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Ionized impurity scattering in periodically d-doped InP
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The quantum mobility in the individual minibands of InP with periodic Sid doping was estimated from the
Shubnikov–de Haas spectra of the samples, measured at 4.2 K in fields of 0–14 T. The set of samples studied
had a sheet density of Si atoms of about 4.931012 cm22 in each doped layer, and a doping period in the range
90–300 Å. A theoretical model for the quantum mobility in individual minibands was developed, and theo-
retical estimates of the quantum mobility are in reasonable agreement with the experimental values. It is
observed that at a fixed doping period the quantum mobilities increase with the index of the miniband, and the
quantum mobility in an individual miniband decreases when the doping period is made shorter. The depen-
dence of the quantum mobility on the miniband index and doping periodicity correlates with the dependence of
the mean distance between electrons and the doped layer on the same quantities. These results demonstrate that
in d-doped semiconductors the binding length of the quantum-confined electronic charge is a very important
parameter, determining the carrier mobility which can be attained in these systems.@S0163-1829~97!01119-3#
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I. INTRODUCTION

Semiconductors in which the atoms of the dopants
concentrated around a single plane of the host crystal la
have important technological applications and display in
esting physical properties.1,2 Using epitaxial growth tech-
niques such as metal-organic vapor phase epitaxy~MOVPE!
and molecular-beam epitaxy, planar doping~or d doping!
with silicon has been accomplished for various III-V sem
conductors, for instance, GaAs, AlxGa12xAs, InSb, and InP.
In semiconductors doped periodically with sheets of Si,
carriers released from the shallow donor Si atoms are c
fined by a periodical space charge potential, which splits
continuous conduction band of the host semiconductor in
set of electronic minibands. The conductivity parallel to t
doped layer is dominated by carriers confined in such m
bands: these carriers interact strongly with the charged do
atoms located in the doped regions, and this interaction c
sists the mechanism which limits the carrier mobility
d-doped systems.3–5

From the theoretical standpoint, calculations of the el
tronic mobility in samples with a singled layer have been
made using either the Thomas-Fermi model6–8 or the
random-phase approximation~RPA! ~Refs. 8–12! to describe
the screened interaction between confined carriers and
ized impurities. The theoretical calculations made in
frame of the RPA show good quantitative agreement w
experimental estimates,9,11 while the agreement is poore
when a two-dimensional Thomas-Fermi model of screen
is used~see Ref. 13 by some of the authors!. However, to the
best of our knowledge a calculation of the electronic mob
ties in periodicallyd-doped samples has not yet been
tempted, and this is the purpose of the present study. Fo
periodicallyd-doped semiconductor, the theoretical quant
mobility calculation is based on the same input quantities
550163-1829/97/55~19!/13072~8!/$10.00
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the mobility theory for semiconductors with a sing
d-doped layer, i.e., electronic energy spectrum and w
functions, and a model for the screened electrostatic pote
of ionized impurities. The basic novelty is in the form ele
tronic wave functions, which for a periodicallyd-doped sys-
tem are described by Bloch states, whereas for a semi
ductors with a singled layer the wave functions describ
states which are spatially localized around the doped la
Our calculations were made using the RPA model for
screened Coulomb interaction between carriers and ion
donors; this choice was motivated by the success of the R
theory in describing the carrier mobility ind-doped materials
with a singled-doped layer.

II. THEORY OF MINIBAND QUANTUM MOBILITIES
IN THE RPA APPROXIMATION

In this section effective atomic units are used, where
the units of mass, length, and energy are the effective m
m* , the effective Bohr radiusaB5e\2/m* ke2, and the ef-
fective HartreeH5\2/m* aB

2 , respectively. For InP, we as
sumem*50.08m0 ~Ref. 14! and e511.8,15 which gives
aB578 Å andH515.7 meV.

