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The coherence of transport between two one-dimensional interacting Fermi liquids, coupled by single-
particle hopping and interchain interaction, is examined in the context of two exactly soluble models. It is
found that the coherence of the interchain hopping depends on the interplay between interchain hopping and
interchain interaction terms, and not simply on the ground state spectral properties of an isolated chain.
Specifically, the splitting of levels associated with interchain hopping @ aoluble model is found to be
enhanced by the introduction of interchain interaction. It is also shown that, for an exactly solvable model with
bothg, andg, interactions, coherent interchain hopping coexists with anomalous scaling and non-Fermi liquid
behavior in the chain directiofS0163-18287)02919-4

l. INTRODUCTION soluble by the technique of bosonizatithl’ interchain
hopping spoils the special current conservation l@Wsard
Although the physics of an ideal one-dimensional Fermiidentities which make the solution of the problem by
gas has been widely and profitably studied for more than 2®osonization techniques possible. In this regard it is analo-
yearst? our understanding of real low-dimensional materialsgous to the one-dimensional backward scattering proBfem.
is still limited by the lack of a clear picture of how the  Scaling theoriegperturbative renormalization group tech-
crossover in electronic properties between strictly oneniques have been applied most intensively to the problem
dimensional and three-dimensional limits occurs. While it isof two chains coupled by interchain hopping and
clear that a one-dimensional interacting Fermi gasnotbe ~ interaction;'="“and have given considerable insight into the
a Landau-Fermi liquid, the possibility of finding in higher ground state instabilitiegdominant fluctuationsfound for
dimensions a ground state analogous to the non-Fermi quuig'fferent combinations of interchain and '|ntracha|n'|nt}erac—
(NFL) ground states found in one dimensifin particular tion. 'I_'hese mode_ls have als?ﬁé)seen studied numeru_E]a K.
the Luttinger liquid(LL), characterized by different veloci- The simplest scaling argume suggest that for spiniess

ties for spin and charge excitations, and an anomalous expdgrmions there is a critical valued= 2 for spinless fermions

nent a controlling spectral propertiss still a subject of ©Of the anomalous exponent associated with the one-
much debate. Interest in these issues has been stimulated $iynensional Luttinger liquid ground state, above which weak
the unusual properties found in high temperature supercofloPPINg is an irrelevant perturbation. Correlation of elec-
ductors and the wide variety of other material in which thelrons on a single chain can then lead to their confinement

electrons are believed to be both strongly correlated and coﬁ{\-"thm it. This valug_ofa can only b_e rega_rded as p_Iacmg_ a
fined to move in low dimension. bound on the stability of the one-dimensional Luttinger lig-

Theoretical consideration of two-dimensional interactingUId state. Itdoes noimply that systems formed from chains

Fermi liquids with fully two-dimensional Fermi surfaces by With 0<_“<_% automatically flow to a higher-dimensional
a number of authors and technigtiéhas consistently found  fixed point(i.e., Fermi liquid; where interchain hopping is a
that the Landau-Fermi liquid state stable, excepting cases relevant perturbatlon_ it is not possible to _determme the
of extremely long range interaction which are of question-ground state properties of the coupled chain system from
able physical relevance. Coupled chain modgenerally scall_ng arguments alone_. In fact the valuesaofonsidered
comprising a large number of identical one-dimensional in-Pplicable to real materials are often less than 1/2. For ex-
teracting Fermi liquids coupled by weak interchain hopping ample, it is known that for a one-dimensional Hubbard chain
have also attracted much attentidri® These are directly ap- a=<3 in the limit U—c.
plicable to the large class of quasi-one-dimensional conduc- The debate over the role played by interchain/interplane
tors which are held to be strongly correlatéidr example, hopping in the stability of NFL states was extended by
the organic spin density wave systaii F-TCNQ). Anderson’s suggestidh that weak single-particle hopping
The effects which might be expected to modify or destroybetween Luttinger liquids cannot generate band structure in
the one-dimensional properties of an isolated chain are intethe direction of the hopping, even in cases where this hop-
chain hopping and interchain interaction. These are usuallping is relevant in the renormalization group sense. Instead
introduced as a single-particle hopping between neighborinthere is “confinement by decoherence”: the system retains
chains, and a density-density interaction between pairs dfs non-Fermi liquid character in or{er two) directions, and
chains, with the possibility of backward scattering or um-suffers only diffusive motion of electrons perpendicular to
klapp terms in the interaction generally being neglectedthis direction?’=2?? Since this method of confinement need
While the problem of chains coupled by interaction alone isnot suppress Josephson couplifgair hopping between
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NFL’s, a set of weakly coupled NFL planes can become aime scale set by the size of the hopping matrix element. An

