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Charged-boson fluid in two and three dimensions
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We examine various properties of the two- and three-dimensional plasma of charged bosons over an exten-
sive range of densities, especially in the previously less studied low-density regime using a microscopic,
variational approach. We calculate the ground-state structure and energetics and compare both our analytical
and numerical results with earlier theoretical work. Throughout the entire density regime investigated, good
agreement with the results of several Monte Carlo calculations is obtained. Triplet correlations are found to be
important for the consistency of the equation of state at high densities. To study excitations we then allow for
time-dependentinterparticle correlations. Special attention is paid to the question of a microscopic justification
for the ‘‘local-field factor,’’ and the consistency demands imposed by sum rules on microscopic excitation
theories. Results for the static dielectric functione(k,0) and the dynamic structure functionS(k,v) are
presented in three and two dimensions.@S0163-1829~97!06119-5#
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I. INTRODUCTION

The fluid of charged bosons embedded in a neutraliz
background atT50 has mostly been considered as a mo
many-body system in quantum statistical mechanics, wh
parallels the physically more significant fluid of electron
but has no real physical applications. This picture h
changed to some extent in recent years, especially afte
discovery of high-temperature superconductivity in laye
compounds and in certain ceramic materials. Interestin
the three-dimensional charged-boson fluid has received
tention as a model for superconductors even prior to the B
theory,1 but has since been mostly ignored until this rec
revived interest.2–6 In a sense, these two models a
complementary.7 The BCS theory is the appropriate a
proach if the coherence length is much larger than the m
distance between the particles, whereas the boson-fluid
proach is suitable when the coherence length is of the o
of the mean particle distance.

The main reason for disregarding the charged-boson fl
has been the fact that, unlike its fermionic counterpart,
electron gas, it has not been realized in a laboratory,
though injecting deuterium up to a high density into met
such as palladium or vanadium may be a promising way
generate it. The charged-boson fluid has also astrophy
relevance8–10 in the description of pressure-ionized helium
cold degenerate stellar matter. Recent interest has been i
fusion of threea particles in a dense helium plasma.11,12
550163-1829/97/55~19!/12925~21!/$10.00
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Besides the possible applications, the fluid of charged bos
in two and three dimensions offers a relatively simple ma
body model system. Microscopic many-body methods
this system have matured to a point where precise and
ambiguous predictions can be made for the ground-s
properties. This permits one to study the effects of dim
sionality; it also imposes, as we shall argue, a revised v
of excitation theories.

Early theoretical approaches to study this many-bo
problem have been based on the transformation techn
developed by Bogoliubov or, equivalently, on the rando
phase approximation~RPA! scheme. These methods give
fairly good description in the high-density perturbative r
gime due to weak correlations~and high condensate frac
tion!, but they fail severely when the correlation streng
grows with decreasing density and the system resembles
ideal Bose gas less and less. Other approaches, which in
porate also the effects of strong interparticle correlatio
include the scheme by Singwiet al.13 ~STLS! and several
variational studies.14,15

There exists a number of calculations of the ground s
and excitations of the three-dimensional system;16–24 the
two-dimensional~2D! system has been studied considera
less.25–28 The dielectric properties29–34 and static density
response35 of both of these systems have also attracted in
est. A number of Monte Carlo simulations have been
voted to this subject, the most relevant from the viewpoint
the present study being the calculations by Hansen
12 925 © 1997 The American Physical Society
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12 926 55V. APAJA et al.
Mazighi36 using a variational Monte Carlo approach, as w
as those by Ceperley and Alder37 and a very recent work by
Moroni, Conti, and Tosi38 with a diffusion Monte Carlo ap-
proach. In the first two studies the authors obtain the grou
state energy over an extensive range of densities inclu
the Wigner crystal phase, while Moroniet al. also calculate
the momentum distribution, dielectric response, and g
bounds for excited states of the 3D plasma. Because
ground-state properties of these systems are quite
known, we feel that one should reexamine the excited st
in view of this precise knowledge. Especially the diffusio
Monte Carlo results provide useful information and pose
interesting challenge for the microscopic many-body th
ries.

The properties of the charged-boson fluid are charac
ized by a single dimensionless coupling parame
r s5r 0 /a0, wherea0 is the Bohr radius andr 0 is the radius of
a sphere~circle in two dimensions! that encloses on averag
one particle and is thus related to the number densityr by

r 05H ~pr!21/2 ~ in 2D!

~4pr/3!21/3 ~ in 3D!.
~1.1!

Depending on the density, three distinct physical regime
these charged systems are characterized: starting from
weakly coupled fluid (r s!1) the interparticle correlation
grow in strength and the system becomes gradually stro
coupled until it eventually undergoes a zero-temperat
phase transition to form a Wigner crystal at low densities

The purpose of this work is to study the charged-bos
fluid in two and three dimensions using the well-tested a
widely applied hypernetted-chain Euler-Lagrange~HNC/EL!
formalism to calculate the structure and energetics of
ground state as well as the excited states of these syst
The next section reviews the basic formalism, including
comprehensive study of the triplet correlations and a co
parison with parquet-diagram theory. Section III studies
citations and the dynamic structure function within a sim
version of the correlated basis function~CBF! theory, which
is derived using the method of time-dependent pair corr
tions. Special emphasis is placed on the analytic structur
the dynamic response function; this allows us to address
question of various ways to define a ‘‘local-field factor’’ an
to study the compressibility consistency in the high-dens
limit.

II. GROUND-STATE STRUCTURE

A. Ground-state theory

The microscopic description of a strongly interacti
quantum many-body system begins conventionally with
Hamiltonian

H52
\2

2m(
i51

N

¹ i
21(

i, j
v~ ur i2r j u!. ~2.1!

In our case of the charged-boson fluidv(ur i2r j u) is the Cou-
lomb potential and the neutralizing background charge m
be added into the Hamiltonian. In three dimensions the C
lomb interaction has the familiar formv(r )}1/r . In two di-
mensions there are two well-defined Coulomb syste
l

d-
g

e
he
ell
es

n
-

r-
r

in
the

ly
re

n
d

e
s.

a
-
-

a-
of
he

y

e

st
u-

s,

namely, the ‘‘restricted three-dimensional’’ or the quasi-tw
dimensional fluid and the ‘‘pure’’ Coulomb fluid. The forme
consists of charges that interact via the 1/r potential, but
which are confined to move in a plane. In the latter case
interaction is logarithmic. That is of particular interest as
many-body problem involving very long-range interactio
since it is a quantum Bose fluid without a Bose condensat
zero temperature.39,40 In this paper, however, we are inte
ested in the quasi-two-dimensional fluid, which is a mo
realistic model for films of charged particles.

The ground-state wave function for a system ofN identi-
cal bosons with coordinatesr1 , . . . ,rN is written as a varia-
tional ansatz of the Jastrow-Feenberg form

C0~r1 , . . . ,rN!5expF12 H(
i, j

u2~r i ,r j !

1 (
i, j,k

u3~r i ,r j ,r k!1•••J G . ~2.2!

The most important component of the variational wave fu
tion is the two-body functionu2(r i ,r j ), which describes both
the short- and long-range correlations between pairs of
ticles. In fact, one of the reasons for the success of the va
tional theory is that it isexactin both the weakly interacting
limit ~in which case the theory reduces to the random ph
approximation! and in the strongly interacting limit~in
which case it reduces to the Bethe-Goldstone equation!.

For all practical applications known so far, the restricti
of the Feenberg function~2.2! to pair and triplet correlations
has turned out to be sufficient. Moreover, the triplet corre
tions u3(r i ,r j ,r k) only improve the quantitative agreeme
between the theory and measurements or exact simula
but they do not change the essential features of the the
The effect of triplet correlations has been studied thoroug
in helium systems,41,42where they are known to be importan
since the interparticle correlations are strong. The role of
triplet correlations in charged fluids has been less explo
In fact, there seems to be a general agreement that they
be safely neglected at the metallic densities. While this
numerically true, we shall see that triplet correlations a
needed even in the high-density limit for consistency r
sons.

An important aspect of the variational theory is the op
mization of the correlations. The correlation functions a
determined by the minimization of the energy-expectat
value, formally written as

d

dun
F ^C0uHuC0&

^C0uC0&
G50, n52,3. ~2.3!

The additional information needed to solve these equation
the connection between the correlation functions and
physically observable distribution functions. This connecti
is provided by the hypernetted-chain equations.43 These
equations are derived by diagrammatic analysis of the t
body distribution functiong(r ) in terms of the two-body
correlation function. The analysis leads to the HNC relatio
ships

g~r !5exp$u2~r !1N~r !1E~r !%. ~2.4!
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55 12 927CHARGED-BOSON FLUID IN TWO AND THREE DIMENSIONS
The functionE(r ) represents an infinite series of ‘‘eleme
tary’’ diagrams that can be expressed as multidimensio
integrals involvingg(r ). The sum of nodal diagrams,N(r ),
can be expressed conveniently in momentum space. In
ducing the dimensionless Fourier transform

f̃ ~k!5rE ddr f ~r !eik•r, ~2.5!

whered denotes the dimensionality of the system, and
static structure function

S~k!511rE ddreik•r@g~r !21#, ~2.6!

the functionÑ(k) has the form

Ñ~k!5
@S~k!21#2

S~k!
5

X̃2~k!

12X̃~k!
, ~2.7!

where we have also introduced, for further reference,
‘‘direct correlation function’’ or the ‘‘nonnodal function’’

X̃~k!5S~k!212Ñ~k!. ~2.8!

