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Algorithms for Korringa-Kohn-Rostoker electronic structure calculations in any Bravais lattice

E. Bruno and B. Ginatempo
Dipartimento di Fisica and Unita` INFM, Università di Messina Salita Sperone 31, 98166 Messina, Italy

~Received 28 August 1996; revised manuscript received 27 January 1997!

We present some algorithms for improvements of band theory calculations based on the Korringa-Kohn-
Rostoker method and on the coherent potential approximation, in the cases of ordered metals and random
alloys. The purpose of our work was to develop a code flexible enough to deal on equal footing with any lattice
geometry. The algorithms proposed are designed to achieve an arbitrary accuracy and to minimize the required
computational efforts. In particular, we describe~i! an efficient and accurate method for the calculation of the
KKR structure constants, and~ii ! an adaptive method for the Brillouin zone integration. These algorithms have
been tested for a free-electron Green’s function and by explicit calculations for a number of systems and, when
possible, discussed in comparison with other methods.Ab initio calculations for hexagonal close packed and
face centered cubic Ti and for Cu0.75-Pt0.25 random alloys are presented.@S0163-1829~97!10716-0#
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I. INTRODUCTION

The Korringa-Kohn-Rostoker~KKR! method,1,2 when
compared with other band theory methods, has the advan
of dealing with small size matrices owing to the fast conv
gence of scattering operators in the angular momen
space. A further advantage is that of dealing with Gree
functions. This is particularly valuable in the case of rand
metallic alloys, where this feature allows us to carry out w
relative ease the ensemble configuration averages, nece
in order to evaluate the alloy physical observables. Th
averages can be computed by various approximatio
among which the coherent potential approximation~CPA!
~Ref. 3! has been one of the most successful and relia
approaches.4 Moreover, the numerical implementation of th
KKR-CPA is efficiently parallelizable,5 either by supercom-
puters or workstations clusters. There are, of course, a
inconveniences.

At first, the so-called KKR structure constants,6,7 the
empty lattice propagators, depend on the energy, and
existing algorithms require their calculation to be carried
for each energy at many reciprocal space points. This is u
ally accomplished by applying the famous Ewald’sQ
transform8 and is computationally expensive. Another sho
coming is that the KKR matrix has a pole structure and t
makes its Brillouin zone~BZ! integration difficult. This usu-
ally requires a number ofkW points larger than for other ban
theory methods.

The most popular and efficient way to reduce the num
cal effort for the structure constants calculation is due
Stockset al.,9,10 who separated the structure constants in
regular and an irregular part, by isolating the free-elect
poles. The regular part turns out to be a smooth function
the energyE and the momentumkW , and thus it can be inter
polated by, for instance, Tchebyschev polynomials. Rema
ably, for cubic lattices and using appropriate units, the po
nomial coefficients do not depend on the lattice paramet
As a consequence, a great flexibility in designing BZ in
gration algorithms has been achieved9–11 allowing for the
practical feasibility of KKR-CPA calculations in the past tw
decades.
550163-1829/97/55~19!/12946~10!/$10.00
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The above fitting technique has the practical incon
nience of requiring as many different sets of coefficients
the nonequivalent translations between pairs of scattere
the unit cell. Furthermore, for noncubic systems, these co
ficients depend on all but one of the lattice paramete
Namely, for tetragonal lattices, either different sets of co
ficients for each value ofc/a would be required, or a furthe
fit in the c/a space would be necessary. This circumstan
among others, has made it difficult to implement KKR-CP
calculations for complex lattice structures such as, for
stance, cuprates.

A different summation scheme for the KKR structure co
stants, which does not require any interpolation, was p
posed by Giannozziet al.12 It does not present any problem
when dealing with complicated lattice geometries, howe
its practical utility is restricted to algorithms employing fixe
reciprocal space meshes for the BZ integration.

Most of band-structure methods deal with eigenvalu
and eigenvectors rather than Green’s functions. For th
methods, uniform BZ integration grids, as in the tetrahed
or the special points methods,13,14 are accurate and widely
employed. These grids, unfortunately, are not efficient
KKR calculations, where a dense mesh of points is neces
in a neighborhood of the poles, while few points are able
sample the remainder of the integration domain.

Various BZ integration techniques have been imp
mented specifically for the KKR method. The use of t
tetrahedron method within the KKR framework needs so
manipulations of the integrands. Zeller and others,15 in order
to smooth out the integrands in proximity to the free-electr
poles, designed an algorithm based on a supermatrix p
tioning. This method, however, cannot isolate the KKR m
trix poles due to resonant scattering. Other KKR BZ integ
tion methods are the so-called special directio
methods.10,16,17 They consist in decomposing the integr
over the irreducible BZ segment into a weighted sum of l
integrals, each line originating from the BZ center. Su
methods work well for cubic lattices, whose irreducible se
ments are reasonably well sampled by this line grid. F
lower symmetry integration domains, however, the spe
direction methods give less uniform samplings. This circu
12 946 © 1997 The American Physical Society
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55 12 947ALGORITHMS FOR KORRINGA-KOHN-ROSTOKER . . .
stance, as we shall see in the following, might lead to s
tematic integration errors.

