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Spin-charge separation, anomalous scaling, and the coherence of hopping
in exactly solved two-chain models

Nic Shannon, Yanmin Li, and Nicholas d’Ambrumenil
Department of Physics, University of Warwick, Coventry, England

~Received 8 November 1996!

The coherence of transport between two one-dimensional interacting Fermi liquids, coupled by single-
particle hopping and interchain interaction, is examined in the context of two exactly soluble models. It is
found that the coherence of the interchain hopping depends on the interplay between interchain hopping and
interchain interaction terms, and not simply on the ground state spectral properties of an isolated chain.
Specifically, the splitting of levels associated with interchain hopping in ag4 soluble model is found to be
enhanced by the introduction of interchain interaction. It is also shown that, for an exactly solvable model with
bothg2 andg4 interactions, coherent interchain hopping coexists with anomalous scaling and non-Fermi liquid
behavior in the chain direction.@S0163-1829~97!02919-6#
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I. INTRODUCTION

Although the physics of an ideal one-dimensional Fer
gas has been widely and profitably studied for more than
years,1,2 our understanding of real low-dimensional materi
is still limited by the lack of a clear picture of how th
crossover in electronic properties between strictly o
dimensional and three-dimensional limits occurs. While it
clear that a one-dimensional interacting Fermi gascannotbe
a Landau-Fermi liquid, the possibility of finding in highe
dimensions a ground state analogous to the non-Fermi liq
~NFL! ground states found in one dimension@in particular
the Luttinger liquid~LL !, characterized by different veloci
ties for spin and charge excitations, and an anomalous e
nent a controlling spectral properties# is still a subject of
much debate. Interest in these issues has been stimulate
the unusual properties found in high temperature superc
ductors and the wide variety of other material in which t
electrons are believed to be both strongly correlated and
fined to move in low dimension.

Theoretical consideration of two-dimensional interacti
Fermi liquids with fully two-dimensional Fermi surfaces b
a number of authors and techniques3,4 has consistently found
that the Landau-Fermi liquid stateis stable, excepting case
of extremely long range interaction which are of questio
able physical relevance. Coupled chain models~generally
comprising a large number of identical one-dimensional
teracting Fermi liquids coupled by weak interchain hoppin!
have also attracted much attention.5–15These are directly ap
plicable to the large class of quasi-one-dimensional cond
tors which are held to be strongly correlated~for example,
the organic spin density wave systemTTF-TCNQ).

The effects which might be expected to modify or destr
the one-dimensional properties of an isolated chain are in
chain hopping and interchain interaction. These are usu
introduced as a single-particle hopping between neighbo
chains, and a density-density interaction between pairs
chains, with the possibility of backward scattering or u
klapp terms in the interaction generally being neglect
While the problem of chains coupled by interaction alone
550163-1829/97/55~19!/12963~8!/$10.00
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soluble by the technique of bosonization,15–17 interchain
hopping spoils the special current conservation laws~Ward
identities! which make the solution of the problem b
bosonization techniques possible. In this regard it is ana
gous to the one-dimensional backward scattering problem18

Scaling theories~perturbative renormalization group tech
niques! have been applied most intensively to the proble
of two chains coupled by interchain hopping an
interaction,8,13,10and have given considerable insight into t
ground state instabilities~dominant fluctuations! found for
different combinations of interchain and intrachain intera
tion. These models have also been studied numerically.11,12

The simplest scaling arguments13,15 suggest that for spinles

fermions there is a critical value (a5 1
2 for spinless fermions!

of the anomalous exponent associated with the o
dimensional Luttinger liquid ground state, above which we
hopping is an irrelevant perturbation. Correlation of ele
trons on a single chain can then lead to their confinem
within it. This value ofa can only be regarded as placing
bound on the stability of the one-dimensional Luttinger li
uid state. Itdoes notimply that systems formed from chain

with 0,a, 1
2 automatically flow to a higher-dimensiona

fixed point~i.e., Fermi liquid!; where interchain hopping is a
relevant perturbation it is not possible to determine
ground state properties of the coupled chain system fr
scaling arguments alone. In fact the values ofa considered
applicable to real materials are often less than 1/2. For
ample, it is known that for a one-dimensional Hubbard ch

