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Specific heat of the two-dimensional Hubbard model
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Quantum Monte Carlo results for the specific heatf the two-dimensional Hubbard model are presented.
At half filling it was observed that~ T2 at very low-temperatures. Two distinct features were also identified:
a low-temperature peak related to the spin degrees of freedom and a higher-temperature broad peak related to
the charge degrees of freedom. Away from half filling the spin-induced feature slowly disappears as a function
of hole doping while the charge feature moves to lower temperature. A comparison with experimental results
for the high-temperature cuprates is discus$80163-18207)02320-3

I. INTRODUCTION is a function of the chemical potential that has to be adjusted
to keep the densityn) constant as the temperature changes.
The Hubbard model is among the simplest Hamiltoniandn other words JE/4T must be calculated along the lines of
that describe the behavior of correlated electrons. Especiallyonstant(n) in the T-u plane. In this framework the calcu-
since the discovery of high-temperature superconducting maation of ¢ cannot proceed using~<H2>—(H)2, as when
terials, considerable attention has been devoted to this modg{e number of particles is fixed. Another detail that is impor-
and significant progress was achieved in understanding iignt s the finite discretization of the derivatives along the
ground-state properties, particularly at half filling, although|ines of constant density. Naively, the ratioE/AT, with

supercqnductivity is .Sti” eIusivéStgtic and dynamical spin AT very small, should be calculated. However, using such a
correlations, the optical conductivity, and other Observableﬁrocedure, the small statistical error i introduces large

have been studied in detdilHowever, not much attention . X
. : . .errors inc. For that reason we have decided to calculate
has been devoted to its thermodynamical properties despi : ; :
T) (at fixed(n)) numerically as accurately as possible and
i

the large amount of experimental specific-heat measuremen . . . .
available for the cuprates. The aim of this paper is to fill thatnen fit the Monte Carlo points with a polynomial that
void and to present a systematic study of the specific heat gfmears out the small fluctuationskn c is obtained by tak-
the two-dimensional2D) Hubbard model for different cou- ing derivatives from this polynom_lal analytically. Motlvated
plings U/t, dopings, and temperatures. To achieve that goaPy the shape of th& vs T curve, different polynomials were
quantum Monte CarléQMC) techniques are used. used for the high- and low-temperature regimes. In Fig. 1,
The Hubbard Hamiltonian is given by the raw Monte Carlo data fdE as a function of temperature
corresponding tdJ =8 at half filling on a 6x6 cluster are
presented. Each data point was obtained by performing
H=—t > (CiTUCJ- sHHC)+UD (nyy—1/2)(n; = 1/2), around 10 000 measurement sweeps. The dashed line indi-
(i [ cates the low-temperature fit by a polynomial of order 6 in
T, while the short-dash—long-dashed line indicates the high-
whereciT,U creates an electron at sitewith spin projection temperature fit, in this case to a polynomial of ordeT#.is
o, n;, is the number operator, the syij) runs over pairs of the temperature where the two fits meet. Its value depends on
nearest-neighbor lattice sited, is the on-site Coulombic re- the parametert) and({n) and is typically of the order of 1.
pulsion,t is the nearest-neighbor hopping amplitude, and wdn order to make a smooth connection of the two fits we
add a chemical potential to fix the number of electrons. In included points belowaboveg T* for the high-(low-) tem-
the following t=1 will be used as the unit of energy. The perature fit within a window~0.2 centered &at*. The spe-
boundary conditions are periodic. cific heat was obtained through the analytic derivative of the
fitting polynomials and it is also shown in Fig. 1 with a
continuous line. The inset of the figure shows with more
detail the low-energy data that generate the low-temperature
The computational calculation of the specific heds not  peak inc (to be discussed later
simple. In principlec is given by the derivative of the en- An important issue in QMC simulations are finite-size
ergy E (defined aE=(H)/N, with N being the number of effects(FSE’S. Upon studying 44, 6X 6, and 8<8 clus-
site9 with respect to the temperatufieat constant density. ters, it was observed that the FSE'sknvs T are strong at
However, note that in determinantal QMC simulations,very weak coupling, but become negligible fof=8 or
which are set up in the grand canonical ensemble, the enerdgrger. In Fig. 2, the energy of the different clusters for
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FIG. 1. Monte Carlo results for the ener§yon a 6X6 cluster
at half filling andU=8 (open circles The low-temperature poly- FIG. 3. Specific heat vs T at hallf filling for different values of

