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Magnetoplasmons of a two-dimensional electron gas with equilibrium density inhomogeneities
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Interedge magnetoplasmons are a class of magnetoplasmons localized at the boundary defined by two
bidimensional metallic domains with different equilibrium densities. They reduce to the usual edge magneto-
plasmons when one of the equilibrium densities is exactly zero. The application of a hydrodynamical theory to
a disk-shaped electron fluid with a central inhomogeneity reveals the existence of both edge and interedge
magnetoplasmons in the high magnetic field regime, whose frequency decreases with magnetic field. If the
equilibrium density of the central inhomogeneity is greater than the equilibrium density of the ring area that
surrounds it, both magnetoplasmons have the same symmetry and anticross strongly. In the low-field regime,
the interedge magnetoplasmon exhibits a cyclotron resonance like dependence on the magnetic field. The
calculations are in qualitative agreement with recent experiments performed in the extremely high-field regime
and suggest new experiments at lower fields and/or different sysf&0&63-182807)01719-0

[. INTRODUCTION AND HYDRODYNAMIC MODEL charge density per unit arezn(e>0), while the annular
FOR A CONFINED ELECTRON FLUID region betweena and b has background charge density
en,. The charge neutrality of the system is provided by a
The lack of translational symmetry associated with thecompressible electron fluid with area charge density
presence of boundaries or inhomogeneities in a system al=€[Ng(p) +n(p,t)], where ng(p)=n,6(a—p)+n,0(p
lows for the existence of effects which are qualitatively quite—a) 8(b— p) is the equilibrium density and the collective
different from those of the bulk case. A striking example of mode self-induced densityve will assume thab<ng). The
this are the so-called edge magnetoplasn{@\sP’s), which ~ system is subject to a perpendicular magnetic field along the
are collective density excitations ofconfined two-  z direction and surrounded by dielectric material with dielec-
dimensional electron gas¢2DEG's) subject to a perpen- tric constante; for z>0 ande, for z<0. This geometry
dicular magnetic field. The characteristic signature of these corresponds quite closely with the experimental configura-
EMP’s is that their frequency decreases with an increasingjon of Ref. 19. Besides, it contains as a limit several previ-
magnetic field. This contrasts with the usual bulk magnetoously considered models: for instance, a disk of radius
plasma(BMP) modes, whose squared frequency increaseb (a) if ny=n, (n,=0),*° an antidot if n;=0, n,#0,
linearly with the squared cyclotron frequency. Besides, in thé— o, '2~*4®and a ring with inner radiua and outer radius
strong-field limit, EMP’s are spatially localized close to the b if n;=0111517.18
confining boundary. The essential equations governing the dynamics of a com-
Most of the experimental studies of EMP’s, which include pressible  electron fluid within the hydrodynamical
a variety of different geometric configurations, such asapproach! are the continuity and Euler equations linearized
dots?~* antidots>® and rings’® have been restricted to edge in the velocity of the liquidv and the deviation of the con-
situations, where the equilibrium density of the confinedcentrationn from its equilibrium valueny,
2DEG’s changes from a finite value to zero. Theoretical
studies also follow that tendenéy®In a very recent experi- an(p,t)
mental study® however, magnetoplasmons localized at the o VerlNo(p)Vip,H]=0, 1)
boundary between two classical two-dimensional electron
systems with different(but nonzerd equilibrium electron N(p.t)
densities were observed. By analogy with a three- P
dimensional situation, where an interface is a generalization ot
of a surface, they were denoted as interedge magnetoplas-
mons(IEMP’s). Their existence was predicted by Mikhailov ~ Here, p is a two-dimensional vector in the-y plane,
and VolkovZ’ who analyzed theoretically the problem of two @.=eB/m*c is the cyclotron frequency, ang the mode
half-plane contacting 2D metallic regions with different con- self-induced potential produced by the density fluctuation
ductivities (densitie$. n; it should be noted thatp extends over all three-
Owing to the macroscopic dimensions of the typically dimensional spacéhowever, only its projection on the-y
studied sample).1-10 mm, we shall treat the 2DEG as a plane enters in the equations abpvehile the remaining
classical charged fluid subject to the laws of fluid mechanicsphysical magnitudes,, n, andv are restricted to the 2D
Generalizing on our previous modéljn the present work sheet az=0.22
we will consider the case of an electron fluid confined in a The azimutal symmetry of our model allows us to assume
disk of radiusb; the disk, however, has an inner regi@mf  that all the unknown quantitias, ¢, v have an angular and
radiusa) with a static and uniform positive background with time dependence of the forii{p) €' ?~ Y, where/ is an