a< 1
8 in the limit U→`.
The debate over the role played by interchain/interpla

hopping in the stability of NFL states was extended
Anderson’s suggestion19 that weak single-particle hoppin
between Luttinger liquids cannot generate band structur
the direction of the hopping, even in cases where this h
ping is relevant in the renormalization group sense. Inst
there is ‘‘confinement by decoherence’’: the system reta
its non-Fermi liquid character in one~or two! directions, and
suffers only diffusive motion of electrons perpendicular
this direction.20–22 Since this method of confinement nee
not suppress Josephson coupling~pair hopping! between
12 963 © 1997 The American Physical Society
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12 964 55NIC SHANNON, YANMIN LI, AND NICHOLAS d’AMBRUMENIL
NFL’s, a set of weakly coupled NFL planes can becom
three-dimensional~anisotropic! superconductor, withc-axis
transport properties matching those of the cuprates.23

Following this suggestion, the question of whether ar
trarily weak interchain hoppingt' can cause a splitting o
energy levels~analogous to the formation of binding an
antibinding bands in the free electron case! in interacting
two-chain models has come to be seen as a useful first
towards understanding whether coherent transport is pos
in the physically relevantN-chain case. Recent numeric
studies12,27 have found evidence of such a splitting in fini
size systems. In the case of the spinless two-chain m
studied by Capponi, Poilblanc, and Mila,27 the splittingDE
due to interchain hopping may be directly observed in
electronic spectral function, and decreases with increa
a from the free electron value of 2t' ~for a50). Finite size
scaling of the results forDE(L)/2t' as a function ofa
shows a finite but steadily decreasing splitting for
a,0.3, compatible with the results of scaling arguments

It is clear that, as the couplings between an array of cha
embedded in two or three dimensions become stronger
system becomes more nearly isotropic, and must eventu
cross over to the two-~three-! dimensional limit in which the
Fermi liquid description may be applied. This issue is co
plicated by the possibility of a crossover to an ordered tw
or three-dimensional state, stabilized by many particle
change between chains@as has been found in renormalizatio
group ~RG! studies of two-chain models8,13#. The nature of
this crossover was addressed by Anderson19 and recently by
Tsvelik,24 who identified the possibility of coherent transpo
between chains with the existence of a well-defined pole
the single-particle Green’s function.

In this paper we establish what may be said about
coherence of hopping between chains in two soluble ex
sions of one-dimensional models: a special case of the
eral two-chain model displaying both spin-charge separa
and anomalous scaling, and an extension of the single-bra
spinful two-chain model originally studied by Fabrizio an
Parola and Tsvelik25,26,28 to include interchain interaction
We will compare our results with existing numerical a
perturbative analyses. We begin by briefly reviewing And
son’s criterion for coherence and its application to coup
free electron chains.

II. CRITERION FOR COHERENCE

The arguments about coherence presented by Cla
Strong, and Anderson~CSA! are rooted in an analogy be
tween the problem of hopping between Luttinger liquids a
that of a two level system~TLS! coupled to a dissipative
Ohmic background.29,30 In the light of this analogy, these
authors propose that the criterion for coherence should be
probability of the system returning to a specially prepa
state during its intermediate time evolution after the sud
introduction of hopping between chains at timet50. The
state in which the system is prepared is an eigenstate o
original Hamiltonian fort,0 in which one of the two chains
carries additional charge. This corresponds to the TLS h
ing a nonzero probability of being found in one of its tw
states. A fully coherent~e.g., free electron! system will
evolve away from its original state, but return to it over
a
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time scale set by the size of the hopping matrix element.
incoherent system will never return to its original state —
the language of the dissipative TLS, the probability of
being found in either state must relax to zero.

We may formally consider the probabilityP(t) of the
system returning to its initial state

P~ t !5uA~ t !u2,

A~ t !5^c0ueiH 8te2 iHt uc0&,

H85H1H0' , Huc0&5E0uc0&, ~1!

whereuc0& is a specially prepared eigenstate ofH with ad-
ditional chargeDN on one of the chains, andH0' is an
interchain hopping term, generally taken to be of the form

H0'52t'(
k,s

@cs
~1!†~k!cs

~2!~k!1cs
~2!†~k!cs

~1!~k!#. ~2!

