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Electronic states on a fractal: The consequences of self-energy variation
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A tight-binding model on the Koch curve with different self-energies on certain sites is investigated. The
energy spectrum and the wave functions are analyzed by means of transfer matrices. An exact analysis of the
band splitting process leads to a precise classification of the band-edges states, which fall into three infinite
subsets formed by extended, localized, and fast growing self-affine states. Numerical investigation indicates
that the model also admits an infinite number of exotic states. The present results are compared with those of
a previously analyzed tight-binding model with next-nearest-neighbor interactions on the same fractal. A
comparative discussion of these results distinguishes spectrum and state properties dependent on the details of
the model from those which are common to both models and depend only on the geometry of the fractal.
[S0163-18207)01519-1

I. INTRODUCTION mulation of the Schidinger equation of discrete tight-
binding models in terms of transfer matrid@3Vi's) and de-

The investigation of electronic states aronramified rives maps which relate elements of the TM’s of successive
fractals? profits from the huge amount of new methods generations of the construction of the aperiodic model in
which have been developed and information which has beeterms of periodic approximations. This scheme has an even
gathered for quantum systems in aperiodic linear chiihs. broader applicability since the continuous Salinger equa-
The fractal dimension which characterizes the geometry doetion can be exactly transformed into discrete tight-binding
not play a relevant role for the dynamics of models con-form.*°
structed on such sets, which can be shown to be topologi- Among the main results which were obtained by using
cally equivalent to one-dimensional structures. On the othethese tools we mention the finding that the Cantor set struc-
hand, the scale invariance associated with the geometry afire of the energy spectrdft? can often be induced from
the fractal can be used to construct models where a nonpetthe iteration of a low-dimensional system of discrete maps
odic ordering is superimposed upon one-dimensional strudin the case of models based on the Fibonacci sequence this
tures, such as the aperiodic linear chains which have provesystem is actually reduced to a single MafThe invariant
very useful in mimicking the effect of disorder in physical sets of maps involved, like fixed points, higher-order peri-
systems. odic cycles, or higher-dimensional invariant manifolds, are

The results obtained for aperiodic chains have identifiedelated to certain quantum states and their several pertinent
their characteristic types of quantum statestended, criti- properties. Particularly it has been shown that higher-order
cal, or localizedl and the correponding nature of the energycycles are related to the energy dependent scaling exponent
spectrum (absolutely continuous, singular continuous, orof the spectrum, e.g., for the Fibonacci sequence based mod-
pure poinj. The occurrence of different types of states inels, cycles of order six and two controls, respectively, scaling
different models depends on some global features of the apat center and edge of the barlds!® Scaling behavior of
riodic potential of the model, in particular, whether it is critical wave functions also follow from the eigenvalues of
continuous or has finité or infinite® discontinuities. It is also  the linear stability analysis of the invariant s&tsThe local-
found that the existence of a finite threshold value of theization length of the states in question is related to the
potential for a transition in the character of the states dependsyapunov exponent evaluated along the orbits of these
on these general features of the potential. Despite hugmaps!® while multifractal measures can be used to identify
progress made recently in the classification of states, howtheir charactet®
ever, the picture is not yet complete, and it is expected that A second important method is provided by renormaliza-
the investigation of further aperiodic or quasiperiodic modelgion transformations for the evaluation of the Green’s func-
(e.g., those obtained by hyperinflation rflewill reveal ad-  tions associated with the Hamiltonian under investigation.
ditional qualitative and quantitative phenomena. The successive decimation of sites in the chain, generating a

Undoubtedly, the most important innovation in the meth-renormalization of the site energies and hopping terms, leads
ods used to analyze quasiperiodic chains is the introductioto a virtual decoupling of the sites from their neighbors. In
of concepts of dynamical systems analysEhese methods, the infinite limit of decimation the contribution of all sites of
which were developed to study the trajectories of nonlineathe chain to the Green’s function is collapsed onto the sur-
maps in phase space, often provide rigorous results in theiving diagonal element. This method had been first intro-
guantum case too. The approach takes advantage of the fatuced for analyzing the effect of configurational disorder in
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random system¥/, but has been latter applied with success toclassification of the character of the states based on the four-
the analysis of fractal structurd$!® hierarchical adic expression of the value @), while the character of the
lattices?’~?or deterministically disordered chafi€*where  states, at least for a large subset, does depend on the details
exact renormalization schemes may be established. of the model. _ _ _