- SV, b(ph -0 2Xo(p)=0.  (2)
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integer andw the frequency of the fluid normal modes, still
to be found. The pair of bulk equatiofi¥) and(2) should be
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Accordingly, we find it convenient to study the following
integral equation:

supplemented by boundary conditions at the inner and outer

edges app=a and p=Dh, respectively; from physical argu-

ments, we are led to choose that there is no accumulation of

charge at the internal edge; v,(p=a")=n, vp(p=a+),

and that the flux of charge across the external edge must be

zero,n, v,(p=b7)=0.

Using (2), these boundary conditions are mathematically

equivalent to

nl(wi+/w°)¢<p) =nz(wi+/w°)¢><p>‘ ,
dp p pa- dp p p:?g)
and
nz(wi+/“’°)¢<p> ~o, @
p  p b~
respectively.

To proceed further, it is useful to combine E¢$) and

eny(p)
m*

#(p)+(w?— wl) fo dp'p'G1(p,p")N(p")

b
+f dp’p’Gz(p.p’)n(p’)FO, ®

a
whereG;(p,p’) andG,(p,p’) are Green'’s functions which
satisfy different equations depending on the value of their
arguments.

If 0<p’ <a, we have

o(p—p")
- Os ,
o (O=p<a)

(9a)

<a2+1a /'Z)G( e
&pz p dp pz 1Lp,p

(&2 10 /2
EPv Ay
dp” pdp p
while if a<p’<b,

)Gl(PyP')=0 (a<p<b), (9b)

(2) in a single integrodifferential equation; after some alge-

bra we obtain

2 no(P) (

. ? 149 /2
(w —wc)n(p)+477w0n— —
2

_+___

ap® pap p°
b

Xfo dp'p'K, (p,p")n(p")=0 )

for the self-induced electron density. The kerelp,p") in
the equation above is given by

KAp.p')= f:J/(kp)J/(kp’)d(kb), (6)

with J, being the/'th order Bessel function of the first kind,
while w§=e2n2/m* b(e,+e5) is a natural unit of frequency

for our model. Two observations should be made concernin

the derivation of Eq(5)
(i) The boundary condition&) and(4) have been used to

eliminate extra terms involving derivatives of the equilib-

rium electron densityng(p); within our steplike model for

the equilibrium density profile, such derivatives would give
rise to 6 function types of charge accumulation at the edge

atp=a andp=>b. An alternative way of getting Eq§3) and

(4) is to impose them as a way of avoiding such pathologica

(for a two-dimensional situatigriocalization of chargé.

(ii) The self-induced potentiap(p) has been related to
the self-induced density by using the integral version of th
Poisson equation, which after integration over zheoordi-
nate reads

4me

b
mfo dp'p'Ki(p,p"In(p").  (7)

d(p)=—

(82+1ﬁ /2)6( )=0 (0s=p<a), (99
2 -~ 7 y ! = S a1 C
apz p dp pz 2\p,p p

#? 14 /2) S(p—p’)
—t——— |G , ! == a<p<b).
(apz p dp p2 2(p.p") P (a<p<b)

(9d)

