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Algorithms for Korringa-Kohn-Rostoker electronic structure calculations in any Bravais lattice
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We present some algorithms for improvements of band theory calculations based on the Korringa-Kohn-
Rostoker method and on the coherent potential approximation, in the cases of ordered metals and random
alloys. The purpose of our work was to develop a code flexible enough to deal on equal footing with any lattice
geometry. The algorithms proposed are designed to achieve an arbitrary accuracy and to minimize the required
computational efforts. In particular, we descritbean efficient and accurate method for the calculation of the
KKR structure constants, arid) an adaptive method for the Brillouin zone integration. These algorithms have
been tested for a free-electron Green’s function and by explicit calculations for a number of systems and, when
possible, discussed in comparison with other methédisinitio calculations for hexagonal close packed and
face centered cubic Ti and for GusPty .5 random alloys are presentd®0163-18207)10716-0

I. INTRODUCTION The above fitting technique has the practical inconve-
nience of requiring as many different sets of coefficients as
The Korringa-Kohn-RostokefKKR) method*? when  the nonequivalent translations between pairs of scatterers in
compared with other band theory methods, has the advantagige unit cell. Furthermore, for noncubic systems, these coef-
of dealing with small size matrices owing to the fast conver-icients depend on all but one of the lattice parameters.
gence of scattering operators in the angular momenturgamely, for tetragonal lattices, either different sets of coef-
space. A further advantage is that of dealing with Green'§iants for each value af/a would be required, or a further

functions. This is particularly valuable in the case of randomg, - - the c/a space would be necessary. This circumstance,

metallic alloys, where this feature allows us to carry out withamong others, has made it difficult to implement KKR-CPA
relative ease the ensemble configurgtion averages, Necessahy.|ations f(;r complex lattice structures such as, for in-
in order to evaluate the alloy physical observables. Thesgtance cuprates '

averages h.cinthbe Cﬁmputed tbyt' vlanous gpprt%)g;n:tmns, A different summation scheme for the KKR structure con-
among whic e coherent potential approximai ) stants, which does not require any interpolation, was pro-

(Ref. 3 has been one of the m(_)st ;uccessful a_nd reliabl%osed by Giannozzt al!? It does not present any problem
approache$ Moreover, the numerical implementation of the when dealing with complicated lattice geometries, however

KKR-CPA is efﬁcn?ntly parallelizablé either by supercom- its practical utility is restricted to algorithms employing fixed
puters or workstations clusters. There are, of course, a fe‘%ciprocal space meshes for the BZ integration

inconveniences. - :
. Most of band-structure methods deal with eigenvalues
At first, the so-called KKR structure constafifs the and eigenvectors rather than Green’s functions. For these

empty Iatt|ce_ propagators, de_pend on _the energy, _and trW’wethods, uniform BZ integration grids, as in the tetrahedron
existing algorithms require their calculation to be carried OUl). the special points method$!* are accurate and widely
for each energy at many reciprocal space points. This is USlie'mployed. These grids, unforfunately, are not efficient for

ally accﬂ(%mplis_hed by applying the famous Ewald® calculations, where a dense mesh of points is necessary
tran§for_ and is computatmnally expensive. Another Short'in a neighborhood of the poles, while few points are able to
coming is that the KKR matrix has a pole structure and tha%ample the remainder of the in,tegration domain

makes its Brillouin zon€BZ) integration difficult. This usu- Various BZ integration techniques have been imple-

ally requires a number df points larger than for other band mented specifically for the KKR method. The use of the
theory methods. tetrahedron method within the KKR framework needs some
The most popular and efficient way to reduce the numerimanipulations of the integrands. Zeller and oth@is, order
cal effort for the structure constants calculation is due tao smooth out the integrands in proximity to the free-electron
Stockset al,>'® who separated the structure constants in gyoles, designed an algorithm based on a supermatrix parti-
regular and an irregular part, by isolating the free-electrorioning. This method, however, cannot isolate the KKR ma-
poles. The regular part turns out to be a smooth function Ofrix poles due to resonant scattering. Other KKR BZ integra-
the energyE and the momenturk, and thus it can be inter- tion methods are the so-called special directions
polated by, for instance, Tchebyschev polynomials. Remarkmethods->1¢1” They consist in decomposing the integral
ably, for cubic lattices and using appropriate units, the poly-over the irreducible BZ segment into a weighted sum of line
nomial coefficients do not depend on the lattice parametersntegrals, each line originating from the BZ center. Such
As a consequence, a great flexibility in designing BZ inte-methods work well for cubic lattices, whose irreducible seg-
gration algorithms has been achieVeld allowing for the  ments are reasonably well sampled by this line grid. For
practical feasibility of KKR-CPA calculations in the past two lower symmetry integration domains, however, the special
decades. direction methods give less uniform samplings. This circum-
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stance, as we shall see in the following, might lead to sys-

tematic integration errors. D, m(k,p)=—p €<Ti " hi(pr)Y* (1)
The BZ integration presents additional problems when r#0
dealing with metals. As Blchl et al.® pointed out, the sam- p
pling of the Fermi surfaces is, in this case, crucial. As we —i—=06,00mpo- (4)
shall discuss in Sec. lll, for the KKR method not only the Vam

