that while the bulk Eq.~5!
remains invariant under the changel →2l , the boundary
related Eqs.~3! and~4! depend on the sign ofl ~for nonzero
magnetic field!. This means that whenvcÞ0, bulk-type so-
lutions should be nearly degenerate, while edge or intere
solutions should split with the magnetic field. No anomalo
behavior of this sort can be expected for thel 50 radial
modes, as in this case neither the frequency nor the cyclo
frequency appears in the boundary conditions. Inspection
Eq. ~5! reveals that they enter only in the particular com
nationv22vc

2 , from which it follows that the squared fre
quency of these modes should increase quadratically w
magnetic field, like bulk magnetoplasmons. The main con
quence of confinement for thel 50 magnetoplasmons is t
give a finite value to the zero-field frequency. Physically, t
qualitatively different behavior of thel 50 modes arises
from the fact that the Lorentz force gives some angular co
ponent to these radial modes. However, confinement eff
~radial boundaries! are not felt by these angular componen



th

a
ol
o

-

it
he
r-

th

ex
-

o

n
a
n
ct
e
i
ag
o

nt
;

e
9.
re

ud
e
ig
dg

In
y

to
or
al

si
iu

f a
an
ing
of
r of
ar-
s to
sy,
he
ed
ic
ose

y

. In
the
e
tic
en
s
fre-
ns

r.

e
he

the
mall

55 13 113MAGNETOPLASMONS OF A TWO-DIMENSIONAL . . .
and the magnetic field effects are consequently similar to
bulk case. Second, solutions to Eq.~8! for a given value of
vc exist only for certain allowed frequencies, so this equ
tion constitutes a generalized eigenvalue problem. The s
tions v r l can be classified according to their angular m
mentum l and a sort of radial numberr , such as
v0l ,v1l ,v2l , . . . . In the numerical results to be pre
sented below, only dipole allowed (l 561) modes will be
shown, for the smallest radial numbers. For our model w
the magnetic field pointing along the positive direction of t
z axis, l .0 density fluctuations rotate in the counte
clockwise sense, while negative values of the angular m
mentum correspond to magnetoplasmons rotating in
clockwise sense. For the practical solution of Eq.~8!, we
follow the same numerical technique used in Ref. 18,
pandingn(r) into a finite set of linearly independent func
tions. In particular, we used as a basisM functions of the
form

rme2lru~a2r! if 1<m<M /2,

rme2lru~r2a! if M /2<m<M ,

with l5b/M . All the calculations below correspond t
M514.

II. RESULTS

A convenient way of presenting our results is to usev0 as
a unit of frequency, andb as a unit of length; proceeding i
this way, the independent parameters of our model
n1 /n2 , the aspect ratioa/b, and the adimensional cyclotro
frequencyvc /v0 . This scaling of the results allows a dire
comparison of our calculations with experiments perform
both in 2DEG’s on the surface of liquid helium and at sem
conductor heterojunctions, in spite of several order of m
nitude differences in typical equilibrium densities and ge
metric dimensions.

Unless stated otherwise, all the results to be prese
below correspond to the choicea/b50.5 for the aspect ratio
besides, we allown1 to change from n1 /n2!1 to
n1 /n2@1. This variation of the equilibrium density can b
achieved by using the experimental techniques of Ref. 1

We start by presenting in Fig. 1 the positive eigenf
quency solutions23 for the casen1 /n250 ~full and dashed
lines!, and n1 /n250.02 ~open circles!, for l 561. When
n1 /n250, the system reduces to the ring configuration st
ied in our previous work,18 the main feature being that th
spectrum can be characterized as a set of bulk h
frequency magnetoplasmons, and two low-frequency e
magnetoplasmons circulating along the inner (l 511) and
outer (l 521) ring boundaries, in opposite directions.
the strong field limitvc /v0@1, they become increasingl
localized close to their respective boundaries.

