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We examine various properties of the two- and three-dimensional plasma of charged bosons over an exten-
sive range of densities, especially in the previously less studied low-density regime using a microscopic,
variational approach. We calculate the ground-state structure and energetics and compare both our analytical
and numerical results with earlier theoretical work. Throughout the entire density regime investigated, good
agreement with the results of several Monte Carlo calculations is obtained. Triplet correlations are found to be
important for the consistency of the equation of state at high densities. To study excitations we then allow for
time-dependerinterparticle correlations. Special attention is paid to the question of a microscopic justification
for the “local-field factor,” and the consistency demands imposed by sum rules on microscopic excitation
theories. Results for the static dielectric functie(k,0) and the dynamic structure functid®(k,w) are
presented in three and two dimensiof$0163-182607)06119-3

[. INTRODUCTION Besides the possible applications, the fluid of charged bosons
in two and three dimensions offers a relatively simple many-
The fluid of charged bosons embedded in a neutralizindpody model system. Microscopic many-body methods for
background af =0 has mostly been considered as a modethis system have matured to a point where precise and un-
many-body system in quantum statistical mechanics, whiclambiguous predictions can be made for the ground-state
parallels the physically more significant fluid of electrons, properties. This permits one to study the effects of dimen-
but has no real physical applications. This picture hassionality; it also imposes, as we shall argue, a revised view
changed to some extent in recent years, especially after thaf excitation theories.
discovery of high-temperature superconductivity in layered Early theoretical approaches to study this many-body
compounds and in certain ceramic materials. Interestinglyproblem have been based on the transformation technique
the three-dimensional charged-boson fluid has received atleveloped by Bogoliubov or, equivalently, on the random
tention as a model for superconductors even prior to the BCBhase approximatiofRPA) scheme. These methods give a
theory? but has since been mostly ignored until this recentfairly good description in the high-density perturbative re-
revived interest® In a sense, these two models aregime due to weak correlation@nd high condensate frac-
complementary. The BCS theory is the appropriate ap- tion), but they fail severely when the correlation strength
proach if the coherence length is much larger than the meagrows with decreasing density and the system resembles the
distance between the particles, whereas the boson-fluid afdeal Bose gas less and less. Other approaches, which incor-
proach is suitable when the coherence length is of the ordgrorate also the effects of strong interparticle correlations,
of the mean particle distance. include the scheme by Singveit al* (STLS) and several
The main reason for disregarding the charged-boson fluigtariational studied**®
has been the fact that, unlike its fermionic counterpart, the There exists a number of calculations of the ground state
electron gas, it has not been realized in a laboratory, aland excitations of the three-dimensional systé8m? the
though injecting deuterium up to a high density into metalstwo-dimensional2D) system has been studied considerably
such as palladium or vanadium may be a promising way tdess?>~? The dielectric propertiéd—* and static density
generate it. The charged-boson fluid has also astrophysicetspons® of both of these systems have also attracted inter-
relevanc&1%n the description of pressure-ionized helium in est. A number of Monte Carlo simulations have been de-
cold degenerate stellar matter. Recent interest has been in theted to this subject, the most relevant from the viewpoint of
fusion of threea particles in a dense helium plasfa? the present study being the calculations by Hansen and
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Mazigh?®® using a variational Monte Carlo approach, as wellnamely, the “restricted three-dimensional” or the quasi-two-
as those by Ceperley and Aldéand a very recent work by dimensional fluid and the “pure” Coulomb fluid. The former
Moroni, Conti, and TosP with a diffusion Monte Carlo ap- consists of charges that interact via the pbtential, but
proach. In the first two studies the authors obtain the groundwhich are confined to move in a plane. In the latter case the
state energy over an extensive range of densities includinimteraction is logarithmic. That is of particular interest as a
the Wigner crystal phase, while Moroat al. also calculate many-body problem involving very long-range interactions
the momentum distribution, dielectric response, and givesince it is a quantum Bose fluid without a Bose condensate at
bounds for excited states of the 3D plasma. Because theero temperatur®®° In this paper, however, we are inter-
ground-state properties of these systems are quite wedlsted in the quasi-two-dimensional fluid, which is a more
known, we feel that one should reexamine the excited statagalistic model for films of charged particles.
in view of this precise knowledge. Especially the diffusion The ground-state wave function for a systeniNoidenti-
Monte Carlo results provide useful information and pose arcal bosons with coordinates, . . . ry is written as a varia-
interesting challenge for the microscopic many-body theotional ansatz of the Jastrow-Feenberg form
ries.

The properties of the charged-boson fluid are character- 1
ized by a single dimensionless coupling parameter  Yo(r1, ... ,rN)ZeXF{ﬂZJ_ ua(ri,ry)
r<=rq/ay, wherea, is the Bohr radius and, is the radius of .
a sphergcircle in two dimensionsthat encloses on average

one particle and is thus related to the number densiby +i<J§;k Uz(ri,ry,r)=+---

}. 2.2

_[(wp)™¥2  (in2D)

i (1.1) The most important component of the variational wave func-
"\ (4mpl3)~ 3 (in 3D).

tion is the two-body functiomi,(r;,r;), which describes both

) . o . ) _the short- and long-range correlations between pairs of par-
Depending on the density, three distinct physical regimes ificles In fact, one of the reasons for the success of the varia-

these charged systems are characterized: starting from thga theory is that it ixactin both the weakly interacting
weakly coupled fluid (;<1) the interparticle correlations |imit (in which case the theory reduces to the random phase
grow in strength and the system becomes gradually Stm”g'é{pproximatiom and in the strongly interacting limit(in
coupled until it eventually undergoes a zero-temperaturgyhich case it reduces to the Bethe-Goldstone equiation
phase transition to form a Wigner crystal at low densities.  por gl practical applications known so far, the restriction
The purpose of this work is to study the charged-bosonsf the Feenberg functiof®.2) to pair and triplet correlations
fluid in two and three dimensions using the well-tested anyas tyrmed out to be sufficient. Moreover, the triplet correla-
widely applied hypernetted-chain Euler-Lagraf®NC/EL)  tions ug(r, .T;,r) only improve the quantitative agreement
formalism to calculate the structure and energetics of thgeanveen the theory and measurements or exact simulations
ground state as well as the excited states of these systengy; they do not change the essential features of the theory.

The next section reviews the basic formalism, including arne effect of triplet correlations has been studied thoroughly
comprehensive study of the triplet correlations and a com;, pelium systemé&“2where they are known to be important

parison with parquet-diagram theory. Section IIl studies exsince the interparticle correlations are strong. The role of the
citations and the dynamic structure function within a simpleyip|et correlations in charged fluids has been less explored.
version of the correlated basis functiG@BF) theory, which |n'tact there seems to be a general agreement that they can
is derived using the method of time-dependent pair correlape safely neglected at the metallic densities. While this is
tions. Special emphasis is placed on the analytic structure ¢fymerically true, we shall see that triplet correlations are

the dynamic response function; this allows us to address thgeeded even in the high-density limit for consistency rea-
question of various ways to define a “local-field factor” and ¢4,

to study the compressibility consistency in the high-density Aﬁ important aspect of the variational theory is the opti-

limit. mization of the correlations. The correlation functions are
determined by the minimization of the energy-expectation
Il. GROUND-STATE STRUCTURE value, formally written as
. A Ground.sttdte theory . | S <\If0|H|\If0)
The microscopic description of a strongly interacting Sun| (Wo[Wq) =0, n=23. 2.3
guantum many-body system begins conventionally with the n orro
Hamiltonian The additional information needed to solve these equations is
the connection between the correlation functions and the
n2 X s physically observable distribution functions. This connection
H:_Z_Z Vi +i2<j v(ri=r;]). (2D js ‘provided by the hypernetted-chain equati®hsThese

equations are derived by diagrammatic analysis of the two-
In our case of the charged-boson flui¢{r; —r||) is the Cou-  body distribution functiong(r) in terms of the two-body
lomb potential and the neutralizing background charge mustorrelation function. The analysis leads to the HNC relation-
be added into the Hamiltonian. In three dimensions the Couships
lomb interaction has the familiar form(r)o1/r. In two di-
mensions there are two well-defined Coulomb systems, g(r)y=exp{uy(r)+N(r)+E(r)}. (2.9



55 CHARGED-BOSON FLUID IN TWO AND THREE DIMENSIONS 12 927

The functionE(r) represents an infinite series of “elemen- #2

tary” diagrams that can be expressed as multidimensional  — EVZ\/g(r)+[U(r)+AVele(r)+Wind(r)]\/g(r)
integrals involvingg(r). The sum of nodal diagramsl(r),

can be expressed conveniently in momentum space. Intro- =0, (2.13

ducing the dimensionless Fourier transform . o
where the “induced interaction” is

"f’(k)=pf dirf(relr, (2.5 N i R o Sl
whered denotes the dimensionality of the system, and the 012
static structure function - [S(k)— 11—V, (K), (2.14
S(k)=l+pJ dire’*"Tg(r)—1], (2.6) and AVq(r) is a term that arises from triplet correlations
and elementary diagrams,
the functionN(k) has the form i) 2 S(Es+E,) 015
~ r=— .
[S()-117  X2(k) o Np  &9(r)

N(k) =

(2.7

Sk) 1—X(k)' The coordinate-space formulation of the Euler equation
(2.13 is readily identified with the boson Bethe-Goldstone

where we have also introduced, for further reference, th@qyation, which sums the dominant diagrams in the strong-
“direct correlation function” or the “nonnodal function” coupling limit.