three-dimensionafanisotropi¢ superconductor, witlt-axis  incoherent system will never return to its original state — in

transport properties matching those of the cuprates. the language of the dissipative TLS, the probability of it
Following this suggestion, the question of whether arbi-being found in either state must relax to zero.

trarily weak interchain hopping, can cause a splitting of We may formally consider the probabiliti?(t) of the

energy levels(analogous to the formation of binding and system returning to its initial state

antibinding bands in the free electron case interacting

two-chain models has come to be seen as a useful first step P()=|A)%,

towards understanding whether coherent transport is possible

in the physically relevaniN-chain case. Recent numerical At) = (ghole™ e MY i),

studie$??’ have found evidence of such a splitting in finite

size systems. In the case of the spinless two-chain model H'=H+Hq, , H|o)=Eg|tho), )

studied by Capponi, Poilblanc, and Mflathe splittingAE . . . .
due to interchain hopping may be directly observed in theVherelio) is a specially prepared eigenstatetofwith ad-
tional chargeAN on one of the chains, anH,, is an

electronic spectral function, and decreases with increasin%I , :
« from the free electron value oft2 (for «=0). Finite size  Mterchain hopping term, generally taken to be of the form

scaling of the results foAE(L)/2t, as a function ofa
shows a finite but steadily decreasing splitting for all Ho =—t, > [cPT(k)cP(k)+c@T(k)cP(k)]. ()
a<0.3, compatible with the results of scaling arguments. k.o

Itis clear_that, as the Coup_lings b_etween an array of chaing; tree electron chains we have
embedded in two or three dimensions become stronger, the
system becomes more nearly isotropic, and must eventually
cross over to the twoithree) dimensional limit in which the H=Hg=2> e(k)[cP (ke (k) +cP (ke k)],
Fermi liquid description may be applied. This issue is com- ko 3)
plicated by the possibility of a crossover to an ordered two-
or three-dimensional state, stabilized by many particle exand the overlapA(t) may be evaluated exactly; the system
change between chaifas has been found in renormalization can be treated as a product of two levehain systems for
group (RG) studies of two-chain modéts®]. The nature of each wave numbekt along the chains, and the Hamiltonian
this crossover was addressed by Andet8and recently by  for each wave numbeand spin indexseparately diagonal-
Tsvelik2* who identified the possibility of coherent transport ized. The occupation of states labeled kywhich are ini-
between chains with the existence of a well-defined pole inially occupied on one chain but not on the other, then oscil-
the single-particle Green'’s function. lates between chains with frequency, 2 so that in the

In this paper we establish what may be said about th@resence in the initial state of extra chafg® on one chain,
coherence of hopping between chains in two soluble extenve find!
sions of one-dimensional models: a special case of the gen-
eral two-chain model displaying both spin-charge separation P(t)=cog2N(t, t). (4)
and anomalous scaling, and an extension of the single-branch
spinful two-chain model originally studied by Fabrizio and  More generally, we may exparg) in the eigenstates of
Parola and TsvelfR?%?®to include interchain interaction. H',
We will compare our results with existing numerical and
perturbative analyses. We begin by briefly reviewing Ander- |¢0>:2 Caldn),  H'|bn)=enldn),
son’s criterion for coherence and its application to coupled n
free electron chains.

At)=2 cien(bnleM | pye Bot=2 |c|2ei(en o,
n,m n
(5)

8ur model is not dissipative, and the quanftft) possesses
Ofull time reversal symmetry, but the overl&gt) can display
damping due to the interference between modes of different
Ohmic background®¥ In the light of this analogy, these frequencyE, . In finite size systems, where one might expect

authors propose that the criterion for coherence should be tk’?a(t) Zventuallﬁ/ tﬁ rgturlnt_ to O”G'ngamp'”g can still be ob-
probability of the system returning to a specially preparedS€'vVed OVer ail pnysical ime scafes.