The BZ integration presents additional problems wh
dealing with metals. As Blo¨chl et al..13 pointed out, the sam
pling of the Fermi surfaces is, in this case, crucial. As
shall discuss in Sec. III, for the KKR method not only th
Fermi surface but also the other constant energy surfa
have to be accurately sampled.

By this paper we wish to describe the solutions we ha
found for the above major problems. In Sec. II we illustra
ideas to take advantage of the convergence propertie
Ewald’s series in order to optimize the structure consta
calculation. In Sec. III we describe a BZ integration meth
that uses adaptive grids and we minimize the computatio
effort in order to reach a desired accuracy. In the same
tion we also describe the problems encountered in using
variable grid method in connection with the solution of t
CPA equations and compare its performances with thos
other currently employed techniques. All the algorithms d
scribed in Secs. II and III have been designed in orde
minimize the computational work required to achieve ar
trary input accuracies. In Sec. IV, we discuss briefly oth
improvements and some features of the KKR-CPA code
implemented by applying the algorithms of Secs. II and
This includes an integration scheme for finite temperat
Green’s functions. Finally, in order to illustrate the capabil
of the algorithms, we present in Sec. V calculations of
density of states~DOS! for pure Cu, in a number of differen
geometries, and for a Cu0.75Pt0.25 random alloy. We also
presentab initio calculations for hcp and fcc Ti.

II. OPTIMIZATION OF KKR STRUCTURE CONSTANTS
EVALUATION

Within the KKR method1,2 the band structure is dete
mined in terms of the reciprocal space poles of the scatte
path operator,t,

t~kW ,p!5@ t21~p!2G0~kW ,p!#21. ~1!

In Eq. ~1!, kW is a reciprocal space vector andp is related to
the energyE and to the speed of the light in the vacuum
c, by

p5AE~11E/c2!. ~2!

The lattice Fourier transform of the empty lattice propaga
G0(kW ,p), is conveniently written, in the angular momentu
representation, in terms of the KKR structure consta
D l ,m

6,7, as

Gl , j ,m,l 8, j 8,m8
0

~kW ,p!54p i l 2l 8

3 (
l 9,m9

Cl , j ,ml 8, j 8,m8
l 9,m9 D l 9,m9~k

W ,p!,

~3!
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D l ,m~kW ,p!52p(
rWÞ0

eik
W
•rWi2l 11hl

1~pr !Yl ,m* ~rW !

2 i
p

A4p
d l ,0dm,0 . ~4!

The set (l , j ,m) represents the orbital, total, and azimuth

quantum numbers. The coefficientsCl , j ,ml 8, j 8,m8
l 9,m9 are linear

transformations of Gaunt numbers by Clebsh-Gord
coefficients.18 Due to the Gaunt numbers properties,19 m9
can only take integer values in Eq.~3!, thus, only one
D l ,m set can be used for both relativistic and nonrelativis
calculations. The switch to the last case is straightforwa

the coefficientsCl , j ,ml 8, j 8,m8
l 9,m9 coincide with the Gaunt num

bers andp5AE. In Eq. ~4!, rW indicates the Bravais lattice
site coordinates andhl

1 andYl ,m are spherical Ha¨nkel func-
tions and spherical harmonics. Equations~3! and ~4! refer,
for the sake of simplicity, to the case of one atom per u
cell lattice. The generalization to ‘‘complex lattices’’ follow
straightforwardly the lines of Ref. 6 and affects the followin
discussion only by minor modifications. All the formulas w
are going to present hold for complex energies w
Im$E%>0.

Unfortunately, the structure constants evaluation by
~4! could require a lot of terms. Thus, it is convenient
apply the famous Ewald’sQ transform8 and rewrite Eq.~4!
as the sum of the following three series:6,7

D l ,m~kW ,p!5D l ,m
~1! ~kW ,p!1D l ,m

~2! ~kW ,p!1D l ,m
~3! ~p!, ~5!

D l ,m
~1! ~kW ,p!52

4p

vc
p2l ep

2/h(
gW

ugW 1kW u l e2ugW 1kW u2/h

ugW 1kW u22p2

3Yl ,m* ~gW 1kW !, ~6!

D l ,m
~2! ~kW ,p!52

2

p1/2~2i ! l p2l (
rWÞ0

r l eik
W
•rWYl ,m* ~rW !

3E
Ah/2

`

djj2l exp@2j2r 21p2/4j2#, ~7!

D l ,m
~3! ~p!52

h1/2

2p (
s50

`
~p2/h!s

s! ~2s21!
d l ,0dm,0 , ~8!

wheregW are the reciprocal lattice vectors, andh is the Ewald
parameter. As it is well known,6,7 the choice ofh greatly
affects the convergence properties of the series: smallh val-
ues cause thekW -space series in Eq.~6! to converge rapidly
and therW-space series in Eq.~7! to converge slowly, while
the opposite happens for largeh values. Furthermore, the
lowest acceptable value ofh is, in practice, fixed by the
hypergeometric series in Eq.~8!, whose numerical evaluation
is hard forp2/h@1. For energy ranges of practical intere
it is better to avoidh,0.1.