Fermi surface but also the other constant energy surfaceshe set ¢’,j,m) represents the orbital, total, and azimuthal

have to be accurately sampled. - " .
. . . . uantum numbers. The coefficier@ ™ . ., , are linear
By this paper we wish to describe the solutions we hav 3 7,.ms, i m

found for the above major problems. In Sec. Il we illustrate ransformations of Gaunt numbers b'y' Clebsh-Gordan
jor p : ' cpefficientst® Due to the Gaunt numbers propertiésm”

ideas to take advantage of the convergence properties b, only take integer values in Eq3), thus, only one

Ewald’s series in order to optimize the structure constanty, = set can be used for both relativistic and nonrelativistic
calculation. In Sec. Il we describe a BZ integration method5|cyjations. The switch to the last case is straightforward:
that uses adaptive grids and we minimize the computationa Hicient”" ™" incide with the Gaunt

effort in order to reach a desired accuracy. In the same se&l® COBMCIENIC f v i gy Sc?mc_' € with the au.n num—
tion we also describe the problems encountered in using thigers andp= VE. In Eqg. (4), 1 indicates the Bravais lattice
variable grid method in connection with the solution of thesite coordinates ankl, andY , , are spherical Hakel func-
CPA equations and compare its performances with those dfons and spherical harmonics. Equatid@s and (4) refer,
other currently employed techniques. All the algorithms defor the sake of simplicity, to the case of one atom per unit
scribed in Secs. Il and Il have been designed in order t&€ll lattice. The generalization to “complex lattices™ follows
minimize the computational work required to achieve arbi-Straightforwardly the lines of Ref. 6 and affects the following
trary input accuracies. In Sec. IV, we discuss briefly otherdiScussion only by mlnorr:n?ddlfllccanons. AI\II the formulas V‘.’eh
improvements and some features of the KKR-CPA code w reEgglgg to present hold for complex energies wit
implemented by applying the algorithms of Secs. Il and Il m{U }f/t. telv. the struct tant luation by E
This includes an integration scheme for finite temperature ntortunately, the structure constants evaluation by EQ.
Green'’s functions. Finally, in order to illustrate the capability 4) could require a lot of terms. Thus, it is convenient to
. : ’ ; . apply the famous Ewald'® transfornf and rewrite Eq(4)

of the algorithms, we present in Sec. V calculations of theas the sum of the following three serfeé:
density of state¢$DOS) for pure Cu, in a number of different '

geometrieg, 'a.md for a .Q_b}’d:)to_zg) random aIIo_y. We also D/Ym(lz,p)zD(/l,)m(lz,p)JrD(/Z’)m(lz,p)JrD(/%(p), (5)
presentab initio calculations for hcp and fcc Ti.

SRl gk
D(/l) (E,p):_4_77p7/ep2/7]2 |g+_)k| ? |g+ ‘ 7
IIl. OPTIMIZATION OF KKR STRUCTURE CONSTANTS o Ve 5 |g+k|2-p?
EVALUATION L.
- , XY} m(g+k), (6)
Within the KKR method? the band structure is deter-
mined in terms of the reciprocal space poles of the scattering . 2 - -
path operatory, DYh(k,p)=— m(z')/p /go r e Yy ()
r
7(k,p)=[t"*(p)—Gok,p)] ", (D) X | _ dég exd — &2+ pag], (1)
V2
In Eq. (1), k is a reciprocal space vector apdis related to @ 7?2 S (p¥y)S
the energyE and to the speed of the light in the vacuum, Drm(P)==5— P m5/,o5m,o, ®)

c, by
whereg are the reciprocal lattice vectors, ands the Ewald

— JE(A+EID @) parameter. As it is well knowh! the choice ofz greatly
P= : affects the convergence properties of the series: smadl-

: : : hé- ies in E idl
The lattice Fourier transform of the empty lattice propagator,ueS cause thé spa(?e sgnes in Edp) to converge raplq y
o/ . . . . and ther-space series in Eq7) to converge slowly, while
G7(k,p), is conveniently written, in the angular momentum o oy56sjte happens for large values. Furthermore, the
representation, in terms of the KKR structure constantsyyyest acceptable value of is, in practice, fixed by the

6,7 . . . . .
D/m™ as hypergeometric series in E(), whose numerical evaluation
is hard forp?/ %> 1. For energy ranges of practical interest,
0 " = it i r voidn<0.1.
G/,j,m,/’,j',m’(k’p):47ﬂ/ / t is better to avoidp<0

Due to the above convergence properties of Eg)s=(8),
1 . one may ask what is the value that produces the structure
X /ZN C,imorjrm D m(K.p), constant, precise up to the given accurakyand minimizes
/%m the computing time. As a matter of fact, sugl,; depends
3 on the energy and the lattice geometry, the last dependence
being crucial in the optimization of the computing time. In
where the past the best choices gfhave been found by trials for
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various lattice€. Such empirical searches are not efficient if Aqi207
one is interested in treating on equal footing many different R (p? R, 7)< 7~ "¢, (0’ 5)
lattices. However, the problem can be assessed in a very ¢
general way, as we are going to see. S /+1 r?y
First of all, let us say that, for a given energy, the struc- X fR drr™ F(T’T (15

ture constants have to be calculated\atreciprocal space
points. Of course, it is convenient to evaluate once for eaciMoreover, we can use the asymptotic expansion of the in-

energy and store thie independent parts in Eq&7) and(4). ~ complete gamma function in EL5) and obtain