state during its intermediate time evolution after the sudden In order to extend their macroscopic analysis to correlatgd
introduction of hopping between chains at tihe 0. The systems, CSA study the rate of decay of the system from its

state in which the system is prepared is an eigenstate of th%riginal state after the introduction of hopping using Fermi’s
original Hamiltonian fort< 0 in which one of the two chains golden rule. They claim that an anomalous exporent; is
carries additional charge. This corresponds to the TLS hawufficient to impose a lower bountf on the value oft;

ing a nonzero probability of being found in one of its two needed to generate coherent interchain hopping, so for Lut-
states. A fully coherente.g., free electronsystem will tinger liquids witha exceeding;, arbitrarily weak interliquid
evolve away from its original state, but return to it over ahoppingcannotgenerate band structut®:??

II. CRITERION FOR COHERENCE

The arguments about coherence presented by Clark
Strong, and AndersoCSA) are rooted in an analogy be-
tween the problem of hopping between Luttinger liquids an
that of a two level systenfTLS) coupled to a dissipative
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Mila and Poilblanc have calculated the Fourier transform t, U
of the overlapA(t) numerically for a number of L t-J [Ho H]=— TZ NP S+ ! 2yt ]
ladders®® and find that the coherence demonstrated by this e
guantity in the limitt, —0 is not simply determined by the +ni((27>[¢iT£23¢i<{>a+ lﬂ;rfl;lﬂi(%)g]- (10)

anomalous scaling parameter found in the spectral function
for an isolated chain, as suggested by CSA, but is consider-
ably enhanced near integrable points of the single-chdin The quantity{H, ,H] does not commute with either part
plane. They suggest that this may be understood in terms @f H, on account of the terms of the form
the level statistics of the problem; for an integrable systemy,!® (@@ ,(b) in the interaction, so complete coher-
the eigenstates with additional char§y&l are highly degen- ence is lost. At a microscopic level, this need not mean that
erate. Degenerate perturbation theory must therefore be apywterchain  hopping is entirely incoherent, only that
plied, tending to yield a splitting in energy levels linear in N®) —N(@) js not a good quantum number for the system and
t, and associated coherence. One could also say that lev@lat the interchain hopping has some incoherent part. We
repulsion in a nonintegrable system will tend to lead to amjight expect the orthogonality of the interacting and nonin-
bigger spread of frequencies entering the expression for thgracting ground states of the one-dimensiofidd) Fermi
overlap A(t), and so to a greater degree of damping ingas(measured by the paramete) to render interchain hop-
P(t).% ping highly incoherent, and so frustrate the formation of
We can also relate the behavior Bf(t) to conserved band structure in the interchain direction. In fact the issue is
quantities within the problem. In the case of free electronsnore subtle than this; the effect of the commutatb6)
Ho, commutes with all other terms in the Hamiltonian. We could be canceled by the introduction of an additional inter-
can exploit this fact to recover the known result for coherenyction termus; ,n@n®_ This will not restore fermionic

oscillations of charge between the two chainwithoutex-  gyasiparticle character to the electronic states of the indi-

plicitly considering the effect oHq, since in this case vidual chains in the absence Hif,, , butwill make possible
ot the macroscopically coherent evolution of the specially pre-
A1) = ol €™ o) (6)  pared state described above. Thus we must either reject our

macroscopic criterion for coherence described above, or ac-
cept that hopping between non-Fermi liquids can be entirely
Boherent. We draw the latter conclusion and illustrate this
point in more detail for a continuum model in the following

and Eq.(4) follows directly. The connection with conserved
guantities is more easily understood if we make a change t
binding/antibinding coordinates:

section.
1
c£,1”<k>=ﬁ[b2<k>+al<k>],
IIl. A SOLUBLE TWO-CHAIN MODEL
1 WITH ANOMALOUS DIMENSION
Cff”(k)=ﬁ[bl(k)—af,(k)]- (7) AND COHERENT INTERCHAIN HOPPING

We take as a general Hamiltonian for the coupled chain
We then see that the condition foompletecoherence is that problem
the HamiltonianH commute with