Due to the above convergence properties of Eqs.~6!–~8!,
one may ask what is theh value that produces the structu
constant, precise up to the given accuracy,D, andminimizes
the computing time. As a matter of fact, suchhopt depends
on the energy and the lattice geometry, the last depende
being crucial in the optimization of the computing time.
the past the best choices ofh have been found by trials fo
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12 948 55E. BRUNO AND B. GINATEMPO
various lattices.7 Such empirical searches are not efficient
one is interested in treating on equal footing many differ
lattices. However, the problem can be assessed in a
general way, as we are going to see.

First of all, let us say that, for a given energy, the stru
ture constants have to be calculated atN1 reciprocal space
points. Of course, it is convenient to evaluate once for e
energy and store thekW independent parts in Eqs.~7! and~4!.
Now, if t1 and t2 are the computing times necessary for t
computation of each term in the series~6! and ~7!, the total
computing time results,

T5
R3

vc
t21

N1G
3

~8p3/vc!
t1 , ~9!

where vc is the unit cell volume andR3/vc and
G3/(8p3/vc) are the numbers of terms included in the ser
~6! and~7! that, thus, have been truncated including only
contributions withurWu<R and ukW u<G. Our goal here is to
minimize T and achieve the input accuracy. We notice th
the kW dependencies of the truncation errors in Eqs.~6! and
~7! are reasonably weak. In fact, the quasimomentum en
in Eq. ~7! only through a phase factor, whileukW u!ugW u is cer-
tainly satisfied for the contributions not included in the su
of Eq. ~6!. Thus, for the moment, we consider the truncati
errors atkW50, while at the end of this section we shall com
back to discuss theirkW dependence in more detail. Furthe
more, we notice that such errors,Rl

(1)(p2,G,h) and
Rl

(2)(p2,R,h), do not depend onm. Thus we can write

Rl
~1!~p2,G,h!>

4p

vc
h2l /2f l ~p2/h! (

ugW u.G

gl e2g2/h

g22up2u
,

~10!

Rl
~2!~p2,R,h!5

2l 11

p1/2 h2l /2e2Re[p2/h]f l ~p2/h!

3 (
urWu.R

r l E
Ah/2

`

dxx2l exp@2x2r 21p2/4x2#,

~11!

wheref l (x)5eRe[x] uxu2l /2. By taking the continuum limit
of Eqs.~10! and ~11!, assuming that

G2@p2, ~12!

R2h/4@1, ~13!

and using an integral representation of the incomp
gamma function,20 we find

Rl
~1!~p2,G,h!<

1

p
f l ~p2/h!h1/2

G2

G22p2
GS l 11

2
,
G2

h D
~14!

and
t
ry

-

h

s
e

t

rs

e

Rl
~2!~p2,R,h!<

4p1/22l

vc
h2l /2f l ~p2/h!

3E
R

`

drr2l 11GS l 11

2
,
r 2h

4 D . ~15!

Moreover, we can use the asymptotic expansion of the
complete gamma function in Eq.~15! and obtain

Rl
~2!~p2,R,h!<

8p1/2

vc
f l ~p2/h!h21GS l 11

2
,
hR2

4 D .
~16!

As is apparent from Eqs.~14! and~16!, the gamma functions
dominate the decay of the errors with the truncation ra
while the energy dependencies appear only marginal. Th
fore, we can have the truncation errors of both series as c
as possible, simply by equating the arguments of the gam
functions, say,

hR2/45G2/h5x. ~17!

The positive definite quantityx, as we are going to see, turn
out simply related toD.

At this point, hopt can be obtained by minimizing th
expression for the total computing time, Eq.~9!, whereR and
G are given in terms ofx andh through Eq.~17!. In this way
we find

hopt5
4p

vc
2/3S t2

N1t1
D 1/3, ~18!

and, accordingly, the optimal truncation radii,

Gopt5Axhopt, ~19!

Ropt52Ax/hopt, ~20!

and the total truncation error as a function ofx and of the
dimensionless energye5p2/hopt,

Rl ,opt~p
2,x!5Rl

~1!~p2,x,hopt!1Rl
~2!~p2,x,hopt!

>
2f l ~e!

vc
1/3p1/2~ t2 /N1t1!

1/3S 11
x~ t2 /N1t1!

1/2

x2ueu D
3GS l 11

2
,xD . ~21!

In order to determine the quantityx defined in Eq.~21!, we
have simply to ensure that the inequalities

Rl ,opt~p
2,x!<D ~22!

are satisfied. This is easily accomplished since, in
asymptotic regime, the truncation error decreases monot
cally as a function ofx.

Remarkably, our method gives a weak energy depende
for hopt, at least for the energy ranges of practical intere
Moreover, when applied to a fcc lattice withN151, t15t2,
we get essentially the same value suggested by Davis.7 How-
ever, in our case, no test runs are needed to decide the E
parameter best value for the lattice and the energy con
ered: oncex is determined, it is sufficient to establish th
order of magnitude ofN1 and the machine dependent rat
t2 /t1. Our best choice on IBM Power Risc workstations
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t2 /t1N1;1022, where we includeN1 (;1000) as appropri-
ate to our BZ integration method~see Sec. III!.