nomial fit is indicated by the dashed Iine, while the ShOft-'OngU ranging from 2 to 12. The vertical axis for each Coup“ng is
dashed line indicates the high-temperature fit. The solid line denoteshifted for clarity.

the specific heat. The low-temperature data that produce the spin

peak are shown in the inset. The error bars are smaller than the sigRears when states in the upper Hubbard band are excited. In

of the dots. the weak-coupling regime the low-temperature peak moves
to slightly higher temperature ad increases, reaching a

U=0, 4, 8, and 12 is shown. Since the FSE’s are small, wéurning point atU~7 where the peak is al=0.3. For

decided that results on>66 clusters are representative of the U>7 the peak slowly moves to lower temperaturesUas

physical behavior analyzed in this study and thus this is thgrows. This indicates the beginning of the strong-coupling

lattice size that we have used in the remaining of the paperegime since it is well known that for large valuesWfthe

In Fig. 3,c vs T at half filling for different values olJ is  Hubbard and the-J models have similar behaviors and the

shown. There are two important features in these curfies: coupling constants are related throuiy 4t>/U. Numerical

a low-temperature peak that appears when the low-lying spistudies on the&-J model have indicated that at half filling

states are excited an() a higher-temperature peak that ap- (Heisenberg limit the peak inc appears aT ~2J/32 which

<n>=1.0
0.5

E

- FIG. 2. Energ)E as a function
-1.0 . : . . of temperaturel at half filling on

. 4X4,6X6, and 8<8 clusters for
(@ U=0, (b) U=4, (c) U=8,
and(d) U=12. The error bars are
smaller than the size of the dots.
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FIG. 4. (a) TemperatureT gy, peae Where the spin peak is lo- FIG. 5. (a) Energy vsT? at half filling for different values of

cated, as a function dfl at half filling. The dashed line indicates Uy, (b) Coefficients of the low-temperature fit~ 5T, as a func-
T=2J/3 (asymptotic result in the Heisenberg limitb) Tempera-  tion of U at half filling. Numerical and analytical values for the
ture Tenarge peak Where the charge peak is located, as a function ofHeisenberg limit U =) are indicated. The circle corresponds to
U. The dashed line indicatés=0.24J. the mean field result of Ref. 6 and the diamond denotes the numeri-

. 2 . cal result of Ref. 8.
in terms of U corresponds td ~8t</3U. Thus, when this

regime is reached we expect the peak to move to lower tem-
perature with increasingy. The position of the peak as a '=0.3. The value oi6 depends orU and decreases as the
function of U/t is shown in Fig. 4a), where the dashed line coupling increases. For lardé the limiting values~1.1 is
indicatesT=2J/3. The asymptotic behavior is reached for obtained in good agreement with the reported value for the
U=10. Heisenberg modér® A slave boson mean-field theory

The broad high-temperature peak moves to higher tem(SBMFT) calculation provided a value Og: 1.3+ 0-05?
perature ag) increases as expected since its presence corrdthile a numerical study obtaine#=1.1+0.2” The behavior
sponds to the excitation of states across the gap that grov 6 vs U is shown in Fig. &b). _
with U. In Fig. 4b) the position of this peak is shown as a _IN Fig. 6,c vsT for several values of ranging from 2 to
function of U. For U=7 the dependence of the position of 12 are presented. These are the same curves that were shown
the peak withU becomes approximately linear and it is I F|g. 3, but now using common vertical units. It is inter-
given by 0.24). A spin-density-wave mean-field calculation €Sting to observe that all the curves intersect at
of the gapA as a function olU, at largeU, gives the result T= 1.§i 0.2.If on_ly small values of the coupling are consid-
A~0.48J. Apparently, quantum fluctuations reduce the size€€d, i-e.,U ranging from 2 to 5, the curves cross also at
of the gap. Note that in Fig. 3 it can be observed that thel 1=0.6 in addition toT,=1.6. This behavior was predicted
minimum in ¢ between the two peaks becomes deeper as
U increases and the charge peak increases its width.