H=Ho+V|+V,. (12)
Ho, = _ti;, [bl(K)b,(k)—al(ka,(k)], (8

Here,
i.e., that the difference in the number of particles in the bind-
ing and antibinding bands be a good quantum number of the
system; if the original Hamiltonian may be diagonalized in
the basis of eigenstates of the perturbation then the originé’l‘ozkz;r ec(k)lely (ke (k) + 2 (ke (k)]
state will evolve completely coherently. The introduction of '
interaction can quickly be seen to spoil this property of the  —t, [c{YT(k)c(2 (k) +c@T(k)cY(k)]+[L—R], (12
Hamiltonian. For example, for the two-chain Hubbard model

H:H1+ H2+ HO y 1
: Vieor 2 galell(— el (@ +p(—a)p) (@)]
q>0,0,0"

M= =43 R+ 0+ 5 3 i, G- Do @)+ o~ i)
+ Gal (N =Ny, )2+ (NE) =N, )]
Mo~ B ulME U O gy LN NN NG, + (NN
giving X (N, =N ]+[L—R,q——q], 13
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1 2 ) " include spin is straightforward, and does not affect any of the

Vi=5r 2 gulp(—mpl () +p(—dpi (] arguments of this section, which relate chiefly to the anoma-
q>00,0" lous exponentr.)

+92¢[P(L1(3P(R2,3 (Q)+P(L2(r)( q)p(l) (@] If we rewrite the momentum-space Hamiltonian in terms

of collective coordinates
+ 04 [(NE) = N{g, )+ (N = N[,

+021[(NE) = NI, (Ngg = Neg, )+ (N = N{E,) W—fz—L [oR(@)+ ()],
X (Nigg:—Ngg) 1+ [L=R,a——q], (14
pnta)= 3 cill(p+arci(p) 15 = 7—L P +pM (-],
2
Y@= Lo (@) - PP (17
Niso= 2% Cin (P (P), (16 I

wherec()T(k) is the fermion creation operator with spin in- )= — [ (@)= p®()]
dex o= =*1, on the left(right) moving branchesri=L/R) q \/5 qL (@ =pP (@],
of the chain with indexi=1/2, and eg (k) =v¢(=k—ks)
(see Fig. 1 for clarification of labelsNeglecting all branch
mixing “backscattering” events, all four interactions in Fig.
2 have been expressed above in terms of electronic densiti
p{) (q). Theq=0 component of the interaction terms, which
contains information about chemical potential in the form of

a bare charged%(,, has been explicitly included. This will

(18

with [@(q),a'(q)]= 84, [a,8]=0 etc., we find that the
g@enc energy and interaction parts of the Hamiltonian take
on a particularly simple form, provided that we impose the

restrictiong,=9gas. = 9a, 92y =921 =9o. Then

be seen to be important in what follows. We have also made Pt o

the nonrestrictive assumption of a spin-independent interac- 4, 94

tion so thatg''=g'!=g. This may easily be relaxed. . - T
To illustrate more clearly the fact that the spectral prop- |1_ i:_ '; L

erties of an isolated chain are not always an accurate guide to
the coherence of interchain hopping in a two-chain model,
we will consider below a special soluble point of the inter-
acting problem. In the interests of clarity we will suppress
spin dependence. We will look at the issue of spin-charge

separation later(In fact the generalization of the model to o ' G' c'
L L
v T 2 2
i €W etc. etc.
L
2L ,
Ggo [efo3
2, 9,
[ (s}
L L G G
1 1 L L
1
c' o' f '
[s) g
R R R R
2 2
etc. ete.

k B
FIG. 2. Examples of chain and branch indices for the four in-
FIG. 1. Dispersion relations for the four branches of the two-teraction terms kept in the bosonic treatment of the two-chain prob-
chain Luttinger model, showing interchain hopping lem.
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A+i(vit—x)
et+i(vit—x)

1
X . .
[X—v t+ie]¥x—vsit+ie]'?

AZ al2 ILX
Ativ.n22 7%, )