At this point we have to come back to thekW dependence
of the truncation errors. At nonzero wave vectors, the con
tion ~12! should be replaced by

uGW 1kW u2@p2. ~23!

In order to ensure that this is satisfied for all the BZ points
is sufficient to increaseGopt, as given by Eq.~19!, by the
maximum length of the BZ. Analogously, when compl
lattices are considered, Eq.~7! has to be satisfied for eac
sublattice, and, accordingly,Ropt, as given by Eq.~20!, must
be incremented by the length of the largest translation ve
in the unit cell.

We have used the same kind of error analysis in orde
compare our algorithm with the direct summation of Eq.~4!.
In the last case, the decay of the error is dominated by
Hänkel function in Eq. ~4!, and, for a given accuracy
Ewald’s method turns out to be faster in most of the comp
energy upper half plane, while the direct summation is pr
erable only close to the real axis well below the energy z
or at a very high imaginary part of the energy. To summ
rize, Ewald’s method appears quite generally convenient
constant energy KKR calculations and our algorithm can
applied to any lattice ensuring the achievement of an a
trary small accuracy.

III. METHODS FOR BRILLOUIN ZONE INTEGRATION

As quoted in the Introduction, the BZ integration of th
KKR scattering path matrix elements is a hard numeri
problem, due to the pole structure of the integrands, wh
diverge whenever the KKR determinant goes to zero.1 There-
fore, an accurate integral requires a high density of g
points only close to the poles. As a consequence,kW -space
uniform grids methods, as special points or tetrahed
methods,14,13 are not efficient. In the early times of KKR
CPA calculations,9,10 in fact, the so-called Zoomin procedur
was used, in connection with the special directi
methods.10,16,17These methods, briefly, consist in transform
ing the volume integral into a weighted sum of line integra
Each line originates from the center of the BZ and interse
its boundaries defining an elemental prism. The correspo
ing weights can be chosen, in different schemes, as the
umes of these prisms~Stocks’ prism method,10! through a
convenient cubic harmonics expansion16 or in combination
with a two-dimensional Gaussian quadrature.17

In the Zoomin method, for each line, the integrands
evaluated at first on a reasonably coarse grid, and afterw
new points are inserted whenever the variations of the i
grand are larger than a prescribed amount and the integ
are evaluated by ordinary quadrature variable grid metho
Later on, a method has been implemented,11 based on a ra-
tional function local fit of the integrands that does not requ
the Zoomin procedure. A slightly different version of th
will be described in Sec. III B.

The special direction methods work reasonably well
cubic lattices, because their irreducible segments are sam
almost uniformly by the radial directions grids. These tec
niques, however, present a few inconveniences. In the
i-
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place, the region around theG point is sampled much more
densely than the BZ borders. Thus, it could happen, part
larly in the case of Van Hove singularities at the BZ boun
aries, that a large number of directions must be used. T
inconvenience is worsened in the case of low symmetry B
vais lattices, whose irreducible segment shape is often
similar to a spherical fuse than for cubic lattices. Moreov
it is difficult to decide the ideal size of the spacing betwe
the points in the initial grid. This, in fact, should be neith
too wide, in order to find all the structures of the integran
nor too narrow, in order to reduce the amount of calculati
Last, but not least, there is no simple way to estimate
integration errors, which, because of the geometrical str
ture of the method, are not simple functions of the numbe
directions and, certainly, depend on the topologies of
constant energy surfaces.21,13

A. An adaptive quadrature algorithm

The above discussion suggests that the KKR integ
could be performed more effectively by adaptive quadrat
methods.22 These allow the use of variable integration gri
and enable performing integrals precise up to a fixed ac
racy. In our algorithm, the BZ quadrature is carried out a
sequence of three line integrals, i.e.,

I5E
c1

c2
dcE

b1~c!

b2~c!

dbE
a1~b,c!

a2~b,c!

f ~a,b,c!da. ~24!

Herea, b, andc are curvilinear coordinates along three li
early independent directions, appropriate to the lattice ge
etry at hand~for instance, the three primitive translation ve
tors of the reciprocal lattice or any appropriate coordina
set!. The integration domain is the irreducible segment of
BZ. Thus, the functionsb1,2(c) anda1,2(b,c) and the limits
c1,2 have to be determined for each Bravais lattice. For m
of the lattices such functions present cusps in connec
with the frontier of the integration domain. In this case it
convenient to break the integration intervals into segme
limited by the above singularities.

In order to evaluate each line integral, we proceed as
lows. Given an integration tolerance,e, our algorithm con-
sists in the iteration of the following four steps.

Step I. We mark three points on the integration interv
call them the first, the last, and the middle point,xf , xl , and
xm5(xf1xl)/2, and evaluate the integrand at each point.

Step II. We evaluate the integral, over the current inte
val, both by Simpson’s and the trapezoidal rules, as

I s5
1

6
~xl2xf !@ f ~xf !14 f ~xm!1 f ~xl !#1O@~xl2xf !

5#,

~25!