In previous work the specific heat for the half-filled Hub-
bard model in one dimension has been evaludtédve
found that the qualitative behavior in one and two dimen-
sions is similar regarding the existence and coupling depen- ¢ g0 | B |
dence of the two peaks. However, the following differences ' i
were observedi) According to Ref. 3, the two peaks can be 2
resolved forU>4, while here we were able to identify the
two peaks already af =2. The fact that only one maximum

6x6, <n>=1.0

0.50

is observed in Ref. 3 in the strong-coupling regime is due to ~ *? /4 -]
the smallT interval considered in that studgii) According
to Ref. 4, the maximum i associated with the spin exci- 0.10 ~
tations moves to lower temperatureslasncreases in weak U=2
;:oupcljing, while in our 2D study the opposite behavior was 0.00, oo 700 300 o =00
ound. T

Another important feature observed here at half filling is
that at low temperatures the specific heat follosvs 5T?, FIG. 6. ¢ vs T for U=2-5 (continuous lines and for

i.e., the behavior predicted by spin-wave calculatibns.  u=6-12(dashed lings Al the curves intersect a,~ 1.6, while
Fig. 5(a) we show the energy as a functionf for different  those corresponding to weak couplif@ntinuous linesalso inter-
values of U, showing that linear behavior occurs for sect atT;~0.6.



55 SPECIFIC HEAT OF THE TWO-DIMENSIONA . .. 12921

<n> = (0.75
. 0.5
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FIG. 7. Energ)E as a function
of temperatureT on 4Xx4 and
6X6 clusters and density
(n)=0.75 for (@ U=0, (b)
U=4,(c) U=8, and(d) U=12.

by Vollhardf and was observed in the paramagnetic phase of, YBa,Cw;0¢. . ¥ appears to increase with doping reach-
the infinite dimensional Hubbard model foQJ <2.5. ing a plateau fox~0.45.

The first step to study numerically the specific heat at
finite density is to analyze the finite-size effects. They are
stronger than at half filling, but still moderate, as can be seen

To compare our results with those of the superconductingn Fig. 7, whereE vs T for U=0, 4, 8, and 12 at
cuprates it is important to study the specific heat as a functn)=0.75 on 4<4 and 6x6 clusters is shown. Away from
tion of hole doping. As remarked before, many experimentahalf filling it was very difficult to obtain accurate results on
measurements of the specific heat for high-temperature c®Xx 8 clusters at low temperature due to the well-known sign
prates are available. In general, it is very difficult to separateroblem. However, since FSE’s are stronger in weak cou-
the electronic contribution to the specific heat in the normapling and we have observed that 1d= 0, where results can
state from the phononic part. Also many experiments havée obtained exactly, there is only a small difference between
been performed in the superconducting phase, where the ethe 6x6 and 8<8 results, then, as before x@ lattices
istence of an intrinsic linear contribution to the specific heatwere used in our studies away from half filling.
would indicate the absence of a gap and thus unconventional In Fig. 8@a) the specific heat as a function &f at
behavior®~*? Since the superconducting phase cannot bé&n)=0.75 for different values ofJ is presented. It can be
reached in QMC simulations, our results will be comparedobserved that the spin peak is substantially reduced com-
with experiments performed in the normal state. Forpared to the results at half filling, but it is still present in
La,_,Sr,CuQ, it was observed in Ref. 13 that the linear term strong coupling fotJ =8 and 12, indicating the existence of
v of the specific heat in the normal phase increases witlshort-range antiferromagnetic correlations. In weak coupling,
doping betweerx=0.12 and 0.25. However, studies of the i.e., forU=4, the spin feature has disappeared and the curve
same material performed latérshowed thaty increases is similar to the noninteracting one. The specific heat in-
with x for x>0.1, reaching a maximum value at optimal creases in the region where the minimum between the two
doping x~0.15 and then decreasing in the overdoped repeaks existed at half filling. At quarter filling=ig. 8b)], ¢
gime. This behavior is in agreement with the Van Hovehas a behavior that resembles free electrons independently of
scenarid;> where the density of states reaches a maximum athe value ofU. Thus, here the electrons are approximately
optimal doping. The behavior of for a metal-insulator tran- weakly interacting at all couplings.
sition was also studied for gr,La,TiO5 in Ref. 16. There it Let us consider in more detail the special casdJai8.
was observed that increases as the transition is approachedrhis value of the coupling was selected since according to
from the metallic side. Through the relation=m* y,/m, calculations of the optical conductivity it is suitable to repro-
where y, and m are the linear coefficient and the mass for duce some normal state experimental results.Fig. 9 the
free electrons, it was found that the effective mass of thespecific heat as a function of temperature is presented for
quasiparticlean* increases as the transition is approacheddifferent values of the densiyn). The continuous line indi-
Loramet all’ studiedy as a function of doping &f=280 K cates the results fou=8 on a 6x6 cluster, while the