A tight-binding model based on the aperiodicity defined The rest of this paper is organized as follows: in Sec.
by a certain nonramified fractdthe Koch curve has been Il we introduce the model Hamiltonian and obtain the perti-
analyzed previously, in an exemplary way, by the authord!e€nt maps for _thg matrix ellemt_ants of the TM’s W|th|n the
with the help of both transfer matd%® and Green’s scheme of periodic approximations. In Sec. lll we discuss
functior?” methods. This model includes nearest-neighboﬁhe spectrum, the properties of the invariant sets, and the way
hopping for every site as well as next—nearest-neighbthey are reflected in the subset of extended states. We also

(NNN) hopping for a well-defined set of sites, which dependprese”,t the results of numerical investigation. yvhich indicatg
on the law of generation of this geometrical fractal. The re—the existence of subsets of Iocallzgd and cnucal states. Fi-
sults indicate that the system supports an extraordinarily ricia!ly: Sec. IV closes the paper with a comparison of the
variety of states, whose main properties can be either opRresent results with those obtained for the NNN system.
tained analytically or may be computed numerically with

high accuracy. Among the most important aspects we may Il. MODEL

quote the abundance of critical and localized st&tethe As anticipated in the preceding section, we define the

absence of a finite threshold value of the NNN hOppingmodel with the same basic elements used in the NNN sys-

strength _for the_ change__ in_ the character of quantumeg, “we introduce the one-parameter Hamiltonian
states’™2?% a precise classification scheme for the quantum

states of the model, based on the four-adic expression of the
values of the integrated density of state2® and the exact ~ Hn= 2, Atn(n)[n)(n|+ 2, [|n)(n—1|+[n){n+1[],
evaluation of the density of states, taking into account all the nez nez 2.1)
different contributions of nonequivalent sites for the Green’s '
function?’ where we assume that the system is being constructed by
This series of investigations laid out in detail severalperiodic approximations labeled By. The unit cell in each
properties of a single model, but left open the importantapproximation corresponds to the figure obtained in the
question of whether the properties of the quantum states aféth generation of the construction of the fractaty(n) is
generic for that particular geometry or whether some of thenthe same function which selects those sites at the acute
are dependent on the details of the model. A definite answeangles of the Koch curve used in the NNN system and is
to this question, if available, is almost as important as theexpressed by
solution of a large set of models. A most convenient way to
side step the typical difficulties of finding exact results to
generic problems is to gather evidence through the actual
analysis of several model cases. In this work we follow this
strategy. To resume the discussion we consider the most
simple but similar tight-binding model on the same nonrami-
fied Koch fractal, where the perturbations which distinguish Deterministic disorder may appear in E.1) as on-

it from the linear chain are caused by different values Ofdiagonal autoenergy terms of magnitudeThe general form

self-energies® This form limits the effect of nonperiodicity ¢ ihe Schidinger equation following from Eq2.1) is

to single sites, and is able to give valuable answers to sucﬂ g q g '

typical questions stated above. am_1+ [N ty(m)—E]ag+am,1=0. (2.3
This same question has been considered for models de-

fined on the basis of the Fibonacci sequence. For the model We make use of the formalism of transfer matrices and

first consideretithat sequence defines different on-diagonalwrite Eq. (2.3) as

self-energies, whereas for a second mbtfélit prescribes

different strengths for hopping to neighboring sites. The Um+1= TrmUm, 2.9

common geometric aspect to both models leads to sever\a}\;here

identical propertiese.g., the form of the trace mapbut the

N—-1
ty(n)=48(n,0)+ Zl 5(4%2,n[mod%]), (2.2

—34N<n< 34N, ty(n+4N)=ty(n) VneZ.

different initial conditions for mapping reflect different prop- a -1
erties of individual quantum states. U= ", Tm:( " ) (2.5
Our model is analyzed with the help of some of the meth- Am-1 10

ods _ysed in our prior investigations: the formulation of the,,ii,
Schralinger equation in terms of TM’s within the scheme of

periodic approximation, the exploration of invariant sets of - =g if ty(m)=0, 7,=E—\ if ty(m)=1.