While for a situation withn1 /n2!1 one naively could
expect to find a spectrum of collective excitations similar
the ring case, at first sight the results in Fig. 1 f
n1 /n250.02 look rather different, with several addition
bulk magnetoplasmons and an extra mode~for l 511)
whose frequency decreases linearly with magnetic field
small fields. The extra bulk magnetoplasmons are ea
characterized: they correspond to BMP of a disk of rad
e
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a and equilibrium densityn1 . As n1!n2, its zero-field fre-
quency is much smaller than the zero-field frequency o
BMP localized in the ring region. This explains why one c
excite many of these modes before exciting the first r
mode. The finite number of low-frequency BMP modes
the inner disk is just a consequence of the finite numbe
basis functions used in the numerical calculation. The ch
acterization of the collective mode whose frequency goe
zero linearly with magnetic field turns out to be not so ea
at least in the zero field limit. Some help is provided by t
results shown in Fig. 2, where the normalized self-induc
densityn(r) for n1 /n250.02 is shown for several magnet
fields. According to these results, this mode is localized cl
to the interedge~located at r/b50.5), but while for
vc /v0!1 it is mainly localized on the inner low-densit
side of the interedge, whenvc /v0@1 its localization
changes to the outer high-density side of the interedge
this strong-field regime, this mode behaves essentially as
l 511 EMP of a ring, as can be seen clearly in Fig. 1. W
still must explain the linear behavior at small magne
fields. This behavior is related to a divergence of the Gre
functionG1(r,r8) at a given frequency, which in turn give
rise to a divergence of the integral equation at the same
quency. A closer examination of the explicit expressio
given in the Appendix reveals thatG1(r,r8)→` when

v52a
12a2l /b2l

11aa2l /b2l
vc , ~10!

with a5(n12n2)/(n11n2) being an asymmetry paramete
This expression corresponds to the casel .0; for l ,0 we
should replacevc by 2vc . If l .0 andn1,n2 , the fre-
quency given by Eq.~10! is positive, and corresponds to th
straight full line in Fig. 1. The solutions associated to t
IEMP approach asymptotically this frequency~from below!
as the magnetic field decreases, and this gives rise to
observed cyclotron resonance behavior of this mode at s

FIG. 1. Excitation spectra for a ring (n1 /n250, full and dashed
lines!, and for a ringlike situation (n1 /n250.02, open circles!. The
right-hand side of the figure corresponds to thel 511 modes,
while the left-hand side is for thel 521 modes. The straight full
line is a plot of the analytical approximation given by Eq.~10! in
the text for the IEMP’s in the small field regime.
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13 114 55F. A. REBOREDO AND C. R. PROETTO
fields. It is clear that the Coulomb interaction is irrelevant
this mode, since the integral equation is dominated by
singularity inG1 . It is interesting to point out that in the
limit b→` ~antidot configuration!, Eq. ~10! reduces to the
one found by Mikhailov and Volkov20 for the IEMP in a
rectilinear half-plane geometry. In that case, this mode ar
from the anticrossing of the cyclotron resonance mode
the IEMP oscillation.

We display in Fig. 3 the spectrum ofl 561 collective

FIG. 2. Radial profile of the IEMP self-induced density for se
eral values of the magnetic field, for a ringlike configurati
n1 /n250.02. The magnetic field varies fromvc /v050.98 to
vc /v0528.54, in steps of 3.96.

FIG. 3. Resonance frequencies for a disklike configuration w
n1 /n250.8 ~full circles!. Note the softening of the IEMP as th
interedge equilibrium density discontinuity is small as compa
with the previous ring and ringlike case of Figs. 1 and 2. Op
circles correspond to the excitation spectra for a disk with homo
neous equilibrium densityn1 /n251.
r
e

es
d

excitations for the casen1 /n250.8 ~full circles!. For this
equilibrium density ratio the disk is close to becoming
homogeneous disk without an internal interedge. Compa
with the results shown in Fig. 1 we note a considerable s
ening of the IEMP; this is easily understood, as this mode
localized at the interedge, and the interedge is close to
tinction. It is also interesting to note the absence of a se
low-frequency BMP as in Fig. 1, as in the present case
equilibrium density at the inner disk is similar to the one
the ring region, and consequently a BMP localized there
a frequency similar to a BMP localized in the ring regio
For the sake of completeness, we give in Fig. 3 with op
circles the results for the well-known limiting case of a h
mogeneous disk withn15n2: the absence of the IEMP fol
lows from the disappearance of the interedge atr5a, and
only the l 521 EMP localized at the outer disk bounda
survives in this limit.