When electrons are confined by a potential which is pe
odic along one axis~the growth directionz), as occurs in a
semiconductor with a periodicald doping, the electronic
states are quantized into superlattice minibands of ener
E(n,k' ,k),

E~n,k' ,k!5En~k!1 1
2k'

2 ,

wherekW' andk are the wave-vector components perpendi
lar and parallel to the growth axis, respectively, a
En(k,z) is the miniband dispersion. In order of increasin
energy, we will denote the succession of minibands asE1,
13 072 © 1997 The American Physical Society
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55 13 073IONIZED IMPURITY SCATTERING IN PERIODICALLY . . .
E2, E3, . . . . Theelectronic states corresponding to the e
ergiesEn(k,z) are described by the wave functions

Cn~kW' ,k,rW ,z!5
eik

W
'•r

W

AS
xn~k,z!, ~1!

whereS is the area of the sample,xn(k,z)5un(k,z)e
ikz, and

un(k,z) are Bloch functions normalized to the length of t
superlattice. Functionsxn(k,z) are the solutions of the
Schrödinger equation

2
1

2

d2

dz2
xn~z!1@VH~z!1Vxc~z!#xn~k,z!5En~k!xn~k,z!

~2!

where Vxc(z) is local density approximation for th
exchange-correlation correction to the confining potent
which was taken to be equal to the form due to Hedin a
Lundqvist,16

Vxc~z!5
1

par s
@110.7734x ln~11x21!#.

a5(4/9p)1/3, r s5@4/3pn(z)#21/3, x5r s/21, andVH(z) is
the self-consistent Hartree potential, which is obtained fr
a numerical solution of the Poisson equation

d2VH~z!

dz2
54p@nd~z!2n~z!#, ~3!

where nd(z) is the density of ionized donors,n(z)
5(1/p)(nkuun(k,z)u2fnkQ(fnk) is the density of free car
riers,fnk5f2En(k), f denotes the Fermi energy, and

Q~x!5H 1 if x.0

0 otherwise

is the Heaviside step function.
The scattering rate of electrons from a given quant

state forT50 K can be obtained from the Fermi golden ru
taking the Coulomb interaction between electrons and i
ized impurities to be the scattering mechanism. By using
wave functions given by Eq.~1!, and considering the scatte
ing processes of carriers at the Fermi surface, for the qu
tum lifetime of the statek of thenth electronic miniband~in
atomic units, the quantum lifetime equals the quantum m
bility mQ), one obtains

mQ
21~n,k!5

S

p (
n8,k8

E
0

p

uVnk,n8k8
TOT

~qnk,n8k8!u
2dw, ~4!

where the summation extends over the quantum st
(n8,k8) which lie below the Fermi level~i.e.,fn8k8.0),

qnk,n8k8521/2@fnk1fn8k822Afnkfn8k8cosw#1/2,

the integration variablew is the angle of scattering forme
between vectorskW' andkW'8 , and
-

l,
d

,
-
e

n-

-

es

uVnk,n8k8
TOT

~q!u25S 2p

q D 2Nd

S (
t52`

1` U (
mlm8 l 8

enkn8k8,mlm8 l 8
21

~q!

3E
0

N d

xm~ l ,z!xm8
* ~ l 8,z!e2quz2tdudzU2

represents the statistical average of the matrix element
the two-dimensional Fourier transform of the scattering p
tential. In the latter equation the summation extends over
the electronic energy levels,Nd is the areal density of single
charged donor atoms in each doping period, distributed al
the z direction in a plane of zero thickness;d is the super-
lattice period;N d is the Born–von Karman period; an
enkn8k8,mlm8 l 8(q) is the dielectric matrix which is given by

enkn8k8,mlm8 l 8~q!5dnmdkldn8m8dk8 l 8

1Amlm8 l 8~q! Tnkn8k8,mlm8 l 8~q!,

with Amlm8 l 8(q) being the independent response particle d
sity matrix, given in the Appendix of Ref. 17, an
Tnkn8k8,mlm8 l 8(q) is the Coulomb energy form factor

Tnkn8k8,mlm8 l 8~q!5
2p

q E
0

N d

xn~k,z!xn8
* ~k8,z!

3xm* ~ l ,z8!xm8~ l 8,z8!e2quz2z8udz dz8.

In order to test the theory, a comparison with the quant
mobility obtained experimentally is needed. The quant
mobility of carriers in individual minibands can be extract
from the Shubnikov–de Haas~SdH! spectrum. As shown in
Refs. 18 and 19, in a semiconductor superlattice each m
band manifests itself in the SdH experiment as a separat
of oscillatory components. Every miniband can be assig
to one of three categories: those of two-dimensional cha
ter and vanishing bandwidth,Dn50; those of quasi-two di-
mensional character, described by a small dispersion
narrow bandwidth,Dn,fn , and those effectively three
dimensional,Dn.fn , wherefn represents the energy dis
tance between the Fermi level and the threshold of the m
band.