Now, if t; andt, are the computing times necessary for the g2 /+1 9R?
computation of each term in the seri@ and (7), the total RP (P2 R, 7)< &, (p? 77)771F<T’T
computing time results, Ve
(16)
R3 N,G3 As is apparent from Eq$14) and(16), the gamma functions
T= v_t2+mtl’ (9 dominate the decay of the errors with the truncation radii,
Cc Cc

while the energy dependencies appear only marginal. There-
fore, we can have the truncation errors of both series as close

where v, is the unit cell volume andR%v, and ; ; ;
as possible, simply by equating the arguments of the gamma
G3/(87°/v.) are the numbers of terms included in the Seriesfungtions say Py by €q g g g

(6) and(7) that, thus, have been truncated including only the

contributions with|r|<R and |[k|<G. Our goal here is to nR?14=G?[ n=x. (17)
minip‘nizeT and achieve the input accuracy. We notice thatye positive definite quantity, as we are going to see, turns
the k dependencies of the truncation errors in E@s.and  out simply related ta\.

(7) are reasonably weak. In fact, the quasimomentum enters At this point, 7opt CaN be obtained by minimizing the
in Eq. (7) only through a phase factor, while|<|g| is cer-  expression for the total computing time, Ef), whereR and
tainly satisfied for the contributions not included in the sumG are given in terms af and » through Eq(17). In this way
of Eq. (6). Thus, for the moment, we consider the truncationwe find

errors atk=0, while at the end of this section we shall come 4| t, |13
back to discuss thek dependence in more detail. Further- opt= ;213 F) , (18
more, we notice that such errorsg™(p?,G,7) and c LM
R(p? R, 7), do not depend om. Thus we can write and, accordingly, the optimal truncation radii,
2 Gopt: VX Topt (19
(l)( 2 G ) 4m //2¢ ( 2 ) 2 g/e_g 7
m L L E - o —1 —
AR m=g AP e 95— 1p7 Ropt=2VX/ 770py (20

(10 and the total truncation error as a function»ofind of the
dimensionless energy=p?/ Nopt

/41
RP(p2R, ) ="z 0~ e R p (p? ) R, opl P2 X) =R (P2 X, 7090 + RE (P X, 70p1)
Y _ 2¢,(€) ( X(tZ/Nltl)llz)
x >t/ | dxo® exd —x%r2+p2ax?], ot INg ) R x—| ¢
Ir|>R Vnl2 .
/+1
(11 XT|——x]. (21
where ¢,(x) = eR°¥|x|~*2. By taking the continuum limit | order to determine the quantitydefined in Eq(21), we
of Egs.(10) and(11), assuming that have simply to ensure that the inequalities
G2> pZ, (12 9'{/,opt(pzax)gA (22
are satisfied. This is easily accomplished since, in the
R2plds 1, (13  @symptotic regime, the truncation error decreases monotoni-

cally as a function ok.
Remarkably, our method gives a weak energy dependence
Mopt» At least for the energy ranges of practical interest.
Moreover, when applied to a fcc lattice wilty, =1, t;=t,,
7 we get essentially the same value suggested by Davisy-
/+1 G_2 ever, in our case, no test runs are needed to decide the Ewald
2 ' 7ng parameter best value for the lattice and the energy consid-
(14)  ered: oncex is determined, it is sufficient to establish the
order of magnitude oN; and the machine dependent ratio
and t,/t,. Our best choice on IBM Power Risc workstations is

and using an integral representation of the incomplet%r
gamma functiorf’ we find

2

1 G
RP(p2,G,n)< ;d’/(pz/ 7) ﬂllzmr
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t,/t;N;~10 2, where we includeN, (~1000) as appropri- place, the region around tHe point is sampled much more
ate to our BZ integration methodee Sec. I\ densely than the BZ borders. Thus, it could happen, particu-

At th|s point we have to come back to tlﬁajependence Iarly in the case Of Van HOVe Singularities at the BZ bound'
of the truncation errors. At nonzero wave vectors, the condiaries, that a large number of directions must be used. This

tion (12) should be replaced by inconvenience is worsened in the case of low symmetry Bra-
vais lattices, whose irreducible segment shape is often less
|é+ |2|2> p? 23) similar to a spherical fuse than for cubic lattices. Moreover,

it is difficult to decide the ideal size of the spacing between

In order to ensure that this is satisfied for all the BZ points, itthe points in the initial grid. This, in fact, should be neither

is sufficient to increas&,,, as given by Eq(19), by the too wide, in order to find all the structures of the integrand,
maximum length of the BZ. Analogously, when complex nor too narrow, in order to reduce the amount of calculation.

lattices are considered, E(7) has to be satisfied for each Last, but not least, there is no simple way to estimate the
sublattice, and, accordinglRp, as given by Eq(20), must integration errors, which, because of the geometrical struc-

be incremented by the length of the largest translation vectdire of the method, are not simple functions of the number of
in the unit cell. directions and, certainly, depend on the topologies of the