For free electron chains we have

H5H0i5(
k,s

e~k!@cs
~1!†~k!cs

~1!~k!1cs
~2!†~k!cs

~2!~k!#,

~3!

and the overlapA(t) may be evaluated exactly; the syste
can be treated as a product of two level~chain! systems for
each wave numberk along the chains, and the Hamiltonia
for each wave number~and spin index! separately diagonal
ized. The occupation of states labeled byk, which are ini-
tially occupied on one chain but not on the other, then os
lates between chains with frequency 2t' , so that in the
presence in the initial state of extra chargeDN on one chain,
we find31

P~ t !5cos2DN~ t't !. ~4!

More generally, we may expanduc0& in the eigenstates o
H8,

uc0&5(
n

cnufn&, H8ufn&5enufn&,

A~ t !5(
n,m

cm* cn^fmueiH 8tufn&e
2 iE0t5(

n
ucnu2ei ~en2E0!t.

~5!

Our model is not dissipative, and the quantityP(t) possesses
full time reversal symmetry, but the overlapA(t) can display
damping due to the interference between modes of diffe
frequencyEn . In finite size systems, where one might expe
P(t) eventually to return to one, damping can still be o
served over all physical time scales.32

In order to extend their macroscopic analysis to correla
systems, CSA study the rate of decay of the system from
original state after the introduction of hopping using Ferm

golden rule. They claim that an anomalous exponenta. 1
4 is

sufficient to impose a lower boundt'
c on the value oft'

needed to generate coherent interchain hopping, so for
tinger liquids witha exceeding14, arbitrarily weak interliquid
hoppingcannotgenerate band structure.20–22
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Mila and Poilblanc have calculated the Fourier transfo
of the overlapA(t) numerically for a number of 23L t-J
ladders,33 and find that the coherence demonstrated by
quantity in the limitt'→0 is not simply determined by th
anomalous scaling parameter found in the spectral func
for an isolated chain, as suggested by CSA, but is consi
ably enhanced near integrable points of the single-chaint-J
plane. They suggest that this may be understood in term
the level statistics of the problem; for an integrable syst
the eigenstates with additional chargeDN are highly degen-
erate. Degenerate perturbation theory must therefore be
plied, tending to yield a splitting in energy levels linear
t' and associated coherence. One could also say that
repulsion in a nonintegrable system will tend to lead to
bigger spread of frequencies entering the expression for
overlap A(t), and so to a greater degree of damping
P(t).32

We can also relate the behavior ofP(t) to conserved
quantities within the problem. In the case of free electro
H0' commutes with all other terms in the Hamiltonian. W
can exploit this fact to recover the known result for coher
oscillations of charge between the two chains 4without ex-
plicitly considering the effect ofH0i , since in this case

A~ t !5^c0ueiH0'tuc0& ~6!

and Eq.~4! follows directly. The connection with conserve
quantities is more easily understood if we make a chang
binding/antibinding coordinates:

cs
~1!†~k!5

1

A2
@bs

†~k!1as
†~k!#,

cs
~2!†~k!5

1

A2
@bs

†~k!2as
†~k!#. ~7!

We then see that the condition forcompletecoherence is tha
the HamiltonianH commute with

H0'52t'(
k,s

@bs
†~k!bs~k!2as

†~k!as~k!#, ~8!

i.e., that the difference in the number of particles in the bin
ing and antibinding bands be a good quantum number of
system; if the original Hamiltonian may be diagonalized
the basis of eigenstates of the perturbation then the orig
state will evolve completely coherently. The introduction
interaction can quickly be seen to spoil this property of
Hamiltonian. For example, for the two-chain Hubbard mo

H5H11H21H0' ,

H152t i(
i ,s

c i11s
†~1! c is

~1!1c is
†~1!c i11s

~1! 1
U

2(
i ,s

ni ,s
~1!ni2s

~1! ,

H0'52t'(
i ,s

c is
†~1!c is

~2!1c is
†~2!c is

~1! , ~9!
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@H0' ,H#52
t'U

2 (
i ,s

nis
~1!@c i2s

†~1!c i2s
~2! 1c i2s

†~2!c i2s
~1! #

1nis
~2!@c i2s

†~2!c i2s
~1! 1c i2s

†~1!c i2s
~2! #. ~10!