With these definitions o6, andG,, it can easily be checked
by the application of the operatéf/dp%+ dl pop— /% p? to
Eq. (8) that our original Eq.(5) is obtained at once. The
boundary conditions on the self-induced poten#¢p) can
be incorporated in turn as boundary conditions for the ex-
plicit calculation of the Green functions, this being the main
practical advantage of the method. While the evaluation of
G; andG, is, in principle, straightforward under the above
uidelines, the resulting expressions are rather cumbersome,
o0 we prefer to relegate their explicit evaluation to the Ap-
pendix.
Before embarking on a detailed numerical calculation,
some comments on the results obtained so far are in order.
First, it is interesting to note that while the bulk E¢p)

sremains invariant under the change-—/, the boundary

related Eqs(3) and(4) depend on the sign of (for nonzero
agnetic field. This means that whea.# 0, bulk-type so-

utions should be nearly degenerate, while edge or interedge

solutions should split with the magnetic field. No anomalous

epehavior of this sort can be expected for the=0 radial

modes, as in this case neither the frequency nor the cyclotron
frequency appears in the boundary conditions. Inspection of
Eq. (5) reveals that they enter only in the particular combi-
nation w?— w?, from which it follows that the squared fre-
qguency of these modes should increase quadratically with
magnetic field, like bulk magnetoplasmons. The main conse-

At this stage, the problem has been reduced to finding thguence of confinement for thé=0 magnetoplasmons is to

solutions of Eq.(5) subject to the boundary conditiori3)

give a finite value to the zero-field frequency. Physically, this

and (4): while there are several methods available to solvequalitatively different behavior of the"’=0 modes arises

this problem, as in our previous work in rings we find it from the fact that the Lorentz force gives some angular com-
useful to compress these three equations into just one whighonent to these radial modes. However, confinement effects
satisfies automatically the boundary conditions. (radial boundarigsare not felt by these angular components,
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and the magnetic field effects are consequently similar to the  , .
bulk case. Second, solutions to E8) for a given value of

w exist only for certain allowed frequencies, so this equa-

tion constitutes a generalized eigenvalue problem. The solu-  10.0-
tions w,, can be classified according to their angular mo-
mentum / and a sort of radial number, such as

wo<wy,<w,,< ... .Inthe numerical results to be pre- & 757
sented below, only dipole allowed’& 1) modes will be b

. . Q
shown, for the smallest radial numbers. For our model with g
the magnetic field pointing along the positive direction of the 2z %7
z axis, />0 density fluctuations rotate in the counter- ,_%
clockwise sense, while negative values of the angular mo- 25

mentum correspond to magnetoplasmons rotating in the
clockwise sense. For the practical solution of E8), we

follow the same numerical technique used in Ref. 18, ex- 0.0 S S —
pandingn(p) into a finite set of linearly independent func- 30 20 o0 10 20 80
tions. In particular, we used as a badis functions of the Magnetic Field ( o)/ o )
form FIG. 1. Excitation spectra for a ringqi{/n,=0, full and dashed
pMe Mg(a—p) if1<=m=M/2, lines), and for a ringlike situationr(; /n,=0.02, open circles The
right-hand side of the figure corresponds to e +1 modes,
pme‘“’ f(p—a) if M2=m=M, while the left-hand side is for th€=—1 modes. The straight full

) ) line is a plot of the analytical approximation given by Eg0) in
with A=b/M. All the calculations below correspond t0 the text for the IEMP’s in the small field regime.

M=14.
a and equilibrium densityn;. As n;<<n,, its zero-field fre-

Il. RESULTS guency is much smaller than the zero-field frequency of a
BMP localized in the ring region. This explains why one can
. . 7> excite many of these modes before exciting the first ring
a unit of frequency, and as a unit of length; proceeding in yn4e The finite number of low-frequency BMP modes of
this way, the mdep_endent paramet_ers Of_ our model Athe inner disk is just a consequence of the finite number of
n1/ny, the aspect ratia/b, and the adimensional cyclotron 1 qjs fnctions used in the numerical calculation. The char-

frequencyw./wo. This scaling of the results allows a direct ,q(erization of the collective mode whose frequency goes to
comparison of our calculations with experiments performed, g, jinearly with magnetic field turns out to be not so easy,
both in 2DEG’s on the surface of liquid helium and at semi-5; 655t in the zero field limit. Some help is provided by the
conductor heterojunctions, in spite of several order of magegits shown in Fig. 2, where the normalized self-induced
nitude differences in typical equilibrium densities and geo-gengityn () for n, /n,=0.02 is shown for several magnetic

metric dimensions. fields. According to these results, this mode is localized close