The results presented so far correspond to situati
wheren1<n2 . What happens whenn1.n2? The answer is
given in Fig. 4, which corresponds to a ratio of equilibriu
densitiesn1 /n251.2: a new IEMP arises withl 521, in-
creasingly localized close to the interedge as the magn
field increases. This IEMP has the same angular momen
as the EMP localized at the outer ring boundary; as we w
see, this leads to interesting anticrossing effects betw
these two modes. To complete the sequence, Fig. 5 co
sponds to the casen1 /n255: the frequency of the IEMP
rises with respect to the previous figure, and suffers an a
crossing with the EMP of the disk.

The casen1 /n2.1 can be alternatively thought of as
first ~discrete! approximation to a smooth equilibrium den
sity profile for a disk of radiusb. Half-plane24,25 and strip
geometries26 with model smooth equilibrium profiles hav
been studied previously, the main result being the app
ance of additional acoustic modes~whose frequency goes t
zero linearly with magnetic field!, besides the usual EMP
mode. Within this context, we can qualitatively identify th
IEMP of Fig. 5 with the lowest acoustic mode of such the

h

d
n
e-

FIG. 4. Resonance frequencies for a disklike configurat
n1 /n251.2. Note the presence of a low-frequency IEMP on t
l 521 side of the spectra.~Numerical error hinders the calculatio
of the resonances in some regions of the spectra.!
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55 13 115MAGNETOPLASMONS OF A TWO-DIMENSIONAL . . .
ries. Note, however, that in the strong magnetic field lim
vc /v0@1, the EMP~IEMP! is mainly localized aroundb
(a), while for the situations considered in Refs. 24–26,
modes are localized around the same~and unique! boundary.

A complementary and quite instructive way of present
our results is to keep the magnetic field fixed, and chang
the ration1 /n2 ; results for the two-lowest edge and inte
edge magnetoplasmons are presented following this pr
dure in Fig. 6. Full and open circles correspond to a we
magnetic field regimevc /v0!1. The upper branch, with
angular momentuml 521, is associated with the collectiv

FIG. 5. Same as Fig. 4, for the case of a disk with a stro
central inhomogeneity defined byn1 /n255.

FIG. 6. Frequencies of the EMP’s~full points! and the IEMP’s
~open points!, as a function ofn1 /n2; circles, triangles, and square
correspond tovc /v05 0.98, 3.92, and 15.68, respectively. No
the strong anticrossing atn1 /n2.2, and that this mode repulsio
decreases with magnetic field. The full line on the results for
smaller field is the analytical approximation given by Eq.~10! in the
text to the IEMP’s.
t

ll

g

e-
k

excitation which in the strong field regime we identify as t
EMP’s mainly localized at the outer disk boundary. The im
portant monotonic increase of this mode frequency withn1
confirms that this mode spreads all over the disk area in
small field regime, and consequently becomes sensitive
changes inn1 . The lowerV-shaped branch corresponds
the IEMP’s ~at least in the strong-field regime!; its angular
momentum is positive~11! if n1,n2 , and negative (21) if
n1.n2 . Besides, as discussed above, its frequency goe
zero at the homogeneous disk limitn15n2 . Note that the
first calculated point for this branch~in the small-density
limit ! is n1 /n250.02 ~in agreement with the results of Fig
1!. Finally, the full line corresponds to Eq.~10!, which
clearly becomes an excellent analytical approximation
the frequency of the mode in this regime. Using this equat
we obtain in the low-density limitn1 /n2→0 the frequency
vc , while in the high-densityn1 /n2→` the mode frequency
tends tovc(12a2/b2)/(11a2/b2)50.6 vc for our particu-
lar choicea/b50.5.