I t5
1

2
~xl2xf !F12 f ~xf !1 f ~xm!1

1

2
f ~xl !G1O@~xl2xf !

3#.

~26!

Then, if the inequality

r5
uI s2I tu

uI su
<e ~27!
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FIG. 1. Free electron Green’s function integration@see Eqs.~35!, ~37! and~38!# for a simple cubic lattice atE50.21 i0.001.~a! and~b!
Imaginary and real parts off vs kx , at the indicated values ofky andkz . ~c! Imaginary part off 1 vs ky , at the indicated values ofkz . ~d!
Imaginary part off 2 vs kz .
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is satisfied,I s is assumed correct, the estimated integrat
error over the current interval is set tor uI su(xl2xf)

4, and we
jump to step IV.

Step III. Inequality~27! is not verified, i.e., the integran
is not smooth enough to achieve the accuracye. Then we
have to insert more points into the grid. Rather than to p
ceed as in the Romberg method, namely by halving the
throughout, we forget, for the moment, the second half in
val, and insert a single new point in the middle of the fi
half. Then we ‘‘shift down’’ the current three point label
save temporarily the function value and the grid point n
used for the time being~i.e., the former last point value!, and
go back to step II. All this is iterated until the inequality~27!
is verified for the current interval.

Step IV. The result for the current interval is accumulat
and we proceed to integrate over the rest of the line,
‘‘shifting up’’ the xf , xl , andxm definitions. In order to save
memory, it is convenient to discard the function and the g
point, which are no longer necessary~i.e., the first point of
the last cycle!. Then we go back to step II or exit if th
integral is completed.

The iterative halving~step III! is designed to insert a
many points as needed to achieve the prescribed accu
e.

In order to carry on volume integrals, the above step p
n

-
ep
r-
t

t

y

d

cy

-

cedure has been coded as cascade routines. Since we
grate matrices, it is convenient to check the inequality~27!
for their traces. This method provides an elegant way
zoom in where the integrand changes abruptly, while onl
few points are used where it is smooth. For instance, a
consequence of its adaptive nature, our method automatic
uses few points at energies high in the complex plane
more points close to the real axis.

In order to discuss the applicability of the above adapt
method, we have used the simple free-electron band mo
For low energies the relevant elements of the scattering p
matrix, in this model, are proportional to

f ~E,kW !5
1

E2k2
~28!

and the corresponding DOS is given by

n~E!}2
1

p
ImH E

BZ
dkW f ~E,kW !J . ~29!

At Im$E%50, Eq. ~28! consists in a superposition ofd-like
contributions atk25E. Of course, the numerical integratio
is possible only when Im$E%.0 and thed contributions are
broadened into Lorentzians@see Figs. 1~a! and 1~b!, where
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we have plottedf (E,kW ) for a simple cubic lattice#. The nu-
merical integration off (E,kW ) along a line, at small Im$E%, is
difficult since catching the sharp peaks plotted in Figs. 1~a!
and 1~b! could require a huge number of points. However,
this case, the tangentlike behavior of the real part of
integrand allows our adaptive algorithm to insert points o
in the region of sharp variations. This leads to a good ac
racy down to quite low values of Im$E%. However, close to
the real axis, the method might fail. In this case, as we s
discuss in the next subsection, the rational fit method usu
leads to better results. In any case, once

f 1~E,ky ,kz!5E dkxf ~E,kx ,ky ,kz! ~30!

is obtained, the adaptive method is accurate and efficien
fact, by looking at the features of Fig. 1~c!, we easily realize
that our algorithm is always able to locate the jumps of
integrand and insert only the necessary points. Analogou
the next integration,

f 2~E,kz!5E dkyf 1~E,ky ,kz!, ~31!

is performed with very few points located at the functi
jump @see Fig. 1~d!#.

From the above analysis, we conclude that this metho
well tuned for integrating KKR matrices. Of course, for e
ergies close to the real axis, the number of points required
the innermost integration could be quite large. To avoid s
a problem and the risk of losing structures, a different al
rithm could be preferable. In the next subsection we sh
discuss a rational fit quadrature method that is able to d
with these difficulties.

B. Rational functions fit quadrature and hybrid method

The scattering path matrix is evaluated as the inverse
the KKR matrix @see Eq.~1!#. Then we can write for the
innermost integration:11

I L,L8~p
2,b,c!5E

a1

a2
dx@ t21~p2!2G0~x,b,c,p2!#L,L8

21

5E
a1

a2
dx

ML,L8~x!

D~x!
, ~32!

where ML,L8(x) is the cofactor of the KKR matrix and
D(x) its determinant, both evaluated at thexi points of a grid
along the current direction. BothML,L8(x) and D(x) are
smooth functions ofx, the peaks of the integrands arisin
when the determinant becomes small. Then, one can fit
cofactor and determinant in Eq.~32! by twonth degree poly-
nomials at eachn11 adjacent point of the grid. Then, after
study of the roots of the denominator, the integral can
performed analytically over each interval.