Unless stated otherwise, all the results to be presenteg the interedge(located at p/b=0.5), but while for
belc_)w correspond to the choie¢b=0.5 for the aspect ratio; w.lwo<1 it is mainly localized on the inner low-density
besides, we allown, to change fromn,/ny<1 10 qge of the interedge, whem /wo>1 its localization
n1/np>1. This variation of the equilibrium density can be o,an4es to the outer high-density side of the interedge. In
achieved by using the e.-xpe.rlme_ntal technlqugg of Ref. 19. this strong-field regime, this mode behaves essentially as the

We start by presenting in Fig. 1 the positive eigenfre- /_ 1 Envp of a ring, as can be seen clearly in Fig. 1. We
quency solutlon?§_for the casen,/n,=0 (fuﬁl,l_afd dashed g4 myst explain the linear behavior at small magnetic
lines), and n,/n,=0.02 (open circles, for /==1. When {45 This behavior is related to a divergence of the Green
N, /n,=0, the system reduces to the ring configuration studsction G, (p,p’) at a given frequency, which in turn gives
ied in our previous work? the main feature being that the yise'to 5 divergence of the integral equation at the same fre-
spectrum can be characterized as a set of bulk highg,ency A closer examination of the explicit expressions

frequency magnetoplasmons, and two low-frequency eddgien in the Appendix reveals th&;(p,p')— = when
magnetoplasmons circulating along the inngi=(+1) and

A convenient way of presenting our results is to uggas

outer (=—1) ring boundaries, in opposite directions. In 1—a%/p¥
the strong field limitw./wy>1, they become increasingly W=~y W (10

localized close to their respective boundaries.

While for a situation withn;/n,<1 one naively could with a=(n;—n,)/(n,+n,) being an asymmetry parameter.
expect to find a spectrum of collective excitations similar toThis expression corresponds to the ca%se0; for /<0 we
the ring case, at first sight the results in Fig. 1 forshould replacav. by —w.. If />0 andn;<n,, the fre-
n,/n,=0.02 look rather different, with several additional quency given by Eq(10) is positive, and corresponds to the
bulk magnetoplasmons and an extra mdfier ~/=+1)  straight full line in Fig. 1. The solutions associated to the
whose frequency decreases linearly with magnetic field atEMP approach asymptotically this frequendyom below
small fields. The extra bulk magnetoplasmons are easilps the magnetic field decreases, and this gives rise to the
characterized: they correspond to BMP of a disk of radiusobserved cyclotron resonance behavior of this mode at small
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n(p) (arbitrary units)
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0.0 0.

FIG. 2. Radial profile of the IEMP self-induced density for sev-
eral values of the magnetic field, for a ringlike configuration
n,;/n,=0.02. The magnetic field varies from./w;=0.98 to

2 0.4 0.6 0.8

Radial coordinate (p/b)

w./wy=28.54, in steps of 3.96.
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FIG. 4. Resonance frequencies for a disklike configuration
n,/n,=1.2. Note the presence of a low-frequency IEMP on the
/= —1 side of the spectrédNumerical error hinders the calculation
of the resonances in some regions of the spectra.

excitations for the casa;/n,=0.8 (full circles). For this

equilibrium density ratio the disk is close to becoming a
homogeneous disk without an internal interedge. Comparing
with the results shown in Fig. 1 we note a considerable soft-

fields. Itis clear that the Coulomb interaction is irrelevant forening of the IEMP; this is easily understood, as this mode is
this mode, since the integral equation is dominated by théocalized at the interedge, and the interedge is close to ex-
singularity in G;. It is interesting to point out that in the tinction. It is also interesting to note the absence of a set of

limit b—oo (antidot configuration Eq. (10) reduces to the
one found by Mikhailov and Volkd for the IEMP in a

low-frequency BMP as in Fig. 1, as in the present case the
equilibrium density at the inner disk is similar to the one in

rectilinear half-plane geometry. In that case, this mode ariseghe ring region, and consequently a BMP localized there has
from the anticrossing of the cyclotron resonance mode ang frequency similar to a BMP localized in the ring region.
the IEMP oscillation.