We have used the same kind of error analysis in order tgonstant energy surfacés!®
compare our algorithm with the direct summation of ).
In the last case, the decay of the error is dominated by the A. An adaptive quadrature algorithm
Hankel function in Eg.(4), and, for a given accuracy,

Ewald’s method turns out to be faster in most of the complex The above discussion suggests that the KKR integral
. . € COMPIEX-Huld be performed more effectively by adaptive quadrature

energy upper half plane, while the direct summation is pref- hod<2 Th I h f variable i . id
erable only close to the real axis well below the energy Zer(gnet 0ds- ese a (.)Wt. € use of vanable mtegrat_lon gras
or at a verv high imacinary part of the enerav. To summa-and enable performing integrals precise up to a fixed accu-
. y 9 ginary part ( gy- . racy. In our algorithm, the BZ quadrature is carried out as a
rize, Ewald’'s method appears quite generally convenient for L :
. . sequence of three line integrals, i.e.,

constant energy KKR calculations and our algorithm can be

applied to any lattice ensuring the achievement of an arbi-

[ by(c) ay(b,c)
trary small accuracy. I=[ dc db f(a,b,c)da. (24
cq by(c) ay(b,c)
lll. METHODS FOR BRILLOUIN ZONE INTEGRATION Herea, b, andc are curvilinear coordinates along three lin-

early independent directions, appropriate to the lattice geom-
KKR scattering path matrix elements is a hard numericafetry at handfor instance, the three primitive translation vec-

problem, due to the pole structure of the integrands whicte’s of th_e reciprocal Iattiz_:e_or any appr(_)priate coordinates
diverge \'/vhenever the KKR determinant goes to z‘eThe,re— sed. The integration domain is the irreducible segment of the

fore, an accurate integral requires a high density of grioBZ' Thus, the funcnon_i;)l,z(c) andalyz(b,c)_ and _the limits
. > C1, have to be determined for each Bravais lattice. For most
points only close to the poles. As a consequenkespace '

i id thod ol point tetrahed of the lattices such functions present cusps in connection
umneltcr)\gmd Sl%fl'g Zrénﬁotoef?i'c i:rsn Slae;']i epaC;II; ?in?és ifri;Rror\}vith the frontier of the integration domain. In this case it is
L ; ) . " convenient to break the integration intervals into segments
CPA calculation$;*%in fact, the so-called Zoomin procedure g g

q i " ih th il direct limited by the above singularities.
was us% 16 1;n connection witt € special direction , orger to evaluate each line integral, we proceed as fol-
methods:%'%1 These methods, briefly, consist in transform- o

ing th | int lint iohted £ line int | ws. Given an integration tolerance, our algorithm con-

:29 hT‘.VO ume mteg;a In ?ha We'? € ¢ f#mBOZ m?j |_ntegra St'sists in the iteration of the following four steps.

'ta(t:) mg orlglnda ?S. rom (Tcen ?r Io he Than Intersects Step | We mark three points on the integration interval,

s, o gl them h s (e st and i midie poi, . and
; : , : (= (X + [ int.

umes of these prismStocks’ prism method®) through a m= (X;+X)/2, and evaluate the integrand at each point

convenient cubic harmonics expansior in combination Step Il We evaluate the integral, over the current inter-
: X . XP val, both by Simpson’s and the trapezoidal rules, as
with a two-dimensional Gaussian quadrattfre.

In the Zoomin method, for each line, the integrands are
evaluatgd at firs.t on a reasonably coarse griq, and aftervyards |S=g(x,—xf)[f(xf)+4f(xm)+ f(x)) ]+ O[(x,—%¢)°],
new points are inserted whenever the variations of the inte-
grand are larger than a prescribed amount and the integrals (25
are evaluated by ordinary quadrature vr?tgable grid methods. . L L
Later on, a method has been implementetased on a ra- _ 3
tional function local fit of the integrands that does not require =5 04=x0)| 5 TO) +F0m) 5 F0) |4 OL04 = X))
the Zoomin procedure. A slightly different version of this (26)
will be described in Sec. Il B. ) ) )

The special direction methods work reasonably well for1hen, if the inequality
cubic lattices, because their irreducible segments are sampled
almost uniformly by the radial directions grids. These tech- 1514 27)

. . . . r= <e€
niques, however, present a few inconveniences. In the first [l

As quoted in the Introduction, the BZ integration of the
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FIG. 1. Free electron Green’s function integratjsee Eqs(35), (37) and(38)] for a simple cubic lattice &= 0.24+i0.001.(a) and(b)
Imaginary and real parts dfvsk,, at the indicated values &, andk,. (c) Imaginary part off, vsk,, at the indicated values d&f,. (d)
Imaginary part off, vsk,.

is satisfied,l is assumed correct, the estimated integratiorcedure has been coded as cascade routines. Since we inte-
error over the current interval is setitl | (x,—x;)#, and we  grate matrices, it is convenient to check the inequa®y)
jump to step IV. for their traces. This method provides an elegant way to