This elegant trick11 can be checked against analytic fun
tions, and does not require dense grids along each line. It
be used, then, in order to deal with thea integration of Eq.
~24!, while bothb andc integrations can be efficiently per
formed by the adaptive method described in Sec. III A. T
resulting hybrid algorithm, even near the real energy a
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does not present the occasional inconveniences of the t
adaptive quadrature and is frequently more efficient at
energy. In effect, this method deals directly with the poles
the integrands along the line and allows a sort of semia
lytical treatment of the integral in a neighborhood of t
poles themselves. Moreover, it produces a grid of lines~in
this case! more dense where needed, i.e., where there
states. To put it in another way, this hybrid method can
thought of as a prism method with an adaptive direction g

The small inconvenience of this procedure is that the
tegration error estimate now refers only to the outermost
tegrations, the rational fit integration being assumed ex
The last, of course, is precise only if the step used in the
integration is appropriately sized. The optimum value of t
step,Dk, could be found by trials. Our experience sugge
that a good choice forDk should depend on the imaginar
part of the energy and on the lattice geometry as well. In t
paper we have takenDk}amax(vcNc)

(21/3)Im$E%, where
amax is the maximum length in the Brillouin zone along th
a-integration direction.

We would like to illustrate by an example some featur
of the hybrid method in comparison with other BZ integr
tion methods. Let us imagine that, for a given crystal,
have a Van Hove singularity at the real energyE1 at the
point kW1. For instance, let us suppose that the Van Ho
singularity is due to a band minimum. Then forE.E1 there
is an electron pocket. In a neighborhood ofE1, the pocket
linear dimension is proportional toD5(E2E1)

1/2Q(E
2E1), according to the theory of the electronic topologic
transitions.21 A uniform mesh ofkW points, as for instance in
the case of the tetrahedron method, fails to account for
pocket if the mean spacing between the grid points is lar
thanD. The special direction methods would be able to ca
the pocket ifukW1u is small~in this case the relevant spacing
ukW1u2Dv, where Dv}1/Ndir

2 ), but they could easily miss
pockets close to the BZ borders. It is easy to realize that
tetrahedron method requiresN}D23 points to solve such a
structure, while the special directions method needsNdir

}ukW1u/D1/2 directions orN5nNdir points, if n is the mean
number of points per direction. Of course,n has to be large
enough to ensure a correct line integration. Our hyb
method isalwaysable to resolve the above structure by i
serting very few lines where necessary, provided the ab
condition onn is satisfied. However, far from the real energ
axis, the additional smearing of the Green’s functions
duces the above inconveniences. Then the error on the
energy, normally calculated as an integral over a comp
contour, is essentially the error of the BZ integration at t
Fermi energy and, then, is relevant only for metals.

As a further consequence of the above arguments,
energy dependent quantities, uniform mesh methods co
give errors that vary smoothly with the energy, while t
errors of the hybrid method are essentially random.

C. Semianalytical tests

We have implemented the hybrid method for the BZ
tegration. In order to study its capabilities, we have tried
integrate the function of Eq.~28! over the BZ of a simple
cubic lattice. This function can be integrated analytically a
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function ofkx and then numerically, by standard mathema
cal software up to a very high precision, for the simple cu
lattice. However, its full numerical integration in the irredu
ible BZ segment is very hard, as it can be seen from Fig

In Fig. 2 we show the results obtained by our method a
the prism method, vs the number of function evaluatio

FIG. 2. Semianalytic test of the hybrid method I~see text!. The
integrand is the free electron model Green’s function@Eq. ~35!# at
E50.21 i0.05. The abscissa shows the number of the func
evaluation. Full circles, hybrid method; empty circles, pris
method; horizontal lines, exact results.~a! Real part of the integral;
~b! imaginary part of the integral.

FIG. 3. Semianalytic test of the hybrid method II~see text!.
Long dashed lines with full circles, hybrid method; horizontal line
exact results.~a! Real part of the integral;~b! imaginary part of the
integral. The energy isE50.21 i0.001.
-
c

1.
d
s

required, atE50.21 i0.05. In the calculations with the prism
method we have varied the number of radial directio
keeping fixed the density of points along each line, and
have calculated each line integral with the rational fit meth
described in the preceding subsection@apart from a factor
x2 in Eq. ~32!#. The real and imaginary parts of the B
integral are displayed in Figs. 2~a! and 2~b!, respectively,
while the horizontal lines represent the exact results. As
reader can see, even with a large number of grid points,
directions method does not appear converging toward
exact results, revealing the presence of systematic errors.
worth mentioning here that, among the cubic systems,
simple cubic lattice geometry enhances the inconvenien
of the special directions method, namely the nonuniform
of its sampling. Our method, instead, is able to give an
curate result using a relatively small number of points.

In Fig. 3 we show the integral of the same function vs t
number of points, atE50.21 i0.001, where the integration i
expected to be much harder. Again the reader can see
our adaptive method works accurately, using more po
than before, as expected, due to the pathology of the i
grand. We wish to remark that for the calculations shown
Figs. 2 and 3, the errors of our method are of the order
magnitude of the input integration tolerancee.