the nonlinear maps which link the matrix elements of the (2.6)
TM’'s of successive generations, the identification of the

character of the quantum states by the evaluation of the We observe that the matricds, have only two different
band-gap ratio, and also by the numerical integration of théorms, henceforth calle®R and Q, according to whether
corresponding Schdinger equation. This work gives some ty(m) equals 0 or 1. With the help of E.4) it is possible
definite answers to the main question stated abi@vg., a to obtain a single TM, expressed by the producpahatri-
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ces Tr,, which relates the vectors,,,, with uy, for any  section of the fixed line with the plang=0, (—1,0), and
value of p. In particular, for each periodic approximation the three FPs are related to a trivial map of the homogeneous
N, we can obtain matrice&y which describe the effect of a chain onto itself, in which we perform a decimation of three
whole unit cell in that approximation. It is straightforward to out of each four original sites. When+0 the only change
observe that theAy obey the following recurrence rule, in the form of the invariant sets is the restriction of the line

which is characteristic for this fractal®® (—1,¢) to the FP 1,0). This indicates that all dynamical
b o properties of the invariant sets of E@.8) reflect the prop-
An+1=ABAY, (2.7 erties of the quantum states of the linear chain, thus they are
whereA,=R andB=R!Q. related to the occurrence of extended states. This fact con-

trasts with what was observed in the analysis of the NNN

All relevant information concerning the band structure ) . "
and quantum states of the model is contained in the maps iSystem: the presence of exotic or critical quantum states was

the matrix elements which are derived from E27). Due to anticipated by the presence of new invariant sets which van-
the conservation of probability flow whi.ch. requires ished when the fractal model collapsed into the ordinary lin-

defAy=1, it is possible to derive a closed system of only two &7 chain system fax—0.

: ; ; : The eigenvalue spectra of the linear stability analysis of
mapping equations in terms of the variablgs=TrAy and
Epl g equan ! var N the four FP’s show that all of them are unstable, having at
on=(AN)12- They read

most one neutral and one unstable eigenvector, so that no

Ens1=(E2—2)2= 24 Nonén(£2—2), orbit can l.)e”progressi_vely attracted by any of them. The
N+1 N NENTSN other possibility of starting exactly on the FP’s, must also be
Ons1= OnEN(EE—2) N @D . (2.8 discarded as it is not compatible with the initial conditions

(3.1). Therefore, these FPs can only be linked to extended
The map(2.8) has some similarities with its counterpart in states whose corresponding orbits, described by (E®),
the case of the NNN system. However, as we will see in thgump from far away in the phase space directly into them.
next section, the invariant sets of the map for the old andrhe possible existence of such orbits can be better investi-
new models have quite different properties and it is naturafated with the help of the backward iteration maps, which
that this will be reflected in the nature of the quantum statesare obtained by inverting2.8) as
Nevertheless it turns out that some of the properties of the

NNN system which were rel_ated to its attracting sets still N 2+ /ZN+11 (3.2)
persist in the present case, in spite of the fact that the dy-

namics of the new maps are different. Eni1t2—Znes

NN E-2) 33
Ill. SPECTRUM, INVARIANT SETS, NASN
AND QUANTUM STATES where

A. Spectrum (§N+1+2)2

The band splitting process in successive periodic approxi- In+1= Ent1T 2+ Nonsr @4

mationsN is dictated only by the behavior of E(R.8). For
each N, the spectrumoy is the set of energy values for Let us suppose that thé-+ 1th iteration of a given orbit
v_vhich [En(E)|<2. It i_s obtained_ a_Lf_ter the sl_Jccessive itera- will reach one of the FP’s, that is&(1,¢n+1)=(£.0),
tions of Eq.(2.8), subject to the initial conditions where¢ is any of the four possible values listed above. Then
3.2—(3.4) indicate thatey=0, and &y may assume four
§0:E1 (PO:_l (31) ( ) ( ) ()N gN y

different values, one of which i§y. 4 itself. Further preim-
It is straightforward to certify that, for any value+0, ages of these preimages can be evaluated with the help of

the system(2.8) leads to a band splitting process similar to (3.2—(3.4), and we soon recognize that all points of this set

that obtained for the NNN system: each subband of thé'€ Of the form £,¢)=(£,0). Since the points visited by a
Nth generation will split into four subbands in te+1th  trué orbit generated with Eq2.8) have ¢+0, the set of

generation, each one containing 1/4 of the states oNthe successive preimages does not bring much relevant physical