A formulation of the Euler-Lagrange equations(&13

X(k)=S(k) —=1—N(k). (28 can be given in momentum space in terms of the structure

The level of the HNC approximation is defined by the choicefaCtorS(k)’

of E(r); e.g., HNC/O neglects the elementary diagrams alto- am — 12
gether, note that triplet correlations can be implemented s(k)={1+_nvp_h(k)] . (2.16
through a modification of the definition of “elementary dia- 7k

grams.” The combination of the HNC equatiof®4) and  Thjs equation is formally identical to the boson-RPA expres-
the Euler equations2.3) are generally referred to as the sjon for the structure factor; the HNC/EL theory supplements

hypernetted-chain Euler-Lagrange theory. With the quantithe RPA with a microscopic theory of the particle-hole inter-
ties introduced above, the correlation energy can be writteqction

as
hZ
E=E, +E +E,+Ej; (2.9 Vpn(1)=9(N)[v(r)+AVed )]+ —[VVg(r)|?
with +[9(r) = 1]Wine(1)- (2.17
E rp[ 4 h? ) Thus the HNC/EL theory sumisoth important sets of dia-
N Ef d r[[g(r)—l]v(r)Jr 1 VVam)©l, grams self-consistently.
(2.10 Equations(2.16), (2.17), and(2.14) can be solved itera-
tively for g(r) andS(k). We can then go back and calculate
= %2 ddk ) ~ the ground-state energy from the expressi@rd) for the
N 8_mf mk [S(K)=1IN(k), (2.1)  energy-expectation value.
The pressure of the system is calculated by varying the
E 52 ddk energy per particle with respect to the density. It can be
e ~ . .
— = K2[S(k)—1]E(K) (2.12  expressed entirely in terms of the ground-state structure
o \d ,

N 8mj (2m)% functions,

andE; is the contribution from triplet correlations. This term
) ; P dE/N

can be expressed in terms of the three-body correlation func- —=p—. (2.18
tion us(rq,r,,rz) and the three-body distribution function. p dp

have turned out to be quite sufficient for all practical pur- , — /N+ P/p, and the hydrodynamic compressibility is

poses. _ . obtained by differentiating the chemical potential with re-
The details of the HNC/EL scheme have been discusseghect to density

in many contexts; for a comprehensive review of the method

see Ref. 42. Previous applications have mostly focused on 1 du

helium liquids, but the formalism is identical in the present E:pﬁ' (2.19
case and does not need to be discussed in detail in this con-

text. The Euler-Lagrange equation can be conveniently writSince the definition of the compressibility contains the sec-
ten in coordinate space for the radial distribution function, ond derivative of the energy one also needs to calculate the
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TABLE I. All fourth-order perturbation theory diagrams are shown in their diagrammatic foight column and their analytic
expressior(left column. The middle column contains the analytic form of the HNC/EL approximation of the same diagrams. These results
have been derived in Ref. 46.

Perturbation Theory HNC/EL

5 ck Vi) 5 [ &k Vik)

16 (27)3p 3(k) “16J (27)3p 3(k)
Brd®p V2V (p)V(|p + k) / d3kd3p Vik)WV(p)V(|p + kI)
(2m)6p? t2(k)t(p) p? t2(k)t(p)
Prd’p  V(K)V(p)V(Ip + k) 1 [ &k VARV (p)V(Ip + k)
(2m)8p2 t2(k)(t(k) + t(p) + t(|p + kI) 8. (2m)8p? t2(k)t(p)
Ckd’p VARV (p)V(p +kl) 3 / &Ckd®p V2(k)V (p)V (p + kI)

A4S @rsprtt(p) (k) +t(p) + t(lp + k) 4 (2m)%p?  t(k)t(p)t(lp + ki)

_1/ Erd®p  VEK)V(p)V(p + k)
2J (2m)8p% t(k)t(p)(t(k) + t(p) + t(|p + k)

/ PPkd’pd’q V(k)V(p) (9) Pkd®pd®q V(K)V(p)V(q)
C16 (2m)%°  t(k)i(p)ilq) 16 (2m)°p>  t(k)i(p)i(q)
d*kd®p V2(E)V2(p)

(27)5p2 t2(k)(t(k) + t(p) + U(|p + k)

/ dPld®p VHE)W2(p)
Sp2 t(k)t(p)(t(k) + t(p) + t(|p + kI)

1 [ d®kd®p VE(kK)V(p)
8. (2m)p* t*(k)t(p)

%@%@@a%%%

linear response of the ground-state structure functions teions of that theory is that HNC/EL sums not only all ring
density variations. We will return to this problem when theand ladder diagrams exactly, but also mixed diagrams in a

static response function is evaluated. local approximation and provides a precise prescription on
how the HNC/EL theory is obtained from perturbation
B. Triplet correlations and parquet diagrams theory. Furthermore, Jacksat al. have showff that dis-

The self-consistent summation of ring and ladder dia Lcrepancies between the exact perturbation expansion and the

grams mentioned above has been used and exploited in tifiagrams summed by the HNC/EL equation appear in fourth
parquet-diagram theoff=°° One of the important conclu- order in the potential. The purpose of this section is to study



55 CHARGED-BOSON FLUID IN TWO AND THREE DIMENSIONS 12 929

how the statement of Ref. 46 is generalized if triplet corre-tween the full perturbation-theory expressiae., the sum of

lations are included in the HNC/EL scheme. all terms in the first column of Table) land the HNC/EL

Table | (from Ref. 4§ shows all fourth-order o5, 6y imation(i.e., the sum of all terms in the second col-
perturbation-theory diagrams together with all terms Ofumn of Table J. The calculation is somewhat tedious, but
fourth order in the potential generated by iterating the ' '

HNC/EL equations. We can now calculate thilerencebe-  Straightforward and leads to the compact result

d9%d?pd¢ LIV
~24) 2m®,7 (p+k+0q)

><|(ﬁ2/2m)[|0~k[V(lo)/t(IO)][V( )It(K)1+p- a[V(p)/t(p) IV(q)/t(q) + k- Q[V(k)/t(k)]V(Q)/t(Q)ﬂ2

t(p)+t(k)+t(q) (2.20

wheret(k) =72k?/2m andV(k) the bare interaction. This equation is to be compared with the three-body energy correction
as derived, for example, in Refs. 44 or 41:

Es d%d%pdiq 52
N 22 W—é(p+k+q)8(p)8(k)8(q)u3(k p,q) —[p KX(p)X(K) +p-gX(p)X(q) + k- gX(K)X(q)]

+[e(p)+e(k)+e(q)us(k,p,a) . (2.21
Heree (k) is the Feynman excitation energy
B h2k?
S(k)— TSK)’ (223

andus(k,p,q) is the triplet correlation function or, more generally, the irreducible three-body vertex. The three-body energy
is a quadratic functional dfi; and thus can be easily minimized, yielding

(B212m)[k- pX(p)X(K) +p-gX(p)X(q) + k- gX(k)X(q)]
e(k)+e(p)+e(q)

'63(k!p!Q): 5(p+k+Q) (223)

Inserting this result back to the three-body energy we get an expression that is very similar(ZoZqu

Es d’kd’pd’q |(h2/2m)[ p-kX(p)X(K)+ p- aX(p)X(q) + k- gX(K)X q)]l2
W: 24 WT5(p+k+Q)S(p)S(k)S(Q/ 8(k)+8(p)+8(€])

(2.29

The identity of the triplet energy2.24) with the fourth-order correctiof2.20 is now easily verified, to leading order in the
interaction, by expanding the direct correlation functi@rB),

- N V(K)
X(K)=1=8" (0~ — 5 (2.25

and replacing the Feynman spectreik) by the kinetic energy(k). Thus, we have shown that HNC/EL and parquet theory
are identical and exact to at least fourth order in the potential when triplet correlations or three-body vertex functions are
included. We conjecture here that the identity extends to fifth order in the potential since the first elementary diagram is of
sixth order. The distinction between HNC/EL and parquet theory is, thus, also at the next order a matter of language and
derivation, but not of physical content. As a matter of practicality we note that the triplet energy in the variational approach
results directly in a closed-form expressifnwhereas it appears by no means obvious that the diagrams shown in Table | can
be combined in such a compact manner. We also note that Jaeksdrreport large-scale cancellations between the indi-
vidual diagrams?

The three-body vertex also gives a contribution to the particle-hole potential, which will be needed below. It is conveniently
calculated in the momentum space,

Vo) O3 dpdq n’
AVph(k) =2~ k) (2m 7, (P Tk + A)S(P)S(a)Us(k,p.a)) Tk PX(p)+k-aX(a) +p-aX(P)X(q)]

+[e(p)+e(q)Jus(k,p,a) . (2.26
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C. Uniform limit approximation The Fourier transform of the structure function, or more

The two formulations of the Euler equatid@.13 and  Precisely ofS(&)—1, approaches zero like3” in the 3D

(21@ serve an important purpose: as a|ready pointed Ou'l_(,:ase and |ike§/3 in the 2D case. Thus the radial distribution
Eq. (2.16 is a boson-RPA equation, in other words, thefunction approaches unity and the uniform limit approxima-
HNC/EL theory sums all ring diagrams that dominate thetion becomes valid. The total energy per particle as well as
energy in the high-density limit. For further reference, and tothe chemical potential can then be expressed in terms of the
see that one actually obtains the RPA energy in that limit, westructure function alone and the coefficients of the leading-
make the so-called “uniform limit approximatiori*® The  order terms in thes expansion can be calculated,
approximation assumes that all pair functions are small in

coordinate space, but can be long ranged and therefore large 2 »  S(¢)-1 ~

in momentum space. The approximation amounts, in Eq. E/N= —Ts 3/410 d€S(§)+1=—0-803079s ¥4 Ry,

(2.9), to expanding the terrgyg(r) in the form

g(r)~1+3[g(r)—1]. (2.27)