lll. FINITE HOLE DENSITY
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FIG. 8. c vs T at density(a) (n)=0.75 and(b) (n)=0.50 for
U=0, 4, 8, and 12, on a%6 cluster.

dashed line denotes the noninteractidg=-0 results on a
200x 200 lattice. Such a large cluster in the noninteractingtoo high to observe the linear behaviordfrl since, accord-
case was used to avoid finite-size effects, which are strong iimg to Eq. (2), the slope of the curve has to be positive at
this limit at the low temperatures where the linear behaviowery low temperature. Clearly, if the system behaves as a
occurs. Again it should be remarked that this problem occur&ermi liquid, a maximum has to appear in the curve at a
in weak coupling at very loWw and thus out) = 8 results are
not expected to be contaminated by size effects. In Fig. 9 iacting results show indeed the linear behavior at very low
can be seen that fo =8 the intensity of the spin peak temperatures. However, note that the valueydbr nonin-
decreases smoothly with doping. At 10% hole dopihg.,
(n)Y=0.90) its intensity diminishes by 40%, a result in agree-c/T at the maximum in Fig. 10 at all densities. Thus, by
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ment with Ref. 2, where theJ model was studied. Note that
for {(n)~0.8 the specific heat is almost flat in a broad range
of temperatures. Here it is difficult to resolve the spin and
charge peaks from the data. We expect that at this density or
lower the spin correlations are no longer important, even
those of short range, in agreement with previous spectral
function studies performed in the Hubbard motfeReduc-

ing further the density fronin)=0.75 to 0.5, a single peak
structure that resembles the noninteracting specific heat
curve becomes dominant.

An important issue in this context is the calculation of
couplings and densities where the system changes from in-
sulator to metal. Metallic behavior is characterized in the
specific heat by the existence of a linear coefficignin two
dimensions it was found thit

c~yT+T,pT%+- -, 2
with ', positive in strong coupling.

The experimentalists often present plots @f vs T?
when addressing. Analogously, in Fig. 10 the continuous
line denotexc/T vs T for U=8 at different densities, while
the dashed line indicates the noninteracting case. The lowest
temperature that is confidently reached in this study away
from half filling is T=0.3. It is clear that this temperature is

lower temperature than reached in this study. The noninter-

teracting electrons is not much different from the value of
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IV. SUMMARY

extrapolating the) =8 curves to zero we expect to obtain a

good approximation to the value of. However, since we

cannot reach lower temperatures, the existence of anomanHs
non-Fermi-liquid behavior certainly cannot be ruled out as

remarked in Ref. 2.