generation subband. Thus, in the limit- 0, o has exactly informgtion. . . o

the same kind of Cantor-set-like structtfeshich was found An important exception to this general situation emerges
for the NNN system: it is quite clear that this property is from a cIos_er analysis 0féfy+1,¢n+1)=(2,0). In this case
directly linked to the geometry of the fractal substrate, orthe  solutions of Egs. (32 and (3.3 are

more specifically, to the rule used to introduce aperiodic per{én:®n)=(2,0);(=2,0) and (Opy) (double degeneratid
turbations on the periodic structure. For this last situation the whole lin€&,¢n) = (0,0n) Will
be mapped onto (2,0) in the next iteration. For a fixed value

of \ this line certainly includes all subband centers, which
become fixed band-end points for all further generations. A
Information about the nature of the quantum states foldetailed discussion of the effect of this dynamics in the clas-
lows from the direct integration of the Scliiager equation  sification of the quantum states is given below. Besides this,
or from the analysis of the invariant sets of EB.8). When it is possible to identify a further set of points which will be
A =0 the systen{2.8) has three fixed pointé=P’s), namely  mapped onto (2,0): it is the set of all preimages of the point
(2,0),[(—1%+/5)/2,0], and a fixed line £ 1,p). The inter-  (£y,en)=(—2,0). In the evaluation of the preimages of this

B. Invariant sets
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point we observe that the equatiof&8) become degener- side centers of the barjd-2,2] and to the to the left of the
ated, so that the inverse-iteration expressit®12—3.4 are  points given by Eq(3.8). So we conclude that the right edge
no longer correct. The evaluation of the preimages ofof the second and the left edge of the second and fourth
(—2,0) goes along a path of its own, indicating that a wholesubbands will stay on the FP (2,0) for all further iterations

line of points, expressed by the relation N=2. The values ofc corresponding to the three states at-
5 tracted by (2,0) are, respectivelx=0.5_, 0.25,, and
Non-18n-1TEN-1—2=0, (3.9  0.75.. Since the value ok remains constant within the

gaps, the indicest or — indicate whether the value &

corresponding to that is approached from the right-hand or

left-hand side. In this notation, the valueswotorresponding

to the side centers of the zeroth-order generation are 0.25
As mentioned before, the identification of the nature ofand 0.75 . These band edges do not remain at a fixed value

guantum states follows from the investigation of the Sehro of energy in successive iterations, and their behavior is not

dinger equation and of the properties of the invariant setsdictated by the properties of any FP.

The relevant quantum number for the identification of the This same situation will be repeated over and over again

states of quasiperiodic operators is the quantum rotatiom the successive iterations of the mg8): when any sub-

numberk(E) defined a¥3! band is split into four it gives rise to three new values of the

energy which are attracted to the FP (2,0). The correspond-

ing values ofx can be obtained by adding to the value of

x at the edge of the subband in theh generation the rela-

tive contribution of theN+ 1th. This is given by the same
«(E) is a well defined function oE in each finite order scheme as before, but dividing those values By 8o we

periodic approximation and also in the linNt—oc, when the  conclude that in thé&th generation the values af for these

density of statep(E) becomes a sum aof spikes. In order to  states are

simplify the discussion of the results let us assuneO.

This represents no restriction, since we observe from Eq. 12n-1

(2.8 that ¢y 1(EN)=éns1(—E,—N), so that if E,\) be- K= (5 2N T

longs to the spectrum the same is true ferH,—\). Also

the quantum states associated with,X) and (—E,—\)

have the same propertl_es. The relation between the values of = ( 2n 1) . n=12x4N-1 (3.10

k for these two states is .

will be mapped onto (2,0) after two iterations.

C. Quantum states

1 (8 —
K(E):;J:wp(E)dE. (3.6

) , n=14"1 (3.9

k(EN)=1=k(=E,—N). (8.7 \where the indices- and— have the same meaning as above.

