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Electronic states on a fractal: The consequences of self-energy variation
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A tight-binding model on the Koch curve with different self-energies on certain sites is investigated. The
energy spectrum and the wave functions are analyzed by means of transfer matrices. An exact analysis of the
band splitting process leads to a precise classification of the band-edges states, which fall into three infinite
subsets formed by extended, localized, and fast growing self-affine states. Numerical investigation indicates
that the model also admits an infinite number of exotic states. The present results are compared with those of
a previously analyzed tight-binding model with next-nearest-neighbor interactions on the same fractal. A
comparative discussion of these results distinguishes spectrum and state properties dependent on the details of
the model from those which are common to both models and depend only on the geometry of the fractal.
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I. INTRODUCTION

The investigation of electronic states onnonramified
fractals1,2 profits from the huge amount of new metho
which have been developed and information which has b
gathered for quantum systems in aperiodic linear chains3–6

The fractal dimension which characterizes the geometry d
not play a relevant role for the dynamics of models co
structed on such sets, which can be shown to be topol
cally equivalent to one-dimensional structures. On the ot
hand, the scale invariance associated with the geometr
the fractal can be used to construct models where a non
odic ordering is superimposed upon one-dimensional st
tures, such as the aperiodic linear chains which have pro
very useful in mimicking the effect of disorder in physic
systems.7

The results obtained for aperiodic chains have identifi
their characteristic types of quantum states~extended, criti-
cal, or localized! and the correponding nature of the ener
spectrum ~absolutely continuous, singular continuous,
pure point!. The occurrence of different types of states
different models depends on some global features of the
riodic potential of the model, in particular, whether it
continuous3 or has finite5 or infinite8 discontinuities. It is also
found that the existence of a finite threshold value of
potential for a transition in the character of the states depe
on these general features of the potential. Despite h
progress made recently in the classification of states, h
ever, the picture is not yet complete, and it is expected
the investigation of further aperiodic or quasiperiodic mod
~e.g., those obtained by hyperinflation rules9! will reveal ad-
ditional qualitative and quantitative phenomena.

Undoubtedly, the most important innovation in the me
ods used to analyze quasiperiodic chains is the introduc
of concepts of dynamical systems analysis.5 These methods
which were developed to study the trajectories of nonlin
maps in phase space, often provide rigorous results in
quantum case too. The approach takes advantage of the
550163-1829/97/55~19!/12956~7!/$10.00
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mulation of the Schro¨dinger equation of discrete tight
binding models in terms of transfer matrices~TM’s! and de-
rives maps which relate elements of the TM’s of success
generations of the construction of the aperiodic model
terms of periodic approximations. This scheme has an e
broader applicability since the continuous Schro¨dinger equa-
tion can be exactly transformed into discrete tight-bindi
form.10

Among the main results which were obtained by usi
these tools we mention the finding that the Cantor set st
ture of the energy spectrum11,12 can often be induced from
the iteration of a low-dimensional system of discrete ma
~in the case of models based on the Fibonacci sequence
system is actually reduced to a single map5!. The invariant
sets of maps involved, like fixed points, higher-order pe
odic cycles, or higher-dimensional invariant manifolds, a
related to certain quantum states and their several perti
properties. Particularly it has been shown that higher-or
cycles are related to the energy dependent scaling expo
of the spectrum, e.g., for the Fibonacci sequence based m
els, cycles of order six and two controls, respectively, scal
at center and edge of the bands.13–15 Scaling behavior of
critical wave functions also follow from the eigenvalues
the linear stability analysis of the invariant sets.13 The local-
ization length of the states in question is related to
Lyapunov exponent evaluated along the orbits of th
maps,15 while multifractal measures can be used to ident
their character.16

A second important method is provided by renormaliz
tion transformations for the evaluation of the Green’s fun
tions associated with the Hamiltonian under investigati
The successive decimation of sites in the chain, generati
renormalization of the site energies and hopping terms, le
to a virtual decoupling of the sites from their neighbors.
the infinite limit of decimation the contribution of all sites o
the chain to the Green’s function is collapsed onto the s
viving diagonal element. This method had been first int
duced for analyzing the effect of configurational disorder
12 956 © 1997 The American Physical Society
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random systems,17 but has been latter applied with success
the analysis of fractal structures,18,19 hierarchical
lattices,20–22or deterministically disordered chains23,24where
exact renormalization schemes may be established.