The quantity@H' ,H# does not commute with either pa
of H, on account of the terms of the form
c i ,s
†(b)c i ,s

(a)c i ,2s
†(a) c i ,2s

(b) in the interaction, so complete cohe
ence is lost. At a microscopic level, this need not mean t
interchain hopping is entirely incoherent, only th
N(b)2N(a) is not a good quantum number for the system a
that the interchain hopping has some incoherent part.
might expect the orthogonality of the interacting and non
teracting ground states of the one-dimensional~1D! Fermi
gas~measured by the parametera) to render interchain hop
ping highly incoherent, and so frustrate the formation
band structure in the interchain direction. In fact the issue
more subtle than this; the effect of the commutator~10!
could be canceled by the introduction of an additional int
action termU( i ,sni ,s

(2)ni2s
(1) . This will not restore fermionic

quasiparticle character to the electronic states of the in
vidual chains in the absence ofH0' , butwill make possible
the macroscopically coherent evolution of the specially p
pared state described above. Thus we must either rejec
macroscopic criterion for coherence described above, or
cept that hopping between non-Fermi liquids can be entir
coherent. We draw the latter conclusion and illustrate t
point in more detail for a continuum model in the followin
section.

III. A SOLUBLE TWO-CHAIN MODEL
WITH ANOMALOUS DIMENSION

AND COHERENT INTERCHAIN HOPPING

We take as a general Hamiltonian for the coupled ch
problem

H5H01Vi1V' . ~11!

Here,

H05(
k,s

eL~k!@cLs
~1!†~k!cLs

~1!~k!1cLs
~2!†~k!cLs

~2!~k!#

2t'@cLs
~1!†~k!cLs

~2!~k!1cLs
~2!†~k!cLs

~1!~k!#1@L→R#, ~12!

Vi5
1

2L (
q.0,s,s8

g4i@rLs
~1!~2q!rLs8

~1!
~q!1rLs

~2!~2q!rLs8
~2!

~q!#

1g2i@rLs
~1!~2q!rRs8

~1!
~q!1rLs

~2!~2q!rRs8
~2!

~q!#

1g4i@~NLs
~1!2NL0s8

~1!
!21~NLs

~2!2NL0s8
~2!

!2#

1g2i@~NLs
~1!2NL0s

~1! !~NRs8
~1!

2NR0s8
~1!

!1~NLs
~2!2NL0s

~2! !

3~NRs8
~2!

2NR0s8
~2!

#1@L→R,q→2q#, ~13!
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V'5
1

2L (
q.0,s,s8

g4'@rLs
~1!~2q!rLs8

~2!
~q!1rLs

~2!~2q!rLs8
~1!

~q!#

1g2'@rLs
~1!rRs8

~2!
~q!1rLs

~2!~2q!rRs8
~1!

~q!#

1g4'@~NLs
~1!2NL0s8

~1!
!21~NLs

~2!2NL0s8
~2!

!2#

1g2'@~NLs
~1!2NL0s

~1! !~NRs8
~1!

2NR0s8
~1!

!1~NLs
~2!2NL0s

~2! !

3~NRs8
~2!

2NR0s8
~2!

!#1@L→R,q→2q#, ~14!

rms
~ i ! ~q!5(

ps
cms

~ i !†~p1q!cms
~ i ! ~p!, ~15!

Nms
~ i ! 5(

ps
cms

~ i !†~p!cms
~ i ! ~p!, ~16!

wherecms
( i )†(k) is the fermion creation operator with spin in

dex s561, on the left~right! moving branches (m5L/R)
of the chain with indexi51/2, andeR/L(k)5v f(6k2kf)
~see Fig. 1 for clarification of labels!. Neglecting all branch
mixing ‘‘backscattering’’ events, all four interactions in Fig
2 have been expressed above in terms of electronic dens
rms
( i ) (q). Theq50 component of the interaction terms, whic
contains information about chemical potential in the form
a bare chargeNm0s

( i ) , has been explicitly included. This wil
be seen to be important in what follows. We have also m
the nonrestrictive assumption of a spin-independent inte
tion so thatg↑↑5g↑↓5g. This may easily be relaxed.