The contribution to the magnetoresistance of a miniba
whose bandwidth is smaller than its Fermi energy,
Dn,fn , will be described by19

Drxx
r0

;2
X

sinhX
e2anu$2J0~bnu!cosvnu

18 enIm@e2 ibnuF~1/2,2,2ibnu!#sinvnu%, ~5!

where X52p2T/B, T is the temperature in units o
\2/kBm* aB

2 , u51/B, an5p/mQ(n), mQ(n) is the quantum
mobility in thenth miniband,bn5pDn , vn52p(fn2Dn)
and en is a dimensionless parameter which is obtained
fitting the numerically calculated dispersion law,En(k), to
the expression

En~k!5
Dn

2
~12coskd!2en

Dn

2
~12cos2kd!. ~6!
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13 074 55A. B. HENRIQUESet al.
Equation~5! was obtained assuming the quantum mobility
be constant within a miniband. Note also that when the sp
ing between the doped layers is made very large (d→`), the
width of the minibands decreases (Dn→0), and Eq.~5! takes
the familiar form associated with an electron gas confined
two dimensions:20

Drxx
r0

;22
X

sinhX
e2anucos2pfnu . ~7!

In the most general case, Eq.~5! will be characterized by two
oscillatory components, respective to the ‘‘belly’’ an
‘‘neck’’ extremal orbits of the mini-Fermi surface associat
with the miniband; however, as shown in Ref. 19, in perio
cally d-doped systems the neck orbit is not detectable. T
conclusion is based upon the observation that in order for
neck orbit to be detectable, the energy-level broadening m
be smaller than the miniband widthand alsosmaller than the
minigap to the higher-energy miniband. However, in perio
cally d-doped systems these two conditions are never
simultaneously, hence each miniband will manifest its
with a single oscillatory component due to the belly orb
This assertion leads us to conclude that in the case of p
odically d-doped semiconductors the quantum mobility a
pearing in Eq.~5! pertains to the belly orbit state. Therefo
if we wish to test the quantum mobility theory develop
above, the quantum mobility obtained from a fit of Eq.~5! to
the experimental data should be compared to the outpu
Eq. ~4! at the wave vector associated with the belly or
~i.e.,k50 for minibandsE1,E3, . . . , andk5p/d for mini-
bandsE2, E4, . . . ).

For those minibands whose bandwidth is larger than
Fermi energy, i.e. whenDn.fn , the magnetoresistance o
cillations can be approximated by the usual expression a
ciated with an unrestrained free electron gas in th
dimensions,21

Drxx
r0

;22
X

sinhX

e2au

Au
cosS 2pfnu2

p

4 D . ~8!

The quantum mobility in this case can similarly be obtain
by fitting Eq. ~8! to the isolated magnetoresistance oscil
tory component.

III. EXPERIMENT

The d-doped structures were grown at 640 °C by lo
pressure-MOVPE in an AIX 200 reactor at 20 mbar w
a growth rate of 4.5 Å/s. The source materials we
PH3 ~100%!, TMIn ~trimethyl indium!, and 1% SiH4 diluted
in H2. On ~100! Fe-doped InP substrates, first a 0.
mm-thick undoped buffer was grown, followed by a period
cally d-doped InP layer, and finally a 500-Å cap layer w
deposited. The periodical structures are composed of e
five or ten periods, with a spacing varying from 90 to 300
The dopant layers were deposited during a 25-s growth
terruption. The silane flux was triggered 2 s after growth
interruption, and halted 2 s before the growth was resume
In order to determine the width of the doped layer and
doping period, the capacitance-voltage profile (C-V) was
measured for each sample, using an electrochemical pro
PN4300.
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The Shubnikov–de Haas experiment was carried out
superconducting magnet. The sample was placed in liq
He at 4.2 K. The magnetoresistance measurements w
made in the constant-current mode, employing currents
;10 mA, and using a four-contact geometry; the samp
were approximately square, with contacts in the corners.
magnetoresistance oscillations were measured in magn
fields of intensity up to 14 T.

IV. RESULTS

We obtained an experimental estimate of the quant
mobility in each of the populated minibands by using a
quential process, which consisted of the following steps:~1!
determination of the characteristic width of the doped la
and of the doping period;~2! determination of the sheet ca
rier concentrationnS ~this process outputs simultaneously t
width, Dn , Fermi energy,fn , and dispersion factor,en , for
all minibands taken into consideration!; ~3! isolation of the
magnetoresistance oscillations associated with individ
minibands; and~4! determination of the quantum mobility o
a populated miniband by fitting the appropriate equation@ei-
ther Eq.~5! or ~7!# to the isolated magneto-oscillatory com
ponent, with the quantum mobility being the single fittin
parameter. In what follows, each of these steps is descr
in more detail.