D. Problems connected with KKR-CPA

In order to discuss the applicability of our BZ integratio
scheme in connection with the CPA, we briefly recall, dro
ping the angular momentum indices and the energy dep
dencies, the set of KKR-CPA equations:9,23

tc
005

vc
8p3

E @ tc
212G0~kW !#21dkW , ~33!

(
a

cata
005tc

00, ~34!

ta
005Datc

00, ~35!

Da5@11tc
00~ ta

212tc
21!#21, ~36!

whereca is the concentration,ta the single sitet matrix of
the a atomic species,tc and tc

00 are the effective medium
single sitet matrix and the central site scattering path matr
andDa is the so-called CPA projector, which allows us
extract the conditional averages~thea atomic species at the
central site! of the scattering path matrix,ta

00.
KKR-CPA equations are solved by iteration, until statio

arity for tc is achieved within a given tolerance,eCPA. This
procedure, of course, requires one BZ integration for e
cycle. The errors in the BZ integration affect the solution f
tc . Using fixedkW points grids, when close to convergenc
the integration errors cancel out since they appear on b
sides of the CPA condition, Eq.~34!. If the integration is
carried on by an adaptive method, although both are sma
than the integration tolerancee, the errors in two successiv
cycles cannot cancel out precisely in the CPA condition.
a consequence, the iterative solution of the CPA equation
will be affected by numerical disturbances, and, occasi
ally, could fail whene@eCPA. However, settinge5eCPA it

n
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is not at all a way out. In fact, in standard calculatio
eCPA is usually set to quite small values (;1026). This is
due to the need to ensure cancellations between the coh
and incoherent parts in the Bloch spectral functions.23 Unfor-
tunately, such a small integration tolerance would requir
huge number of evaluations, making the calculation proh
tive, but is not really necessary when calculating site dia
nal observables, such as density of states, charge densiti
electronic total energy. Then, a fair compromise could
achieved by fixinge5102eCPA.

TABLE I. DOS and number of function evaluations,N1, at
E50.41 i0.02 for a Cu site potential~ASA!, obtained by the hybrid
method ~see Sec. III B! with integration tolerancee51024. The
calculations refer to fcc, bcc, and sc lattices and to several latt
whose parameters have been chosen to obtain coincidence wit
three cubic systems. Equivalent systems are listed in the same
In all the systems the atomic volume has been kept fixed to 75
~Bohr3). The DOS values are in spin/Ry. Abbreviations are as
lows: fcc, face centered cubic; fct, face centered tetragonal;
face centered orthorhombic; bcc, body centered cubic; bct, b
centered tetragonal; bco, body centered orthorhombic; sc, sim
cubic; st, simple tetragonal; so, simple orthorhombic; sm, sim
monoclinic; trig, trigonal; tric, triclinic;L12, Cu3Au; L10, CuAu;
B2, CsCl;D03, Fe3Al; B1, NaCl.

Lattice fcc fct fco trig L12 L10 L11

DOS 32.748 32.714 32.733 32.742 32.714 32.749 32.
N1 2277 3047 5846 3258 1149 1853 370

Lattice bcc bct bco trig tric B2 D03

DOS 35.339 35.341 35.314 35.317 35.352 35.337 35.
N1 1537 2720 5809 2643 11921 1166 227

Lattice sc st so trig sm tric B1

DOS 31.573 31.542 31.524 31.578 31.524 31.515 31.
N1 1792 2898 3707 3506 7367 14326 299
ent

a
i-
-
, or
e

IV. TEST CALCULATIONS

We have developed a KKR-CPA code, in which we ha
implemented the algorithms described in the former sectio
Our starting point has been the well optimized code of Re
and a structure constants code kindly shared by Wang
Stocks. We have developed two versions: a ‘‘serial’’ and
parallel version based on the PVM package.24 Our code can
work for nonrelativistic, scalar relativistic, or fully relativis
tic problems, for what concerns the valence states, and d
with the core states either fully or nonrelativistically. It ca
be used for pure metals, intermetallic compounds, rand
alloys ~CPA!, many sublattice random alloys, and for zero
well as for finite temperature calculations. All the Brava
lattices and most common complex lattices have been im
mented. In order to ensure generality, we have preferred
complex spherical harmonics~and the spin angular harmon
ics for the fully relativistic case! as the angular momentum
basis set, rather than lattice point group symmetrized s
The potential treatment is either by the nonoverlapp
muffin-tin or atomic sphere approximation~ASA!. A full po-
tential treatment and a spin polarized version are in deve
ment. The total energy calculations and the potential rec
struction follow the lines of Ref. 25.