and (22

where a={1-[g,/(gs+ )12 ¥2—1 and v,=[(ve
+04/m)2—(g,/7)?] Y2 A is a length scale set by the range
Ve 2 949 4 N of interaction. The effects of interaction on the model are
~ &, - Le'(@a(a)+p(a)B(q)] apparent in the branch c(analogous to “spin/charge” sepa-
ration v,#v;), and in the anomalous scalinG(sx,st)
E 920 + =s 179G(x,t). The eigenstates of this spinless coupled
+q>0 | La(@B(—a)+a(-a)B(a)] two-chain model are clearly bosonic, and it is possible to
show explicitly that the interacting ground state is orthogonal
049 0.2 0uo to the noninteracting ground state. We wish to emphasize
+ T [Na=Ng) "+ (Ng=Np)“] that the same results are obtained in the limit-0 as in the
absence of, , and to remark that this model may be mapped
20,9 0 0 onto the case of a single chain of spinful electrons in a mag-
. L(Na=Ng)(Ng=Np)], (200 netic field.
We also learn from this correlation function that the
Fermi surface shifthavesurvived the introduction of inter-
with NZZN%: J2N° and N‘;: NgztlL/\/Em)f. action, despite the consequent Luttinger liquid character of
Physically this choice of interaction corresponds to hay-motion along the chains. The momentum distributig(k)
ing equally strong interchain and intrachain interaction, atVill have power law behavion(k—k¢)~(k—k)® in both
least for the smaltj regime of the bosonization. While this the bl.ndmg and antibinding bands, but with different values
condition is unlikely to be met in the majority of quasi-one- ©f Kr in €ach band. , , ,
dimensional conductors, we note in passing that a number cg This is strongly suggespve of coherent electrqnlc motion
“ladder” compounds, with nearly isotropic coupling be- etween the chains, and in fact for our model with the spe-
tween well-spaced pairs of one-dimensional chains, have r&ial choicegz, =02=02: 9a. =94 =0a,
cently been synthesizéd.
_ The Hamiltonign for the spinl_ess two-ch_ain system above [Ho. ,Vj]=—[Ho. V.1, (23)
is then quadratic, and describes two independent one-
dimensional systems. It may be solved directly by canonical

transformation. We can therefore proceed to calculate th("%md the quantity(t), Eq. (1), behaves exactly as in a free

correlation functions for the particles in binding and amib_electron gas. This is despite the fact that the single-particle
o . P nding .~ correlation functiondoes notpossess a pole at the Fermi
inding bands, using the methods standard in the bosonizati

. . . , HMomentum, and that the interacting ground state is orthogo-
literature. The correct noninteractingetarded Green's ., 5 the noninteracting ground state. We understand from
function can be correctly recovered from the bosonic exprésge commutator above that the source of any incoherence of
sion forH, using Ref. 35 to give hopping between chains in a more general two-chain model
are those nonbranch conserving terms in the Hamiltonian

which render the model insoluble by bosonization, and

L expoik . which give rise to the rich variety of dominant fluctuations

T _ b eXpTikeX 1X found by scaling arguments.

<¢1R(X’t)¢lR(0’o)>°_ﬂ X—vst+i Ecos( _) » (2D An aI)t/ernativg ph%/sically motivated test for the coherence

of hopping between the chains is provided by the interchain

_ o ) _polarization response function, whose associated spectral
demonstrating the continuity between the collective bosonigunction is given by

and single-particle fermionic descriptions at the noninteract-

ing point. The effect of interchain hopping on free electrons P it

is to introduce a cosine modulation in the single-particle cor- pan(w)= fo dte”"'Im([AN(t),AN(0)]), (24
relation function on a single chain reflecting the Fermi sur-

face shifts associated with the formation of binding and anwhere the operatoAN=N;—N, is the difference between
tibinding states. This vanishes continuouslytas-0. We  the number operators for a given branch of the two chains.
may find the correlation function for our spinless interactingFor free electrons with linear dispersion this may easily be
model by direct analogy with careful treatment of the one-shown to be monochromatic—the only frequency entering
chain spinful case the response is the binding/antibinding energy gap. 2Ve

Ho= kE vigla’(@)a(a)+ BT (@) B(a)+¥'(a) y(q) (PIa(x,1) ¥1r(0,0) =2|—Trexq —ikx)

O

+0N(e) 8]+ T (NG= N2+ (Ng~N§)?