The level of the HNC approximation is defined by the cho
of E(r ); e.g., HNC/0 neglects the elementary diagrams a
gether, note that triplet correlations can be implemen
through a modification of the definition of ‘‘elementary di
grams.’’ The combination of the HNC equations~2.4! and
the Euler equations~2.3! are generally referred to as th
hypernetted-chain Euler-Lagrange theory. With the qua
ties introduced above, the correlation energy can be wri
as

E5Er1Ek1Ee1E3 ~2.9!

with

Er

N
5

r

2E ddr F @g~r !21#v~r !1
\2

mU¹Ag~r !U2G ,
~2.10!

Ek

N
52

\2

8mE ddk

~2p!dr
k2@S~k!21#Ñ~k!, ~2.11!

Ee

N
52

\2

8mE ddk

~2p!dr
k2@S~k!21#Ẽ~k!, ~2.12!

andE3 is the contribution from triplet correlations. This ter
can be expressed in terms of the three-body correlation fu
tion u3(r1 ,r2 ,r3) and the three-body distribution function
Our working formulas44,45,41displayed in the next subsectio
have turned out to be quite sufficient for all practical pu
poses.

The details of the HNC/EL scheme have been discus
in many contexts; for a comprehensive review of the meth
see Ref. 42. Previous applications have mostly focused
helium liquids, but the formalism is identical in the prese
case and does not need to be discussed in detail in this
text. The Euler-Lagrange equation can be conveniently w
ten in coordinate space for the radial distribution function
al
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2
\2

m
¹2Ag~r !1@v~r !1DVele~r !1wind~r !#Ag~r !

50, ~2.13!

where the ‘‘induced interaction’’ is

w̃ind~k!52
\2k2

2m
@S~k!21#2

\2k2

4m F 1

S2~k!
21G

52
\2k2

2m
@S~k!21#2Ṽp-h~k!, ~2.14!

and DVele(r ) is a term that arises from triplet correlation
and elementary diagrams,

DVele~r !5
2

Nr

d~E31Ee!

dg~r !
. ~2.15!

The coordinate-space formulation of the Euler equat
~2.13! is readily identified with the boson Bethe-Goldsto
equation, which sums the dominant diagrams in the stro
coupling limit.

A formulation of the Euler-Lagrange equations to~2.13!
can be given in momentum space in terms of the struc
factorS(k),

S~k!5H 11
4m

\2k2
Ṽp-h~k!J 21/2

. ~2.16!

This equation is formally identical to the boson-RPA expre
sion for the structure factor; the HNC/EL theory suppleme
the RPA with a microscopic theory of the particle-hole inte
action

Vp-h~r !5g~r !@v~r !1DVele~r !#1
\2

m
u¹Ag~r !u2

1@g~r !21#wind~r !. ~2.17!

Thus the HNC/EL theory sumsboth important sets of dia-
grams self-consistently.

Equations~2.16!, ~2.17!, and ~2.14! can be solved itera-
tively for g(r ) andS(k). We can then go back and calcula
the ground-state energy from the expression~2.9! for the
energy-expectation value.

The pressure of the system is calculated by varying
energy per particle with respect to the density. It can
expressed entirely in terms of the ground-state struc
functions,

P

r
5r

dE/N

dr
. ~2.18!

The chemical potential of the system is defined
m5E/N1P/r, and the hydrodynamic compressibilityKT is
obtained by differentiating the chemical potential with r
spect to density

1

rKT
5r

dm

dr
. ~2.19!

Since the definition of the compressibility contains the s
ond derivative of the energy one also needs to calculate



results
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TABLE I. All fourth-order perturbation theory diagrams are shown in their diagrammatic form~right column! and their analytic
expression~left column!. The middle column contains the analytic form of the HNC/EL approximation of the same diagrams. These
have been derived in Ref. 46.
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linear response of the ground-state structure functions
density variations. We will return to this problem when t
static response function is evaluated.

B. Triplet correlations and parquet diagrams

The self-consistent summation of ring and ladder d
grams mentioned above has been used and exploited in
parquet-diagram theory.46–50 One of the important conclu
to

-
the

sions of that theory is that HNC/EL sums not only all rin
and ladder diagrams exactly, but also mixed diagrams i
local approximation and provides a precise prescription
how the HNC/EL theory is obtained from perturbatio
theory. Furthermore, Jacksonet al. have shown46 that dis-
crepancies between the exact perturbation expansion an
diagrams summed by the HNC/EL equation appear in fou
order in the potential. The purpose of this section is to stu
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55 12 929CHARGED-BOSON FLUID IN TWO AND THREE DIMENSIONS
how the statement of Ref. 46 is generalized if triplet cor
lations are included in the HNC/EL scheme.

Table I ~from Ref. 46! shows all fourth-order
perturbation-theory diagrams together with all terms
fourth order in the potential generated by iterating t
HNC/EL equations. We can now calculate thedifferencebe-
-

f

tween the full perturbation-theory expression~i.e., the sum of
all terms in the first column of Table I! and the HNC/EL
approximation~i.e., the sum of all terms in the second co
umn of Table I!. The calculation is somewhat tedious, b
straightforward and leads to the compact result
ection
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2
1

24E ddkddpddq

~2p!2dr2
d~p1k1q!

3
u~\2/2m!@p•k@Ṽ~p!/t~p!#@Ṽ~k!/t~k!#1p•q@Ṽ~p!/t~p!#Ṽ~q!/t~q!1k•q@Ṽ~k!/t~k!#Ṽ~q!/t~q!#u2

t~p!1t~k!1t~q!
, ~2.20!

wheret(k)5\2k2/2m and Ṽ(k) the bare interaction. This equation is to be compared with the three-body energy corr
as derived, for example, in Refs. 44 or 41:

E3

N
5
1

24E ddkddpddq

~2p!2dr2
d~p1k1q!S~p!S~k!S~q!ũ3~k,p,q!H \2

m
@p•kX̃~p!X̃~k!1p•qX̃~p!X̃~q!1k•qX̃~k!X̃~q!#

1@«~p!1«~k!1«~q!#ũ3~k,p,q!J . ~2.21!

Here«(k) is the Feynman excitation energy

«~k!5
\2k2

2mS~k!
, ~2.22!

and ũ3(k,p,q) is the triplet correlation function or, more generally, the irreducible three-body vertex. The three-body e
is a quadratic functional ofũ3 and thus can be easily minimized, yielding

ũ3~k,p,q!52
~\2/2m!@k•pX̃~p!X̃~k!1p•qX̃~p!X̃~q!1k•qX̃~k!X̃~q!#

«~k!1«~p!1«~q!
d~p1k1q!. ~2.23!

Inserting this result back to the three-body energy we get an expression that is very similar to Eq.~2.20!,

E3

N
52

1

24E ddkddpddq

~2p!2dr2
d~p1k1q!S~p!S~k!S~q!

u~\2/2m!@p•kX̃~p!X̃~k!1p•qX̃~p!X̃~q!1k•qX̃~k!X̃~q!#u2

«~k!1«~p!1«~q!
.

~2.24!

The identity of the triplet energy~2.24! with the fourth-order correction~2.20! is now easily verified, to leading order in th
interaction, by expanding the direct correlation function~2.8!,

X̃~k!512S21~k!'2
Ṽ~k!

t~k!
~2.25!

and replacing the Feynman spectrum«(k) by the kinetic energyt(k). Thus, we have shown that HNC/EL and parquet the
are identical and exact to at least fourth order in the potential when triplet correlations or three-body vertex functi
included. We conjecture here that the identity extends to fifth order in the potential since the first elementary diagra
sixth order. The distinction between HNC/EL and parquet theory is, thus, also at the next order a matter of langu
derivation, but not of physical content. As a matter of practicality we note that the triplet energy in the variational ap
results directly in a closed-form expression,44 whereas it appears by no means obvious that the diagrams shown in Table
be combined in such a compact manner. We also note that Jacksonet al. report large-scale cancellations between the in
vidual diagrams.50

The three-body vertex also gives a contribution to the particle-hole potential, which will be needed below. It is conve
calculated in the momentum space,

DṼp-h
~3! ~k!52

dE3

dS~k!
5
1

4E ddpddq

~2p!dr
d~p1k1q!S~p!S~q!ũ3~k,p,q!H \2

m
@k•pX̃~p!1k•qX̃~q!1p•qX̃~p!X̃~q!#

1@«~p!1«~q!#ũ3~k,p,q!J . ~2.26!
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C. Uniform limit approximation

The two formulations of the Euler equation~2.13! and
~2.16! serve an important purpose: as already pointed
Eq. ~2.16! is a boson-RPA equation, in other words, t
HNC/EL theory sums all ring diagrams that dominate t
energy in the high-density limit. For further reference, and
see that one actually obtains the RPA energy in that limit,
make the so-called ‘‘uniform limit approximation.’’43 The
approximation assumes that all pair functions are smal
coordinate space, but can be long ranged and therefore
in momentum space. The approximation amounts, in
~2.9!, to expanding the termAg(r ) in the form

Ag~r !'11 1
2 @g~r !21#. ~2.27!

This leads, after a few manipulations~note that we ignore, in
this limit, elementary diagrams and triplet correlations!, to
the expression

ERPA

N
5
1

2E ddk

~2p!dr
@S~k!21#F ṽ~k!1

\2k2

4m
@12S21~k!#G

[
VRPA

N
1
TRPA
N

. ~2.28!

Here we have also defined, for further reference, the unifo
limit approximation of the kinetic energy,

TRPA
N

5
\2

8mE ddk

~2p!dr
k2

@S~k!21#2

S~k!
. ~2.29!

If we furthermore use the Coulomb interaction instead
the full particle-hole interaction in Eq.~2.16! we readily see
that the expression forERPA/N is identical to the energy
obtained by coupling-constant integration in the RPA,

ERPA

N
5
1

2E ddk

~2p!dr
ṽ~k!E

0

1

dl@Sl~k!21#, ~2.30!

whereSl(k) is the structure function~2.16! with Ṽp-h(k)
replaced by the Coulomb potentiall ṽ(k).