In Fig. 11,¢/T as a function of doping is presented at
different temperatures. Notice that the lowest temperatur

T=0.5 shown in Fig. 11 corresponds t62000 K if t=0.4
eV is used. This is much higher thdr= 280 K, which is the

highest temperature used in experiments. However, fo

T=0.5 it was here observed thetT increases with doping
for (n)<0.8, in agreement with some experimental restflts
and the same behavior is observed atl. For higherT the
ratio ¢/T increases for increasing density).

1.0

6x6, U=8 *—o T=0.5

u---aT=1.0
*~——¢T=2.0
A -—-4 T=3.0

0.8 ¢
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0.2 *
DU S, s
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FIG. 11. ¢/T vs(n) for U=8 at different temperatures.

The specific heat of the two-dimensional Hubbard model
as been calculated for different couplings and electronic
densities as a function of temperature. At half filling and as
the couplingU increases a low-temperature peak associated
with the spin degrees of freedom moves to lower tempera-
?ures, while a high-temperature feature associated with the
charge degrees of freedom moves to higher temperatures. At
very low temperatures~ §T? as predicted by spin-wave
{heory andé tends to the Heisenberg valué~£1.1) for
large couplingu. Away from half filling we observed that
' the spin feature weakens with doping and it disappears for
(n)=<0.75 working atU=8. This suggests the absence of
important antiferromagnetic correlations below that density.
We were not able to reach temperatures low enough to de-
cide whether the system is metallic or has anomalous behav-
ior away from half filling. However, by evaluating/ T we
were able to make comparisons with experimental results. At
the lowest temperatures that we could reach we found that
c/T increases with hole doping fgn)<0.9. This behavior
is similar to experimental results for YB@u;Og., .’

ACKNOWLEDGMENTS

We thank E. Miranda, K. Bedell, S. von Molnar, and E.
Dagotto for useful conversations. A.M. is supported by NSF
under Grant No. DMR-95-20776. Additional support is pro-
vided by the Office of Naval Research under Grant No.
N00014-93-0495, the National High Magnetic Field Labora-
tory and MARTECH. We thank ONR for providing access to
their Cray-YMP and CM5 supercomputers.



12924 DANIEL DUFFY AND ADRIANA MOREO 55

1E. Dagotto, Rev. Mod. Phy$6, 763 (1994.

2J. Jaklic and P. Prelovsek, Phys. Rev. L& 892 (1996.

3J. Schulte and M. Bam, Phys. Rev. B3, 15 385(1996.

4T. Usuki, N. Kawakami, and A. Okiji, J. Phys. Soc. Jp8, 1357
(1990.

SA. Kltimper and R.Z. Bariev, Nucl. Phys. 458 623 (1996.

6A. Auerbach and D. Arovas, Phys. Rev. Leél, 617 (1988.

"T. Barnes, J. Mod. Phys. €, 659(1991).

8Y. Okabe, M. Kikuchi, and A.D.S. Nagi, Phys. Rev. Lef,
2971(1988.

9D. Vollhardt, Phys. Rev. Let{r8, 1307(1997.

105 E. Stupp and D.M. Ginsberg, PhysicalB8 299 (1989.

11K, Mori et al, Physica B165&166, 1201(1990.

125 3. Collocottet al, Physica B165&166, 1329(1990.

133.W. Loramet al, Physica C162-164 498 (1989.

14N. Wadaet al., Physica B165&166, 1341(1990.

15R.S. Markiewicz, J. Phys. Condens. Matfe6223(1990; D.M.
Newns, P.C. Pattnaik, and C.C. Tsuei, Phys. Revd3B3075
(1992); E. Dagotto, A. Nazarenko, and A. Moreo, Phys. Rev.
Lett. 74, 310(1995.

18y Tokuraet al, Phys. Rev. Lett70, 2126(1993; K. Kumagaiet
al., Phys. Rev. B48, 7636(1993.

173.W. Loramet al, Phys. Rev. Lett71, 1740(1993.

1835, Haas, A. Moreo, and E. Dagotto, Phys. Rev. Lé#&. 4281
(1995; A. Moreo et al,, Phys. Rev. B51, 12 045(1995.

19D, Coffey and K. Bedell, Phys. Rev. Leftl, 1043(1993.