+ (N, =N+ (Ns—N3)?], 19 %

+
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may recover the same result from the bosonic forriigly  fer a “real” electron, with a corresponding nontrivial adjust-

calculating[Hg,[Hg,AN]] to show ment in the spin and charge excitations on each chain. Na-
ively we might expect this to frustrate hopping between
#*AN 5 chains, and so prote¢it least partiallythe one-dimensional
2 (2t,)°AN, (29 interacting Fermi gas from the destabilizing effects of higher

dimension. Even if spin-charge separation alone is not
reflecting the fact thaA N is nota good quantum number in enough to generate confinement of the electrons on a single
the presence of hopping. This commutator would vanish, irchain, it might be expected to reduce the coherence of hop-
both the interacting and the free electron case, were thping between chains and, by reducing the “phase memory”
chemical potential terms in the Hamiltonian to be neglectedof the transferred electron, to hinder the formation of band
The finite expectation value ofAN)2~2t, in the noninter-  structure perpendicular to the chains. In this section, we will
acting ground state may then be understood in terms of theonsider a soluble one-branch, spinful, two-chain model with
zero point motion of a simple harmonic oscillator withN interchain and intrachaig, interaction, and assess the effect
as its coordinate, and canonical momentum proportional t®f the spin-charge separation which it exhibits on the coher-
the current operatar}c,— clc,. The inclusion of our special €ence of hopping between chains.
interaction does not change this result; again we find a We may solve the one-branch model of an electron gas
monochromatic  polarization response function andWith Iinear dispersion and forward scattering interactions by
ANZ?~2t, , confirming the coherent nature of the hopping. Posonization:

We see that it is possible to propose a model for a two-

chain system which is a Luttinger liquid in the chain direc- ) b 1

tion for any finite g, and to show directly from the Hamil- ~ Hi= >, vi(k—kpclP(k)clP (k) + ETH > (94 8o
tonian, from the correlation functions, or from the response 7 g.0.0"

of the system to interchain polarization, that it displays fully +g‘w 5070,)p571)(q)p£71,)(_q), (26)

coherent hopping between the chains, with associated shifts

in the “Fermi surface”for any finite t . These two proper-

ties are thus found in this special case to be entirely indepeRgnere ,(1)(q) is the Fourier transform of the density opera-
dent of one another; anomalous scaling in the chain directiog,, o, eolectrons with spin index on the chain with index

coexi_sts_\{vith_coherent hopping in the inte_rchain direction.; | fact it is possible also to solve exactly the two-chain
The intuitive idea that the spectral properties of the mOdebrobIem

for t, =0 determine the possibility of confinement at finite
t, is seen in this instance to fail completely.

We may generalize those arguments which relate to the H=H;+Hz+Ho,, (27)
commutation relations of the hopping termNochains sim-
ply by including a nearest neighbor interchain interaction
between each pair of chains to cancel the undesired commu-  Ho, = —t, >, ¢l P(k)cP(k)+c!@ (k)P (k) (28
tator [V|,Hq ]. However, the generalization of the ko
bosonization scheme to the evaluation of correlators for th% . . . .
N-chain case is not quite so straightforward. Thus while it?Y eXPressinddo, in terms of the bosonic representation of
seems to be possible to achieve coherent interchain transp electronic field opzeﬁrators on each chain, as illustrated by
in a two-chain model without the formation of a pole in the Faprizio and Parol&:*® The Hamiltonian can then be ex-
correlation function, it is not clear that we may make thePreSsed in a basis comprising four branches of spinless fer-
same statement about a¥-chain model. Our two-chain Mions with linear dispersion
model is also insensitive to the sizetof, but should not be
considered physical for any value tf bigger than a scale
set by the curvature of the real free fermion dispersion and
the interaction rangd.

Hy+ Hﬁgo u k[al(k)a,(k)+b!(k)b,(k)]

+ugk[al(k)a (k) +bl(kb,(k)], (29

IV. COHERENCE OF HOPPING
AND SPIN-CHARGE SEPARATION z ; +
Ho, ——2t b, (K)b,(K)+ b, (k)b,(k), 30
Spin-charge separation is perhaps the best known of the o &0 )0k (0bs(k) 30

unusual properties of the one-dimensional interacting elec-

tron gas. In the Luttinger moddfor which the Luttinger where

liquid ground state is an exact solutjorit has its origin in

the fact that the elementary excitations of the gas are not ( W+ w) ( W_ w)

fermionic quasiparticles, but rather bosonic collective u,=uv+ 94] 794 —vt 94| —9a])

modes. In the presence of a spin-dependent interatdiorh P 2m 7 2m

as an exchange potenliathe modes associated with spin

and charge degrees of freedom need not disperse with thEhis may be diagonalized by canonical transformation to

same velocity. yield four branches of free, spinless, fermions with disper-
A hopping term of the form oH,, , however, must trans- sion