A. Determination of the characteristic doping layer width
and doping period

It has been shown by Ulrichet al.22 that theC-V spec-
trum of a d-doped semiconductor is very sensitive to t
spreading of the impurity atoms. In order to estimate
characteristic width of the doped layer in our samples,
proceeded in the following way. Sample No. 187 with
single Sid layer was grown under the same growth con
tions used for the periodicallyd-doped samples. In order t
take advantage of the fact that theC-V technique presents
higher resolution for a higher sheet concentration of confin
carriers, sample No. 187 was more highly doped than
other samples used in this work. The areal density of c
fined carriers in this sample was obtained from t
Shubnikov–de Haas spectrum by following the prescript
described in Ref. 5. Using the density of carriers obtain
from the SdH spectrum, theoreticalC-V profiles were gen-
erated by resolving self-consistently Schro¨dinger and Pois-
son equations for the structure under bias; in the calcula
of theC-V spectrum, the doped layer was assumed to be
Gaussian profile, and the width of the Gaussian was va
until the theoreticalC-V spectrum achieved best agreeme
with the experimental one. A more detailed description
theC-V technique and theory is presented in Ref. 2. Figur
shows theC-V spectrum for sample No. 187. The theoretic
curve shown in Fig. 1 was calculated assuming the do
layer to be of width 8 Å, and it reproduces very well th
experimentalC-V spectrum. This demonstrates that Si ato
in the d-doping layers in our samples are spread over
more than 2 ML of InP.

To determine the doping periods of a sample, itsC-V
spectrum was measured. As an example, theC-V spectrum
for sample No. 200 is shown in Fig. 2. TheC-V concentra-
tion, NC-V , presents oscillations as a function of theC-V
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55 13 075IONIZED IMPURITY SCATTERING IN PERIODICALLY . . .
depth,zC-V . The oscillations seen in Fig. 2 display a perio
icity of 176 Å, which we take to be equal to the dopin
period of this structure; the doping periods obtained in
same way are shown in Table I for all samples studied.

B. Determination of the carrier population
and miniband parameters

The overall sheet carrier concentrationnS for each sample
was extracted from an analysis of its Shubnikov–de H
spectrum. Figure 3~a! shows the magnetoresistance spectr
for sample No. 196, and Fig. 3~b! shows the Fourier trans
form of the SdH oscillations plotted against the inverse fie
Prior to taking the Fourier transform, and with the motive
reducing the unwanted background of monotonous mag
toresistance, the magnetoresistance curves were differ
ated. Each of the peaks seen in Fig. 3~b! corresponds to a
belly orbit of one of the populated minibands; the peak p
sitions determine the belly extremal cross sectional area
the mini-Fermi surface in units of\/2pe.

FIG. 1. Measured capacitance-voltage profile for sample
187 ~square dots! for T5300 K. The theoreticalC-V spectrum~full
curve! was generated assumingnS58.331012 cm22, and the Si
atoms distributed according to a Gaussian function of full width
half maximum of 8 Å.
e
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.
f
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-
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To determine nS it was necessary to solve sel
consistently Schro¨dinger and Poisson equations@Eqs.~2! and
~3!# for each sample. In the calculation, the doping per
was fixed at the value determined by theC-V measurement,
and the Si atoms were taken to be distributed according
Gaussian function with a full width at half maximum of
Å as deduced from theC-V spectrum. The only additiona
parameter in this calculation, the carrier concentrationnS ,
was varied until all theoretical frequencies of magnetore
tance oscillation, i.e. those corresponding to the belly cro
sections of the mini-Fermi surface, approximated simu
neously all of the frequencies of oscillation seen in t
experimental Shubnikov–de Haas spectrum.~It should be
pointed out that such a procedure will incorporate into
final result ofnS those carriers in the outer minibands with
low-density population, which are beyond the sensitivity
the Shubnikov–de Haas spectrum!. The procedure used to
determinenS is described in more detail in Ref. 23. Resu
of the analysis of theC-V spectra and of the Shubnikov–d
Haas oscillations are summarized in Table I.