A tight-binding model based on the aperiodicity defin
by a certain nonramified fractal~the Koch curve! has been
analyzed previously, in an exemplary way, by the auth
with the help of both transfer matrix25,26 and Green’s
function27 methods. This model includes nearest-neigh
hopping for every site as well as next-nearest-neigh
~NNN! hopping for a well-defined set of sites, which depe
on the law of generation of this geometrical fractal. The
sults indicate that the system supports an extraordinarily
variety of states, whose main properties can be either
tained analytically or may be computed numerically w
high accuracy. Among the most important aspects we m
quote the abundance of critical and localized states;25 the
absence of a finite threshold value of the NNN hopp
strength for the change in the character of quant
states;25,26 a precise classification scheme for the quant
states of the model, based on the four-adic expression o
values of the integrated density of statesk;26 and the exact
evaluation of the density of states, taking into account all
different contributions of nonequivalent sites for the Gree
function.27

This series of investigations laid out in detail seve
properties of a single model, but left open the importa
question of whether the properties of the quantum states
generic for that particular geometry or whether some of th
are dependent on the details of the model. A definite ans
to this question, if available, is almost as important as
solution of a large set of models. A most convenient way
side step the typical difficulties of finding exact results
generic problems is to gather evidence through the ac
analysis of several model cases. In this work we follow t
strategy. To resume the discussion we consider the m
simple but similar tight-binding model on the same nonram
fied Koch fractal, where the perturbations which distingu
it from the linear chain are caused by different values
self-energies.24 This form limits the effect of nonperiodicity
to single sites, and is able to give valuable answers to s
typical questions stated above.

This same question has been considered for models
fined on the basis of the Fibonacci sequence. For the m
first considered5 that sequence defines different on-diago
self-energies, whereas for a second model13,28 it prescribes
different strengths for hopping to neighboring sites. T
common geometric aspect to both models leads to sev
identical properties~e.g., the form of the trace map!, but the
different initial conditions for mapping reflect different prop
erties of individual quantum states.

Our model is analyzed with the help of some of the me
ods used in our prior investigations: the formulation of t
Schrödinger equation in terms of TM’s within the scheme
periodic approximation, the exploration of invariant sets
the nonlinear maps which link the matrix elements of t
TM’s of successive generations, the identification of t
character of the quantum states by the evaluation of
band-gap ratio, and also by the numerical integration of
corresponding Schro¨dinger equation. This work gives som
definite answers to the main question stated above~e.g., a
s

r
r

-
h
b-

y

he

e
s

l
t
re

er
e
o

al
s
st
-
h
f

ch

e-
el
l

e
ral

-

f

e
e
e

classification of the character of the states based on the f
adic expression of the value ofk), while the character of the
states, at least for a large subset, does depend on the d
of the model.

The rest of this paper is organized as follows: in S
II we introduce the model Hamiltonian and obtain the pe
nent maps for the matrix elements of the TM’s within th
scheme of periodic approximations. In Sec. III we discu
the spectrum, the properties of the invariant sets, and the
they are reflected in the subset of extended states. We
present the results of numerical investigation which indic
the existence of subsets of localized and critical states.
nally, Sec. IV closes the paper with a comparison of
present results with those obtained for the NNN system.

II. MODEL

As anticipated in the preceding section, we define
model with the same basic elements used in the NNN s
tem. We introduce the one-parameter Hamiltonian

HN5 (
nPZ

ltN~n!un&^nu1 (
nPZ

@ un&^n21u1un&^n11u#,

~2.1!

where we assume that the system is being constructed
periodic approximations labeled byN. The unit cell in each
approximation corresponds to the figure obtained in
Nth generation of the construction of the fractal.25 tN(n) is
the same function which selects those sites at the a
angles of the Koch curve used in the NNN system and
expressed by

tN~n!5d~n,0!1 (
s51

N21

d~4s/2,n@mod4s# !, ~2.2!

2 1
2 4

N,n< 1
2 4

N, tN~n14N!5tN~n! ;nPZ.

Deterministic disorder may appear in Eq.~2.1! as on-
diagonal autoenergy terms of magnitudel. The general form
of the Schro¨dinger equation following from Eq.~2.1! is

am211@ltN~m!2E#am1am1150. ~2.3!