As we have mentioned, the nature of these states is dictated

Understanding the link between the invariant sets and g, properties of the FP (2,0), which stems from the lin-

few guantum states in the first iterate offers a general schenb%r chain. Therefore all of them should be extended. This is
for the classification of a large set of extended quantu

states. Indeed, the effect of the first iteration of EX8) on Mhdeed the case, as can be confirmed by the results obtained

the system, which can be described analytically, is typical Ogom the band-gap ratié and the direct integration of the

the higher-order iterations. An analogous treatment becomesChr"c'jinger equation2.3. We also observe that the four-
) gner-o ) 1oge adic expression of all values of in the above sets has a
impossible in the further successive iterates, where the de-

. . . . finite tail.
\?vrifr? NOf the pertinent expressions increases exponentially In addition to this set of extended states, the system ad-

In the first iteration the energy band of the linear chainmitS a set of exponentially localized states. As expected,
oo lit into four subb n%y If we mak f th these states are not related to the FP’s, and have been found
[—2.2] is sp 0 four subbands. € make use ot IN€ xer several numerical investigations. They correspond to

general discussion of the preimages of the FP’s we obsery o — :
that the band centeE=£,~0 will be mapped onto (2,0), e generalization of those band side-center states that, in the

; . . : first iteration, are mapped onto—@,2\). Thus, they are
where it becomes a band edge in all future iterations. Th : . :

. ) laced just across some of the main ener aps, each havin
expressions of the other three rootséef=2 are not simple % Ju ! gy gap ving

i vl an extended state as its immediate neighbor on the other gap
and, since they do ngt satisgy, =0, thgy do not correspond side. The values ok for these states are related to those in
to FP's. The same is true for the side centBrs +/2 |

X . Eqg. (3.10 and are given by
which will be mapped onto-2,2\). On the other hand, we

note immediately that the other two roots §f= —2 are on—1
= . n=1.2x4N"1 3.1
A+ 8+A? “ ( 4N )_ (319
=% (3.8

The localized character of the state has been predicted by
These are precisely the roots of 8.5 with N=0, i.e.,  the band-gap ratio, which vanishes exponentially, and is con-
¢o=—1, and therefore will become fixed band edges affirmed by the integration of Ed2.3), as illustrated by Fig. 1.
(2,0) in the second iteration. Moreover it is straightforward We now turn to analyze the character of the states asso-
to realize that gaps are opened to the right of the centers arated with the subset
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FIG. 1. Localized even wave function for
«x=T7/16_ belonging to the sgB8.11). A=0.1 and
E=0.420343760... .

| L I 1 L ]
0 5000 10000 15000 20000 25000 30000 35000
n
12n-1 N_1 suggests that it has an envelope growing like/p€(Inn)P.
k=\5gNT| » n=l4Te (312 This is a hint that the behavior of the band-gap ratio should
n

not decrease in an exponential way, but should, however,

Their elements share the same property as those of the Sde?crease faster than any powerfef The relatively small
property number of approximations~10) where it has been possible

3.11): they are band-edge states which each have an ex- . : .
(3.19 Y g té) evaluate that ratio do not allow its analytic dependence on

tended state as its immediate neighbor on the other gap side. ! ; ,
So it could be argued in a heuristic way that the states of thil) {0 b€ obtained in an accurate way. Figure 2 also shows that
subset have the same properties as those ofEfl), much these ;tateg are not self-similar but they are self-affine. The
as the states of the se®.9) and(3.10 have similar proper- regu_lanty with which the structures of _bot_h the en_velope and
ties. The numerical evaluation of the band-gap ratio supportdl€ inner part are reproduced is quite impressive. To our
this argument in the sense that it decreases quite rapidgnowledge, quantum states with similar properties have not
whenN increases. However the integration of 8.3 un-  been reported in any discussion of dynamical properties of
covers a completely different behavior for the correspondingluasiperiodic quantum Hamiltonians.

state, whose typical traits are illustrated by Fig. 2. The most Our further numerical investigation has identified states
striking feature is its divergent amplitude, present in bothwith similar features to those of the s&.12 for several
even and odd states, which increases faster than any powether  values of «, eg., «=2/3, \=0.73,

law. However, the log-log plot of the wave function shows E=1.222 536 093 368 ... . Weobserve that the four-adic
that the amplitude does not grow in an exponential way, buexpression of 2/3 is 0.2222 .. . Also other states identi-

108
10° |
104
10%
10%
FIG. 2. Fast increasing even wave function
for k=1/2, belonging to the se3.12. A=0.1
andE=0.066 445 1474 . .. . It has aelf-affine

] profile with two different scaling factors, valid
- both for the envelope and smaller spikes.

1L
an 10" |
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n
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1500 . ; . , . .