D. Energetics and ground-state structure

We begin the discussion of the ground-state energe
and structure function with the high-density limitr s→0. In
that limit it is customary16,51 to choose a new dimensionles
variable for the wave number:

j5H kr0r s21/4 ~ in 3D!

kr0r s
21/3 ~ in 2D!.

~2.31!

In the high-density limit the particle-hole interaction~2.17! is
dominated by the bare Coulomb potential and the exp
sions for the structure functions become particularly simp

S~j!5
1

A1112/j4
~ in 3D! ~2.32!

S~j!5
1

A118/j3
~ in 2D!. ~2.33!
t,

o
e

n
rge
q.

m

f

cs

s-
:

The Fourier transform of the structure function, or mo
precisely ofS(j)21, approaches zero liker s

3/4 in the 3D
case and liker s

2/3 in the 2D case. Thus the radial distributio
function approaches unity and the uniform limit approxim
tion becomes valid. The total energy per particle as well
the chemical potential can then be expressed in terms of
structure function alone and the coefficients of the leadi
order terms in ther s expansion can be calculated,

E/N5
2

p
r s

23/4E
0

`

dj
S~j!21

S~j!11
520.803079r s

23/4 Ry,

m5
2

p
r s

23/4E
0

`

dj~S~j!21!521.00385r s
23/4 Ry

~ in 3D!, ~2.34!

E/N5r s
22/3E

0

`

dj
S~j!21

S~j!11
521.29355r s

22/3 Ry,

m5r s
22/3E

0

`

dj~S~j!21!521.72474r s
22/3 Ry

~ in 2D!. ~2.35!

These results are well known for the three-dimensio
charged-boson gas.16,51The pressure and the compressibili
calculated from the definitions~2.18! and ~2.19! are then

P/r5 1
4 E/N, 1/~rKT!5 1

4m ~ in 3D!, ~2.36!

P/r5 1
3 E/N, 1/~rKT!5 1

3m ~ in 2D!. ~2.37!

These limits serve useful purposes for the design of inter
lation formulas for the equation of state, and as a consiste
test of numerical calculations at lower densities; we will r
turn to them when we discuss the compressibility cons
tency.

Let us now turn to a discussion of our HNC/EL resu
over a wide density regime. The ground-state energies of
3D system at several densities are given in Table II alo
with the results of several Monte Carlo calculations38,37,36

and the STLS approach.34 The agreement between ou
HNC/EL energies and those of Moroniet al. is typically bet-
ter than 0.2%, which we consider quite satisfactory and s
ficient for all practical purposes. There appear to be lar
differences even in the results of the two diffusion Mon
Carlo ~DMC! calculations. The authors38 assign this discrep-
ancy to differences in the size extrapolation and converge
of the Ewald sums used in the calculations. The STLS
proach gives also energies that are in fair agreement with
DMC results.

Table III shows the decomposition of the correlation e
ergy into the HNC/0 contribution, and the correction term
originating from triplet correlations and elementary di
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TABLE II. Ground-state energyEg of the three-dimensional charged-boson fluid from the present ca
lation ~including triplet correlations and elementary diagrams! compared with the diffusion Monte Carlo
results by Moroni, Conti, and Tosi~MCT! ~Ref. 38! and by Ceperley and Alder~CA! ~Ref. 37!. Also shown
are the variational Monte Carlo results by Hansen and Mazighi~HM! ~Ref. 36! and the results obtained
through the STLS approach~Ref. 34!.

r s Eg (full) MCT CA HM STLS

0.1 24.48857
1.0 20.77675 20.77664~5! 20.7810 20.771240
2.0 20.45203 20.45192~3! 20.4531 20.4547 20.447180
5.0 20.21657 20.216420~12! 20.21663~6! 20.2170 20.212895
10.0 20.12144 20.121353~5! 20.12150~3! 20.1216 20.118800
20.0 20.06664 20.066639~4! 20.06666~2! 20.06667 20.064864
50.0 20.02923 20.029276~3! 20.02927~1! 20.028220
100.0 20.01538 20.0154145~13! 20.015427~4! 20.01535 20.014733
160.0 20.00988 20.0099046
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grams. These corrections are, obviously, quite small bu
improve the agreement with DMC data. For mere ene
calculation, these effects are negligible, but we will see t
the inclusion of triplet correlations improves the consisten
between the hydrodynamic compressibility as compu
from the equation of state and from the long-wavelen
limit of the particle-hole interaction. More importantly, the
are also quite visible improvements of the static struct
functions in the vicinity of the peak region.

The ground-state energies of the two-dimensio
charged-boson fluid at different densities are listed in Ta
IV. We found no published Monte Carlo results for that sy
tem, however, we have learned52 about recent diffusion
Monte Carlo calculations that agree with our ground-st
energies typically within the same accuracy that was fou
in three dimensions. Our results are below the variatio
results by Sim, Tao, and Wu.25 This is plausible since thes
authors parametrizeg(r ) andS(k) using a single paramete
and then minimize the energy-expectation value with resp
to this parameter, whereas we solve the full Euler equat
Furthermore, the calculation of Ref. 25 has been done in
HNC/0-approximation. Reasonable agreement is also fo
with the STLS results by Gold.31

The kinetic-energy expectation value is also a quantity
interest. For our discussion of the static response function
also need the uniform limit approximation~2.29!. Our results
o
y
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y
d
h

e

l
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e
d
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n.
e
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in 3D are shown in Fig. 1 and compared with DMC da
Again, the comparison between the full calculation and
Monte Carlo data is satisfactory, albeit the agreement is
quite as good as for the total energy, because the kin
energy is only a fraction of the total energy ranging fro
25% in the high-density limit to 5% atr s5160. The very
simple uniform limit approximation is also reasonably a
ceptable. The results in 2D are similar and shown in Fig
The two ways to calculate the kinetic energy become ex
in the high-density limit

lim
r s→0

T

N
5
E

N
2m5

P

r
; ~2.38!

it is somewhat surprising that the uniform limit approxim
tion is also quite accurate at very low densities.

Figures 3 and 4 show the calculated pair-distributi
functionsS(k) of the 3D and 2D systems, respectively. T
long-wavelength behavior of these functions is different.
the 3D case one hasS(k)}k2, whereas in the 2D cas
S(k)}k3/2. In the 3D case, we can again compare w
Monte Carlo data. Figure 3 shows that comparison only
low densities,r s>20; at higher densities our results and t
Monte Carlo data are indistinguishable. At lower densiti
the Monte Carlo calculations show a slightly higher peak
the regime of their maxima; they are otherwise quite clo
-
TABLE III. Decomposition of the ground-state correlation energyEg of the three-dimensional charged
boson fluid into HNC/0 contributionEHNC/0 and the termsE3 from the triplet correlations andEe from the
four- and five-body elementary diagrams.

r s EHNC/0 E3 Ee Eg (full)

0.1 24.48794 20.00050 20.00011 24.48857
1.0 20.77578 20.00040 20.00058 20.77675
2.0 20.45091 20.00034 20.00079 20.45203
5.0 20.21540 20.00025 20.00093 20.21657
10.0 20.12045 20.00019 20.00080 20.12144
20.0 20.06596 20.00014 20.00055 20.06664
50.0 20.02890 20.00009 20.00024 20.02923
100.0 20.01520 20.00006 20.00012 20.01538
160.0 20.00976 20.00005 20.00007 20.00988



ila
tu
di

ion
of

io
a
rg
tw
a
nd
re
lo

e
th

the

-
the

nce
ri-
rit-

ted

ob

th

so

nal

est

12 932 55V. APAJA et al.
The only slightly unsystematic behavior is found atr s520,
where the peak of the DMCS(k) is shifted inwards. At high
densities the 3D and 2D structure functions are quite sim
but as the density decreases the peak of the 2D struc
factor grows more rapidly. Besides the height, the peaks
fer also in the position. The peaks in the 2D case are
somewhat smaller values ofk.

Figures 5 and 6 show the calculated pair-distribut
functions g(r ) of the 2D and 3D systems. The effect
screening is clearly seen in both cases: as the density
creases, the pair-distribution function at zero separat
g(0), approaches unity; i.e., the repulsion between the p
ticles decreases and there is considerable overlap of cha
The results also show the screening to be weaker in the
dimensional system. At very low densities we find a typic
low-density distribution function, i.e., a large overshoot a
a long-ranged oscillatory behavior. Both of these featu
clearly indicate the tendency of the particles to become
calized as the density decreases. The peak ing(r ) is higher
in the 2D system and the oscillations appear at a higher d
sity than in the 3D fluid. We emphasize, however, that

FIG. 1. The kinetic energy of the charged-boson gas in 3D
tained from our calculation~solid line! is compared with the DMC
data of Ref. 38. Also shown is the kinetic energy obtained in
‘‘uniform limit approximation’’ ~2.29!.

FIG. 2. Same as Fig. 1 for the two-dimensional charged-bo
gas.
r,
re
f-
at

in-
n,
r-
es.
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l

s
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e

calculations presented here describe, at low densities,
overcooled fluid, not the emerging Wigner crystal.

III. DYNAMICS

A. Time-dependent correlations

A plausible way to deal with excitations within the varia
tional approach is to allow for a time dependence of
correlation functionsun(r1 , . . . ,rn). Beyond the time de-
pendence of the components of the wave function~2.2!, we
must also include a time-dependent one-body function si
the dynamics will normally break the translational inva
ance. The wave function of the excited system is again w
ten in the Jastrow-Feenberg form

uC~ t !&5
e2 iE0t/\e

1
2 dU~r1 , . . . ,rN ;t !uC0&

@^C0uedUuC0&#1/2
, ~3.1!