We make use of the formalism of transfer matrices a
write Eq. ~2.3! as

um115Tmum , ~2.4!

where

um5S am

am21
D , Tm5S tm 21

1 0 D , ~2.5!

with

tm5E if tN~m!50, tm5E2l if tN~m!51.
~2.6!

We observe that the matricesTm have only two different
forms, henceforth calledR and Q, according to whether
tN(m) equals 0 or 1. With the help of Eq.~2.4! it is possible
to obtain a single TM, expressed by the product ofp matri-
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12 958 55R. F. S. ANDRADE AND H. J. SCHELLNHUBER
ces Tm , which relates the vectorsum1p with um for any
value of p. In particular, for each periodic approximatio
N, we can obtain matricesAN which describe the effect of a
whole unit cell in that approximation. It is straightforward
observe that theAN obey the following recurrence rule
which is characteristic for this fractal25,29

AN115AN
2BAN

2 , ~2.7!

whereA05R andB5R21Q.
All relevant information concerning the band structu

and quantum states of the model is contained in the map
the matrix elements which are derived from Eq.~2.7!. Due to
the conservation of probability flow, which require
detAN51, it is possible to derive a closed system of only tw
mapping equations in terms of the variablesjN5TrAN and
wN5(AN)12. They read

jN115~jN
222!2221lwNjN~jN

222!,

wN115wNjN~jN
222!1lwN

2 jN
2 . ~2.8!

The map~2.8! has some similarities with its counterpart
the case of the NNN system. However, as we will see in
next section, the invariant sets of the map for the old a
new models have quite different properties and it is natu
that this will be reflected in the nature of the quantum sta
Nevertheless it turns out that some of the properties of
NNN system which were related to its attracting sets s
persist in the present case, in spite of the fact that the
namics of the new maps are different.

III. SPECTRUM, INVARIANT SETS,
AND QUANTUM STATES

A. Spectrum

The band splitting process in successive periodic appr
mationsN is dictated only by the behavior of Eq.~2.8!. For
eachN, the spectrumsN is the set of energy values fo
which ujN(E)u<2. It is obtained after the successive iter
tions of Eq.~2.8!, subject to the initial conditions

j05E, w0521. ~3.1!

It is straightforward to certify that, for any valuelÞ0,
the system~2.8! leads to a band splitting process similar
that obtained for the NNN system: each subband of
Nth generation will split into four subbands in theN11th
generation, each one containing 1/4 of the states of theNth
generation subband. Thus, in the limitN→`, sN has exactly
the same kind of Cantor-set-like structure30 which was found
for the NNN system: it is quite clear that this property
directly linked to the geometry of the fractal substrate,
more specifically, to the rule used to introduce aperiodic p
turbations on the periodic structure.

B. Invariant sets

Information about the nature of the quantum states
lows from the direct integration of the Schro¨dinger equation
or from the analysis of the invariant sets of Eq.~2.8!. When
l50 the system~2.8! has three fixed points~FP’s!, namely
(2,0), @(216A5)/2,0#, and a fixed line (21,w). The inter-
or
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section of the fixed line with the planew50, (21,0), and
the three FPs are related to a trivial map of the homogene
chain onto itself, in which we perform a decimation of thr
out of each four original sites. WhenlÞ0 the only change
in the form of the invariant sets is the restriction of the li
(21,w) to the FP (21,0). This indicates that all dynamica
properties of the invariant sets of Eq.~2.8! reflect the prop-
erties of the quantum states of the linear chain, thus they
related to the occurrence of extended states. This fact c
trasts with what was observed in the analysis of the NN
system: the presence of exotic or critical quantum states
anticipated by the presence of new invariant sets which v
ished when the fractal model collapsed into the ordinary
ear chain system forl→0.

The eigenvalue spectra of the linear stability analysis
the four FP’s show that all of them are unstable, having
most one neutral and one unstable eigenvector, so tha
orbit can be progressively attracted by any of them. T
other possibility of starting exactly on the FP’s, must also
discarded as it is not compatible with the initial conditio
~3.1!. Therefore, these FPs can only be linked to exten
states whose corresponding orbits, described by Eq.~2.8!,
jump from far away in the phase space directly into the
The possible existence of such orbits can be better inve
gated with the help of the backward iteration maps, wh
are obtained by inverting~2.8! as

jN56A26AZN11, ~3.2!

wN5
jN11122ZN11

ljN~jN
222!