Finally, the remaining points in Fig. 6 are a recopilatio
of data for increasing magnetic field values. The most
markable feature is the strong anticrossing between the
modes withl 521 on the high-density siden1 /n2.1. Note
that whenn1 /n2,1, both modes have different angular m
mentum and then they cross perfectly. It is also interesting
note that the strength of the anticrossing diminishes with
magnetic field. This is easily understood: when the magn
field increases both the EMP’s and the IEMP’s become
creasingly localized in their respective boundaries. This
creasing localization is obviously detrimental to their mutu
interaction, and consequently to the anticrossing effect.

III. DISCUSSION OF THE RESULTS AND CONCLUSIONS

The results obtained in the present contribution give
rather complete picture of the collective excitations of 2DE
localized at the boundary between two regions with differ
equilibrium densities. This situation may be realized expe
mentally by the application of gates to electrons confined
the surface of liquid helium,19 by etch processing of a
Al xGa12xAs/GaAs quantum well heterostructure,7 or arise
naturally in both kinds of systems as a result of a sam
inhomogeneity.

The first point to note is that, according to the resu
presented in Fig. 1, then1 /n2→0 limit of our model is
qualitatively different from the casen1 /n250 ~the ring
case!. The limit n1 /n2!1 ~but nonzero!, allows for the pres-
ence of a set of low-frequency bulk magnetoplasmo
mainly localized at the inner disk. Whenn1 /n250, the re-
maining modes are only those localized in the high-den
ring region.

One important parameter that controls the collective ex
tation spectra is the ratio between inner and outer equ
rium densities: ifn1 /n2,1, we have a ringlike situation
with two localized magnetoplasmons in the high-field r
gime, one at the outer boundary (l 511), and the other at
the inner boundary (l 521). The frequency of the las
mode goes to zero whenn1 /n2→1. The casen1 /n2.1 is
quite different: we have again two localized magnetopl
mons ~in the strong-field limit!, one localized at the oute
boundary, the other at the inner boundary, but this time b

g
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13 116 55F. A. REBOREDO AND C. R. PROETTO
modes have the same symmetry~angular momentum!. This
gives rise to the interesting effect of the anticrossing of b
modes, as can be seen clearly in Fig. 6. This anticrossin
obviously absent ifn1 /n2,1, and the effect diminishes b
increasing magnetic field, due to the increasing localizat
of each mode at its respective boundary. This leads us
rectly to the discussion of the possible experimental de
tion of these features.

To the best of our knowledge, there is only one publish
experimental work devoted to explore the physics
IEMP’s.19 The 2DEG in question consists of electrons co
fined to a cylindrical cell and floating on the surface of liqu
helium. In the high magnetic field limit the frequency
these IEMP’s was found to be proportional to the differen
of the electron densities on either side of the boundary
inversely proportional to the magnetic field. Also, the dire
tion of propagation was determined by the sign of the diff
encen12n2 . All these features are in qualitative agreeme
with our theoretical findings. However, it is quite importa
to note that the equilibrium densities and magnetic fields
the experiment are quite different from ours; a useful para
eter that comprises such differences is the adimensional
vc /v0 . Taking from the experimentn2.63107/cm2,
«151 ~vacuum!, «2.1 ~liquid helium!, b.6 mm, and as-
sumingm*5m0 for electrons above liquid helium (m0 being
the electron bare mass!, we obtainvc /v0.2000 in the high-
field limit (B.5 T!. These experimental results are cons
quently far away~in the extremely high-field limit! from the
calculations presented above, wherevc /v0 takes a maxi-
mum value of about 10. Not quite surprisingly, and presu
ably due to the strong spatial localization of the EMP’s a
IEMP’s in this extremely high-field regime, no anticrossin
of both modes was detected experimentally. It would be
teresting, accordingly, to repeat the experiment under sm
magnetic fields, wherevc and v0 are about of the sam
order of magnitude. Fromvc.v0 , we estimate that experi
ments performed toB.02100 G will display the rich spec
trum shown above.