Step Il Inequality(27) is not verified, i.e., the integrand zoom in where the integrand changes abruptly, while only a
is not smooth enough to achieve the accuracyfhen we few points are used where it is smooth. For instance, as a
have to insert more points into the grid. Rather than to proconsequence of its adaptive nature, our method automatically
ceed as in the Romberg method, namely by halving the stepses few points at energies high in the complex plane and
throughout, we forget, for the moment, the second half intermore points close to the real axis.
val, and insert a single new point in the middle of the first In order to discuss the applicability of the above adaptive
half. Then we “shift down” the current three point labels, method, we have used the simple free-electron band model.
save temporarily the function value and the grid point notFor low energies the relevant elements of the scattering path
used for the time being.e., the former last point valjyeand  matrix, in this model, are proportional to
go back to step Il. All this is iterated until the inequal{B7)
is verified for the current interval. - 1

Step IV The result for the current interval is accumulated F(E.k)= E—k2
and we proceed to integrate over the rest of the line, by
“shifting up” the X;, x,, andx,, definitions. In order to save and the corresponding DOS is given by
memory, it is convenient to discard the function and the grid L
point, which are no longer necessdig., the first point of - -
the last cyclg Then we go back to step Il or exit if the n(E)oc—;Im[ fBzdkf(E’k)]' (29
integral is completed.

The iterative halving(step Il is designed to insert as At Im{E}=0, Eq.(28) consists in a superposition @tlike
many points as needed to achieve the prescribed accuracgntributions ak’=E. Of course, the numerical integration
€. is possible only when IfE} >0 and thes contributions are

In order to carry on volume integrals, the above step probroadened into Lorentziarfisee Figs. (a) and Xb), where

(28)
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we have plotted (E,k) for a simple cubic lattick The nu-  does not present the occasional inconveniences of the triple
merical integration of (E,K) along a line, at small IE}, is adaptive quadratur(_:; and is frequently more gfficient at any
difficult since catching the sharp peaks plotted in Figg) 1 €"ery- In effect, this method deals directly with the poles of

and 1b) could require a huge number of points. However, inthe.3 integrands along thg line ancj aIIows' a sort of semiana-
: éyncal treatment of the integral in a neighborhood of the

integrand allows our adaptive algorithm to insert points onlypoIes themselves. Moreover, it produces a grid of liies

in the region of sharp variations. This leads to a good accut—hIS cas¢ more dense where needed, i.e., where there are

; states. To put it in another way, this hybrid method can be
racy down to quite low values of IfiE}. However, close to . ! S )
the real axis, the method might fail. In this case, as we shaﬁhought of as a prism method with an adaptive direction grid.

discuss in the next subsection, the rational fit method usuaIIY Thf small mcotr_lvertuence of fth|s pr?c?dL:Le IS tthat thet In-
leads to better results. In any case, once egration error estimate now refers only to the outermost in-

tegrations, the rational fit integration being assumed exact.
The last, of course, is precise only if the step used in the line
f1(Eky k)= f dk,f(E,ky,Ky,Kz) (300 integration is appropriately sized. The optimum value of this
step,Ak, could be found by trials. Our experience suggests
is obtained, the adaptive method is accurate and efficient. Ithat a good choice foAk should depend on the imaginary
fact, by looking at the features of Fig(c), we easily realize part of the energy and on the lattice geometry as well. In this
that our algorithm is always able to locate the jumps of thepaper we have takemkeanm,(v.Nc) (" Y?Im{E}, where
integrand and insert only the necessary points. Analogousha,., is the maximum length in the Brillouin zone along the
the next integration, a-integration direction.
We would like to illustrate by an example some features
of the hybrid method in comparison with other BZ integra-
tion methods. Let us imagine that, for a given crystal, we

. . . . _have a Van Hove singularity at the real enefgy at the
is performed with very few points located at the function . ~ - .
jump [see Fig. 1d)]. point k;. For instance, let us suppose that the Van Hove

From the above analysis, we conclude that this method i§ngularity is due to a band minimum. Then P E, there
well tuned for integrating KKR matrices. Of course, for en- IS @n electron pocket. In a neighborhood Ef, th91P°Cket
ergies close to the real axis, the number of points required fdi€&r dimension is proportional ta\=(E—E,) 0(E
the innermost integration could be quite large. To avoid such™ E1)» according to the theory of the electronic topological
a problem and the risk of losing structures, a different algotransitions’* A uniform mesh ofk points, as for instance in
rithm could be preferable. In the next subsection we shalthe case of the tetrahedron method, fails to account for this
discuss a rational fit quadrature method that is able to dedlocket if the mean spacing between the grid points is larger

fz(E,kz)zf dk,f1(E Ky ,k,), (31)

with these difficulties. thanA. The special direction methods would be able to catch
the pocket iflk;| is small(in this case the relevant spacing is
B. Rational functions fit quadrature and hybrid method |K;|?Aw, where Awx1/N3,), but they could easily miss