We display in Fig. 3 the spectrum ef==*1 collective
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For the sake of completeness, we give in Fig. 3 with open
circles the results for the well-known limiting case of a ho-
mogeneous disk witlm; =n,: the absence of the IEMP fol-
lows from the disappearance of the interedgeata, and
only the /=—1 EMP localized at the outer disk boundary
survives in this limit.

The results presented so far correspond to situations
wheren;<n,. What happens when,>n,? The answer is
given in Fig. 4, which corresponds to a ratio of equilibrium
densitiesn, /n,=1.2: a new IEMP arises with’=—1, in-
creasingly localized close to the interedge as the magnetic
field increases. This IEMP has the same angular momentum
as the EMP localized at the outer ring boundary; as we will
see, this leads to interesting anticrossing effects between
these two modes. To complete the sequence, Fig. 5 corre-
sponds to the case;/n,=5: the frequency of the IEMP
rises with respect to the previous figure, and suffers an anti-
crossing with the EMP of the disk.

The casen;/n,>1 can be alternatively thought of as a
first (discrete approximation to a smooth equilibrium den-
sity profile for a disk of radiud. Half-plané*?® and strip

FIG. 3. Resonance frequencies for a disklike configuration Withgeometrle?;f’ with model smooth equilibrium profiles have
n,/n,=0.8 (full circles). Note the softening of the IEMP as the Peen studied previously, the main result being the appear-
interedge equilibrium density discontinuity is small as comparedance of additional acoustic modéshose frequency goes to
with the previous ring and ringlike case of Figs. 1 and 2. Openzero linearly with magnetic fie)d besides the usual EMP
circles correspond to the excitation spectra for a disk with homogemode. Within this context, we can qualitatively identify the

neous equilibrium d

ensity, /n,=1.

IEMP of Fig. 5 with the lowest acoustic mode of such theo-
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excitation which in the strong field regime we identify as the
EMP’s mainly localized at the outer disk boundary. The im-
portant monotonic increase of this mode frequency with
confirms that this mode spreads all over the disk area in this
small field regime, and consequently becomes sensitive to
changes im;. The lowerV-shaped branch corresponds to
the IEMP’s (at least in the strong-field regimdts angular
momentum is positivé+1) if n;<<n,, and negative { 1) if
n,>n,. Besides, as discussed above, its frequency goes to
zero at the homogeneous disk linm{=n,. Note that the
first calculated point for this branctin the small-density
limit) is n;/n,=0.02 (in agreement with the results of Fig.
1). Finally, the full line corresponds to Eq10), which
clearly becomes an excellent analytical approximation for
the frequency of the mode in this regime. Using this equation
we obtain in the low-density limih,/n,—0 the frequency
¢, While in the high-density, /n,— o the mode frequency

tends tow.(1—a?/b?)/(1+a?b?) =0.6 w, for our particu-
FIG. 5. Same as Fig. 4, for the case of a disk with a strongiar choicea/b=0.5.
central inhomogeneity defined oy /n,=5. Finally, the remaining points in Fig. 6 are a recopilation
of data for increasing magnetic field values. The most re-
ries. Note, however, that in the strong magnetic field limitmarkable feature is the strong anticrossing between the two
wc/we>1, the EMP(IEMP) is mainly localized around  modes with”’= — 1 on the high-density side; /n,>1. Note
(a), while for the situations considered in Refs. 24-26, a”that Whennl/n2< 1, both modes have different angu|ar mo-
modes are localized around the saf@ed uniqugboundary.  mentum and then they cross perfectly. It is also interesting to
A complementary and quite instructive way of presentingnote that the strength of the anticrossing diminishes with the
our results is to keep the magnetic field fixed, and changingnagnetic field. This is easily understood: when the magnetic
the ration, /n;; results for the two-lowest edge and inter- field increases both the EMP’s and the IEMP’s become in-
edge magnetoplasmons are presented following this procgreasingly localized in their respective boundaries. This in-
dure in Fig. 6. Full and open circles correspond to a weakreasing localization is obviously detrimental to their mutual
magnetic field regimew./wy<1. The upper branch, with interaction, and consequently to the anticrossing effect.
angular momentun®’= — 1, is associated with the collective