, ~3.3!

where

ZN115
~jN1112!2

jN11121lwN11
. ~3.4!

Let us suppose that theN11th iteration of a given orbit
will reach one of the FP’s, that is, (jN11 ,wN11)5(j,0),
wherej is any of the four possible values listed above. Th
~3.2!–~3.4! indicate thatwN50, and jN may assume four
different values, one of which isjN11 itself. Further preim-
ages of these preimages can be evaluated with the he
~3.2!–~3.4!, and we soon recognize that all points of this s
are of the form (j,w)5(j,0). Since the points visited by
true orbit generated with Eq.~2.8! have wÞ0, the set of
successive preimages does not bring much relevant phy
information.

An important exception to this general situation emerg
from a closer analysis of (jN11 ,wN11)5(2,0). In this case
the solutions of Eqs. ~3.2! and ~3.3! are
(jN ,wN)5(2,0);(22,0) and (0,wN) ~double degenerated!.
For this last situation the whole line (jN ,wN)5(0,wN) will
be mapped onto (2,0) in the next iteration. For a fixed va
of l this line certainly includes all subband centers, whi
become fixed band-end points for all further generations
detailed discussion of the effect of this dynamics in the cl
sification of the quantum states is given below. Besides t
it is possible to identify a further set of points which will b
mapped onto (2,0): it is the set of all preimages of the po
(jN ,wN)5(22,0). In the evaluation of the preimages of th



-

o
ol

o
ro
et
he
tio

E

s

d
em
um

l o
m
d
ia

in
e
er
,
h

a
rd
a

e
urth
ns
t-

r

25
lue
not

ain

he
nd-
of
-

e.
ated
in-
s is
ined

-
a

ad-
ed,
ound
to
the

ving
gap
in

d by
on-

sso-

55 12 959ELECTRONIC STATES ON A FRACTAL: THE . . .
point we observe that the equations~2.8! become degener
ated, so that the inverse-iteration expressions~3.2–3.4! are
no longer correct. The evaluation of the preimages
(22,0) goes along a path of its own, indicating that a wh
line of points, expressed by the relation

lwN21jN211jN21
2 2250, ~3.5!

will be mapped onto (2,0) after two iterations.

C. Quantum states

As mentioned before, the identification of the nature
quantum states follows from the investigation of the Sch¨-
dinger equation and of the properties of the invariant s
The relevant quantum number for the identification of t
states of quasiperiodic operators is the quantum rota
numberk(E) defined as30,31

k~E!5
1

pE2`

E

r~Ē!dĒ. ~3.6!

k(E) is a well defined function ofE in each finite order
periodic approximation and also in the limitN→`, when the
density of statesr(E) becomes a sum ofd spikes. In order to
simplify the discussion of the results let us assumel.0.
This represents no restriction, since we observe from
~2.8! that jN11(E,l)5jN11(2E,2l), so that if (E,l) be-
longs to the spectrum the same is true for (2E,2l). Also
the quantum states associated with (E,l) and (2E,2l)
have the same properties. The relation between the value
k for these two states is

k~E,l!512k~2E,2l!. ~3.7!

Understanding the link between the invariant sets an
few quantum states in the first iterate offers a general sch
for the classification of a large set of extended quant
states. Indeed, the effect of the first iteration of Eq.~2.8! on
the system, which can be described analytically, is typica
the higher-order iterations. An analogous treatment beco
impossible in the further successive iterates, where the
gree of the pertinent expressions increases exponent
with N.

In the first iteration the energy band of the linear cha
@22,2# is split into four subbands. If we make use of th
general discussion of the preimages of the FP’s we obs
that the band centerE5j050 will be mapped onto (2,0)
where it becomes a band edge in all future iterations. T
expressions of the other three roots ofj152 are not simple
and, since they do not satisfyw150 , they do not correspond
to FP’s. The same is true for the side centersE56A2 ,
which will be mapped onto (22,2l). On the other hand, we
note immediately that the other two roots ofj1522 are

j05
l6A81l2

2
. ~3.8!