To illustrate more clearly the fact that the spectral pro
erties of an isolated chain are not always an accurate guid
the coherence of interchain hopping in a two-chain mod
we will consider below a special soluble point of the inte
acting problem. In the interests of clarity we will suppre
spin dependence. We will look at the issue of spin-cha
separation later.~In fact the generalization of the model t

FIG. 1. Dispersion relations for the four branches of the tw
chain Luttinger model, showing interchain hoppingt' .
ies

f

e
c-

-
to
l,

e

include spin is straightforward, and does not affect any of
arguments of this section, which relate chiefly to the anom
lous exponenta.!

If we rewrite the momentum-space Hamiltonian in term
of collective coordinates

a†~q!5
1

A2
2p

qL
@rR

~b!~q!1rR
~a!~q!#,

b†~q!5
1

A2
2p

qL
@rL

~b!~2q!1rL
~a!~2q!#,

g†~q!5
1

A2
2p

qL
@rR

~b!~q!2rR
~a!~q!#, ~17!

d†~q!5
1

A2
2p

qL
@rL

~b!~q!2rL
~a!~q!#, ~18!

with @a(q),a†(q)#5dqq8, @a,b#50 etc., we find that the
kinetic energy and interaction parts of the Hamiltonian ta
on a particularly simple form, provided that we impose t
restrictiong4i5g4'5g4, g2i5g2'5g2. Then

-
FIG. 2. Examples of chain and branch indices for the four

teraction terms kept in the bosonic treatment of the two-chain pr
lem.
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H05(
k,s

v fq@a†~q!a~q!1b†~q!b~q!1g†~q!g~q!

1d†~q!d~q!#1
pv f
L

@~Na2Na
0 !21~Nb2Nb

0 !2

1~Ng2Ng
0!21~Nd2Nd

0!2#, ~19!

and

V5 (
q.0

g4q

L
@a†~q!a~q!1b†~q!b~q!#

1 (
q.0

g2q

L
@a†~q!b†~2q!1a~2q!b~q!#

1
g4q

L
@~Na2Na

0 !21~Nb2Nb
0 !2#

1
2g2q

L
@~Na2Na

0 !~Nb2Nb
0 !#, ~20!

with Na
05Nb

05A2N0 andNg
05Nd

05t'L/A2pv f .
Physically this choice of interaction corresponds to h

ing equally strong interchain and intrachain interaction,
least for the smallq regime of the bosonization. While thi
condition is unlikely to be met in the majority of quasi-on
dimensional conductors, we note in passing that a numbe
‘‘ladder’’ compounds, with nearly isotropic coupling be
tween well-spaced pairs of one-dimensional chains, have
cently been synthesized.34

The Hamiltonian for the spinless two-chain system abo
is then quadratic, and describes two independent o
dimensional systems. It may be solved directly by canon
transformation. We can therefore proceed to calculate
correlation functions for the particles in binding and ant
inding bands, using the methods standard in the bosoniza
literature. The correct noninteracting~retarded! Green’s
function can be correctly recovered from the bosonic exp
sion forH0 using Ref. 35 to give

^c1R
† ~x,t !c1R~0,0!&05

i

2p

exp2 ik fx

x2v f t1 i e
cosS t'xv f D , ~21!

demonstrating the continuity between the collective boso
and single-particle fermionic descriptions at the nonintera
ing point. The effect of interchain hopping on free electro
is to introduce a cosine modulation in the single-particle c
relation function on a single chain reflecting the Fermi s
face shifts associated with the formation of binding and
tibinding states. This vanishes continuously ast'→0. We
may find the correlation function for our spinless interacti
model by direct analogy with careful treatment of the on
chain spinful case2
-
t

of

e-

e
e-
al
e
-
on

s-

ic
t-
s
-
-
-

-

^c1R
† ~x,t !c1R~0,0!&5

i

2p
exp~2 ik fx!