[ll. DISCUSSION OF THE RESULTS AND CONCLUSIONS

The results obtained in the present contribution give a
rather complete picture of the collective excitations of 2DEG
= localized at the boundary between two regions with different
equilibrium densities. This situation may be realized experi-
mentally by the application of gates to electrons confined to
the surface of liquid heliun®® by etch processing of a
Al ,Ga;_,As/GaAs quantum well heterostructurer arise
NG - naturally in both kinds of systems as a result of a sample
[ aast . inhomogeneity.
2h - The first point to note is that, according to the results
. presented in Fig. 1, th@,;/n,—0 limit of our model is
I - AAAAA gualitatively different from the cas@,/n,=0 (the ring
prmmmunnnt oo ngﬂﬂaﬁﬁéﬂ oooo case. The limitn,/n,<1 (but nonzery, allows for the pres-
NS ence of a set of low-frequency bulk magnetoplasmons
mainly localized at the inner disk. Whan /n,=0, the re-
maining modes are only those localized in the high-density
ring region.

One important parameter that controls the collective exci-
tation spectra is the ratio between inner and outer equilib-
rium densities: ifn,/n,<1, we have a ringlike situation,

FIG. 6. Frequencies of the EMP{&ull points) and the IEMP’s W_ith two localized magnetoplasmons in the high-field re-
(open pointy as a function oh, /n,; circles, triangles, and squares 9iMe, one at the outer boundary € +1), and the other at
correspond taw, /wo= 0.98, 3.92, and 15.68, respectively. Note the inner boundary (=—1). The frequency of the last
the strong anticrossing at; /n,=2, and that this mode repulsion mode goes to zero whem /n,— 1. The casen;/n,>1 is
decreases with magnetic field. The full line on the results for thequite different: we have again two localized magnetoplas-
smaller field is the analytical approximation given by Etp) inthe ~ mons (in the strong-field limit, one localized at the outer
text to the IEMP’s. boundary, the other at the inner boundary, but this time both

Frequency ( o, )

n,/n,
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modes have the same symmetangular momentujn This APPENDIX A: CALCULATION
gives rise to the interesting effect of the anticrossing of both OF THE GREEN'S FUNCTIONS

modes, as can be seen clearly in Fig. 6. This anticrossing is The calculation of the Green’s functior®,(p,p’) and

. . L 1 ’
obviously absent ifh;/n,<1, and the effect diminishes by G,(p,p') proceeds as follows. To begin with, they should
increasing magnetic field, due to the increasing Iocalizatiorgatisfy Eqs{(9a—(9d) given above: besides, we need a suit-
of each mode at its respective boundary. This leads us dijpje set of boundary conditions for these Green functions at
rectly to the discussion of the possible experimental detecyoth interfaces. To deduce such boundary conditions, we

tion of these features. _ _ J)articularize Eq(8) for p=a~ andp=a’,
To the best of our knowledge, there is only one publishe

experimental work devoted to explore the physics of en; B _—
IEMP’s.® The 2DEG in question consists of electrons con- F‘ﬁ(a )+ (0"~ wg)
fined to a cylindrical cell and floating on the surface of liquid
helium. In the high magnetic field limit the frequency of
these IEMP’s was found to be proportional to the difference

of the electron densities on either side of the boundary and
inversely proportional to the magnetic field. Also, the direc-and
tion of propagation was determined by the sign of the differ-
encen,—n,. All these features are in qualitative agreement
with our theoretical findings. However, it is quite important

to note that the equilibrium densities and magnetic fields in b
the experiment are quite different from ours; a useful param- + J dp'p'n(p')Gy(a™,p’)
eter that comprises such differences is the adimensional ratio a

wclwg. Taking from the experimenn,=6Xx 10°/em?, The application of the electrostatic requirement
e1=1 (vacuum, £,=1 (liquid helium), b=6 mm, and as-  4(a~)=¢(a*) to Egs.(Al) and (A2) yields

sumingm* = m,, for electrons above liquid heliunn{, being

the electron bare massve obtainw./wy=2000 in the high- 1 _ o, 1 .,

field limit (B=5 T). These experimental results are conse- n_lGi(a p')= n_ZGi(a '), (A3)
quently far away(in the extremely high-field lim)tfrom the