These are precisely the roots of Eq.~3.5! with N50, i.e.,
w0521, and therefore will become fixed band edges
(2,0) in the second iteration. Moreover it is straightforwa
to realize that gaps are opened to the right of the centers
f
e
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of
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e-
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e
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side centers of the band@22,2# and to the to the left of the
points given by Eq.~3.8!. So we conclude that the right edg
of the second and the left edge of the second and fo
subbands will stay on the FP (2,0) for all further iteratio
N>2. The values ofk corresponding to the three states a
tracted by (2,0) are, respectively,k50.52 , 0.251 , and
0.751 . Since the value ofk remains constant within the
gaps, the indices1 or 2 indicate whether the value ofE
corresponding to thatk is approached from the right-hand o
left-hand side. In this notation, the values ofk corresponding
to the side centers of the zeroth-order generation are 0.2

and 0.752 . These band edges do not remain at a fixed va
of energy in successive iterations, and their behavior is
dictated by the properties of any FP.

This same situation will be repeated over and over ag
in the successive iterations of the map~2.8!: when any sub-
band is split into four it gives rise to three new values of t
energy which are attracted to the FP (2,0). The correspo
ing values ofk can be obtained by adding to the value
k at the edge of the subband in theNth generation the rela
tive contribution of theN11th. This is given by the same
scheme as before, but dividing those values by 4N. So we
conclude that in theNth generation the values ofk for these
states are

k5S 12 2n21

4N21 D
2

, n51,4N21 ~3.9!

k5S 2n21

4N D
1

, n51,234N21, ~3.10!

where the indices1 and2 have the same meaning as abov
As we have mentioned, the nature of these states is dict
by the properties of the FP (2,0), which stems from the l
ear chain. Therefore all of them should be extended. Thi
indeed the case, as can be confirmed by the results obta
from the band-gap ratio32 and the direct integration of the
Schrödinger equation~2.3!. We also observe that the four
adic expression of all values ofk in the above sets has
finite tail.

In addition to this set of extended states, the system
mits a set of exponentially localized states. As expect
these states are not related to the FP’s, and have been f
after several numerical investigations. They correspond
the generalization of those band side-center states that, in
first iteration, are mapped onto (22,2l). Thus, they are
placed just across some of the main energy gaps, each ha
an extended state as its immediate neighbor on the other
side. The values ofk for these states are related to those
Eq. ~3.10! and are given by

k5S 2n21

4N D
2

, n51,234N21. ~3.11!

The localized character of the state has been predicte
the band-gap ratio, which vanishes exponentially, and is c
firmed by the integration of Eq.~2.3!, as illustrated by Fig. 1.

We now turn to analyze the character of the states a
ciated with the subset
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FIG. 1. Localized even wave function fo
k57/162 belonging to the set~3.11!. l50.1 and
E50.420 343 766 0 . . . .
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k5S 12 2n21

4N21 D
1

, n51,4N21. ~3.12!

Their elements share the same property as those of th
~3.11!: they are band-edge states which each have an
tended state as its immediate neighbor on the other gap
So it could be argued in a heuristic way that the states of
subset have the same properties as those of Eq.~3.11!, much
as the states of the sets~3.9! and~3.10! have similar proper-
ties. The numerical evaluation of the band-gap ratio supp
this argument in the sense that it decreases quite rap
whenN increases. However the integration of Eq.~2.3! un-
covers a completely different behavior for the correspond
state, whose typical traits are illustrated by Fig. 2. The m
striking feature is its divergent amplitude, present in bo
even and odd states, which increases faster than any p
law. However, the log-log plot of the wave function show
that the amplitude does not grow in an exponential way,
set
x-
de.
is

ts
ly

g
st
h
er

t

suggests that it has an envelope growing like ln(an);(lnn)p.
This is a hint that the behavior of the band-gap ratio sho
not decrease in an exponential way, but should, howe
decrease faster than any power ofN. The relatively small
number of approximations (;10) where it has been possib
to evaluate that ratio do not allow its analytic dependence
N to be obtained in an accurate way. Figure 2 also shows
these states are not self-similar but they are self-affine.
regularity with which the structures of both the envelope a
the inner part are reproduced is quite impressive. To
knowledge, quantum states with similar properties have
been reported in any discussion of dynamical properties
quasiperiodic quantum Hamiltonians.