For samples with a period less than'200 Å quantum
oscillations associated with minibandE3 were not observed
This is an indication that in this range of doping periods t
minigap between minibandsE2 and E3 is less than the
broadening of the energy levels, meaning that for all pra
cal purposes minibandsE3 andE2 merge into a single en
ergy band. Under these circumstances only the belly o
associated with minibandE2 will be manifested by magne
toresistance oscillations which will follow the three
dimensional behavior described by Eq.~8!. At still shorter
periods (d,150 Å!, minibandE3 becomes depleted of ca
riers.

In addition to the concentration of free carriers, the se
consistent calculations also output the Fermi energyfn , the
width Dn , and the dispersion factoren for all minibands; the
parameters obtained are displayed in Table II.

C. Isolation of contributions of individual minibands
to the magnetoresistance

Individual oscillatory components were separated fro
the rest of the magnetoresistance spectrum by applyin
Fourier Gaussian bandpass filter; the bandpass filter pa

.

t

iated
ry
TABLE I. Parameters of the samples studied. The doping periodd was obtained from theC-V spectrum
of the sample.BEi

SdH andBEi
Th symbolize the experimental and theoretical frequencies of oscillation assoc

with the belly orbit ink space. The overall carrier concentrationnS shown gives the best agreement of theo
with experiment.

Sample No. of d SdH Experiment (T) Calculated (T) nS
No. periods ~Å! BE1

SdH BE2
Sdh BE3

SdH BE1
Th BE2

Th BE3
Th ~cm22)

194 5 92.0 85.5 43.1 86.3 42.3 4.2731012

206 10 107 89.7 47.9 90.3 48.7 5.0831012

198 5 128 74.9 38.6 75.4 40.2 4.5031012

207 10 133 80.7 46.0 79.2 46.2 5.0831012

200 10 176 62.2 32.2 63.8 32.4 9.1 4.2731012

197 5 225 73.7 33.8 73.7 34.9 17.0 5.3831012

199 10 245 73.1 25.9 11.1 75.6 27.2 11.2 5.2631012

196 5 278 65.4 28.1 15.0 68.2 28.4 15.9 4.9831012

164 single 69.6 24.0 6.8 70.8 24.5 6.7 5.0731012
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13 076 55A. B. HENRIQUESet al.
eters were the peak frequency and full width at half ma
mum ~FWHM!. This is illustrated in Figs. 4~a!–4~d! for
sample No. 196. We have chosen sample No. 196 to ex
plify the results of the Fourier filtering procedure because
this sample each miniband is associated with one of the
terns which can be exhibited by the magneto-oscillat
components in periodicallyd-doped semiconductors: th
fundamental minibandE1 bears zero bandwidth and is thu
two dimensional, giving a magnetoresistance contribut
which will obey Eq.~7!; minibandE2 bears a narrow band
width D2,f2, which corresponds to a dimensionality inte
mediate between 2 and 3, and its magnetoresistance os
tions will obey Eq.~5!; and minibandE3, which has a large
bandwidthD3.f3 is effectively three-dimensional, imply
ing that its magnetoresistance oscillations will be descri
by Eq. ~8!. Thus sample No. 196 can serve the purpose
illustrating the Fourier filtering procedure and of the proce
of fitting individual oscillations with theory under all of th
circumstances which can occur.

Figure 4~a! shows the Fourier transform of the SdH curv
dashed lines show the filtered Fourier transform, with ba

FIG. 2. Capacitance-voltage profile for sample No. 200. T
periodicity of the peaks indicate that the doping period of this str
ture is 176 Å.
-

m-
n
t-
y

n

lla-

d
f
s

;
-

pass filter parameters adjusted to isolate one of the Fou
peaks seen. After the application of the bandpass filter,
steps leading to the isolated Fourier transform were rever
an inverse Fourier transformation was applied, and the m
netoresistance oscillations were integrated numerically. F
ures 4~b!–4~d! shows the isolated magnetoresistance osci

e
-

FIG. 3. ~a! Shubnikov–de Haas spectrum of sample No. 196.~b!
Fourier transform of the Shubnikov–de Haas spectrum plo
against 1/B and differentiated for sample No. 196. The frequenc
of oscillation associated with the belly orbits are indicated.
ermi
n of

e

TABLE II. Miniband parameters obtained from the theoretical model. The energy width and the F
energy for each miniband,Dn andfn , respectively, are the values obtained from a self-consistent solutio
Schrödinger and Poisson equations usingd andnS given in Table I. Parameteren was obtained by fitting the
numerically calculated dispersion law,En(k), with Eq. ~6!, and it is indicated for minibands obeying th
quasi-two-dimensional behavior of Eq.~5!.