This leads, after a few manipulatiofrsote that we ignore, in
this limit, elementary diagrams and triplet correlatipr®

the expression (in 3D), (2.39
Erea 1 d%
°=2] G-t

2 )
w= ;rg3’4fo dé(S(¢)—1)=—1.00385_%* Ry

I L R
5(k)+ 7 —[1-5(K)]

S(§—-1
S(¢)+1

E/N=r;2’3f dé =—1.2935%_ %% Ry,
0

Vrea . Trea
+
N N

Here we have also defined, for further reference, the uniform n= f§2/3f dé(S(é)—1)=—1.72474,?® Ry
limit approximation of the kinetic energy, 0
Trea 112 d’k kz[S(k)—l]Z

N ~8mJ) (2m)% Sk)

(2.28

(in 2D). (2.35

(2.29

] o These results are well known for the three-dimensional
If we furthermore use the Coulomb interaction instead ofcharged-boson gd&°! The pressure and the compressibility

the full particle-hole interaction in Eq2.16) we readily see calculated from the definition@.18 and (2.19 are then
that the expression foEgps/N is identical to the energy

obtained by coupling-constant integration in the RPA, _
Plp=1EIN, 1pKp)=3u (in 3D), (2.3

ERPA—lf ddk“kfld k—1], (2.3

N =2 @m0 | NS0 -1], (230

Plp=3EIN, 1pKp=3u (in 2D). (2.39)
where S, (k) is the structure functio2.16 with \~/p_h(k)

replaced by the Coulomb potentigl (k). These limits serve useful purposes for the design of interpo-
lation formulas for the equation of state, and as a consistency
test of numerical calculations at lower densities; we will re-

) ) _ _turn to them when we discuss the compressibility consis-
We begin the discussion of the ground-state energeticgncy.

D. Energetics and ground-state structure

and structure function with the high-density limii—0. In Let us now turn to a discussion of our HNC/EL results
that limit it is customar}®**to choose a new dimensionless over a wide density regime. The ground-state energies of the
variable for the wave number: 3D system at several densities are given in Table Il along

s with the results of several Monte Carlo calculatiis3®
_ | krorg ™ (in3D) 23 and the STLS approact. The agreement between our
N kl’ol’;lls (in 2D). (2.31 HNC/EL energies and those of Moroei al. is typically bet-
ter than 0.2%, which we consider quite satisfactory and suf-
In the high-density limit the particle-hole interacti@17 is  ficient for all practical purposes. There appear to be larger
dominated by the bare Coulomb potential and the expresgifferences even in the results of the two diffusion Monte
sions for the structure functions become particularly simplecarlo (DMC) calculations. The authot&assign this discrep-
ancy to differences in the size extrapolation and convergence
of the Ewald sums used in the calculations. The STLS ap-

1 .
S(6)= /—1+12/§4 (in 3D) (2.32 proach gives also energies that are in fair agreement with the
DMC results.
Table 1l shows the decomposition of the correlation en-

S(&)=————  (in 2D). 23 ergy into the HNC/O contribution, and the correction terms
(€) V1+8/g3 ( ) 233 originating from triplet correlations and elementary dia-
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TABLE II. Ground-state energi, of the three-dimensional charged-boson fluid from the present calcu-
lation (including triplet correlations and elementary diagraroempared with the diffusion Monte Carlo
results by Moroni, Conti, and To$MCT) (Ref. 38 and by Ceperley and AldéCA) (Ref. 37. Also shown
are the variational Monte Carlo results by Hansen and MazigM) (Ref. 3§ and the results obtained
through the STLS approadiRef. 34.

s Eg (full) MCT CA HM STLS
0.1 —4.48857
1.0 —0.77675 —0.776645) -0.7810 —0.771240
2.0 —0.45203 —0.451923) —0.4531 —0.4547 —0.447180
5.0 ~0.21657 —0.21642012) —0.216636) ~0.2170 —0.212895
10.0 —-0.12144  —0.1213535) —0.121503) -0.1216 —0.118800
20.0 —~0.06664  —0.06663%4) —0.066662) —0.06667 —0.064864
50.0 —0.02923 —0.0292763) —0.029271) —0.028220
100.0 —0.01538 —0.015414813) —0.0154274) ~0.01535 —0.014733
160.0 —0.00988 —0.0099046

grams. These corrections are, obviously, quite small but d;n 3D are shown in Fig. 1 and compared with DMC data.
improve the agreement with DMC data. For mere energyAgain, the comparison between the full calculation and the
calculation, these effects are negligible, but we will see thaMonte Carlo data is satisfactory, albeit the agreement is not
the inclusion of triplet correlations improves the consistencyquite as good as for the total energy, because the kinetic
between the hydrodynamic compressibility as computeanergy is only a fraction of the total energy ranging from
from the equation of state and from the long-wavelengthi25% in the high-density limit to 5% at;=160. The very
limit of the particle-hole interaction. More importantly, there simple uniform limit approximation is also reasonably ac-
are also quite visible improvements of the static structureceptable. The results in 2D are similar and shown in Fig. 2.
functions in the vicinity of the peak region. The two ways to calculate the kinetic energy become exact
The ground-state energies of the two-dimensionain the high-density limit
charged-boson fluid at different densities are listed in Table
IV. We found no published Monte Carlo results for that sys- i T E P 2.3
tem, however, we have learmédabout recent diffusion MN™N #*7 (2.39
Monte Carlo calculations that agree with our ground-state
energies typically within the same accuracy that was foundt is somewhat surprising that the uniform limit approxima-
in three dimensions. Our results are below the variationation is also quite accurate at very low densities.
results by Sim, Tao, and WA3.This is plausible since these Figures 3 and 4 show the calculated pair-distribution
authors parametrizg(r) and S(k) using a single parameter functionsS(k) of the 3D and 2D systems, respectively. The
and then minimize the energy-expectation value with respedong-wavelength behavior of these functions is different. In
to this parameter, whereas we solve the full Euler equatiorthe 3D case one has(k)<k?, whereas in the 2D case
Furthermore, the calculation of Ref. 25 has been done in th&(k)=k®2 In the 3D case, we can again compare with
HNC/0-approximation. Reasonable agreement is also fountflonte Carlo data. Figure 3 shows that comparison only for
with the STLS results by Goltf low densitiesy ;= 20; at higher densities our results and the
The kinetic-energy expectation value is also a quantity oMonte Carlo data are indistinguishable. At lower densities,
interest. For our discussion of the static response function wihe Monte Carlo calculations show a slightly higher peak in
also need the uniform limit approximati@@.29. Our results  the regime of their maxima; they are otherwise quite close.

TABLE IIl. Decomposition of the ground-state correlation enekgyof the three-dimensional charged-
boson fluid into HNC/O contributiofE o and the termE; from the triplet correlations and, from the
four- and five-body elementary diagrams.

rs Enncio = Ee Eq (full)
0.1 —4.48794 —0.00050 —0.00011 —4.48857
1.0 —0.77578 —0.00040 —0.00058 —0.77675
2.0 —0.45091 —0.00034 —0.00079 —0.45203
5.0 —0.21540 —0.00025 —0.00093 —0.21657
10.0 —0.12045 —0.00019 —0.00080 —0.12144
20.0 —0.06596 —0.00014 —0.00055 —0.06664
50.0 —0.02890 —0.00009 —0.00024 —0.02923
100.0 —0.01520 —0.00006 —0.00012 —0.01538

160.0 —0.00976 —0.00005 —0.00007 —0.00988
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TABLE IV. Ground-state energye, of the two-dimensional
020 o T T T charged-boson fluid from the present calculafimeluding both the
HNC/EL — triplet correlations and the elementary diagracempared with the
uniform limit ---- results by Sim, Tao, and WBTW) (Ref. 25 using a parametrized
5» 0.15 1 1 variational wave function, and with the results by Gold calculated
= using the STLS schem@ef. 3J).
X
g 0.10 b 1 e E, (full STW STLS
= 0.1 —5.8441
0.05 | | 1.0 —1.1458 —1.1062 —-1.1103
2.0 —0.6740 —0.6631 —0.6484
3.0 —0.4873 —0.4818 —0.5965
0.00 . . . . 4.0 —0.3844 —0.3796
0.1 1 r, 10 100 5.0 —0.3185 —0.3133 —0.3078
6.0 —0.2725 —0.2666
FIG. 1. The kinetic energy of the charged-boson gas in 3D ob8-0 —0.2122 —0.2053
tained from our calculatiogsolid line) is compared with the bmMc 100 —0.1741 —0.16685 —0.1724
data of Ref. 38. Also shown is the kinetic energy obtained in the20.0 —0.0928 —0.086024
“uniform limit approximation” (2.29). 50.0 —0.0394

The only slightly unsystematic behavior is foundrat=20,  c5cylations presented here describe, at low densities, the

where the peak of the DMS(K) is shifted inwards. At high overcooled fluid, not the emerging Wigner crystal.
densities the 3D and 2D structure functions are quite similar,

but as the density decreases the peak of the 2D structure
factor grows more rapidly. Besides the height, the peaks dif-
fer also in the position. The peaks in the 2D case are at
somewhat smaller values &f . . o - .