(31)
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€,(K)=u.k, €,(k)=u.k, €,(K)=U,aK,  €,(K)=Ugak,

1 1 s 2
ei(k):z(uﬁug)kt E(up—ua) +4t7, (32 1 1
et(k): E(upb+ u(rb)ki \/E(upb_ ulrb)2+4ti' (37)
and the ground state found by filling the fermion branch with
dispersione_(k) up to the chemical potentigh=0. The
expectation value of the number operantfP’ — N® can be
calculated and is strongly suggestive of the formation ofrhe ground state expectation value &f)—N® is then

andu, replaced byu,, andu,,. There is full coherencihe
) N(@) prefactor(34) equal to ong¢ when the dispersior.. (k) is
(N —N&) 1 u,\4t, . . . . )
= Inl =2 |—. (33 linear ink. This happens not just when a@),’s are equal to
L Upy=Us Ug) 2 zero (the noninteracting cagéut also wheng)i=g}! . In
_ either casg H,+H,,H, ]=0. In the special case of equal
b'” fact the commutatdrH; +H;,H, ] does novanish, so  interchain and intrachain interactions, we may solve the
N®)—N® is nota good quantum number for the system, butmodel directly by bosonization, obtaining the same ground

it is clear that the splitting of energy levels duettois only  state and correlators as are found by refermionization :
partially suppressed. Those terms in the Hamiltonian which

do not commute wittN® —N® give rise to the prefactor

(PH(X,0) p(0,0)) ~ €Ki FAKDX(x —y (t 41 €) ~ Y2 x— U pt

1 u 1
In| 2]<—, (34)
u,—U, U, vy

+ie) Vi x—u,pt+ie) 4 (39
which would be unity in the free electron case. It is a con-

sequence of the curvature & (k), which depends on both Whﬁr?ﬁekf:r:ér/;féa . the prefact8d) is less than one and
t, andu,—u,, and indicates a suppression of dispersion in 9 S€, pr IS 1ess

the interchain direction in the presence of spin-charge Sepagl_epgn(_js on the relatl\{e strength of the_ mterch_am and inter-
chain interactions. This result is consistent with the argu-

rationu,# U, . As such it may be taken as a measure of the 20 , X
incoherence of hopping between chaihs. ments c_)f_ CSA” who also co_nS|der_ the model studledl

It is not difficult to generalize the model of Fabrizio and Py Fabrizio and Parola. They find evidence of macroscopic
Parola to include interchain interaction; the structure of thecoherence for times much less tha(27AN/L)(u,
Hamiltonian is altered only in that trek) andb(k) fermi- —u,)] 1

ons acquire different velocities,

V. CONCLUSIONS

Hy+Hyo— 2 [u,akal(k)a,(K)+u,pkbl(K)b,(K) We have shown that it is possible for a two-chain system
k>0 . .
to show both coherent hopping between chains and the
+Uaaka,Tr(k)aa(k)+U(rbkb:rr(k)ba(k)], anomalous intrachain scaling characteristic of a Luttinger
liquid. For the two-chain Luttinger model, which we can
(39 solve exactly for a special choice of interchain interaction,
we do not find any evidence for the formation of a pole at the
where Fermi surface. In general, we find that the degree of coher-
(gTHgTHg” +glh ence observed in the interghain hopping depends rather sen-
U=uv+ 4] T 94 T 94l T 94l ' sitively on the precise details of the interactions both on the
g 2m chains and between the chains and may not always be esti-
mated from the spectral properties of the individual chains
(94] +9if—gkl —ait alone.
Upp=vi+ 2 ' A simple one-branch model exhibiting spin-charge sepa-
ration is found to be neither completely coherent nor com-
_ (QM - gjuﬂl +g4] +0ht pletely incoherent in its macroscopic evolution, and we draw
Ura=05F 2T ' the conclusion, in line with other authors, that spin-charge
separation alone may suppress, but is not sufficient to pre-
T (QH_QH_QHJFQH (36) vent, the formation of band structure in the hopping direc-

tion. Again, for a special choice of interchain interaction it is

possible to arrive at a model which displays both spin-charge
The dispersion of the four fermionic branches after diago-separation and completely coherent hopping between chains.

nalization is thus modified to give Although the restriction on interaction imposed by the

2
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