TABLE IV. Ground-state energyEg of the two-dimensional
charged-boson fluid from the present calculation~including both the
triplet correlations and the elementary diagrams! compared with the
results by Sim, Tao, and Wu~STW! ~Ref. 25! using a parametrized
variational wave function, and with the results by Gold calcula
using the STLS scheme~Ref. 31!.

r s Eg (full) STW STLS

0.1 25.8441
1.0 21.1458 21.1062 21.1103
2.0 20.6740 20.6631 20.6484
3.0 20.4873 20.4818 20.5965
4.0 20.3844 20.3796
5.0 20.3185 20.3133 20.3078
6.0 20.2725 20.2666
8.0 20.2122 20.2053
10.0 20.1741 20.16685 20.1724
20.0 20.0928 20.086024
50.0 20.0394

-

e

n

FIG. 3. The static structure function for the three-dimensio
charged-boson gas forr s51, 2, 5, 10, 20, 50, 100, and 160~solid
lines!. The lines with the higher peaks correspond to the high
values ofr s . Also shown are DMC results forr s5 20, 50, 100, and
160 ~dashed lines, from Ref. 38!.
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whereuC0& is the ~variational! ground state, and

dU~r1 , . . . ,rN ;t !5(
i

du1~r i ;t !1(
i, j

du2~r i ,r j ;t !

~3.2!

is a time-dependent complex function representing fluct
tions of the correlation functions. Since the excitations c
be considered as small perturbations of the ground state,
can treatdU to the leading nontrivial order.

Restricting the time dependence to theone-body compo-
nent only leads directly to the Feynman theory
excitations53 and to the dispersion relation~2.22!. It provides
an upper bound for the lowest-lying excitation and is exac
the long-wavelength limit, but has deficiencies at shor
wavelengths. The cause of this deficiency is evident from
variational point of view: When the wavelength of an ex
tation becomes comparable to the average particle dista
one should expect that all correlations that are importan
that wavelength are also time dependent. Consequentl
was found in liquid 4He ~Refs. 54–58! that much of the
energetics of the excitations in the medium to high mom
tum range can be attributed to fluctuating short-ranged
relations, and the same is expected to be true in the bo
plasma. For the implementation of the present theory of
citations and dynamic structure the structure functionS(k) is
the essential input. ThisS(k) is provided by our ground-stat
calculations described above, but it may equally well
taken from other calculations.

The time-dependent correlations are determined by
action principle

dJ5dE
t1

t2
L@C~ t !,Ċ~ t !#dt50 ~3.3!

with the Lagrangian

L5 K C~ t !UH2 i\
]

]t UC~ t !L 5 K C0UH2E02 i\
]

]t UC0L .
~3.4!

FIG. 4. The static structure function for the two-dimension
charged-boson gas forr s51, 2, 5, 10, 20, and 50. The lines with th
higher peaks correspond to the higher values ofr s .
-
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The stationarity principle~3.3! leads to four Euler-Lagrange
equations for the real and imaginary parts ofdu1 and du2,
which are conveniently written in the form of two continuit
equations,

¹1• j1~r1 ;t !5 ṙ1~r1 ;t !,
~3.5!

¹1• j2~r1 ,r2 ;t !1~1↔2!5 ṙ2~r1 ,r2 ;t !

with the one- and two-particle currents

2 i j1~r1 ;t !5
\

2m H r̄1~r1!¹1du1~r1 ;t !

1E dr2r̄2~r1 ,r2!¹1du2~r1 ,r2 ;t !J ,
2 i j2~r1 ,r2 ;t !5

\

2m H r̄2~r1 ,r2!@¹1du1~r1 ;t !

1¹1du2~r1 ,r2 ;t !#

1E dr3r̄3~r1 ,r2 ,r3!¹1du2~r1 ,r3 ;t !J ,
~3.6!

l
FIG. 5. The pair-distribution function for the three-dimension

charged-boson gas forr s51, 2, 5, 10, 20, 50, 100, and 160. Th
lines with the higher peaks correspond to the higher values ofr s .

FIG. 6. The pair-distribution function for the two-dimension
charged-boson gas forr s51, 2, 5, 10, 20, and 50. The lines with th
higher peaks correspond to the higher values ofr s .
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wherer̄1 andr̄2 are the time-independent ground-state qu
tities. The derivatives of the correlation functions are rela
to the derivatives of the pair-distribution functions throu
the set of exact BGY equations.43

Since the relationships between the time-dependent c
ponents of the pair-correlation and pair-distribution functio
involve ground-state densities up to four-body distributi
function r4, approximations are necessary, and differ
implementations use different approximations depending
the problems under consideration, and on the system in
tigated.

B. Dynamic response function

A convenient and mathematically transparent level
which one can deal with fluctuating pair correlations is t
uniform limit approximation for the kernels of the equatio
of motion ~3.5! and ~3.6!. The underlying assumptions hav
already been mentioned in connection with Eq.~2.27!. In a
somewhat different derivation of the dynamics, this appro
mation has also been used by Campbellet al.59,54to calculate
the phonon-roton spectrum in liquid4He; the equations-of-
motion method has first been used in Ref. 55, the connec
to the derivations of Campbell54 and Jackson60–62has, in the
somewhat more general case of an inhomogeneous sys
been derived in Refs. 58 and 63. Important formal proper
of the dynamic structure function have been discussed
Jackson;60–62the resulting formalism is flexible enough to b
used also in inhomogeneous geometries.58,63 The theory
leads to a dynamic response function of the plausible fo

x~k,v!5
S~k!

\v2«~k!2S~k,v!
1

S~k!

2\v2«~k!2S~k,2v!
,

~3.7!

whereS(k) is the static structure function,«(k) the Feynman
excitation spectrum~2.22! and S(k,v) is the plasmon/
phonon self-energy arising from phonon-splitting and reco
bination processes. In the zero-frequency limit we obtain
static response function

xCBF~k,0!52
2S~k!

«~k!1SCBF~k,0!
. ~3.8!

If we ignore the self-energy correctionS(k,v), the re-
sponse function~3.7! reduces to the familiar response fun
tion in the random phase approximation
-
d

-
s

t
n
s-

t

i-

n

m,
s
y

-
e

xRPA~k,v!5
2t~k!

\2v22«2~k!
5

x0~k,v!

12Ṽp-h~k!x0~k,v!
~3.9!

with the response function of the noninteracting boson s
tem

x0~k,v!5
2t~k!

\2v22t2~k!
. ~3.10!

The Ṽp-h(k) is the ‘‘particle-hole interaction’’ introduced in
Eq. ~2.17! in the optimization problem of the ground state;
fact the result~3.9! is not surprising since the static structu
function S(k) given in Eq.~2.16! is readily identified with
the random phase approximation forS(k) for a given, static
interactionṼp-h(k). In this approximation, the only excita
tion is one collective mode with the Feynman dispers
relation«(k).

In the usual implementations of the formalism~3.7! the
self-energy correction has the form

SCBF~k,v!5
1

2E ddpddq

~2p!dr
d~k1p1q!

uV3~k;p,q!u2

\v2«~p!2«~q!
,

~3.11!

where the three-plasmon/phonon coupling matrix elemen
given in terms of ground-state quantities as54

V3~k;p,q!5
\2

2m
AS~p!S~q!

S~k!
@k•pX̃~p!1k•qX̃~q!

2k2ũ3~k,p,q!#. ~3.12!

The irreducible three-body vertexũ3(k,p,q) has been de-
fined in Eq.~2.23!. It is important to keep this term since
accounts for the qualitatively correct density dependence
the roton minimum.54 Correction terms to the three-bod
vertex~3.12! beyond the approximation used here have be
found to be small.41 Improvements of the theory of excita
tions would involve more self-consistent treatments of
energy denominator and possibly four-body vertices. W
shall refer to the choice~3.11!, ~3.12! of the self-energy as
to the CBF approximation for the self-energy, and to t
corresponding response function asxCBF(k,v).

It is straightforward to determine both the long- and t
short-wavelength limits of the self-energy and, hence,
static response function. Forshort wavelengths, k→`, we
find
tions
energy
lim
k→`

SCBF~k,0!52
\2

2mE ddq

~2p!dr
~ k̂•q̂!2q2X̃2~q!S~q!5H 2

4

3

TRPA
N

~ in 3D!

22
TRPA
N

~ in 2D!.

~3.13!

The fact that we obtain only the ‘‘uniform limit approximation’’ of the kinetic energy is, of course, due to our approxima
for the three-body vertex function. In a more complete theory one should expect to obtain here the full kinetic-
expectation value.

In the long-wavelength limit of the self-energy, on the other hand, one obtains

SCBF~k,v!;
1

2
«~k!t~k!E ddq

~2p!dr S «~q!

\vpl12«~q! D
2~S2~q!2112~ k̂•q̂!2@q/S~q!#dS~q!/dq!2

\v22«~q!
, as k→01. ~3.14!
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We have written the result in a somewhat more general fo
than necessary for the present purpose since the abov
pression is also needed to calculate the plasmon dispe
coefficient. In three dimensions, the limit limk→0«(k)
5\vpl defines the plasmon energy. In two dimensio
\vpl50, because in the long-wavelength limit the collecti
excitation energy goes to zero likeAk. Thus, both the long-
wavelength limit of the static response function and—as
shall see—the plasmon dispersion relation are modified
three dimensions by the self-energy correction, whereas
are unaffected in two dimensions. The result~3.14! is essen-
tial to complete our proof of the consistency between
hydrodynamic compressibility and the long-wavelength lim
of the static response function at high densities.