Figures 5 and 6 show the calculated pair-distributiont_ Alolau5|ble \;\va_y tf deI?I W'fch exth_atlonds W'thg' the Va}”?ﬁ
functions g(r) of the 2D and 3D systems. The effect of lonal ‘approach Is fo aflow for a time dependence of the

screening is clearly seen in both cases: as the density iﬁ:_orrglanon ffutrr\ftlonwn(rl, .t' ' 'rf“%r'] Beyondf the iztzlrg]e de-
creases, the pair-distribution function at zero separatio endence of the components of the wave functiag), we

g(0), approaches unity; i.e., the repulsion between the paranUSt also i_nclud_e a time-dependent one-body functic_)n sir_1ce
ticles decreases and there is considerable overlap of chargég.e dy%?m'cs W'}!' ntifmall¥trt:reak 'tth?j trantslatl_onal 'T‘Vﬁ”?t
The results also show the screening to be weaker in the tw(nce. 1he wave tunction ot the excited system Is again writ-

dimensional system. At very low densities we find a typicalten in the Jastrow-Feenberg form

IlI. DYNAMICS

A. Time-dependent correlations

low-density distribution function, i.e., a large overshoot and _ 1
a long-ranged oscillatory behavior. Both of these features e Eolligz oU(ry, - IO )
clearly indicate the tendency of the particles to become lo- (W (t)= [(W e W) ]2 ’ 3.9
. . Ly . . 0 0
calized as the density decreases. The peaki is higher
in the 2D system and the oscillations appear at a higher den-
sity than in the 3D fluid. We emphasize, however, that the 1.6 . . .
14}
0.5 . . T 12F
HNC/EL —
. . 10}
04 uniform limit ---- _
@ £ 08r
@ 03t 0.6 [
3o
o 0.4
&
= L
= 02 02}
0.0 == :
0.1 0.0 2.0 4.0 6.0 8.0 10.0
kry
08 o1 o1 : 10 100 FIG. 3. The static structure function for the three-dimensional

gas.

charged-boson gas fog=1, 2, 5, 10, 20, 50, 100, and 166olid
_ _ ) lines). The lines with the higher peaks correspond to the highest
FIG. 2. Same as Fig. 1 for the two-dimensional charged-bosoRalues ofr ;. Also shown are DMC resullts for,= 20, 50, 100, and

160 (dashed lines, from Ref. 38
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FIG. 5. The pair-distribution function for the three-dimensional

FIG. 4. The static structure function for the two-dimensional charged-boson gas for=1, 2, 5, 10, 20, 50, 100, and 160. The
charged-boson gas fog=1, 2, 5, 10, 20, and 50. The lines with the lines with the higher peaks correspond to the higher values .of
higher peaks correspond to the higher valuesof

The stationarity principl€3.3) leads to four Euler-Lagrange

where|W¥ ) is the (variationa) ground state, and equations for the real and imaginary partséf; and Su,,
which are conveniently written in the form of two continuity
equations, )
U(ry, . N =2 5u1(ri;t)+i2<j Su(ri,rj;t) Vi da(rt)=pa(reit), .
(3.2 Vido(r,rait)+(1eo2)=py(ry,rost) '

is a time-dependent complex function representing fluctuawith the one- and two-particle currents
tions of the correlation functions. Since the excitations can A
be considered as small perturbations of the ground state, onreij(rq;t) =—[E(r1)V15u1(r1;t)
. O 2m
can treatsU to the leading nontrivial order.
Restricting the time dependence to thee-body compo- _
nent only leads directly to the Feynman theory of +J drzpz(fl,fz)V15Uz(f1,fz;t)],
excitations® and to the dispersion relatid@.22). It provides
an upper bound for the lowest-lying excitation and is exact in ho(_
the long-wavelength limit, but has deficiencies at shorter —ijz(rl,rz;t)=%[pz(rl,rz)[Vléul(rl;t)
wavelengths. The cause of this deficiency is evident from the
variational point of view: When the wavelength of an exci- +V18U,(rq,ro;t)]
tation becomes comparable to the average particle distance,
one should expect that all correlations that are important at I V.5 .t
that wavelength are also time dependent. Consequently, it F3p3(r1,r2,15)VadUa(Te.r3i0)
was found in liquid “He (Refs. 54—58 that much of the

energetics of the excitations in the medium to high momen- (3.6
tum range can be attributed to fluctuating short-ranged cor-
relations, and the same is expected to be true in the boson L5 . . . -
plasma. For the implementation of the present theory of ex- I ]
citations and dynamic structure the structure functgk) is 4
the essential input. ThiS(K) is provided by our ground-state R
calculations described above, but it may equally well be 1.0
taken from other calculations. ]
The time-dependent correlations are determined by the <& |
action principle i
0.5 .
t .
5J=5f “LIW (1), W(t)]dt=0 3.3 .
ty 7]
with the Lagrangian %0 10 20 3.0 20 5.0
1/t
9 9 FIG. 6. The pair-distribution function for the two-dimensional
L= < \I’(t)‘ H-if at ‘\P(t)> a < WolH—Eoif at ‘w0> ' charged-boson g?as fog=1, 2, 5, 10, 20, and 50. The lines with the

(3.9 higher peaks correspond to the higher values.of
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wherep, andp, are the time-independent ground-state quan- 2t(k) Yo(K, @)

tities. The derivatives of the correlation functions are relatedyRPAk,w)= 55— —=——= ’ (3.9

to the derivatives of the pair-distribution functions through hfo™=e%(K)  1-V (k) xo(k,®)

the set of exact BGY equatioff3. _ with the response function of the noninteracting boson sys-
Since the relationships between the time-dependent comg

ponents of the pair-correlation and pair-distribution functions

involve ground-state densities up to four-body distribution 2t(k)

function p,, approximations are necessary, and different Xo(k,w)= 720 —2K) (3.10

implementations use different approximations depending on  _
the problems under consideration, and on the system invedhe V, (k) is the “particle-hole interaction” introduced in
tigated. Eg. (2.17 in the optimization problem of the ground state; in
fact the resul(3.9) is not surprising since the static structure
B. Dynamic response function function S(k) given in Eq.(2.16 is readily identified with

. : the random phase approximation f8fk) for a given, static
A convenient and mathematically transparent level at Lp PP (k) g

which one can deal with fluctuating pair correlations is themter"?mt'onvp'h(“k)' .In this ;pprqﬁmﬁtlon, the onI)(/j.excna.—

uniform limit approximation for the kernels of the equationstIon Is one collective mode with the Feynman dispersion

of motion (3.5 and(3.6). The underlying assumptions have relations (k). . .

already been mentioned in connection with E227). In a In the usual |mplementat|ons of the formalis@®.7) the

somewhat different derivation of the dynamics, this approxi_self—energy correction has the form

mation has also been used by Campbetl>*°*to calculate dpyqd ) 2
Y ampRts ; csr. . 1 d%dg [V3(k;p,q)|

the phonon-roton spectrum in liquitHe; the equations-of- S °BF(k,w)= —f ——g o0(k+p+q) ,

motion method has first been used in Ref. 55, the connection 2) (2m)%p ho=e(p)=e(q)

to the derivations of Campbefland Jacksdfi—®2has, in the (3.1

somewhat more general case of an inhomogeneous systemihere the three-plasmon/phonon coupling matrix element is

been derived in Refs. 58 and 63. Important formal propertiegiven in terms of ground-state quantities‘as

of the dynamic structure function have been discussed by

Jacksorf?~®2the resulting formalism is flexible enough to be Vakeb.g) = n?  [S(p)S(a) KX . ox

used also in inhomogeneous geomet?fdS. The theory sk =5 S(k) [k-pX(p)+k-aX(a)

leads to a dynamic response function of the plausible form

y(k,0)= S(k) + S(k) ’ The irreducible three-body verteéxs(k,p,q) has been de-
ho—e(k)—3(k,w) —fho—ek) -3k —o) fined in Eq.(2.23. It is important to keep this term since it
(3.7 accounts for the gualitatively correct density dependence of
whereS(Kk) is the static structure function(k) the Feynman the roton minimun®* Correction terms to the three-body
excitation spectrum(2.22 and 3(k,w) is the plasmon/ Vertex(3.12 beyond the approximation used here have been
phonon self-energy arising from phonon-splitting and recomfound to be smait! Improvements of the theory of excita-
bination processes. In the zero-frequency limit we obtain théions would involve more self-consistent treatments of the

static response function energy denominator and possibly four-body vertices. We
shall refer to the choic€3.11), (3.12 of the self-energy as
25(k) to the CBF approximation for the self-energy, and to the
xS (k0= ————cpr (3.9 : . €
' (k) + 3 CBF(k,0) corresponding response function @H(k, ).

It is straightforward to determine both the long- and the
If we ignore the self-energy correctiai(k,w), the re-  short-wavelength limits of the self-energy and, hence, the
sponse functior{3.7) reduces to the familiar response func- static response function. Fahort wavelengthsk— o, we

tion in the random phase approximation find
4T
— __RPA (inh 3D)
w2 d%9 .. o~ 3 N
lim X “8F(k,0) = — —f ——a- (k-9)%0°X%(q)S(q) = (3.13
K 00 2mJ (2m)% Trea .
-2 N (in 2D).

The fact that we obtain only the “uniform limit approximation” of the kinetic energy is, of course, due to our approximations
for the three-body vertex function. In a more complete theory one should expect to obtain here the full kinetic-energy
expectation value.