We have singled out the DOS as the appropriate obs
able to check, at the same time, our structure constants
BZ integration algorithms. In all the test calculations we a
going to discuss, we have truncated the angular momen
expansions tol <3. In Table I we show the DOS calculate
at the indicated energy for Cu, in the ASA approximatio
and for several lattices. The lattice parameters and the a
positions in the unit cell have been tuned in such a way t
all the structures are coincident with one of the three cu
lattices. The BZ integral is carried on by our hybrid metho
The step for the rational fit integration has been let to vary
the range 0.03–0.1, according to the discussion of Sec. II
The integration accuracy has been fixed to the very ti
value e51024. As the reader can see, the results ag
within absolutely tolerable fluctuations, all of the order
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TABLE II. Comparison between DOS calculated by different integration methods. Our hybrid me
results~labeled by HM!, calculated withe51023, are compared with Stocks’ prism method~Ref. 10!, with
36, 136, and 528 directions, labeled respectively, as P36, P136, and P528. Mean values and standa
tions for various geometrically equivalent structures are obtained from the HM calculations withe51024

displayed in Table I. The energy, the potentials, the units, and other symbols are the same as in Ta

Lattice fcc L12
method HM P36 P136 P528 HM P36 P136 P528 Mean valu

DOS 32.829 32.812 32.751 32.740 32.985 32.701 32.711 32.715 32.73460.015
N1 682 695 2624 10194 299 1030 3895 15129

Lattice bcc B2
method HM P36 P136 P528 HM P36 P136 P528 Mean valu

DOS 35.371 35.403 35.367 35.349 35.329 35.360 35.336 35.331 35.33460.014
N1 470 705 2662 10138 299 859 3248 12614

Lattice sc B1
method HM P36 P136 P528 HM P36 P136 P528 Mean valu

DOS 31.212 31.564 31.553 31.551 31.594 31.468 31.432 31.428 31.54960.030
N1 350 724 2733 10621 896 822 3109 12805
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magnitude of the integration tolerance.
Actually, this is quite a severe test, because the inte

tion domains, the symmetry group rotations, etc., are tot
different for the various coincident systems. In fact, t
bands of various equivalent lattices are folded in differ
ways, according to the lattice symmetry groups. We obse
that the number of points used varies much less than line
with the volumes of the irreducible segments. This is,
deed, a success of our integration method.

In Table II the results for the DOS obtained by the hyb
method withe51023 are compared with those by the pris
method, with 36, 136, and 528 directions. In all cases,
KKR structure constants have been evaluated accordin
the theory of Sec. II. In the same table the DOS mean va
and standard deviations, taken from Table I, are also repo
for each class of equivalent lattices. As it can be seen,
prism method requires more points than ours to achieve c
parable accuracy. For low accuracy the performances of
two methods are not too different. However, the compu
tional advantages of our method are greatly enhanced w
higher accuracies (e51024) are required. That is due to th
capability of the hybrid method to insert lines more dens
where needed.

We have also performed the same calculations of Tab
by the full adaptive method of Sec. III A. The results for t
DOS are close to the ones displayed but the number of i
gration points are normally bigger.

A more complete test is theab initio calculation for the
hcp Ti, in the nonrelativistic approximation for the valen
states. The lattice parameters are the same as in Ref. 26
DOS, plotted in Fig. 4, and the Fermi level agree quite w
with Ref. 26 and other published DOS’s, as Fig. 1 of Ref.
The little noise visible in the energy regions around 0.2
and above 0.3 Ry is due to the fact that the errors in
integration method are essentially random.

We have also calculated the electronic total energy of
Ti, which, as expected, turns out bigger than in the hcp ph
by about 3 mRy per atom. This is consistent with the
experimental phase diagram.28

In Fig. 5 we report our relativistic calculation for the DO
of Cu0.75-Pt0.25 random alloy, as obtained by the special d

FIG. 4. The density of states of hcp Ti. The lattice parame
a5 5.522 a.u., is the same as in Ref. 26. The calculation is non
ativistic for the valence states and fully relativistic for the co
states.
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rection method~a!, the hybrid method applied to the fc
lattice~b!, and to an fct lattice coincident with the fcc~c!. All
calculations agree well with other published DOS’s~Fig. 2
of Ref. 29!. In this plot, one can see how the old method a
the new one are in reasonably good agreement, notwithst
ing some oscillations aroundE50.42 Ry, where the curve
~a! differs from ~b! and ~c!. The last two, instead, are indis
tinguishable. Also recalling the semianalytic tests of t
former section, and on the basis of the results of Tables I
II, we think that for the DOS calculation of Fig. 5 the hybr
method proves to be more precise than the special direct
method.

On the basis of the presented results we are confident
~i! the hybrid method is applicable to any Bravais lattice;~ii !
owing to its adaptive nature, it allows precise integrals;~iii !
our structure constants calculation, rotation matrices, and
ergy integrations are correct; and~iv! KKR-CPA calculations
with calculated structure constants, applicable to any Brav
lattice, are now feasible.

V. SUMMARY

We have developed a code for LDA-KKR-CPA calcul
tions able to deal with any Bravais lattice. We have~i! sug-
gested an algorithm to improve the KKR structure consta
calculation and~ii ! designed and developed an adapti
quadrature method for BZ integration.

We have presented a test of our integration algorithm
ing a free electron model Green’s function and calculatio
for various real systems. We are planning to apply this co
to the calculation of electronic properties of noncubic allo
such as In-Tl and high critical temperature superconduct
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FIG. 5. The KKR-CPA density of states for Cu0.75-Pt0.25 ran-
dom alloy. ~a! Continuous line: the special direction method;~b!
empty circles: hybrid method for the fcc lattice;~c! ‘‘ x’’: hybrid
method for the fct lattice withc/a51.
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