C. Compressibility

The hydrodynamic compressibility is related to the lon
wavelength limit of the static response function

lim
k→0

x21~k,0!52
1

rKT
2 ṽ~k!. ~3.15!

In the case of the charged fluids the compressibility meas
the response of the system to a screened external char64;
that is why the singular Coulomb potential is subtracted fr
the definition.

The expression for the static response function~3.8! gives
two contributions to the compressibility. We define the var
tional incompressibility as

1

rKT
var[ lim

k→01

@Ṽp-h~k!2 ṽ~k!# ~3.16!

and the full, self-energy corrected compressibility as

1

rKT
5

1

rKT
var1 lim

k→01

SCBF~k,01 !

2S~k!
. ~3.17!

The above microscopic definition of the compressibil
does generally not agree with the hydrodynamic compre
ibility defined in Eq. ~2.19! for any diagram-based micro
scopic theory, unless it is exact. This inconsistency has b
studied very carefully in4He and was found to be inconse
quential for the energetics and affecting only very lon
wavelength behaviors of the particle-hole interaction and
m
ex-
ion
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structure function.65 One would expect the same to be true
the present case. One may take advantage of such under
inconsistencies and calculate the same quantity in diffe
ways as a test for the legitimacy of diagrammatical or n
merical approximations.

It is then of interest to study the high-density limit whe
exact expressions for both the hydrodynamic and mic
scopic compressibilities can be derived. We get the hydro
namic compressibilities in three and two dimensions us
Eqs.~2.34!–~2.37!,

1

rKT
5
1

4
m520.25096r s

23/4 Ry ~ in 3D!,

~3.18!

1

rKT
5
1

3
m520.57491r s

22/3 Ry ~ in 2D!.

The leading order inr s of the microscopic incompressibil
ity in the high-density limit can be evaluated using the u
form limit approximation~2.27! and the structure function
given in Eq.~2.33!. The main contribution comes from th
particle-hole potential calculated within the HNC/0 appro
mation,

1

rKT
HNC52

1

3p
r s

23/4E
0

`

djj4@S~j!21#2

520.222912r s
23/4 ~ in 3D!, ~3.19!

1

rKT
HNC52

1

4
r s

22/3E
0

`

djj3@S~j!21#2

520.524999r s
22/3 ~ in 2D!. ~3.20!

There is a 10% discrepancy between these results and
exact hydrodynamic compressibilities~3.18!.

In two dimensions the only correction of the order
r s

22/3 comes from the triplet correlations in the particle-ho
interaction defined in Eq.~2.26!,

DṼp-h
~3! ~01 !52

1

16
r s

22/3E
0

`

dj
j3

S~j!
@S~j!21#4. ~3.21!

By adding this to the HNC/0 contribution one recovers t
exact result 1/(rKT

var)5m/3.
In the three-dimensional case an additional correction

ters into the triplet-correlation contribution due to the ex
tence of a plasmon mode,
DṼp-h
~3! ~01 !52

1

12p
r s

23/4E
0

`

dj
j4

S~j! H @S~j!21#42S \vpl

\vpl12«~j! D
2F @S2~j!21#21

4

3
@S2~j!21#

j

S~j!

dS~j!

dj

1
4

5 S j

S~j!

dS~j!

dj D 2G J . ~3.22!

The term proportional to the plasmon frequency is exactly canceled by the self-energy contribution from Eq.~3.14!. Similar to
the two-dimensional case, we are left with an expression
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DṼp-h
~3! ~01 !1 lim

k→01

SCBF~k,0!

2S~k!
52

1

12p
r s

23/4E
0

`

dj
j4

S~j!
@S~j!21#4. ~3.23!
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This, together with HNC/0 contribution, gives the exa
compressibility also in three dimensions. We have recove
an interesting result that, due to the finite long-wavelen
limit of the excitations, both the triplet correlationsandself-
energy corrections are needed to obtain consistency betw
the hydrodynamic and microscopic compressibilities to le
ing order in the high-density expansion, whereas in two
mensions triplet correlations alone are sufficient, and
self-energy gives no correction.

The compressibility of the charged-boson fluid is negat
over the whole density regime, the ground-state energy b
entirely due to correlations. The same applies for the p
sure. While we have shown above that, when both trip
correlations and self-energy corrections are included, the
croscopic and the hydrodynamic compressibility agreein the
high-density limit,this is normally not true at finite densities
Figure 7 shows our results for the inverse compressibility
3D from different calculations. The inverse compressibil
obtained by differentiating the equation of state agrees w
the Monte Carlo data; this is expected due to the good ag
ment of the energies, and any discrepancies are due to
ferences in the fitting procedure, but not generic. The sit
tion is different for the microscopically derive
incompressibility. In Fig. 7 we show separately the var
tional and self-energy contributions. At high densities t
self-energy corrections significantly improve the variation
estimate, consistently with the above proof that the ex
value is reproduced in the high-density limit. At lower de
sities, the microscopic definition overestimates the inve
compressibility by about 20%; this is somewhat less th
what has been found in4He. We attribute this mismatch
essentially to the limited set of elementary diagrams ca
lated here; justification for that is provided by the compa
son with the two-dimensional charged-boson gas~Fig. 8! and
with 4He in both two and three dimensions, where the s
energy corrections are zero.

D. Static response and local-field factor

Properties of electronic systems have historically of
been discussed in terms of a ‘‘local-field factor,’’ which d
scribes the short-range structure of the system.~For a review,
see, for example, Ref. 66!. Generally, one writes the exac
response function as

x~k,v!5
x0~k,v!

12 ṽ~k!@12G~k,v!#x0~k,v!
, ~3.24!

and tries to derive properties ofG(k,v). While the formula-
tion ~3.24! is, in principle, completely general, it conveys th
notion that the analytic structure of the field factor is som
how simpler than that of the full response function, and
particular that the analytic structure of the response func
is to some extent dominated byx0(k,v). By comparing the
t
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response functions obtained from Eqs.~3.7! and ~3.24! we
shall see that this is not true for large parts of the spectr

The literature on properties of the local-field factor is va
and occasionally controversial, to a large extent due to
compatible definitions. The identification of the effective i
teraction Ṽp-h(k) with the particle-hole interaction of the
RPA in Eq. ~3.9! suggests an immediate connection to t
static local-field factor through67–71

Ṽp-h~k!5 ṽ~k!@12GRPA~k!#. ~3.25!

Ṽp-h(k) is, on the other hand, related to the static struct
function S(k) through the Bogoliubov relation~2.16!. A
bosonic system allows here for a particularly simple rep
sentation,

12GRPA~k!5
\2k2

4mṽ~k!
@S22~k!21#. ~3.26!

This is one wayto define a static local-field factor; it has
certain appeal simply because it allows for a one-to-one c
nection with the static structure function, which is know
today for a large number of systems from either experime
accurate microscopic calculations, or simulations. We no
however, that the momentum-space factorization in the fo
~3.24! or ~3.25! is rather artificial: microscopic many-bod
theories would rather suggest a factorization in coordin
space; cf. Eq.~2.17!. Such a coordinate space formulation
local screening is more appropriate since it is also applica
if the bare interparticle interaction has a hard core or in s
ations with broken spatial symmetry.

Another wayto define the static local-field factor is from
the static response functionx(k,0),

ṽ~k!@12G~k,0!#52
1

2
t~k!2

1

x~k,0!
[ ṽ~k!@12Gstat~k!#.

~3.27!

Evidently, there is noa priori reason that the static loca
field factor defined in this manner should agree w
GRPA(k) defined above; in fact they agree — by definitio
— only in the random phase approximationS(k,0)50.

Using Eqs.~2.16!, ~3.25!, and~3.27! we get

ṽ~k!@12Gstat~k!#5 ṽ~k!@12GRPA~k!#1
SCBF~k,0!

2S~k!
~3.28!

or

Gstat~k!5GRPA~k!2
SCBF~k,0!

2S~k!ṽ~k!
. ~3.29!

Properties ofGstat(k) have been discussed by Holas,66 and
it is worth verifying that the response function~3.7! with the
self-energy ~3.11! is consistent with the properties o
Gstat(k) derived there. Inserting the asymptotic limits~3.13!
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into Eq. ~3.29!, the result can be cast into an asympto
expression for the static local-field factorGstat(k) in the
form66,38

Gstat~k!;
2

3

TRPA
N

k2

4pe2r
~ in 3D as k→`!, ~3.30!

Gstat~k!;
TRPA
N

k

2pe2r
~ in 2D as k→`!. ~3.31!

Thus, our theory is, within the approximation chosen for
three-body vertex, consistent with the known asympto
limits. The results~3.30! and ~3.31! are not new, but their
verification in the present context serves as a demonstra
of at what order of our theory this asymptotic limit is o
tained, and as an assessment of the accuracy of the pr
tions one should expect for that limit. The analysis could a

FIG. 7. The inverse compressibility 1/rKT of the charged-boson
gas in three dimensions is shown as obtained from our calcula
by differentiating the equation of state~solid line!, from the long-
wavelength limit of the static interaction,@Eq. ~3.16!, short-dashed
line#, and with the inclusion of self-energy corrections@Eq. ~3.17!,
long-dashed line#. Also shown are the Monte Carlo data of Ref. 3
~diamonds!. The lower three curves and the scale at the right mar
refer to the same data, scaled by a factorr s

3/4.

FIG. 8. Same as Fig. 7 for the two-dimensional charged-bo
gas. The lower two curves and the scale at the right margin refe
the same data, scaled by a factorr s

2/3.
e
c

on

ic-
o

provide some guidance towards developing more comp
forms for the three-body vertex function. For further discu
sion, we are satisfied with the observation that the appro
mation ~2.29! appears to be reasonable.