Sample D1 f1 e1 D2 f2 e2 D3 f3 e3
No. ~meV! ~meV! ~meV! ~meV! ~meV! ~meV!

194 43.7 127.0 0.21 152.9 57.5 0.0
206 26.4 130.2 0.16 105.8 68.8 0.0
198 14.8 107.8 0.12 69.4 56.9 0.0
207 11.0 118.3 0.09 61.0 64.0 0.0
200 3.2 91.4 0.03 31.7 44.7 0.0
197 2.8 107.1 0.00 11.4 45.4 0.0
199 1.4 102.3 0.00 8.1 41.2 0.16 22.4
196 0.0 95.5 0.00 4.6 35.9 0.11 19.9 19.0
164 0.0 96.7 0.00 0.0 37.2 0.00 0.0 11.4 0.0
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55 13 077IONIZED IMPURITY SCATTERING IN PERIODICALLY . . .
tory components so obtained for sample No. 196. T
isolated oscillations cover a smaller range of fields than
measured interval~0–14 T! because a certain interval at ea
end ~the length of which is inversely proportional to th
FWHM of the Fourier filter! is lost due to end effects~see,
for instance, Ref. 24!.

D. Experimental estimates for the quantum mobilities

The quantum mobility associated with each of the po
lated minibands was obtained from a fit with theory of t
minibands’ contribution to the magnetoresistance, isola
from the rest of the Shubnikov–de Haas spectrum as
scribed in Sec. IV C. The individual oscillations were fitte
using Eq.~5! when the miniband energy width was narro
(Dn,fn), or Eq. ~8!, when the miniband width was wid
(Dn.fn). ParametersDn , fn, and en used in the fitting
equation were fixed at the values given in Table II a
the temperature was set to 4.2 K, as used in our exp
ments. The only remaining parameter,mQ(n), was adjusted
for best agreement with the experiment. To illustrate the
ting procedure, the individual oscillations and the fitt

FIG. 4. ~a! Fourier transform of the SdH spectrum for samp
No. 196; dashed lines show the filtered Fourier transform use
isolate each of the peaks detected;~b!–~d! show the isolated oscil-
lations due to minibandsE1, E2, andE3, respectively.
e
e

-

d
e-

ri-

t-

curves for sample No. 196 are shown in Fig. 5; a fit w
theory in this case yieldedmQ(E1)5410 cm2/V s,
mQ(E2)51320 cm2/V s, andmQ(E3)53650 cm2/V s. All
other samples underwent the same treatment, and the q
tum mobility values obtained are plotted against doping
riod in Fig. 6.

V. COMPARISON WITH THEORY AND DISCUSSION

Experimental results showed that at a fixed doping per
the quantum mobility increases with the index of the mi

to

FIG. 5. Magnetoresistance oscillations associated with in
vidual minibands for sample No. 196. Dots represent the osc
tions obtained experimentally and the full curves correspond to
theory. ~a! Isolated oscillations due to the fundamental miniban
E1 and theoretical result by use of Eq.~5!. ~b! Same for miniband
E2. ~c! Isolated oscillations due to minibandE3 and theoretical
result obtained by use of Eq.~8!.

FIG. 6. Quantum mobility as a function of the doping perio
Circles, crosses, and squares represent the experimental result
responding to minibandsE1, E2, andE3, respectively; dashed an
full lines depict the theoretical result fornS54.331012 and
5.431012 cm22, respectively.



i
c

ie

i-
a
-
th

il
.

rte

,
ap

s
o
d
io
rm
n

tu

ri-
u
R

-
ri

e
f
r

pe

at
in
ad
b

io
he
in

nc
e

6

the
be-

red
-
nd
e
sts
m-
its
ted
g
the

or

l-
tal
ill
e-
et of

e
ation
n its
ean
de-
an

he

ant

nds
ly

13 078 55A. B. HENRIQUESet al.
band. The experimental quantum mobilities associated w
individual minibands are shown by dots in Fig. 6 as a fun
tion of the doping periodd. At large values ofd adjacent
wells become uncoupled; the quantum miniband mobilit
obtained for sample No. 164, which contains a singled layer,
is plotted in Fig. 6 atd5800 Å.