The scattering path matrix is evaluated as the inverse dfOckets close to the BZ borders. Itis easy to realize that the

the KKR matrix [see Eq.(1)]. Then we can write for the tetrahedron method requird<A ~2 points to solve such a
innermost integratiof! structure, while the special directions method neéllg

x|k, |/AY? directions orN=nNg, points, if n is the mean

a _ - number of points per direction. Of course has to be large
2 — 112\ _ 0 2 1
I (p 'b'C)_JaldX[t (p9) =G (x,b,c.pI] enough to ensure a correct line integration. Our hybrid
method isalwaysable to resolve the above structure by in-
a Mg (X) serting very few lines where necessary, provided the above
= | X7 (32 diti is satisfied. H far from the real
a D(x) condition onn is satisfied. However, far from the real energy

axis, the additional smearing of the Green’s functions re-
where M| | /(x) is the cofactor of the KKR matrix and duces the above inconveniences. Then the error on the total
D(x) its determinant, both evaluated at thepoints of a grid  energy, normally calculated as an integral over a complex
along the current direction. BotM /(x) and D(x) are  contour, is essentially the error of the BZ integration at the
smooth functions ok, the peaks of the integrands arising Fermi energy and, then, is relevant only for metals.
when the determinant becomes small. Then, one can fit both As a further consequence of the above arguments, for
cofactor and determinant in E(82) by two nth degree poly- energy dependent quantities, uniform mesh methods could
nomials at each+ 1 adjacent point of the grid. Then, after a give errors that vary smoothly with the energy, while the
study of the roots of the denominator, the integral can beerrors of the hybrid method are essentially random.
performed analytically over each interval.

This elegant trick' can be checked against analytic func-
tions, and does not require dense grids along each line. It can
be used, then, in order to deal with thantegration of Eq. We have implemented the hybrid method for the BZ in-
(24), while bothb andc integrations can be efficiently per- tegration. In order to study its capabilities, we have tried to
formed by the adaptive method described in Sec. Ill A. Theintegrate the function of Eq28) over the BZ of a simple
resulting hybrid algorithm, even near the real energy axisgubic lattice. This function can be integrated analytically as a

C. Semianalytical tests
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-1 P ————rrrey required, aE=0.2+i0.05. In the calculations with the prism
- ] method we have varied the number of radial directions,
keeping fixed the density of points along each line, and we
- have calculated each line integral with the rational fit method
1 described in the preceding subsecti@part from a factor
E ] x% in Eq. (32)]. The real and imaginary parts of the BZ
. ] integral are displayed in Figs.(&@ and 2Zb), respectively,
Lo/ ] while the horizontal lines represent the exact results. As the
[ ¢ o ,,,,(j‘) ] reader can see, even with a large number of grid points, the
1000 10* directions method does not appear converging toward the
-6.5 [Ty exact results, revealing the presence of systematic errors. It is
; S ] worth mentioning here that, among the cubic systems, the
675 P N simple cubic lattice geometry enhances the inconveniences
E . ¢ ] of the special directions method, namely the nonuniformity
2 b N e — 7 of its sampling. Our method, instead, is able to give an ac-
[ ] curate result using a relatively small number of points.
In Fig. 3 we show the integral of the same function vs the
© number of points, aE=0.2+10.001, where the integration is
P NS expected to be much harder. Again the reader can see that
100 1000 10* our adaptive method works accurately, using more points
no. of k-points than before, as expected, due to the pathology of the inte-
grand. We wish to remark that for the calculations shown in
FIG. 2. Semianalytic test of the hybrid methogskee text The  Figs. 2 and 3, the errors of our method are of the order of

integrand is the free electron model Green’s funcfiin. (35] at  magnitude of the input integration toleranee
E=0.2+i0.05. The abscissa shows the number of the function

evaluation. .FuII cirlcles, hybrid method; empty circlgs, prism D. Problems connected with KKR-CPA

method; horizontal lines, exact resul(a) Real part of the integral;

(b) imaginary part of the integral. In order to discuss the applicability of our BZ integration
scheme in connection with the CPA, we briefly recall, drop-

function ofk, and then numerically, by standard mathemati-Ping the angular momentum indices and the energy depen-
cal software up to a very high precision, for the simple cubicdencies, the set of KKR-CPA equatiohs!
lattice. However, its full numerical integration in the irreduc-
ible BZ segment is very hard, as it can be seen from Fig. 1. 70= Ve f [t;1—GO(k)] 1d K, (33
In Fig. 2 we show the results obtained by our method and 873
the prism method, vs the number of function evaluations

125 F N

Real Part
&
T
1

Imaginary part

735 F ]

> care =1, (34)
T T T a
1.6 T
. 18 — 3 TgozDaTgov (35
§ . -
A~ ] —1_ -1yq-
R S . S D, =[1+79t, "~ tcH] Y, (36)
& I i
22 r ‘ ] wherec,, is the concentration,, the single site matrix of
2ok ] the « atomic speciest, and 72° are the effective medium
L Ll sl @] single sitet matrix and the central site scattering path matrix,
100 1000 10 andD,, is the so-called CPA projector, which allows us to
8L ) extract the conditional averagéhe o atomic species at the
b e ] central sit¢ of the scattering path matrix2°.
g I \ ] KKR-CPA equations are solved by iteration, until station-
~ a6 ‘\ 3 arity for t. is achieved within a given toIe;ranceGF?A. This
g X \ e procedure, of course, requires one BZ integration for each
W 88 F \\ , R cycle. The errors in the BZ integration affect the solution for
5 oL v ] t.. Using fixedk points grids, when close to convergence,
. \d" ® ] the integration errors cancel out since they appear on both
e BT sides of the CPA condition, Eq34). If the integration is
uo. of k-points carried on by an adaptive method, although both are smaller