1000
500 f+

FIG. 3. Exotic even wave function for
«=4/7, which has the four-adic periodic tail
{210;. The band-gap ratio, evaluated with
N=25, seems to converge very slowly to a fixed
value.A=0.73 andE=0.738 969 605 8B. .. .
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-1500 e 1 : 1 \ 1 s
0 50000 100000 150000 200000
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fied by values of with the same tail share this same behav-spect to the spectrum and to wave functions. However, since
ior. results were available for the NNN model, our main interest
Finally, let us discuss the occurrence of exotic or criticalwas to obtain a deeper insight into the properties of quantum
states. First of all it is important to recall that such states orHamiltonians on nonramified fractal substrates, identifying
the NNN system are associated with the existence of a critithe features of the states which are directly linked to the
cal FP, which is absent in the present case. So the identifgeometryof the fractal and those which depend directly on
cation of such states proceeds only through the evaluation @fe decorationof the model.
the band/gap ratio and the integration of ER.3). In our We found that the band splitting process depends actually
investigation we took advantage of results of the NNN sys+ny on the geometry of the fractal since it proceeds accord-
tem, where such states were associated with a particular supl—g to the same scheme which was identified in the case of

iezﬁ;;’azﬂge? gg‘:bthgie.;/?#t? Vé?.%zecf?;rag'c EXPression s NNN system. We have also shown that a classification of
: 1z€d Dy Infinite period . S0 We CONCeNyy o hature of the states in dependence on the valueaain
trated our attention on several states whereelongs to the

subset referred to, especially on those values where the eQ!SO be made with the help of the four-adic expression of the

otic character was more evidef.g., k=4/10, 7/10, 47, value of k. This suggests that the classification of wave func-

Our numerical investigation points toward the existence oﬂ_o”? and the band splitting process are generic for any tight-
critical states: the evaluation of the band/gap ratip to the inding mo‘?'e' on the Koch fractal. AI_SO' the_ a_rgumentatlon
generatiorN = 25) converges to a finite value, showing that €&" be easily extended to the analysis of similar models on

the band splitting leads locally to a self-similar subband@ny nonbranching fractal. o
structure, which characterizes the presence of critical states. ON the other hand, the particular classification scheme of

This prediction is confirmed by the integration of the Eq.the quantum states is certainly model dependent. This is
(2.3), which shows the presence of several bursts of increaglearly evidenced by a comparison of the invariant sets of the

ing amplitude, separated by very large distances, as illugN@Ps(2.8) and their correspondent for the NNN system: the
trated in Fig. 3. FP’s here are the same as those of the linear chain, and

indicate the presence of extended states while they are linked
to exotic states in the NNN system.

For the purpose of comparison of the classification of

In this paper we have presented an investigation of thetates in the two models, let us take first the states on the
properties of spectrum and wave functions of a tight-bindingoand edges, which have a finite tail in the four-adic expres-
Hamiltonian on the Koch curve with on-diagonal factors insion of x. In the NNN system almost all such states were
specific sites. Exact analytical results have been obtaineexponentially localized. Now part of these states is extended
within the scheme of periodic approximations and the use oénd this character is explained by the fact that their corre-
the TM formulation of the pertinent Schiimger equation. sponding orbit is attracted by one FP. Another subset is
The results have been also confirmed by the numerical intsformed by such states having localized character. Finally, we
gration of this equation. have identified a third set of states on band edges, whose

This work follows a series of previous investigations of amain feature is that they diverge faster than any power of
NNN model on the Koch fractal. In the former case we em-N. This set is also related to a subset of extended states, and,
ployed not only the methods quoted abd¥é® but also a  to our knowledge, this kind of behavior is completely new in
renormalization procedure for the exact evaluation ofthe context of quantum states of quasiperiodic one-
Green’s function and the density of stafésThe present dimensional operators.
model has many interesting features of its own, both in re- The evaluation of the band-gap ratio indicates the exis-

IV. CONCLUSIONS
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tence of critical states for several values ofwhich also To conclude we state that the investigation of this model
admit similar states in the NNN system. The integration ofindicates the presence of extended, localized, and critical
the Schrdinger equation also reveals the existence of criticaktates, all of which seem to be dense along #haxis. This
states, although this fact cannot be directly derived from théehavior is different from that of the NNN system, where
renormalization equations as in the former model. only localized and critical states were found to be dense.
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