Before turning to the comparison of various static loc
field factors, we first calculate the static dielectric functio

e~k,0!5
1

11 ṽ~k!x~k,0!
, ~3.32!

and the static effective interactionṽ(k)/e(k,0) which de-
scribes how a test charge of unit strength interacts with
system.64 We believe that these are in general the more
propriate quantities to discuss since there are well-defi
operational procedures to obtain these functions from exp
ments or simulations, whereas ‘‘field corrections’’ are aux
iary quantities representing~approximations for! certain sets
of Feynman diagrams. Figures 9 and 10 show our results
the static effective interaction using the full CBF static r
sponse function~3.8! for three and two dimensions. In thre
dimensions comparison with Monte Carlo results is ag
possible. The long-wavelength limit of the effective intera
tion is determined by the compressibility

lim
k→01

ṽ~k!

e~k,0!
5

1

rKT
, ~3.33!

and is thus negative. In the short wavelengths it behaves
the bare Coulomb potential. Up tor s550, our results agree
very well with the DMC results.38 At larger r s a clear mini-
mum begins to form nearkr054 and our results underest
mate the depth of that minimum. In two dimensions we ha
plotted a wider range ofr s values fromr s51 to 50. The
general behavior is very similar to the three-dimensio
case, but it is worth noting that the minimum, located
kr053.4, is already atr s550 fifteen times deeper than in th
three-dimensional case, suggesting that the density wave

n

n

n
to

FIG. 9. The static effective interactionṽ(k)/e(k,0) is shown for
the 3D charged-boson gas atr s510, 20, 50, 100, and 160 as ca
culated from CBF theory~solid lines!. The function with the lowest
value at the origin corresponds to the lowest value ofr s . Also
shown are DMC results of Ref. 38~symbols with error bars!. Dif-
ferent symbols denote differentr s values@r s510 ~diamonds!, 20
~plusses!, 50 ~squares!, 100 ~crosses!, and 160~triangles!#.
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stability or the Wigner crystallization occurs in two dime
sions at much higher densities.

Figure 11 shows thestatic local-field factorGstat(k) in 3D
and compares it with the Monte Carlo data of Ref. 38. T
Monte Carlo data used to calculateGstat(k) is the same as fo
the static effective interaction, because these quantities
related by known functions,

Gstat~k!5
1

12e~k,0!
2

1

ṽ~k!x0~k,0!
. ~3.34!

In this case the comparison focuses more on the high
mentum transfers, which is enhanced by a factork4 from the
static effective interaction. The main mismatch is found
r s510 whenkr0.5. Some of this inaccuracy can be relat
to the asymptotic value~3.30! calculated in the uniform limit
approximation; cf. Fig. 1. At higherr s values our results
agree very well with the Monte Carlo data for the who

FIG. 10. The static effective interactionṽ(k)/e(k,0) is shown
for the 2D charged-boson gas atr s51, 2, 5, 10, 20, and 50 a
calculated from CBF theory. The function with the lowest value
the origin corresponds to the lowest value ofr s .

FIG. 11. The static local-field factorGstat(k) is shown, for
r s510, 50, and 160, as obtained from our calculation~solid lines!
and from the DMC calculation of Ref. 38~symbols with error bars!.
The curves with the largest asymptotic values correspond to
smallest value ofr s .
e

re

o-

t

momentum range. Figures 12 and 13 finally show a comp
son betweenGRPA(k) and Gstat(k) in both two and three
dimensions. As expected, these local-field factors agree
long and medium wavelengths typically up tokr054.

E. Analytic structure of the response function

Before we proceed with applications of the dynamic c
relation theory, we derive a number of analytic properties
the response function~3.7! related to sum rules and to th
existence of collective modes. The dynamic response fu
tion is linked, through sum rules, to ground-state propert
Primarily, we have in mind the static structure functio
S(k), which can be calculated with high accuracy witho
ever mentioning excitations.S(k) is related to the respons
function through

t

e

FIG. 12. The RPA static local-field factorGRPA(k) is shown, in
3D, for r s510, 50, and 160~solid lines!. Also shown are, for com-
parison, the functionsGstat(k) at the same densities~dashed lines!.
The curves with the largest asymptotic values correspond to
smallest value ofr s .

FIG. 13. The RPA static field correctionsGRPA(k) are shown, in
2D, for r s51, 10, and 50~solid lines!. Also shown are, for com-
parison, the functionsGstat(k) at the same densities~dashed lines!.
TheGstat(k) curves with the largest asymptotic values correspo
to the smallest value ofr s ; both local field corrections agree fo
long wavelengths.
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S~k!5E
2`

` d\v

2p
Im x~k,v!. ~3.35!

Historically, models for the response function have oft
been used to calculateS(k). An attractive alternative tha
takes into account the progress made in ground-state the
is to use static structure functions obtained from accu
ground-state calculations to determine properties of the
sponse function. For example, the Feynman approxima
can be constructed by requiring that the frequency integra
exhausted by a single pole, and that the static structure f
tion is reproduced from the RPA response function~3.9! by
definition of the effective interaction. Thisdefinesthe RPA
local-field correctionGRPA(k), see Eq.~3.25!.

However, the Feynman theory is, as we have pointed
repeatedly, not very accurate when the wavelength of
excitation is comparable to the interparticle distance. On
other hand, according to our strategy outlined above,
improved theory ofx(k,v) should reproduce the know
S(k). Precisely this feature of the CBF excitation theory w
proven by Jackson:62 The self-energy correctionS(k,v)
does not affect the first two of the moment sum rules in
sense that the moments of the response function~3.7! are
identical to those of the Feynman response function

S~k!5E
2`

` d\v

2p
Im xRPA~k,v!5E

2`

` d\v

2p
Im xCBF~k,v!,

~3.36!

\2k2

2m
5E

2`

` d\v

2p
\vIm xRPA~k,v!

5E
2`

` d\v

2p
\vIm xCBF~k,v!.

In other words, the self-energy correction changes the r
tive weight of the individual excitations and resonances,
it does not change the integrated strength.

The collective modes of the system are found by de
mining the poles~note that all poles are on the real axis62! of
the response function~3.7!, in other words, by solving the
implicit equation

\v0~k!5«~k!1S(k,v0~k!). ~3.37!

The strength of the collective mode is given by

Z~k!5S~k!F12
]

]v
S~k,v!U

v5v0~k!
G21

. ~3.38!

From our definition~3.11! of the self-energy follows the in
equality
n

ies
te
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SCBF~k,v!<SCBF~k,0!<0 ~3.39!

from which one immediately sees that the lowest collect
mode satisfies the exact inequality72

\v0~k!<2
2S~k!

xCBF~k,0!
. ~3.40!

While it is reassuring that our microscopic approach satis
known exact sum rules and inequalities as a consequenc
its structure, we will see momentarily that the inequal
~3.40! is of rather limited use in determining features of e
ther the excitation spectrum, or the static response funct
The reason is that it gives informationneither on the pole
strength Z(k), nor on the existence of stable collectiv
modes. We shall encounter examples of both: a case w
the pole strength of the lowest collective mode is infinite
mal, and a case where no real collective mode exists.
latter example is in fact a well-known consequence
anomalous dispersion.

In writing down Eq. ~3.37! we have to assume tha
S„k,v0(k)… is real. This is the case when the energy deno
nator in Eq.~3.11! does not change sign, which is true whe
the collective energy isbelow the critical value

\v0,\vcrit~k![minq@«~q!1«~ uk1qu!# ~3.41!

determining the continuum boundary. Above that energy,
self-energy is complex. Moreover, for\v,\vcrit(k), it fol-
lows from Eq.~3.11! that

dS~k,v!

dv
,0 for \v,\vcrit~k!. ~3.42!

In order to determine if Eq.~3.37! has a solution, we mus
find out whetherS(k,v) becomes singular at the branch c
v5vcrit(k) or not. This depends, of course, on the details
the reference spectrum in the energy denominator of
~3.37!. We shall study here two relevant cases.

The first case is that the reference spectrum«(k) is
convex. This refers typically to the regime of high mome
tum transfer where the spectrum approaches the sin
particle kinetic energy; the reader is referred to the disc
sion of the dynamic structure for examples. Wh
\vcrit(k)52«(k/2),«(k), this critical energy isbelow the
reference energy. In order to determine whether Eq.~3.37!
has a solution, we must therefore study the analytic beha
of S(k,v) as a function ofv near the branch poin
v5vcrit(k). We shall treat only the simplest cases here,
suming a monotonically growing, convex spectru
«8(k/2).0 and«9(k/2).0 and we are interested in the sin
gular behavior only. The case of the two-dimensional syst
has been dealt with in Ref. 58;‘ the three-dimensional c
follows essentially the same lines. The result is
lim
\v→2«~k/2!

SCBF~k,v!52
uV3~k;2k/2,2k/2!u2

8pr

kA2«~k/2!2\v

2«8~k/2!A«9~k/2!
~ in 3D!, ~3.43!

lim
\v→2«~k/2!

SCBF~k,v!5
uV3~k;2k/2,2k/2!u2

4pr

ln~2«~k/2!2\v!

A2«8~k/2!«9~k/2!/k
~ in 2D!. ~3.44!
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The comparison between the two- and the three-dimensional cases is quite interesting. The self-energy is mono
decreasing@cf. Eq. ~3.42!# and has in two dimensions a logarithmic singularity at the branch point, which guarantees th
dispersion relation~3.37! always has a real solution below the Feynman spectrum. In three dimensions, however, th
energy remainsfiniteat the branch cut and, hence, the existence of a discrete collective excitation can no longer be gua

The second relevant case is when the reference spectrum has an absolute minimum. This is the case of t
dimensional plasmon spectrum. In view of the further discussions, and due to its similarity to the case of4He, we shall refer
to this minimum as the ‘‘roton minimum.’’ In this case, we havevcrit(k)52v r , where\v r is the ‘‘roton energy’’ located at
the wave numberkr . Expanding the energy denominator about this point yields the result

lim
\v→2\vr

SCBF~k,v!5
uV3~k;2k2kr ,kr !u2

8pr

kr
2ln~2\v r2\v!

k«9~kr !
, ~3.45!
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wherekr is a vector of lengthkr oriented such that the thre
vectorsk, 2k2kr , andkr form an isosceles triangle. In tw
dimensions, one finds similarly a logarithmic singularity.