In the long-wavelength limit of the self-energy, on the other hand, one obtains

3 CBR(K, w) ~ %s(k)t(k)

d 20Q2( ) — k-0)2 2
ddq ( e(q) ) (S(a)—1+2(k-g)a/S(q)]dS(q)/dq) as k—0+. (3.14

(2m)9% hop+2&(q) ho—2e(q) '
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We have written the result in a somewhat more general fornstructure functiorf®> One would expect the same to be true in
than necessary for the present purpose since the above dke present case. One may take advantage of such understood
pression is also needed to calculate the plasmon dispersigmconsistencies and calculate the same quantity in different
coefficient. In three dimensions, the limit limge(k) ways as a test for the legitimacy of diagrammatical or nu-
=hwy defines the plasmon energy. In two dimensionsmerical approximations.

hwy =0, because in the long-wavelength limit the collective It is then of interest to study the high-density limit where
excitation energy goes to zero likék. Thus, both the long- exact expressions for both the hydrodynamic and micro-
wavelength limit of the static response function and—as wescopic compressibilities can be derived. We get the hydrody-
shall see—the plasmon dispersion relation are modified imamic compressibilities in three and two dimensions using
three dimensions by the self-energy correction, whereas thdggs. (2.349—(2.37),

are unaffected in two dimensions. The re<8ltl4) is essen-

tial to complete our proof of the consistency between the i E __ -3/4 ;
hydrodynamic compressibility and the long-wavelength limit pK+ a* 0.25096, ™" Ry  (in 3D),
of the static response function at high densities.
(3.18
ibili 1 1
C. Compressibility T: §,u= _0.57491;2/3 Ry (in 2D).
The hydrodynamic compressibility is related to the long- PRT

wavelength limit of the static response function The leading order img of the microscopic incompressibil-

ity in the high-density limit can be evaluated using the uni-
form limit approximation(2.27) and the structure function

lim x~1(k,00=— i—'J(k). (3.15 given in Eq.(2.33. The main contribution comes from the
k—0 pKt particle-hole potential calculated within the HNC/O approxi-
mation,

In the case of the charged fluids the compressibility measures

the response of the system to a screened external &large 1 1 4, 4 5

that is why the singular Coulomb potential is subtracted from pKﬁNC - ﬁr f degS(6)—1]

the definition.

The expression for the static response funct@®) gives =-0.222912_%* (in 3D), (3.19
two contributions to the compressibility. We define the varia-
tional incompressibility as 1

e 3122 deetsio-1p

__ —213 ;;
Kvar_ lim [Vp h(k) U(k)] (316) = 0524-999S (in 2D). (3.20
Koo There is a 10% discrepancy between these results and the
and the full, self-energy corrected compressibility as exact hydrodynamic compressibiliti€3.18).

In two dimensions the only correction of the order of

re - %3 comes from the triplet correlations in the particle-hole

11 ECBF(k-OJF)_ (3.17) interaction defined in Eq2.26),

—= +
pKr  pKY" Doy 28(K)

(3) po23

The above microscopic definition of the compressibilityA (0+ 16 s f d§ [S(g)—l]“. 3.2
does generally not agree with the hydrodynamic compress-
ibility defined in Eq.(2.19 for any diagram-based micro- By adding this to the HNC/O contribution one recovers the
scopic theory, unless it is exact. This inconsistency has beegxact result 1§K*) = u/3.
studied very carefully irfHe and was found to be inconse-  In the three-dimensional case an additional correction en-
guential for the energetics and affecting only very long-ters into the triplet-correlation contribution due to the exis-
wavelength behaviors of the particle-hole interaction and théence of a plasmon mode,

~ - ho ds(¢)
3) - _ 3/ [
AV (0+)= “f diggy [[S(g) 17%- (ﬁw +28(§)) {[82@) 1P+ 3 [Sz(f) 113(5) az
4l ¢ dsig)?
+§(S<§> dg) ] @22

The term proportional to the plasmon frequency is exactly canceled by the self-energy contribution fi@d£&gSimilar to
the two-dimensional case, we are left with an expression
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~ CBF, k,0 4
AVE(0+)+ lim >~ kO £

1 %
0 W=—Ers—3/4ﬁ) ng(f)[S(g)_l]“' (3.23

This, together with HNC/O contribution, gives the exactresponse functions obtained from E@8.7) and (3.24 we
compressibility also in three dimensions. We have recoveredhall see that this is not true for large parts of the spectrum.
an interesting result that, due to the finite long-wavelength The literature on properties of the local-field factor is vast
limit of the excitations, both the triplet correlatioaadself-  and occasionally controversial, to a large extent due to in-
energy corrections are needed to obtain consistency betweeompatible definitions. The identification of the effective in-

the hydrodynamic and microscopic compressibilities to leadteraction V, ,(k) with the particle-hole interaction of the

ing order in the high-density expansion, whereas in two di-RPA in Eq. (3.9 suggests an immediate connection to the
mensions triplet correlations alone are sufficient, and thetatic local-field factor througf~"*
self-energy gives no correction. _

The compressibility of the charged-boson fluid is negative Vpn(K) =0 (K)[1-GRPAK)]. (3.25
over the whole density regime, the ground-state energy bei . :
entirely due to correlations. The same applies for the prer;gp-h(!() is, on the other hand, relgted to the_ static structure
sure. While we have shown above that, when both tripleLunCt'o_n S(k) through the BOgOI'UbOV. relatlorﬁz.l@. A
correlations and self-energy corrections are included, the m H0S0onIC system allows here for a particularly simple repre-
croscopic and the hydrodynamic compressibility agretae ~ S€ntation,
high-density limitthis is normally not true at finite densities. 722
Figure 7 shows our results for the inverse compressibility in 1-GRPAK) = —=
3D from different calculations. The inverse compressibility 4mo (k)

obtained by differentiating the equation of state agrees witlThis is one wayto define a static local-field factor; it has a
the Monte Carlo data; this is expected due to the good agregertain appeal simply because it allows for a one-to-one con-
ment of the energies, and any discrepancies are due to difrection with the static structure function, which is known
ferences in the fitting procedure, but not generic. The situatoday for a large number of systems from either experiments,
tion is different for the microscopically derived accurate microscopic calculations, or simulations. We note,
incompressibility. In Fig. 7 we show separately the varia-however, that the momentum-space factorization in the form
tional and self-energy contributions. At high densities the(3.24 or (3.25 is rather artificial: microscopic many-body
self-energy corrections significantly improve the variationaltheories would rather suggest a factorization in coordinate
estimate, consistently with the above proof that the exacépace; cf. Eq(2.17). Such a coordinate space formulation of
value is reproduced in the high-density limit. At lower den- |ocal screening is more appropriate since it is also applicable
sities, the microscopic definition overestimates the inverse the bare interparticle interaction has a hard core or in situ-
compressibility by about 20%; this is somewhat less tharations with broken spatial symmetry.

what has been found ifHe. We attribute this mismatch  Another wayto define the static local-field factor is from
essentially to the limited set of elementary diagrams calcuthe static response functiory(k,0),

lated here; justification for that is provided by the compari-

son with the two-dimensional charged-boson @&g. 8) and - 1 1 ~

with “He in both two and three dimensions, where the self-U (K1~ G(k0)]=~ Et(k)_ ¥(k,0) =v(K)[1-G¥{k)].
energy corrections are zero. (3.2

[S 2(k)—1]. (3.26

Evidently, there is na priori reason that the static local-
D. Static response and local-field factor field factor defined in this manner should agree with

RP . .o . .
Properties of electronic systems have historically ofter® "(k) defined above; in fact they agree — by definition

been discussed in terms of a “local-field factor,” which de- on!y in the r2and0m ghase 3ppr§ximatiﬁmk,0)=0.
scribes the short-range structure of the syst@or a review, Using Egs.(2.16), (3.29, and(3.27) we get

see, for example, Ref. 66Generally, one writes the exact 3 CBF(Kk,0)
response function as 'J(k)[l—GStaKk)]z'J(k)[l—GRPA(k)]nLTk)’
(3.28
k!
O m— L . 329 O
1-v(K[1-G(k,®)]xo(k, @)
GStatk)=GRPA(k)— m (3.29
and tries to derive properties &f(k,w). While the formula- 2S(k)D (k) ’

tion (3.24) is, in principle, completely general, it conveys the

notion that the analytic structure of the field factor is some- Properties of535%(k) have been discussed by Hof&snd
how simpler than that of the full response function, and init is worth verifying that the response functi¢8.7) with the
particular that the analytic structure of the response functioself-energy (3.11) is consistent with the properties of
is to some extent dominated kyy(k,w). By comparing the  G%?(k) derived there. Inserting the asymptotic lim{&13
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FIG. 7. The inverse compressibilitydi{y of the charged-boson FIG. 9. The static effective interactiar(k)/e(k,0) is shown for
gas in three dimensions is shown as obtained from our calculatiofye 3p charged-boson gasrat= 10, 20, 50, 100, and 160 as cal-
by differentiating the equation of statsolid line), from the long-  cyjated from CBF theorysolid lines. The function with the lowest
wavelength limit of the static interactiofq. (3.16), short-dashed gjue at the origin corresponds to the lowest valuer of Also
line], and with the inclusion of self-energy correctidi&. (3.1, shown are DMC results of Ref. 38ymbols with error bajs Dif-
long-dashed ling Also shown are the Monte Carlo data of Ref. 38 forent symbols denote different values[r;=10 (diamonds, 20
(diamond$. The lower three curves and the scale at the right margirtplusse$, 50 (square 100 (crosse and 160(triangles].
refer to the same data, scaled by a factpt.
. . _ provide some guidance towards developing more complete
into Eq. (3.29, the result can be cast Ito an asymptolictorms for the three-body vertex function. For further discus-
expression for the static local-field fact@*(k) in the  gjon we are satisfied with the observation that the approxi-

66,38
form mation (2.29 appears to be reasonable.
o Before turning to the comparison of various static local-
G (k)~= —2____ (in 3D as k—x), (3.30 field factors, we first calculate the static dielectric function
3 N 4wep
stay 1\ ; 1+v(k)x(k,0)
Gs{k) N 27¢% (in 2D as k—x). (3.3