When the period is made shorter, the mobility in min
bandE1 remains nearly unchanged. The experimental qu
tum mobility in minibandE2 does not show a smooth de
pendence on the doping period, which is attributed to
fluctuation in carrier density in the samples~see Table I! and
to the limited accuracy of the experimental values of mob
ity. Nevertheless, the experimental data plotted in Fig
shows clearly that in the regiond,200 Å theE2 quantum
mobility decreases when the doping period is made sho
Finally, the quantum mobility of carriers in minibandE3
could only be measured for periods greater than 230 Å
which range the measured mobility attains a value of
proximately 3500 cm2/V s.

The theoretical quantum mobilities were calculated a
function of the doping period for carrier concentrations
nS54.331012 and 5.431012 cm22; these values correspon
to the lower and upper limits of the free-carrier concentrat
in the samples studied. The input quantities were the Fe
energy, miniband energy spectrum, and wave functio
which were obtained from the solution of Schro¨dinger and
Poisson equations as described in Sec. IVB. The quan
mobilities were calculated by using Eq.~4!, assuming peri-
odic boundary conditions in an interval of four doping pe
ods, and incorporating into the calculations only the quant
states belonging to the three lowest energy minibands.
sults of the theory are shown by lines in Fig. 6.

Figure 6 shows that for minibandE1 the theoretical quan
tum mobilities are in excellent agreement with the expe
mental ones. For excited minibandsE2 andE3 there is an
order-of-magnitude agreement between theory and exp
ment, although the overall agreement is not so good as
minibandE1. Nevertheless, it is to be noticed that the theo
reproduces the main feature of theE2 quantum mobility de-
pendence ond, i.e., a decrease toward short superlattice
riods.

Our investigation can be summarized by stating that,
given superlattice period, the quantum mobility is higher
more energetic minibands, and when the period is m
shorter, the quantum mobilities decrease. The decreasing
havior toward short superlattice periods develops atd;300
Å for miniband E3, but only atd;200 Å for miniband
E2; for minibandE1, theory predicts a decreasing behav
only whend,50 Å. These results can be explained by t
dependence of the binding length of carriers on the dop
periodd. As shown in Ref. 12 ford-doped samples with a
single doping layer and in Ref. 13 for gatedd-doped
samples, the mobility is very sensitive to the mean dista
between the impurity layer and the charge carriers. The m
distance between carriers confined in minibandEi and an
impurity layer atz50 can be estimated byA^z2&Ei, where

^z2&Ei5N E
2d/2

1d/2

z2uui~k Belly ,z!u2dz . ~9!

A plot of A^z2&Ei for a carrier density ofnS54.631012

cm2/V s is shown in Fig. 7. A comparison of Figs. 7 and
th
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shows that there is an outstanding correlation between
quantum mobility in a miniband, and the mean distance
tween its carriers and an impurity sheet.

VI. CONCLUSION

The Shubnikov–de Haas oscillations were measu
for periodically d-doped InP as a function of the dop
ing period in samples with a density of carriers arou
;4.931012 cm2 per doped layer and doping period in th
range 90–300 Å. It is verified that each miniband manife
itself in the SdH spectrum through a single oscillatory co
ponent, which corresponds to the belly extremal orbit of
mini-Fermi surface. The quantum oscillations associa
with individual minibands were isolated from the underlyin
magnetoresistance spectrum by Fourier techniques. From
individual oscillatory components, the quantum mobility f
each miniband was estimated.

A theoretical model for the quantum mobility was deve
oped, which yields a fair agreement with the experimen
results. The theoretical model predicts that the mobilities w
increase with the miniband index, and the mobilities d
crease when the doping period is made shorter. The ons
the decreasing behavior occurs atd;200 Å for miniband
E2, and belowd;50 Å for minibandE1. The dependence
of the quantum mobility in an individual miniband on th
distance between dopant sheets shows a salient correl
with the same dependence of the mean distance betwee
carriers and the doped layer. This demonstrates that the m
distance between confined carriers and impurities is the
terminant of the absolute value of carrier mobility which c
be achieved ind-doped systems.
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FIG. 7. Mean distance between carriers confined in miniba
E1, E2, andE3 as a function of the doping period for periodical
d-doped InP withnS54.631012 cm2/V s. The calculation was
made using Eq.~9!.
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