To summarize the analysis of this section, we find that
can typically guarantee the existence of collective excitati
in the long-wavelengthregime in both two and three dimen
sions. An upper bound for these excitations is the Feynm
spectrum or the continuum boundary\vcrit(k), whichever is
lower. We have shown that, when the spectrum has a ro
like structure, one can have collective excitations, even in
long-wavelength limit,below the plasma frequency, whereas
the plasmon itself can decay for all finite, but infinitesim
wave numbers.

The numerical value of the strengthZ(k) of the additional
collective mode below the plasmon depends strongly
‘‘how close’’ the solution of the implicit equation~3.37! is to
the critical energy 2\vpl . For long wavelengths, the comb
nation of Eqs.~3.12! and ~3.45! yields for the self-energy

SCBF~k,v!5Ckln~2\v r2\v!

as k→01 and v↗2v r , ~3.46!

whereC is a numerical constant determined by the thr
phonon matrix element~3.12! and the kinematic factors ap
pearing in Eq. ~3.45!. Note that the limitsk→01 and
v↗2v r do not commute, here we must take the lim
v↗2v r first for fixed wave number and then evaluate t
matrix elements in Eq.~3.45! for smallk. As a consequence
we obtain an energy for that ‘‘mode’’ of the orde
\v52\v r2const3exp@\(2vR2vp)/Ck# and a strength
Z(k) that goes to zero as exp@\(2vR2vp)/Ck# for small k.
Clearly this mode is a spurious solution of infinitesim
strength, but the very existence of that solution has, as
shall see, interesting consequences. Exact quantitative s
ments on the strength of that additional mode forfinitewave
numbers are difficult. We found that the strength of that
ditional mode is always small compared with the plasm
the situation is generally very similar to that of4He, where
we have discussed the analytic structure of the self-energ
length.58,63

The situation is different for high momentum transfe
the 3D self-energy remainsfinite at the branch cut; cf. Eq
~3.43!. This means that the existence of collective excitatio
can no longer be proven.
e
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F. Plasmon dispersion

In the long-wavelength limit the 3D plasmon dispersi
relation is conventionally written as

\v0~k!5\vpl1a
\2k2

m
1O~k4!, ~3.47!

wherea is the ‘‘plasmon dispersion coefficient.’’ The ran
dom phase approximationṼp-h(k)5 ṽ(k) givesa50, with a
positive fourth-order correction. Chiofaloet al.73 and Moroni
et al.38 have used the inequality~3.40! to derive upper
bounds for the plasmon dispersion curve. Their results sh
that the leading dispersion coefficient of the plasmon exc
tion is negative at all densities due to the negative compr
ibility of the system.

In our case, we have two sources of the quadratic beh
ior of the plasmon dispersion relation. One is the moment
dependence of the static particle-hole interaction. F
k→0, the self-energy correction is also proportional tok2,
which leads to a further correction to the plasmon dispers
coefficient. Expanding Eq.~3.37! to first order in k2, we
obtain, using the relationships~3.16! and ~3.17!,

\v0~k!5\vpl1
\2k2

m F 1

2rKT
var\vpl

1 lim
k→0

m

\2k2
S~k,vpl!G

5\vpl1
\k2

mvpl

F 1

2rKT
1 lim

k→0

S~k,vpl!2
1

2
S~k,0!

2S~k!
G ,

~3.48!

which defines the plasmon dispersion coefficient

a5
1

\vpl

F 1

2rKT
1 lim

k→0

S~k,vpl!2
1

2
S~k,0!

2S~k!
G . ~3.49!

The above equation has been written in a somewhat s
gestive way: thefirst part is directly related to the bulk com
pressibility, which is negative throughout the whole dens
range. This part is trivially obtained from the static respon
function by assuming that the inequality~3.40! is actually an
equality. Thesecondpart is also negative@cf. Eq. ~3.39!#; it
provides a statement of how much the plasmon dispers
coefficient is lowered through the dynamics of the system
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We should note, however, that in order to apply the
equality ~3.40!, one mustassumethat the plasmon is indee
the lowest collective mode. We have shown in the previo
section that this is not necessarily true: the long-wavelen
limit of the self-energy becomescomplexif there exists a
region of the Feynman spectrum with 2«(k),\vpl . The
effect is quite generic and simply states that the plasmon
decay if there is an excitation with a finite momentum, a
an energy less than half of the plasmon energy. In ot
words, the estimate~3.40! becomes invalid for plasmons

FIG. 14. The real and the imaginary parts of the plasmon
persion relation are shown, for the three-dimensional charged-b
gas, as a function ofr s . The solid line shows the real part of the fu
expression ~3.49!, the long-dashed line the first term
1/(2\vplrKT), and the short-dashed line the imaginary part. N
the different scales applying to the real part~left scale! and the
imaginary part~right scale!.

FIG. 15. The normalized dynamic structure functio
S(k,v)/S(k) is shown, for the 3D charged-boson gas, atr s510.
The strength ofS(k,v)/S(k) is indicated by the grey scale. Als
shown are the Feynman dispersion relations«(k) ~long-dashed
line!, the self-energy corrected dispersion relation~solid line!, and
the continuum boundaries\vcrit(k) ~dotted line!. The scale on the
right refers to therelative weight Z(k)/S(k) ~dotted line! and
2mv0(k)Z(k)/(\k

2) ~dash-dotted line! of the collective mode to
thev0 andv1 sum rules.
-

s
th

an
d
er

2S(k)/x(k,0),\vpl ; from Ref. 38 one would conclude
that this happens atr s&50, whereas our calculations lead
the slightly larger valuer s'53.

Figure 14 shows our calculated plasmon dispersion co
ficient and its imaginary part as a function ofr s . Since our
reference spectrum is here the Feynman spectrum, the
persion coefficient becomes complex at a density sligh
lower than one would get from the spectra reported in R
38. At that critical r s value, the real part of the plasmo
dispersion coefficient diverges, and the imaginary part
comes nonzero. Below that density, the inequality~3.40! is
violated. In that connection, two observations are importa
first, our theory satisfies by construction all assumptions t
went into the proof.72 Second, the imaginary part becom
quite small as one moves away from the singularity, and
resonance is indeed almost indistinguishable from a singu
ity. We also compared our dispersion coefficient with t
recent work by Bo¨hm, Conti, and Tosi.74 We find good
agreement with their ‘‘best estimate’’ atr s<10 where they
find a convergent solution fora.

G. Dispersion relations and dynamic structure function

The collective excitations of the many-particle system
given, in general, by the poles of the response funct
x(k,v). The simplest level at which such excited states c
be discussed is the Feynman~or random phase! approxima-
tion ~3.9!. In this case, all of the strength of the respon
function is concentrated in one pole, and the dispersion r
tion is given by Eq.~2.22!. By definition of the Feynman
spectrum, there is only one mode of elementary excitatio
namely, the plasmon mode. The dispersion curve goes
tinuously from the plasma frequencyvp5(4pre2/m)1/2 in
the limit k→0 to the single-particle recoil frequenc
\k2/2m at k→`.

At a more sophisticated level, self-energy corrections
included in the density-density response function; cf. E
~3.7!. Two important changes take place: the first is that
dynamic structure function

S~k,v!5
1

p
Im x~k,v! ~3.50!

is no longer exhausted by a single pole. In general,
writes

S~k,v!5Z~k!d„v2v0~k!…1Smp~k,v!, ~3.51!

wherev0(k) is the pole of the response function@in our case
the solution of Eq.~3.37!#, Z(k) the residue of the respons
function at that point@cf. Eq. ~3.38!#, andSmp(k,v) a ‘‘mul-
tipair’’ correction. The second important change is that, u
der certain circumstances as discussed above, Eq.~3.37! may
not have a real solution, in other words,Z(k)50. We dis-
cuss therefore the dispersion relation of collective mod
their respective strength, and the multipair excitations sim
taneously.

Figure 15 shows the relatively tame situation ofr s510 in
three dimensions. In order to make the dynamic struct
function more visible at small momentum transfers, the fi
ure shows a grey scale plot ofS(k,v)/S(k). In this case, the
continuum boundary is almost twice the plasma frequen

-
on

e



o

r
gy
a

ol
n
th
h

t

in
d
m
n
e

a

e
ma

ly
of
po-
mo-

um
is,

s at
e
e.
a
fers
en-
con-
ol-
ee
can
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and up to a momentum transfer ofkr0'4, the Feynman and
the CBF spectrum are rather close, and the collective m
exhausts the sum rules~3.36! almost completely. At higher
momentum transfers, the Feynman dispersion relation tu
into a broad ridge along the single-particle kinetic ener
The rigorously ‘‘collective’’ mode loses its strength over
rather small momentum regime, and disappears forkr0.6.
Note that this corresponds to a regime where no real s
tions of Eq. ~3.37! exist due to the anomalous dispersio
Figure 15 also gives some justification for the use of
Feynman spectrum in Sec. III B since the actual strengt
indeed concentrated around the Feynman spectrum, and
around the solution of Eq.~3.37! or some extrapolation of i
to higher momenta.