) o o and the static effective interaction(k)/e(k,0) which de-
Thus, our theory is, within the approximation chosen for thegcrines how a test charge of unit strength interacts with the
three-body vertex, consistent with the known asymptoticsystenf* We believe that these are in general the more ap-
limits. The results(3.30 and (3.31) are not new, but their ropriate quantities to discuss since there are well-defined
verification in the present context serves as a demonstratioferational procedures to obtain these functions from experi-
of at what order of our theory this asymptotic limit is ob- ments or simulations, whereas “field corrections” are auxil-
tained, and as an assessment of the accuracy of the predigry quantities representingpproximations forcertain sets
tions one should expect for that limit. The analysis could alsqyf Feynman diagrams. Figures 9 and 10 show our results for
the static effective interaction using the full CBF static re-
sponse functiori3.8) for three and two dimensions. In three

0.0
dimensions comparison with Monte Carlo results is again
possible. The long-wavelength limit of the effective interac-

02 tion is determined by the compressibility

>
o~ & —
£ 04 = i v(k) 1 (3.33
im ——=—, .
ME-‘ ﬁ. k_,0+€(k10) pKT
S 06 §o
and is thus negative. In the short wavelengths it behaves like

08 the bare Coulomb potential. Up t@q=50, our results agree

e very well with the DMC result$® At largerr a clear mini-

mum begins to form nedtry=4 and our results underesti-

-1.0 1 1'0 mate the depth of that minimum. In two dimensions we have

r plotted a wider range of; values fromrg=1 to 50. The

s

general behavior is very similar to the three-dimensional
FIG. 8. Same as Fig. 7 for the two-dimensional charged-bosogase, but it is worth noting that the minimum, located at

gas. The lower two curves and the scale at the right margin refer tro= 3.4, is already at,= 50 fifteen times deeper than in the
the same data, scaled by a factdf. three-dimensional case, suggesting that the density wave in-
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V(k) / e(k,0) (Ry)
GRPA &)

0.0 2.0 4.0 6.0 8.0
kr,

_ o - _ FIG. 12. The RPA static local-field fact@R™(k) is shown, in
FIG. 10. The static effective interactian(k)/e(k,0) is shown 3D, forr,=10, 50, and 16@solid lines. Also shown are, for com-
for the 2D charged-boson gas m¢=1, 2, 5, 10, 20, and 50 as parison, the function§s®(k) at the same densitigglashed lines

cr?lculgtgd from CBF theor?/{ 'I;he functlcl)n W';h the lowest value atThe curves with the largest asymptotic values correspond to the
the origin corresponds to the lowest valuerg smallest value of .

stability or the Wigner crystallization occurs in two dimen-
sions at much higher densities. momentum range. Figures 12 and 13 finally show a compari-

Figure 11 shows thetaticlocal-field factorGs®#{k) in 3D  son betweerGRA(k) and G**{k) in both two and three
and compares it with the Monte Carlo data of Ref. 38. Thedimensions. As expected, these local-field factors agree for
Monte Carlo data used to calcula®&'®(k) is the same as for 1ong and medium wavelengths typically upko,=4.
the static effective interaction, because these quantities are
related by known functions,

E. Analytic structure of the response function
stal 1 1 Before we proceed with applications of the dynamic cor-
Gs(k) = - = . (3.39 ; ; . :
1— e(k,0) 7 (K) xo(k,0) relation theory, we Qerlve a number of analytic properties of
the response functio(B.7) related to sum rules and to the
In this case the comparison focuses more on the high maexistence of collective modes. The dynamic response func-
mentum transfers, which is enhanced by a fakfofrom the  tion is linked, through sum rules, to ground-state properties.
static effective interaction. The main mismatch is found atPrimarily, we have in mind the static structure function
r<=10 whenkr,>5. Some of this inaccuracy can be related S(k), which can be calculated with high accuracy without
to the asymptotic valu€3.30 calculated in the uniform limit  ever mentioning excitationsS(k) is related to the response
approximation; cf. Fig. 1. At higherg values our results function through
agree very well with the Monte Carlo data for the whole

2.5 T T T T T T T f 1.5 | T ' T T T T T i
L2
_ 10} e
< L i
& <
g & i 7
C ° 7 ]
ost 77 i
0.0 L 1 1 1 1 1 1
0.0 2.0 4.0 6.0 8.0
0.0 20 40 6.0 8.0 kT,

kr,
FIG. 13. The RPA static field correctio@<"A(k) are shown, in
FIG. 11. The static local-field facto&5®{k) is shown, for 2D, for rg=1, 10, and 5Qsolid line9. Also shown are, for com-
rs=10, 50, and 160, as obtained from our calculatisalid lineg parison, the function§s®(k) at the same densitigglashed lines
and from the DMC calculation of Ref. 38ymbols with error ba)s ~ The G¥{k) curves with the largest asymptotic values correspond
The curves with the largest asymptotic values correspond to theo the smallest value ofg; both local field corrections agree for
smallest value of . long wavelengths.
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3 CBR(K, w) <3 CBF(k,00<0 (3.39

from which one immediately sees that the lowest collective
mode satisfies the exact inequalfty

Historically, models for the response function have often

been used to calculat8(k). An attractive alternative that
takes into account the progress made in ground-state theories
is to use static structure functions obtained from accurat
ground-state calculations to determine properties of the r
sponse function. For example, the Feynman approximati
can be constructed by requiring that the frequency integral i
exhausted by a single pole, and that the static structure fun

tion is reproduced from the RPA response funct{@r®) by
definition of the effective interaction. Thidefinesthe RPA
local-field correctionGRPAk), see Eq(3.25.

However, the Feynman theory is, as we have pointed o
repeatedly, not very accurate when the wavelength of th
excitation is comparable to the interparticle distance. On th
other hand, according to our strategy outlined above, an
improved theory ofy(k,o) should reproduce the known
S(k). Precisely this feature of the CBF excitation theory wa

proven by Jacksoff The self-energy correctiorX (k,w)

does not affect the first two of the moment sum rules in th

sense that the moments of the response funatbor) are
identical to those of the Feynman response function

= dhw = dhw
_ RP, _ CBF,
st0= [~ S ke = [ S ko),

T
(3.3
#2K? » dhw
R huiihed RP,
>m wa o hwlm x A(k,a))

- dh
=f —:hwlm CBF(K, ).

—o

25(K)

ﬁwo(k)$— W

(3.40

?_/\/hile it is reassuring that our microscopic approach satisfies
e‘hnown exact sum rules and inequalities as a consequence of
fs structure, we will see momentarily that the inequality

3.40 is of rather limited use in determining features of ei-
ther the excitation spectrum, or the static response function.
The reason is that it gives informatioreither on the pole
strength Z(k), nor on the existence of stable collective
odes. We shall encounter examples of both: a case where

e pole strength of the lowest collective mode is infinitesi-

tter example is in fact a well-known consequence of
nomalous dispersion.
In writing down Eq. (3.37) we have to assume that

§al, and a case where no real collective mode exists. The

SE (k,wq(k)) is real. This is the case when the energy denomi-
Jator in Eq.(3.1) does not change sign, which is true when

the collective energy ibelowthe critical value
hwg<hwcy(K)=mine(q)+e(|k+al)] (3.4D

determining the continuum boundary. Above that energy, the
self-energy is complex. Moreover, fétw <fi w¢(K), it fol-
lows from Eq.(3.11) that

d>(k,w) 34
do (3.42

In order to determine if Eq(3.37) has a solution, we must
find out whethef, (k,w) becomes singular at the branch cut
w=w¢;(k) or not. This depends, of course, on the details of
the reference spectrum in the energy denominator of Eq.

<0 for Aw<hwgi(k).

In other words, the self-energy correction changes the relg3.37. We shall study here two relevant cases.
tive weight of the individual excitations and resonances, but The first case is that the reference spectrafk) is

it does not change the integrated strength.

convex. This refers typically to the regime of high momen-

The collective modes of the system are found by detertum transfer where the spectrum approaches the single-

mining the polegnote that all poles are on the real &jof
the response functiofB.7), in other words, by solving the
implicit equation

fwg(k)=e(k)+2(k,wo(k)). (3.37
The strength of the collective mode is given by
(9 _1
Z(k)=S(k)| 1— —3(k,w) (3.38
Jo w=wg(k)

From our definition(3.11) of the self-energy follows the in-
equality

particle kinetic energy; the reader is referred to the discus-
sion of the dynamic structure for examples. When
hwgil(k) =2e(k/2)<e(k), this critical energy isbelow the
reference energy. In order to determine whether B7)

has a solution, we must therefore study the analytic behavior
of %(k,w) as a function ofw near the branch point
o= wyi(k). We shall treat only the simplest cases here, as-
suming a monotonically growing, convex spectrum
e’ (k/2)>0 ande”(k/2)>0 and we are interested in the sin-
gular behavior only. The case of the two-dimensional system
has been dealt with in Ref. 58;' the three-dimensional case
follows essentially the same lines. The result is

IVa(k; —k/2,—ki2)|?> ky2e(kl2)— o

lim SCBRk,w)=— in 3D), 3.4
ho—2e(k/2) (o) 8mp 2e'(ki2)\e"(k/2) ( ) (3.43
Va(k; —k/2,—k/2)|2 In(2e(ki2)—#%
lim ECBF(k,w)=| 3l )I° _Ine(k2)—ho) (in 2D). (3.44)
hw—26(k/2) 4mp V2e' (kI2)e" (k/2)/k
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The comparison between the two- and the three-dimensional cases is quite interesting. The self-energy is monotonically
decreasingcf. Eq.(3.42] and has in two dimensions a logarithmic singularity at the branch point, which guarantees that the
dispersion relatior(3.37) always has a real solution below the Feynman spectrum. In three dimensions, however, the self-
energy remainfinite at the branch cut and, hence, the existence of a discrete collective excitation can no longer be guaranteed.