than the integration toleraneg the errors in two successive
FIG. 3. Semianalytic test of the hybrid method (Hee text cycles cannot cancel out precisely in the CPA condition. As
Long dashed lines with full circles, hybrid method; horizontal lines, & consequence, the iterative solution of the CPA equation set
exact results(a) Real part of the integralb) imaginary part of the  Will be affected by numerical disturbances, and, occasion-
integral. The energy i€=0.2+i0.001. ally, could fail whene> ecps. However, settinge= ecpy it
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TABLE I. DOS and number of function evaluationkl;, at IV. TEST CALCULATIONS
E=0.4+i0.02 for a Cu site potenti#dASA), obtained by the hybrid ) .
method (see Sec. Ill B with integration tolerance=10"%. The We have developed a KKR-CPA code, in which we have

calculations refer to fcc, bee, and sc lattices and to several latticedmplemented the algorithms described in the former sections.
whose parameters have been chosen to obtain coincidence with tkur starting point has been the well optimized code of Ref. 5
three cubic systems. Equivalent systems are listed in the same ro&nd a structure constants code kindly shared by Wang and
In all the systems the atomic volume has been kept fixed to 75.528tocks. We have developed two versions: a “serial” and a
(Bohr®). The DOS values are in spin/Ry. Abbreviations are as fol-parallel version based on the PVM packﬁ@@ur code can
lows: fcc, face centered cubic; fct, face centered tetragonal; fcowork for nonrelativistic, scalar relativistic, or fully relativis-
face centered orthorhombic; bcc, body centered cubic; bct, bodyc problems, for what concerns the valence states, and deals
centered tetragonal; bco, body centered orthorhombic; sc, simplgith the core states either fully or nonrelativistically. It can
cubic; st, simple tetragonal; so, simple orthorhombic; sm, simpleoe used for pure metals, intermetallic compounds, random
monoclinic; trig, trigonal; tric, triclinic;L1,, CuzAu; L1,, CuAu; alloys (CPA), many sublattice random alloys, and for zero as
B2, CsCl;DO0s, FesAl; B1, NaCl. well as for finite temperature calculations. All the Bravais
lattices and most common complex lattices have been imple-
mented. In order to ensure generality, we have preferred the
DOS 32.748 32.714 32.733 32.742 32.714 32.749 32.73complex spherical harmoni¢and the spin angular harmon-
N, 2277 3047 5846 3258 1149 1853 3707 ics for the fully relativistic caseas the angular momentum
basis set, rather than lattice point group symmetrized sets.
The potential treatment is either by the nonoverlapping
DOS 35.339 35.341 35314 35.317 35.352 35.337 35.33mMuffin-tin or atomic sphere approximatigASA). A full po-
N, 1537 2720 5809 2643 11921 1166 2270 tential treatment and a spin polarized version are in develop-
ment. The total energy calculations and the potential recon-
struction follow the lines of Ref. 25.
DOS 31.573 31.542 31.524 31.578 31.524 31.515 31.590 We have singled out the DOS as the appropriate observ-
N, 1792 2898 3707 3506 7367 14326 2999 able to check, at the same time, our structure constants and
BZ integration algorithms. In all the test calculations we are
going to discuss, we have truncated the angular momentum
is not at all a way out. In fact, in standard calculations €XPansions to’<3. In Table | we.show the DOS cal(_:ulat.ed
at the indicated energy for Cu, in the ASA approximation,

ecpa is usually set to quite small values-(0®). This is . .
due to the need to ensure cancellations between the cohereal’ﬂd for several lattices. The lattice parameters and the atom

and incoherent parts in the Bloch spectral functidhisnfor- positions in the unit cell have been tuned in such a way that

. ) . all the structures are coincident with one of the three cubic
tunately, such a small integration tolerance would require fattices. The BZ integral is carried on by our hybrid method.

huge number of evaluations, making the calculation prohibi-ry,q gien for the rational fit integration has been let to vary in
tive, but is not really necessary when calculating site diagOg,e range 0.03-0.1, according to the discussion of Sec. Il B.
nal observables, such as density of states, charge densities, s integration accuracy has been fixed to the very tight
electronic total energy. Then, a fair compromise could be/gjye =104 As the reader can see, the results agree

achieved by fixinge= 10 €ecpa. within absolutely tolerable fluctuations, all of the order of

Lattice fcc fct fco trig L1, L1, L1,

Lattice  bcc bct bco trig tric B2 DO,

Lattice  sc st o] trig sm tric Bl

TABLE Il. Comparison between DOS calculated by different integration methods. Our hybrid method
results(labeled by HN), calculated withe=10"3, are compared with Stocks’ prism meth¢Ref. 10, with
36, 136, and 528 directions, labeled respectively, as P36, P136, and P528. Mean values and standard devia-
tions for various geometrically equivalent structures are obtained from the HM calculations with™*
displayed in Table I. The energy, the potentials, the units, and other symbols are the same as in Table I.