Our further numerical investigation has identified sta
with similar features to those of the set~3.12! for several
other values of k, e.g., k52/3, l50.73,
E51.222 536 093 364 8 . . . . Weobserve that the four-adic
expression of 2/3 is 0.222 22 . . . . Also other states identi-
n
FIG. 2. Fast increasing even wave functio
for k51/21 belonging to the set~3.12!. l50.1
andE50.066 445 147 14 . . . . It has aself-affine
profile with two different scaling factors, valid
both for the envelope and smaller spikes.
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FIG. 3. Exotic even wave function fo
k54/7, which has the four-adic periodic ta
$210%. The band-gap ratio, evaluated wit
N<25, seems to converge very slowly to a fixe
value.l50.73 andE50.738 969 605 897 . . . .
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Finally, let us discuss the occurrence of exotic or critic
states. First of all it is important to recall that such states
the NNN system are associated with the existence of a c
cal FP, which is absent in the present case. So the iden
cation of such states proceeds only through the evaluatio
the band/gap ratio and the integration of Eq.~2.3!. In our
investigation we took advantage of results of the NNN s
tem, where such states were associated with a particular
set of values ofk: those values whose four-adic expressi
is characterized by an infinite periodic tail. So we conce
trated our attention on several states wherek belongs to the
subset referred to, especially on those values where the
otic character was more evident~e.g., k54/10, 7/10, 4/7!.
Our numerical investigation points toward the existence
critical states: the evaluation of the band/gap ratio~up to the
generationN525) converges to a finite value, showing th
the band splitting leads locally to a self-similar subba
structure, which characterizes the presence of critical sta
This prediction is confirmed by the integration of the E
~2.3!, which shows the presence of several bursts of incre
ing amplitude, separated by very large distances, as il
trated in Fig. 3.

IV. CONCLUSIONS

In this paper we have presented an investigation of
properties of spectrum and wave functions of a tight-bind
Hamiltonian on the Koch curve with on-diagonal factors
specific sites. Exact analytical results have been obta
within the scheme of periodic approximations and the use
the TM formulation of the pertinent Schro¨dinger equation.
The results have been also confirmed by the numerical i
gration of this equation.

This work follows a series of previous investigations o
NNN model on the Koch fractal. In the former case we e
ployed not only the methods quoted above,25,26 but also a
renormalization procedure for the exact evaluation
Green’s function and the density of states.27 The present
model has many interesting features of its own, both in
-

l
n
ti-
fi-
of

-
b-

-

x-

f

t

s.
.
s-
s-

e
g

ed
f

e-

-

f

-

spect to the spectrum and to wave functions. However, s
results were available for the NNN model, our main inter
was to obtain a deeper insight into the properties of quan
Hamiltonians on nonramified fractal substrates, identifyi
the features of the states which are directly linked to
geometryof the fractal and those which depend directly
thedecorationof the model.

We found that the band splitting process depends actu
only on the geometry of the fractal since it proceeds acco
ing to the same scheme which was identified in the case
the NNN system. We have also shown that a classification
the nature of the states in dependence on the value ofk can
also be made with the help of the four-adic expression of
value ofk. This suggests that the classification of wave fun
tions and the band splitting process are generic for any tig
binding model on the Koch fractal. Also, the argumentati
can be easily extended to the analysis of similar models
any nonbranching fractal.

On the other hand, the particular classification scheme
the quantum states is certainly model dependent. Thi
clearly evidenced by a comparison of the invariant sets of
maps~2.8! and their correspondent for the NNN system: t
FP’s here are the same as those of the linear chain,
indicate the presence of extended states while they are lin
to exotic states in the NNN system.

For the purpose of comparison of the classification
states in the two models, let us take first the states on
band edges, which have a finite tail in the four-adic expr
sion of k. In the NNN system almost all such states we
exponentially localized. Now part of these states is exten
and this character is explained by the fact that their co
sponding orbit is attracted by one FP. Another subse
formed by such states having localized character. Finally,
have identified a third set of states on band edges, wh
main feature is that they diverge faster than any power
N. This set is also related to a subset of extended states,
to our knowledge, this kind of behavior is completely new
the context of quantum states of quasiperiodic o
dimensional operators.

The evaluation of the band-gap ratio indicates the ex
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tence of critical states for several values ofk which also
admit similar states in the NNN system. The integration
the Schro¨dinger equation also reveals the existence of criti
states, although this fact cannot be directly derived from
renormalization equations as in the former model.
er

.

f
l
e

To conclude we state that the investigation of this mo
indicates the presence of extended, localized, and crit
states, all of which seem to be dense along thek axis. This
behavior is different from that of the NNN system, whe
only localized and critical states were found to be dense
n.

s.
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