The second relevant case is when the reference spectrum has an absolute minimum. This is the case of the three-
dimensional plasmon spectrum. In view of the further discussions, and due to its similarity to the éa® wfe shall refer
to this minimum as the “roton minimum.” In this case, we hawgy(k) =2w, , Wherefi w, is the “roton energy” located at
the wave numbek, . Expanding the energy denominator about this point yields the result

_IVa(ki—k—k; k)|? KFIn(2h e, —h o)

lim  >°BF(k,w ; , 3.4
o) 8p e (k) (349
|
wherek, is a vector of lengttk, oriented such that the three F. Plasmon dispersion

vectorsk, —k—k;, andk, form an isosceles triangle. INtwo | the |ong-wavelength limit the 3D plasmon dispersion
dimensions, one finds similarly a logarithmic singularity.  q|ation is conventionally written as

To summarize the analysis of this section, we find that we
can typically guarantee the existence of collective excitations #.2k?
in the long-wavelengtiregime in both two and three dimen- hwo(K) =hwp+a——+ O(k%, (3.47
sions. An upper bound for these excitations is the Feynman
spectrum or the continuum bounddiw;;(k), whichever is  where « is the “plasmon dispersion coefficient.” The ran-
lower. We have shown that, when the spectrum has a rotortom phase approximationﬁp_h(k) =v(k) givesa=0, with a
like structure, one can have collective excitations, even in thgositive fourth-order correction. Chiofa al’® and Moroni
long-wavelength limitbelow the plasma frequencyhereas et al®® have used the inequality3.40 to derive upper
the plasmon itself can decay for all finite, but infinitesimal bounds for the plasmon dispersion curve. Their results show
wave numbers. that the leading dispersion coefficient of the plasmon excita-
The numerical value of the streng#ifk) of the additional  tion is negative at all densities due to the negative compress-
collective mode below the plasmon depends strongly orbility of the system.
“how close” the solution of the implicit equatio(8.37) is to In our case, we have two sources of the quadratic behav-
the critical energy Zwy,. For long wavelengths, the combi- jor of the plasmon dispersion relation. One is the momentum
nation of Eqs(3.12 and (3.4 yields for the self-energy dependence of the static particle-hole interaction. For
k—0, the self-energy correction is also proportionalkto
3 CBF(k, ) = CKIN( 2% 0, — fiw) which leads to a further correction to the plasmon dispersion
coefficient. Expanding Eq(3.37) to first order ink?, we
obtain, using the relationshif8.16) and(3.17),
as k—=0+ and o "2w,, (3.46
h2k? 1

m
hiwo(K)=fhop+ — —+iimo 2—k22(k,wp|)

where C is a numerical constant determined by the three- m | 2pKFhwp o i

phonon matrix elemen3.12 and the kinematic factors ap-

pearing in Eqg.(3.45. Note that the limitsk—0+ and E(k,wm)—EE(k,O)

w,/ 2w, do not commute, here we must take the limit k2 1 )

/2w, first for fixed wave number and then evaluate the =hopt e ZPKT+|1ILT:) 25(K) ’
matrix elements in Eq3.45 for smallk. As a consequence,

we obtain an energy for that “mode” of the order (3.48

fiw=2hw,—consX exd%(2wg—wp)/CKk] and a strength

Z(k) that goes to zero as eff{2wg— wp)/CK] for small k.

Clearly this mode is a spurious solution of infinitesimal 1

strength, but the very existence of that solution has, as we 1 2 (k,wp)— EE(k,O)

shall see, interesting consequences. Exact quantitative state- a= + lim . (3.49

ments on the strength of that additional modeffoite wave hop| 2pK7 o 28(k)

numbers are difficult. We found that the strength of that ad-

ditional mode is always small compared with the plasmon; The above equation has been written in a somewhat sug-

the situation is generally very similar to that &He, where gestive way: thdirst part is directly related to the bulk com-

we have discussed the analytic structure of the self-energy aressibility, which is negative throughout the whole density

length®863 range. This part is trivially obtained from the static response
The situation is different for high momentum transfers:function by assuming that the inequali$§.40 is actually an

the 3D self-energy remairfinite at the branch cut; cf. Eq. equality. Thesecondpart is also negativgcf. Eq. (3.39]; it

(3.43. This means that the existence of collective excitationgrovides a statement of how much the plasmon dispersion

can no longer be proven. coefficient is lowered through the dynamics of the system.

which defines the plasmon dispersion coefficient
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0.0 0.03 —S(k)/x(k,0)<fiwy; from Ref. 38 one would conclude
K ‘ that this happens at <50, whereas our calculations lead to
- the slightly larger value ;~53.
i Figure 14 shows our calculated plasmon dispersion coef-
05 i 0.02 ficient and its imagin_ary part as a function rqf. Since our _
-~ L 4 . reference spectrum is here the Feynman spectrum, the dis-
g - . 1 persion coefficient becomes complex at a density slightly
~ i , . i E lower than one would get from the spectra reported in Ref.
_1.0: T ] 0.01 38. At that criticalrg value, the real part of the plasmon
L 1 dispersion coefficient diverges, and the imaginary part be-
- . comes nonzero. Below that density, the inequal@y0 is
r 7 violated. In that connection, two observations are important:
s L Co ] 0.00 first, our theory satisfies by construction all assumptions that

0 50 L 100 150 went into the proof? Second, the imaginary part becomes
s quite small as one moves away from the singularity, and the
FIG. 14. The real and the imaginary parts of the plasmon dis__resonance is indeed almost indistinguishable from a singular-

persion relation are shown, for the three-dimensional charged-bosolw We also compared our dispersion coefficient with the

) . 74 )
gas, as a function af;. The solid line shows the real part of the full recent work _by Bh_m‘,( Conti, f"‘”d T,OSL We find good
expression (3.49, the long-dashed line the first term, ellgreement with their *?eSt estimate” a{<10 where they
1/(2fiwppKy), and the short-dashed line the imaginary part. Noteflnd a convergent solution fa.

the different scales applying to the real pégft scale¢ and the

imaginary part(right scale. G. Dispersion relations and dynamic structure function

i i The collective excitations of the many-particle system are
We should note, however, that in order to apply the in-giyen in general, by the poles of the response function
equality (3.40, one muslassumehat the plasmon is indeed  (y ) The simplest level at which such excited states can
the lowest collective mode. We have shown in the prewou%e discussed is the Feynmér random phageapproxima-
seqtion that this is not necessarily true: t_he Iong—wgvelengttﬂon (3.9). In this case, all of the strength of the response
limit of the self-energy becomesomplexif there exists & = fnction is concentrated in one pole, and the dispersion rela-
region of the Feynman spectrum withe@) <fwp. The  ign is given by Eq.(2.22. By definition of the Feynman
effect is quite generic and simply states that the plasmon cagyectrym, there is only one mode of elementary excitations,
decay if there is an excitation with a finite momentum, a“dnamely, the plasmon mode. The dispersion curve goes con-
an energy less than half of the plasmon energy. In Othefinuously from the plasma frequenay,= (4 pe?/m)¥2 in
words, the estimat€3.40 becomes invalid for plasmons if . imit k-0 to the single-partigle recoil frequency
Ak?/2m at k—oe.
1.0 At a more sophisticated level, self-energy corrections are
included in the density-density response function; cf. Eq.
(3.7). Two important changes take place: the first is that the

4.0

108 dynamic structure function
301 g
g 1
i) 10.6 &£ S(k,w)=—=Im x(k,w) (3.50
g 20¢F -E K
Z 3 is no longer exhausted by a single pole. In general, one
195 writes
1.0 "~ S(k,w)=Z(k) 6(w— wo(K)) + Spp(k,w),  (3.51)

wherewg(k) is the pole of the response functifin our case
! the solution of Eq(3.37], Z(k) the residue of the response
s - : : N : 0.0 function at that poinfcf. Eq.(3.38], andSy,(k,w) a “mul-
0.0 2.0 1‘:'? &4 B4 tipair” correction. The second important change is that, un-
0 der certain circumstances as discussed above38j) may

FIG. 15. The normalized dynamic structure function not have a real solut!on, |n. other Wordé(k)=0. We dis-
S(k,w)/S(K) is shown, for the 3D charged-boson gasrat10.  CUSS therefore the dispersion relation of collective modes,

The strength ofS(k,w)/S(K) is indicated by the grey scale. Also their respective strength, and the multipair excitations simul-

shown are the Feynman dispersion relatiori&) (long-dashed taneously.

line), the self-energy corrected dispersion relatisalid line), and Figure 15 shows the relatively tame situatiorrg¥ 10 in
the continuum boundarigsw(k) (dotted line. The scale on the three dimensions. In order to make the dynamic structure

right refers to therelative weight Zk)/S(k) (dotted ling and  function more visible at small momentum transfers, the fig-
2maqo(K)Z(k)/(7k?) (dash-dotted lingof the collective mode to  ure shows a grey scale plot 8k, w)/S(k). In this case, the
the w® and w* sum rules. continuum boundary is almost twice the plasma frequency,
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FIG. 16. Same as Fig. 15 for 3D amg=50. FIG. 18. Same as Fig. 15 for 2D ang=5.

and up to a momentum transferlofy~4, the Feynman and

X r=>50; c.f. Fig. 16. In this case, the multipair regime of the
the CBF spectrum are rather close, and the collective mod g P g

namic structure function begins slightly above the plasma
frequency. At high momentum transfeis;;>6.5, the col-
) . . ) L "Retive excitation again rapidly loses weight and ultimately
Into a broad ridge along the smgle-part_lcle kinetic energy'disappears. However, we see that the main strength of
The rigorously “collective” mode loses its strength over a S(k, ) appears to be concentrated along a straight extrapo-

rather small_momentum regime, anc_j disappearfgr>6. lation of the discrete mode towards higher energies and mo-
Note that this corresponds to a regime where no real solu- nta

tions of Eq.(3.37) exist due to the anomalous dispersion. Significant changes happen when the roton minimum