calculations presented above, whesg/w, takes a maxi- Withi=1,2. o

mum value of about 10. Not quite surprisingly, and presum- N & quite analogous way, the application of the boundary
ably due to the strong spatial localization of the EMP’s andconditions(3) and (4) to Eq. (8) leads to the following re-
IEMP’s in this extremely high-field regime, no anticrossing duirements on the Green functions:

a
|“ao oo 6ua )

b
+Ja dp’p’n(p’)Gz(a‘,p')FO, (A1)

n,

e + 2 2 a ror ’ +
= #@) (0= wp) f dp’p'n(p")Gy(a”,p’)
0

=0. (A2)

of both modes was detected experimentally. It would be in- ,

) : . 0 o
teresting, accordingly, to repeat the experiment under smaller w— + Gi(p,p')
magnetic fields, wherev, and wy are about of the same ap P p=a-

order of magnitude. From.~= w,, we estimate that experi- y
ments performed t8=0—100 G will display the rich spec- — ( w— —+ ﬂ) Gi(p,p')
trum shown above.

A second possibility is to perform the experiment on a
2DEG at the interface between two semiconductors, such &
GaAs and AlGa;_,As. Subsequent etching allows us to (

: (A4)

+

p=a

J o

w—+ Gi(p,p’
o p) i(p.p")

confine these in principle infinite two-dimensional electron
gases to geometries such as disks, rings, stripes, etc. Typical

parameters for these systems are much higher densities, and . i ,
smaller geometric dimensions; for example, from Ref. 7,I"e problem is now well defineds; and G, should satisfy

with n,=2.3x 101cm?, s,=1 (vacuum, s,=12.6(GaAs, the “bulk” equations (99—(9d), subject to the boundary

b=25um, andm* =0.067n,, we obtainw,/wy=20, again conditions(A3)—(A5) at the interfaces. Generalizing previ-
for B=5 T. We expect that the results prcesented here can KRUS similar derivations for different geometrie¥*®it is not

in consequence quantitative compared with experiments ifa"d to obtain .the following explicit expressions for the
these semiconductor heterostructures. This is supported Kfg€en functions:

the results of two recent calculations for the ring ¢4s® . A
that show an excellent quantitative agreement with the cor- p/(_p’@p’ﬁ / 2/, p<p'<a
responding experimerit. D

=0. (A5)

p=b~

oA _ ,
Gi(p.p')={ » /<5p/+p /)/2/ p'<p<a
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A=(w.—w){—a b’ Ywc+w)(ny—ny)+b~ "V
X[Ny(we— o) —Ny(we+ )]},
B=—2wn,(w.,—w)b™ "1,

C=2wh,(w,+w)b” 71,

MAGNETOPLASMONS OF A TWO-DIMENSIONAL ...

( 1 2n1w

Ga(p,p') =1

71
2/E nl(wc-i-w)—nz(wc—w)p (p wc—wb p

(wc+ w)(ng—ny)

13117

D=(we+o){b” " Ny(wc+ 0) —Ny(we— w)]

—a? b "V (ws— w)(ng—ny)l.

The corresponding expressions f85(p,p') are

w.tw of 1y

, p<a<p'<b

w.,tw

1 ,

W~ w

with
a® (n;—n,) b2’

E=(wet o) Ni(we+ ) —Ny(w.— w) B W.—

1 /
—|p" =
2/E< Ni(wct+ o) —Ny(wc—

/

., Wt ,
a2/p/>(p /¢ b2/p -/

, a<p< ,<b
— P p<p
w;,tw)(Ni—n !
, (wctw)(ng—ny) a%¥p 7|, a<p'<p<b,
Ny(wc+w) =Ny~ o)

ample, it can easily be checked thahif=n, we obtain a set

of equations which describes a disk of radlusvith a ho-
mogeneous equilibrium densityAlso, by takingn,;=0, the
system of equations reduces to that corresponding to a ring

These general expressions reduce to that obtained in pre\)ﬁ‘litqsi"mer (outey radius a (b) and equilibrium density
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