L1 i ~v f t2x!

e1 i ~v f t2x!

3
1

@x2vat1 i e#1/2@x2v f t1 i e#1/2

3S L2

~L1 ivat !
21x2D

a/2

cosS t'xv f D ,
~22!

where a5$12@g2 /(g41pvF)#
2%21/221 and va5@(vF

1g4 /p)
22(g2 /p)

2] 1/2. L is a length scale set by the rang
of interaction. The effects of interaction on the model a
apparent in the branch cut~analogous to ‘‘spin/charge’’ sepa
ration vaÞv f), and in the anomalous scalingG(sx,st)
5s212aG(x,t). The eigenstates of this spinless coupl
two-chain model are clearly bosonic, and it is possible
show explicitly that the interacting ground state is orthogo
to the noninteracting ground state. We wish to emphas
that the same results are obtained in the limitt'→0 as in the
absence oft' , and to remark that this model may be mapp
onto the case of a single chain of spinful electrons in a m
netic field.

We also learn from this correlation function that th
Fermi surface shiftshavesurvived the introduction of inter-
action, despite the consequent Luttinger liquid characte
motion along the chains. The momentum distributionn(k)
will have power law behaviorn(k2kf);(k2kf)

a in both
the binding and antibinding bands, but with different valu
of kf in each band.

This is strongly suggestive of coherent electronic mot
between the chains, and in fact for our model with the s
cial choiceg2'5g2i5g2, g4'5g4i5g4,

@H0' ,Vi#52@H0' ,V'#, ~23!

and the quantityP(t), Eq. ~1!, behaves exactly as in a fre
electron gas. This is despite the fact that the single-part
correlation functiondoes notpossess a pole at the Ferm
momentum, and that the interacting ground state is ortho
nal to the noninteracting ground state. We understand fr
the commutator above that the source of any incoherenc
hopping between chains in a more general two-chain mo
are those nonbranch conserving terms in the Hamilton
which render the model insoluble by bosonization, a
which give rise to the rich variety of dominant fluctuation
found by scaling arguments.

An alternative physically motivated test for the coheren
of hopping between the chains is provided by the interch
polarization response function, whose associated spe
function is given by

rDN~w!5E
0

`

dte2 ivtIm^@DN~ t !,DN~0!#&, ~24!

where the operatorDN5N12N2 is the difference between
the number operators for a given branch of the two cha
For free electrons with linear dispersion this may easily
shown to be monochromatic—the only frequency enter
the response is the binding/antibinding energy gap 2t' . We
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may recover the same result from the bosonic form ofH0 by
calculating†H0 ,@H0 ,DN#‡ to show

]2DN

]t2
52~2t'!2DN, ~25!

reflecting the fact thatDN is not a good quantum number i
the presence of hopping. This commutator would vanish
both the interacting and the free electron case, were
chemical potential terms in the Hamiltonian to be neglect
The finite expectation value of (DN)2;2t' in the noninter-
acting ground state may then be understood in terms of
zero point motion of a simple harmonic oscillator withDN
as its coordinate, and canonical momentum proportiona
the current operatorc1

†c22c2
†c1. The inclusion of our specia

interaction does not change this result; again we find
monochromatic polarization response function a
DN2;2t' , confirming the coherent nature of the hopping

We see that it is possible to propose a model for a tw
chain system which is a Luttinger liquid in the chain dire
tion for any finite g2, and to show directly from the Hamil
tonian, from the correlation functions, or from the respon
of the system to interchain polarization, that it displays fu
coherent hopping between the chains, with associated s
in the ‘‘Fermi surface’’for any finite t' . These two proper-
ties are thus found in this special case to be entirely indep
dent of one another; anomalous scaling in the chain direc
coexists with coherent hopping in the interchain directio
The intuitive idea that the spectral properties of the mo
for t'50 determine the possibility of confinement at fini
t' is seen in this instance to fail completely.