Lattice fcc L1,
method HM P36 P136 P528 HM P36 P136 P528 Mean value

DOS 32.829 32.812 32751 32740 32985 32.701 32711 32.715 320/G%5

N, 682 695 2624 10194 299 1030 3895 15129

Lattice bcc B2

method HM P36 P136 P528 HM P36 P136 P528 Mean value
DOS 35.371 35.403 35.367 35.349 35329 35360 35.336 35.331 35mB214

N, 470 705 2662 10138 299 859 3248 12614

Lattice sc B1

method HM P36 P136 P528 HM P36 P136 P528 Mean value

DOS 31.212 31.564 31553 31.551 31.594 31468 31.432 31.428 3(BES0
N1 350 724 2733 10621 896 822 3109 12805
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ol S S S FIG. 5. The KKR-CPA density of states for @isPt, ,5 ran-
0.4 -0-2 0 0.2 0-4 dom alloy. (a) Continuous line: the special direction methad)
Energy (Ry) empty circles: hybrid method for the fcc latticég) “x™": hybrid

method for the fct lattice witlt/a=1.
FIG. 4. The density of states of hcp Ti. The lattice parameter,

a= 5.522 a.u., is the same as in Ref. 26. The calculation is nonrelrection method(a), the h)/brld method applied to the fcc
ativistic for the valence states and fully relativistic for the core lattice (b), and to a’n fct lattice coincident with the fég). All
states. calculations agree well with other published DO®sg. 2

of Ref. 29. In this plot, one can see how the old method and

magnitude of the integration tolerance. th i bl d t notwithstand
Actually, this is quite a severe test, because the integra- € neéw one are in reasonably good agreement, notwithstand-

tion domains, the symmetry group rotations, etc., are totall)}ng SOmMe oscillations around=0.42 Ry,'where the curve
different for the various coincident systems. In fact, the!@ differs from (b) and(c). The last two, instead, are indis-
bands of various equivalent lattices are folded in differentinguishable. Also recalling the semianalytic tests of the
ways, according to the lattice symmetry groups. We observéormer section, and on the basis of the results of Tables | and
that the number of points used varies much less than linearll}, we think that for the DOS calculation of Fig. 5 the hybrid
with the volumes of the irreducible segments. This is, in-method proves to be more precise than the special directions
deed, a success of our integration method. method.

In Table Il the results for the DOS obtained by the hybrid On the basis of the presented results we are confident that
method withe=10"2 are compared with those by the prism (i) the hybrid method is applicable to any Bravais latti¢e;
method, with 36, 136, and 528 directions. In all cases, th@wing to its adaptive nature, it allows precise integréis)

KKR structure constants have been evaluated according tour structure constants calculation, rotation matrices, and en-
the theory of Sec. Il. In the same table the DOS mean valuesrgy integrations are correct; atid) KKR-CPA calculations
and standard deviations, taken from Table |, are also reportegith calculated structure constants, applicable to any Bravais
for each class of equivalent lattices. As it can be seen, thgytice, are now feasible.

prism method requires more points than ours to achieve com-

parable accuracy. For low accuracy the performances of the

two methods are not too different. However, the computa- V. SUMMARY

tional advantages of our method are greatly enhanced when '

higher accuraciese=10" %) are required. That is due to the ~ We have developed a code for LDA-KKR-CPA calcula-
capability of the hybrid method to insert lines more denselytions able to deal with any Bravais lattice. We hdi)esug-
where needed. gested an algorithm to improve the KKR structure constants

We have also performed the same calculations of Table ¢alculation and(ii) designed and developed an adaptive
by the full adaptive method of Sec. Ill A. The results for the quadrature method for BZ integration_

DOS are close to the ones displayed but the number of inte- \we have presented a test of our integration algorithm us-
gration points are normally bigger. ing a free electron model Green’s function and calculations

A more Complete test is thab initio calculation for the for various real Systems_ We are p|anning to app|y this code
hcp Ti, in the nonrelativistic approximation for the valencetg the calculation of electronic properties of noncubic alloys,
states. The lattice parameters are the same as in Ref. 26. Thgch as In-TI and high critical temperature superconductors.
DOS, plotted in Fig. 4, and the Fermi level agree quite well
with Ref. 26 and other published DOS's, as Fig. 1 of Ref. 27.

The little noise visiple in the energy regions around 0:2 Ry ACKNOWLEDGMENTS
and above 0.3 Ry is due to the fact that the errors in our
integration method are essentially random. We would like to thank Y. Wang and G.M. Stocks for

We have also calculated the electronic total energy of fcsharing their structure constants amdkRCPA codes from
Ti, which, as expected, turns out bigger than in the hcp phasehich we started. We also thank E.S. Giuliano for discus-
by about 3 mRy per atom. This is consistent with the Tisions and his continuous encouragements. We acknowledge
experimental phase diagr&h. the facilities, scientific contacts, and discussions offered by
In Fig. 5 we report our relativistic calculation for the DOS the E.U. W, HCM Network. This work has been sponsored
of Cug.75Pty25 random alloy, as obtained by the special di- by MURST 60%(ltaly) and INFM (ltaly) funds.
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