Figure 15 also gives some justification for the use of th?drops below half the plasma frequency. Now, the plasmon is,

Feynman spectrum in Sec. IlIB since the actual strength % the long-wavelength limitin principle no longer the low-

indeed concentrated around the Feynman spectrum, an_d "%t modeA second pole of the response function appears at
around the solution of Eq3.37) or some extrapolation of it 27w, , wherehiw, is the roton energy. However, the residue

to higher momenta. . . : . >
X . of this pole is, while not exactly zero, practically negligible.
e e oo e aopgar e 8CUaI Sength () is octed raun n pisma
the plasmon dispersion curveqof the char ed—bosoﬂpﬂuid frequency, and shifts towards higher momentum transfers
P P 9 nd the pole of the CBF response function. At high momen-

low c_jensmes. The existence of such a minimum foIIow_s_lm-tum transfers this collective mode disappears again and con-
mediately from the negative plasmon dispersion coefficient

7 - . inues in a broad ridge around the extrapolation of the col-
a structure weakly reminiscent of a roton minimum is indee

<een even in the Fevnman approximation at 10- see Fi ective excitation. To summarize our results in three
y PP 1t 10; s 9 dimensions, it appears that a well-defined plasmon mode can
15. A much more pronounced roton minimum is seen at

2.0 1.0 4 1.0
0.8 0.8
1.5 B = 3 i e
"""""" 2 = 2
8 ey [P
2 06 & o 0.6 &
3 © ol )
= = s 2f =
~ 1.0 = = Z
s £ 04 %
0.4 8 i LO)
0.5t i 1t
; 10.2 102
e e L ey g 111
%90 2.0 20 6.0 3.0° %0 2.0 4.0 6.0 8.0
kro krO

FIG. 17. Same as Fig. 15 for 3D amg=100. FIG. 19. Same as Fig. 15 for 2D amg= 20.
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Collective strength
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10.2
04510 20 30 30 50 60 70 50 90 100
kr()
0 - 0.0 .
0.0 2.0 4.0 6.0 8.0 FIG. 21. The third-moment sum rule from the present calcula-
kry tion divided by the exact result as a function of momentum at dif-
FIG. 20. Same as Fig. 15 for 2D ang=50. ferent densities labeled with thrg values.

the collective excitation also decreases at higher momentum
exist only up to a density for whic,>2w, . In the vicinity  transfers. Typically, the collective mode disappears between
of the roton minimum, we always find a well-defined collec-kr =6 and kr,=8 in three dimensions, and between
tive mode. Since our analysis of the analytic structure of the,=5 andkr,=6 in two dimensions and turns into a broad
self-energy depends to some extent on the comparison bgand. Atsmall momenta and the low density~100 one
tween the plasmon and the roton energy as well as on the faglso sees the consequence of the decay of the long-
that the roton is well defined, our results should be rathefyavelength plasmons into pairs of rotons: the plasmon itself
robust against improvements of the theory by, for examplepas a finite width, and a “spurious” collective mode appears
gclluj;jmg self-energy corrections in the energy denominatogt , =2, that has negligible weight.

In two dimensions, the plasmon energy approaches zero
as \k with the plasma frequency,= (2mpe’k/m)*2 This . . .
result is familiar also from the experimental work done with ~ We have up to now basically dealt with low-energy exci-
the 2D electron gds following from the fact that wavelike tations. In particular, the theory watesignedsuch that the
charge-density perturbations in two dimensions interact likésimplest sum rule¢3.36 are satisfied identically. The ™!
lines of charge while in three dimensions the interaction isSum rule may be invoked to calculate the static response
between sheets of Charge_ TdE dispersion relation causes function, but since the evaluation of this sum rule needs the
interesting changes from the three-dimensional case. Essefiynamic response function for all frequencies, it is easier and
tially up to the roton minimum(if it exists), there is no Mmore natural to calculatg(k,0) from Eqg.(3.8. We have
anomalous dispersion and all collective modes are stablélso discussed the danger that can come with uncritically
This is reflected in the pole streng#(k) shown in Figs. adoptl_ng sum rule arguments for the estimation of excitation
18—20, which extends down to zero in all cases, exhaustin§nergies; cf. Eq3.40 and Fig. 14. _
the k32 behavior of the static structure function. Features Ihethird-momentum rule is, for the purpose of discuss-
similar to those in 3D appear at densities low enotigh, "9 the nature of the excitation spectrum, of_a dlfferent na-
r<>20) where a roton minimum develops. This is reflectedtUre. The exact form of this sum rule was first derived by
in a flat continuum boundary ab=2w, above the roton Puff.77 For the charged Bose fluid it can be written in the
minimum; cf. Figs. 19 and 20. In each of these cases, thé'm
actual strength oB5(k,w) follows a line that appears to be
the extrapolationof the collective mode into the continuum. S(k,w)(hw)3d(Aw)

We also see another resonance at roughly twice that energy;—~

tentatively we interpret this resonance as a “two-plasmon”

excitation, but shall leave its more thorough examination to = 2t(k)[t?(k) + 4t(k) T/N+2t(k)v (k)]
future studies. £2\2 d%q

Figures 15-17 and 18-20 also show the relative contri- v PRVt Al
bution of the discrete collective mode to the two sum rules +( m) f (277)E (k-@%(@[S(k=aD=S(@].

(3.36, Z(k)/S(k) and 2mwy(k)Z(k)/(%k?); both ratios are (3.52
exactly 1 in the Feynman approximation. A number of ob- '
servations apply: first, the energy-weighted sum rule is exwhereT/N is the exact kinetic energy anqq) the Coulomb
hausted by the collective mode less than #fesum rule.  potential. A form that is suitable for hard-core potentials that
This is expected since the energy-weighted sum rule placdsave no Fourier transform has been given by Feentierg.
more emphasis on high-energy excitations, which are typi- In the present theory, we dwt expect this sum rule to be
cally of multiparticle nature. Second, the relative weight ofexactly satisfied: for it to hold, one must assume that the

H. Third-moment sum rule
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spectrum of intermediate states is complete. This is true nethe self-energy3.11) and matrix element§3.12. Thus, the
ther for the one-phonon basiwhich leads to the RPAnor  third-moment sum rule can indeed give valuable information
for the two-phonon basis, which leads to the present theoryon the completeness of the two-phonon basis.

A second necessary condition for the third-moment sum rule In the evaluation of the third-moment sum rule from the
to hold is that the relevant matrix elements are calculatedinear response function of E(B.7) we follow the derivation
exactly. Again, this is not true in our approximate form of given by Jacksof?

fw S(k w)(ﬁw)3d(ﬁw)=2t(k)82(k)+1Z(k)fw1“(k w)d—w+48(k)fxl“(k w)[ﬁw—s(k)]d—w (3.53
— % ! 0 1 2,”. 0 ’ 217_, .
wherel'(k,w) is the imaginary part of the self-energy,
7 [ d%pd’q _ )
F(k,w)—gf m5(k+ p+q)dho—e(p)—e(q))|Va(k;p,a)|*. (3.59

In Fig. 21 we have plotted the ratio of the present and exact results in three dimensions. In the calculation of the exact sum
rule we used our structure function and kinetic energy. The comparison shows that the dominant powdB&3Em the
smallk expansion, 2fw,)’k?, as well as in the largk- expansion, £%/2m)3k®, is correct. In the high density limit,
r«—0, the correct expansion is obtained up to kdgerms both in the small- and large-wavelength limits,

2(1282+ £%)r %2+ 0.535386%r ¥+ 0(£%) Ry® when é—0

3.5
2¢%r 92+ 1.60616%r ¥+ 0(£%) Ry® when £é—. (359

| :S<§,w><ﬁw>3d<ﬁw>m|

Here we have used the varialjedefined in Eq(2.31). For  overall agreement between HNC/EL results and Monte Carlo
the correct smalk expansion it is essential to include the data is quite satisfactory.
triplet correlations as was also pointed out in the evaluation We have also presented a method for calculating elemen-
of the compressibility. tary excitations and resonances in these systems. By allow-
The deviation from the exact sum rule increases with deing the interparticle correlations to be time dependent we
creasing density up to;=50 where a 16% difference was Went beyond the conventional Feynman theory. The theory
found atkr,=4. As discussed above this is expected due td1as been designed in such a manner that those quantities that
the approximations in the triplet correlation function and thehave been calculated accurately in the ground-state calcula-
single-pole form of the self-energy, because the thirdtion — specifically theS(k) — are not changed any more in
moment sum rule heavily weighs the high-energy part of théhe improved theory. In particular, we have assessed the

spectrum. Similar results can be obtained also in two dimenvalue (or the lack theregfof sum-rule-based estimates of
sions. excitation energies from static properties.

The good agreement of our results with virtually all
Monte Carlo data available to us gives us confidence in the
IV. SUMMARY AND OUTLOOK validity of our approach to excited states. Concerning the
general structure of the dynamic structure function, we be-
We have studied in this paper the two- and threedieve that the scenario described here is generic, but of
dimensional fluid of charged bosons. We have presented owourse quantitatively improvable in its numerical
results for the structure, energetics, and compressibility ofmplementatiorr® It is also possible to study the topological
the ground state in the light of the triplet correlations in-excitations (i.e., vortex structurgsusing the same basic
cluded in the trial wave function. Compared withle, both  formalism’® These structures have received extensive inter-
the two- and the three-dimensional Bose gas are quite wedst in recent years in connection with the research done with
described by even the simplest version of the HNC/ELvortices in high-temperature superconductors.
theory; in particular the energetics is reproduced within bet-
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