We may generalize those arguments which relate to
commutation relations of the hopping term toN chains sim-
ply by including a nearest neighbor interchain interact
between each pair of chains to cancel the undesired com
tator @Vi ,H0'#. However, the generalization of th
bosonization scheme to the evaluation of correlators for
N-chain case is not quite so straightforward. Thus while
seems to be possible to achieve coherent interchain tran
in a two-chain model without the formation of a pole in th
correlation function, it is not clear that we may make t
same statement about anN-chain model. Our two-chain
model is also insensitive to the size oft' , but should not be
considered physical for any value oft' bigger than a scale
set by the curvature of the real free fermion dispersion
the interaction rangeL.

IV. COHERENCE OF HOPPING
AND SPIN-CHARGE SEPARATION

Spin-charge separation is perhaps the best known of
unusual properties of the one-dimensional interacting e
tron gas. In the Luttinger model~for which the Luttinger
liquid ground state is an exact solution!, it has its origin in
the fact that the elementary excitations of the gas are
fermionic quasiparticles, but rather bosonic collecti
modes. In the presence of a spin-dependent interaction~such
as an exchange potential!, the modes associated with sp
and charge degrees of freedom need not disperse with
same velocity.

A hopping term of the form ofH0' , however, must trans
n
e
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he

to

a
d

-

e

fts

n-
n
.
l

e

u-

e
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fer a ‘‘real’’ electron, with a corresponding nontrivial adjus
ment in the spin and charge excitations on each chain.
ively we might expect this to frustrate hopping betwe
chains, and so protect~at least partially! the one-dimensiona
interacting Fermi gas from the destabilizing effects of high
dimension. Even if spin-charge separation alone is
enough to generate confinement of the electrons on a si
chain, it might be expected to reduce the coherence of h
ping between chains and, by reducing the ‘‘phase memo
of the transferred electron, to hinder the formation of ba
structure perpendicular to the chains. In this section, we
consider a soluble one-branch, spinful, two-chain model w
interchain and intrachaing4 interaction, and assess the effe
of the spin-charge separation which it exhibits on the coh
ence of hopping between chains.

We may solve the one-branch model of an electron
with linear dispersion and forward scattering interactions
bosonization:

H15(
k,s

v f~k2kf !cs
†~1!~k!cs

~1!~k!1
1

2L (
q,s,s8

~g4i
↑↑dss8

1g4i
↑↓ds2s8!rs

~1!~q!rs8
~1!

~2q!, ~26!

wherers
(1)(q) is the Fourier transform of the density oper

tor for electrons with spin indexs on the chain with index
1. In fact it is possible also to solve exactly the two-cha
problem

H5H11H21H0' , ~27!

H0'52t'(
k,s

cs
†~1!~k!cs

~2!~k!1cs
†~2!~k!cs

~1!~k! ~28!

by expressingH0' in terms of the bosonic representation
the electronic field operators on each chain, as illustrated
Fabrizio and Parola.25,26 The Hamiltonian can then be ex
pressed in a basis comprising four branches of spinless
mions with linear dispersion

H11H2→(
k.0

urk@ar
†~k!ar~k!1br

†~k!br~k!#

1usk@as
†~k!as~k!1bs

†~k!bs~k!#, ~29!

H0'→22t' (
k.0

br
†~k!bs~k!1bs

†~k!br~k!, ~30!

where

ur5v f1
~g4i
↑↑1g4i

↑↓!

2p
, us5v f1

~g4i
↑↑2g4i

↑↓!

2p
. ~31!

This may be diagonalized by canonical transformation
yield four branches of free, spinless, fermions with disp
sion
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er~k!5urk, es~k!5usk,

e6~k!5
1

2
~ur1us!k6A1

2
~ur2us!214t'

2 , ~32!

and the ground state found by filling the fermion branch w
dispersione2(k) up to the chemical potentialm50. The
expectation value of the number operatorN(b)2N(a) can be
calculated and is strongly suggestive of the formation
‘‘band structure’’ in the interchain direction:

^N~b!2N~a!&
L

5
1

ur2us
lnS ur

us
D4t'2p

. ~33!