A second possibility is to perform the experiment on
2DEG at the interface between two semiconductors, suc
GaAs and AlxGa12xAs. Subsequent etching allows us
confine these in principle infinite two-dimensional electr
gases to geometries such as disks, rings, stripes, etc. Ty
parameters for these systems are much higher densities
smaller geometric dimensions; for example, from Ref.
with n252.331011/cm2, «151 ~vacuum!, «2512.6~GaAs!,
b525mm, andm*50.067m0, we obtainvc /v0.20, again
for B.5 T. We expect that the results presented here ca
in consequence quantitative compared with experiment
these semiconductor heterostructures. This is supporte
the results of two recent calculations for the ring case17,18

that show an excellent quantitative agreement with the c
responding experiment.7
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APPENDIX A: CALCULATION
OF THE GREEN’S FUNCTIONS

The calculation of the Green’s functionsG1(r,r8) and
G2(r,r8) proceeds as follows. To begin with, they shou
satisfy Eqs.~9a!–~9d! given above; besides, we need a su
able set of boundary conditions for these Green function
both interfaces. To deduce such boundary conditions,
particularize Eq.~8! for r5a2 andr5a1,

en1
m*

f~a2!1~v22vc
2!F E

0

a

dr8r8n~r8!G1~a
2,r8!

1E
a

b

dr8r8n~r8!G2~a
2,r8!G50, ~A1!

and

en2
m*

f~a1!1~v22vc
2!F E

0

a

dr8r8n~r8!G1~a
1,r8!

1E
a

b

dr8r8n~r8!G2~a
1,r8!G50. ~A2!

The application of the electrostatic requireme
f(a2)5f(a1) to Eqs.~A1! and ~A2! yields

1

n1
Gi~a

2,r8!5
1

n2
Gi~a

1,r8!, ~A3!

with i51,2.
In a quite analogous way, the application of the bound

conditions~3! and ~4! to Eq. ~8! leads to the following re-
quirements on the Green functions:

S v
]

]r
1
l vc

r DGi~r,r8!U
r5a2

5S v
]

]r
1
l vc

r DGi~r,r8!U
r5a1

, ~A4!

and

S v
]

]r
1
l vc

r DGi~r,r8!U
r5b2

50. ~A5!

The problem is now well defined:G1 andG2 should satisfy
the ‘‘bulk’’ equations ~9a!–~9d!, subject to the boundary
conditions~A3!–~A5! at the interfaces. Generalizing prev
ous similar derivations for different geometries,9,10,18it is not
hard to obtain the following explicit expressions for th
Green functions:

G1~r,r8!55
r l S AD r8l1r82lD Y 2l , r,r8,a

r8l S AD r l 1r2l DY2l , r8,r,a

r8l S BD r l 1
C

D
r2l DY2l , a,r,b,

where
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A5~vc2v!$2a22l bl 21~vc1v!~n12n2!1b2~ l 11!

3@n1~vc2v!2n2~vc1v!#%,

B522vn2~vc2v!b2~ l 11!,

C52vn2~vc1v!bl 21,
re
e

.

g

D

.

. P
le,
D5~vc1v!$bl 21@n1~vc1v!2n2~vc2v!#

2a2l b2~ l 11!~vc2v!~n12n2!%.

The corresponding expressions forG2(r,r8) are
G2~r,r8!55
1

2l E

2n1v

n1~vc1v!2n2~vc2v!
r l S r8 l2

vc1v

vc2v
b2l r82l D , r,a,r8,b

1

2l E S r l 2
~vc1v!~n12n2!

n1~vc1v!2n2~vc2v!
a2l r2l D S r8l2

vc1v

vc2v
b2l r82l D , a,r,r8,b

1

2l E S r l 2
vc1v

vc2v
b2l r2l D S r8l2

~vc1v!~n12n2!

n1~vc1v!2n2~vc2v!
a2l r82l D , a,r8,r,b,
ring
with

E5~vc1v!F a2l ~n12n2!

n1~vc1v!2n2~vc2v!
2

b2l

vc2v G .
These general expressions reduce to that obtained in p
ous works when the corresponding limits are taken. For
vi-
x-

ample, it can easily be checked that ifn15n2 we obtain a set
of equations which describes a disk of radiusb with a ho-
mogeneous equilibrium density.9 Also, by takingn150, the
system of equations reduces to that corresponding to a
with inner ~outer! radius a (b) and equilibrium density
n2 .
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