It was pointed out by Gold31 that a rotonlike structure—
as is familiar from the helium liquids—should also appear
the plasmon dispersion curve of the charged-boson flui
low densities. The existence of such a minimum follows i
mediately from the negative plasmon dispersion coefficie
a structure weakly reminiscent of a roton minimum is inde
seen even in the Feynman approximation atr s510; see Fig.
15. A much more pronounced roton minimum is seen

FIG. 16. Same as Fig. 15 for 3D andr s550.

FIG. 17. Same as Fig. 15 for 3D andr s5100.
de

ns
.

u-
.
e
is
not

at
-
t;
d

t

r s550; c.f. Fig. 16. In this case, the multipair regime of th
dynamic structure function begins slightly above the plas
frequency. At high momentum transfers,kr0.6.5, the col-
lective excitation again rapidly loses weight and ultimate
disappears. However, we see that the main strength
S(k,v) appears to be concentrated along a straight extra
lation of the discrete mode towards higher energies and
menta.

Significant changes happen when the roton minim
drops below half the plasma frequency. Now, the plasmon
in the long-wavelength limit,in principle no longer the low-
est mode. A second pole of the response function appear
2\v r , where\v r is the roton energy. However, the residu
of this pole is, while not exactly zero, practically negligibl
The actual strength ofS(k,v) is located around the plasm
frequency, and shifts towards higher momentum trans
and the pole of the CBF response function. At high mom
tum transfers this collective mode disappears again and
tinues in a broad ridge around the extrapolation of the c
lective excitation. To summarize our results in thr
dimensions, it appears that a well-defined plasmon mode

FIG. 18. Same as Fig. 15 for 2D andr s55.

FIG. 19. Same as Fig. 15 for 2D andr s520.
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exist only up to a density for whichvpl.2v r . In the vicinity
of the roton minimum, we always find a well-defined colle
tive mode. Since our analysis of the analytic structure of
self-energy depends to some extent on the comparison
tween the plasmon and the roton energy as well as on the
that the roton is well defined, our results should be rat
robust against improvements of the theory by, for exam
including self-energy corrections in the energy denomina
~3.11!.

In two dimensions, the plasmon energy approaches z
asAk with the plasma frequencyvp5(2pre2k/m)1/2. This
result is familiar also from the experimental work done w
the 2D electron gas75 following from the fact that wavelike
charge-density perturbations in two dimensions interact
lines of charge while in three dimensions the interaction
between sheets of charge. TheAk dispersion relation cause
interesting changes from the three-dimensional case. Es
tially up to the roton minimum~if it exists!, there is no
anomalous dispersion and all collective modes are sta
This is reflected in the pole strengthZ(k) shown in Figs.
18–20, which extends down to zero in all cases, exhaus
the k3/2 behavior of the static structure function. Featur
similar to those in 3D appear at densities low enough~i.e.,
r s.20) where a roton minimum develops. This is reflect
in a flat continuum boundary atv52v r above the roton
minimum; cf. Figs. 19 and 20. In each of these cases,
actual strength ofS(k,v) follows a line that appears to b
theextrapolationof the collective mode into the continuum
We also see another resonance at roughly twice that ene
tentatively we interpret this resonance as a ‘‘two-plasmo
excitation, but shall leave its more thorough examination
future studies.

Figures 15–17 and 18–20 also show the relative con
bution of the discrete collective mode to the two sum ru
~3.36!, Z(k)/S(k) and 2mv0(k)Z(k)/(\k

2); both ratios are
exactly 1 in the Feynman approximation. A number of o
servations apply: first, the energy-weighted sum rule is
hausted by the collective mode less than thev0 sum rule.
This is expected since the energy-weighted sum rule pla
more emphasis on high-energy excitations, which are ty
cally of multiparticle nature. Second, the relative weight

FIG. 20. Same as Fig. 15 for 2D andr s550.
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the collective excitation also decreases at higher momen
transfers. Typically, the collective mode disappears betw
kr056 and kr058 in three dimensions, and betwee
kr055 andkr056 in two dimensions and turns into a broa
band. At small momenta and the low densityr s'100 one
also sees the consequence of the decay of the lo
wavelength plasmons into pairs of rotons: the plasmon it
has a finite width, and a ‘‘spurious’’ collective mode appea
at v52v r that has negligible weight.

H. Third-moment sum rule

We have up to now basically dealt with low-energy ex
tations. In particular, the theory wasdesignedsuch that the
simplest sum rules~3.36! are satisfied identically. Thev21

sum rule may be invoked to calculate the static respo
function, but since the evaluation of this sum rule needs
dynamic response function for all frequencies, it is easier
more natural to calculatex(k,0) from Eq. ~3.8!. We have
also discussed the danger that can come with uncritic
adopting sum rule arguments for the estimation of excitat
energies; cf. Eq.~3.40! and Fig. 14.

The third-momentsum rule is, for the purpose of discus
ing the nature of the excitation spectrum, of a different n
ture. The exact form of this sum rule was first derived
Puff.76 For the charged Bose fluid it can be written in th
form77

E
2`

`

S~k,v!~\v!3d~\v!

52t~k!@ t2~k!14t~k!T/N12t~k!ṽ~k!#

1S \2

m D 2E ddq

~2p!dr
~k•q!2ṽ~q!@S~ uk2qu!2S~q!#,

~3.52!

whereT/N is the exact kinetic energy andṽ(q) the Coulomb
potential. A form that is suitable for hard-core potentials th
have no Fourier transform has been given by Feenberg.43

In the present theory, we donotexpect this sum rule to be
exactly satisfied: for it to hold, one must assume that

FIG. 21. The third-moment sum rule from the present calcu
tion divided by the exact result as a function of momentum at d
ferent densities labeled with ther s values.
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spectrum of intermediate states is complete. This is true
ther for the one-phonon basis~which leads to the RPA! nor
for the two-phonon basis, which leads to the present the
A second necessary condition for the third-moment sum
to hold is that the relevant matrix elements are calcula
exactly. Again, this is not true in our approximate form
e
tio

de
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rd
th
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the self-energy~3.11! and matrix elements~3.12!. Thus, the
third-moment sum rule can indeed give valuable informat
on the completeness of the two-phonon basis.

In the evaluation of the third-moment sum rule from t
linear response function of Eq.~3.7! we follow the derivation
given by Jackson,62
act sum

,

E
2`

`

S~k,v!~\v!3d~\v!52t~k!«2~k!112t~k!E
0

`

G~k,v!
dv

2p
14S~k!E

0

`

G~k,v!@\v2«~k!#
dv

2p
, ~3.53!

whereG(k,v) is the imaginary part of the self-energy,

G~k,v!5
p

2E ddpddq

~2p!dr
d~k1p1q!d„\v2«~p!2«~q!…uV3~k;p,q!u2. ~3.54!

In Fig. 21 we have plotted the ratio of the present and exact results in three dimensions. In the calculation of the ex
rule we used our structure function and kinetic energy. The comparison shows that the dominant power of Eq.~3.53! in the
small-k expansion, 2(\vpl)

2k2, as well as in the large-k expansion, (\2/2m)3k6, is correct. In the high density limit
r s→0, the correct expansion is obtained up to thek4 terms both in the small- and large-wavelength limits,

E
2`

`

S~j,v!~\v!3d~\v!'H 2~12j21j6!r s
29/210.535386j4r s

215/41O~j6! Ry3 when j→0

2j6r s
29/211.60616j4r s

215/41O~j2! Ry3 when j→`.
~3.55!
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Here we have used the variablej defined in Eq.~2.31!. For
the correct small-j expansion it is essential to include th
triplet correlations as was also pointed out in the evalua
of the compressibility.

The deviation from the exact sum rule increases with
creasing density up tor s550 where a 16% difference wa
found atkr054. As discussed above this is expected due
the approximations in the triplet correlation function and t
single-pole form of the self-energy, because the thi
moment sum rule heavily weighs the high-energy part of
spectrum. Similar results can be obtained also in two dim
sions.

IV. SUMMARY AND OUTLOOK

We have studied in this paper the two- and thre
dimensional fluid of charged bosons. We have presented
results for the structure, energetics, and compressibility
the ground state in the light of the triplet correlations
cluded in the trial wave function. Compared with4He, both
the two- and the three-dimensional Bose gas are quite
described by even the simplest version of the HNC/
theory; in particular the energetics is reproduced within b
ter than 1%. Elementary diagrams and triplet correlatio
provide an improved consistency of the theoretical desc
tion as well as quantitative improvements of derived qua
ties like the compressibility. As the density is lowered, bo
the triplet correlations and the elementary diagrams gain
portance; this will be of quantitative relevance for our fort
coming studies of Wigner crystallization. We have also c
ried out extensive comparisons with Monte Carlo results
particular with the very recent paper by Moroniet al.While
some quantitative discrepancies remain, we feel that
n

-

o

-
e
n-

-
ur
f
-

ll

t-
s
-
i-

-

-
n

e

overall agreement between HNC/EL results and Monte Ca
data is quite satisfactory.

We have also presented a method for calculating elem
tary excitations and resonances in these systems. By al
ing the interparticle correlations to be time dependent
went beyond the conventional Feynman theory. The the
has been designed in such a manner that those quantities
have been calculated accurately in the ground-state calc
tion — specifically theS(k) — are not changed any more i
the improved theory. In particular, we have assessed
value ~or the lack thereof! of sum-rule-based estimates o
excitation energies from static properties.

The good agreement of our results with virtually a
Monte Carlo data available to us gives us confidence in
validity of our approach to excited states. Concerning
general structure of the dynamic structure function, we
lieve that the scenario described here is generic, but
course quantitatively improvable in its numeric
implementation.56 It is also possible to study the topologic
excitations ~i.e., vortex structures! using the same basi
formalism.78 These structures have received extensive in
est in recent years in connection with the research done
vortices in high-temperature superconductors.
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