In fact the commutator@H11H2 ,H'# does notvanish, so
N(b)2N(a) is nota good quantum number for the system, b
it is clear that the splitting of energy levels due tot' is only
partially suppressed. Those terms in the Hamiltonian wh
do not commute withN(b)2N(a) give rise to the prefactor

1

ur2us
lnS ur

us
D<

1

v f
, ~34!

which would be unity in the free electron case. It is a co
sequence of the curvature ine2(k), which depends on both
t' andur2us , and indicates a suppression of dispersion
the interchain direction in the presence of spin-charge se
rationurÞus . As such it may be taken as a measure of
incoherence of hopping between chains.25

It is not difficult to generalize the model of Fabrizio an
Parola to include interchain interaction; the structure of
Hamiltonian is altered only in that thea(k) andb(k) fermi-
ons acquire different velocities,

H11H2→(
k.0

@urakar
†~k!ar~k!1urbkbr

†~k!br~k!

1usakas
†~k!as~k!1usbkbs

†~k!bs~k!#,

~35!

where

ura5v f1
~g4i
↑↑1g4i

↑↓1g4'
↑↑1g4'

↑↓ !

2p
,

urb5v f1
~g4i
↑↑1g4i

↑↓2g4'
↑↑2g4'

↑↓ !

2p
,

usa5v f1
~g4i
↑↑2g4i

↑↓1g4'
↑↑1g4'

↑↓ !

2p
,

usb5v f1
~g4i
↑↑2g4i

↑↓2g4'
↑↑1g4'

↑↓ !

2p
. ~36!

The dispersion of the four fermionic branches after dia
nalization is thus modified to give
f

t

h

-

n
a-
e

e

-

er~k!5urak, es~k!5usak,

e6~k!5
1

2
~urb1usb!k6A1

2
~urb2usb!

214t'
2 . ~37!

The ground state expectation value ofN(b)2N(a) is then
given by the same formula as before, Eq.~33!, but with ur

andus replaced byurb andusb . There is full coherence@the
prefactor~34! equal to one# when the dispersione6(k) is
linear in k. This happens not just when allg4’s are equal to
zero ~the noninteracting case! but also wheng4i

↑↓5g4'
↑↓ . In

either case@H11H2 ,H'#50. In the special case of equa
interchain and intrachain interactions, we may solve
model directly by bosonization, obtaining the same grou
state and correlators as are found by refermionization :

^c0
†~x,t !c0~0,0!&;ei ~kf1Dkf !x~x2v f t1 i e!21/2~x2urbt

1 i e!21/4~x2usbt1 i e!21/4, ~38!

whereDkf5t' /v f .
In the general case, the prefactor~34! is less than one and

depends on the relative strength of the interchain and in
chain interactions. This result is consistent with the arg
ments of CSA,20 who also consider the model studie
by Fabrizio and Parola. They find evidence of macrosco
coherence for times much less than@(2pDN/L)(ur

2us)#
21.36

V. CONCLUSIONS

We have shown that it is possible for a two-chain syst
to show both coherent hopping between chains and
anomalous intrachain scaling characteristic of a Luttin
liquid. For the two-chain Luttinger model, which we ca
solve exactly for a special choice of interchain interactio
we do not find any evidence for the formation of a pole at
Fermi surface. In general, we find that the degree of coh
ence observed in the interchain hopping depends rather
sitively on the precise details of the interactions both on
chains and between the chains and may not always be
mated from the spectral properties of the individual cha
alone.

A simple one-branch model exhibiting spin-charge se
ration is found to be neither completely coherent nor co
pletely incoherent in its macroscopic evolution, and we dr
the conclusion, in line with other authors, that spin-cha
separation alone may suppress, but is not sufficient to
vent, the formation of band structure in the hopping dire
tion. Again, for a special choice of interchain interaction it
possible to arrive at a model which displays both spin-cha
separation and completely coherent hopping between cha

Although the restriction on interaction imposed by t
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criterion for coherence we have used is rather severe,
gives evidence of the stability of a Luttinger liquid groun
state only on the line~plane, in spinful case! g'5gi , the
states found away from this line~plane! are known from
scaling arguments to be ordered. We speculate that at
peratures greater than a scale set by the gap of each ord
phase, the behavior of the system will be controlled by t
g'5gi ~quantum critical! line.
tt.
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