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Energy-loss rates of heavy and light charged particles in a two-dimensional electron gas
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Energy-loss rates for charged external particles moving in a two-dimensional electron gas of zero tempera-
ture are calculated. The transition probability per unit time for excitations in the host system is determined by
using weak coupling, i.e., linear-response theory. Contributions arising from electron-hole and collective ex-
citations to the total loss rate are separated at the levels of the random-phase approximation and a generalized
mean-field approach for the linear-response function. Substantial phase-space reduction in the excitations of
the fermion system is demonstrated for light external particles and interpreted as the effect of recoil. The
results obtained for heavy external particles are compared with recent strong-scattering predictions based on
the kinetic theory of the energy-loss process. A kinematical effect that influences the high-velocity form of the
loss rate for different masses of the projectiles is pointed|[@@163-1827)03620-3

I. INTRODUCTION In this paper we investigate the role of inherent kinemat-
ics in the energy-loss process by using the golden-rule ex-

The two-dimensional quantum electron daDEG) is at-  pression for the transition probabilities for excitations in the
tracting a steady interest in modern physics. Many aspects dfost system. In this treatment=gq-v—g?/2M, where the
this model have been studied. An important problem in théerm —q?2M accounts for the effect of recoil at a given
characterization of interactions between a 2DEG at zero tem- The paper is organized as follows. In Sec. Il, the theoret-
perature and an in-moving external particle is the calculationcal framework is outlined. The results obtained for a heavy
of energy-loss rates. In a response to an external particle ¢gfarticle M>m) are presented in Sec. lll A, and compared
massM and velocityv, the system absorbs energyand  With recent strong-scattering predictioh$.Section 111 B
momentumg, with a corresponding reduction in the initial deals with the light- K1 =m) particle case. Section IV is
energyE and momentuniK = Myv of the projectile. For fixed devoted to the summary and comments. We use atomic units
values of the kinematical variable& (M,E), the energy- (€°=#%=m=1) throughout this work.
loss rate is constrained by conservation laws and regulated
by statistical behaviors of the stationary host system in its Il. FORMALISM
equilibrium. o _

The energy-loss rate(dE/dt) is related to the stopping The projectile scatters from a given momgntum state
power (S) of a 2DEG forheavyexternal particles in a simple INto @ momentum statkl’=K —q. Its energyE is lowered
way: S=(—dE/dt)o ~L. The stopping power is the energy by w=q-v—0g%/2M, wherev= K/M. At zero temperature of
lost by a heavy projectile per unit length of its classical tra-the 2DEG the energy change is constrainedasy0. The
jectory. The reasonable assumption of essentially constaffiansition rate W) for excitations in the host system is de-
velocity (v=const) for the cas®>m (wherem is the elec- termined using the golden rule expression
tron mas$ allows simplifications in the inherent kinematics 5
of the loss rate. Two main approaches have been W(g, ) =27|V(a)|* (1/7) Imx(q, @), 21

24
developed: in which V(q) is the Fourier transform of the time-

In the linear, dielectric_treatmérﬁ one calculates the in- j4enendent interaction potentd(r) between the projectile
duced charge and 'potentlalz T'he retarding fqu)y(s inter- and particles of the system. The functigfig,w) is the
preted as the gradient of this induced potential at the classyengity-density response function: it is a basic quantity in the

cal Ioc_ation of th_e he_avy projectile. This gradient _is description of the dynamics in many-body systems.
proportional to the imaginary part of the response function Concerning the approximations for(q,) the simplest

x(d,w) of the 2DEG withw=q-v in the large mass limit .o refers to an ideal electron 984, »).%7 In going be-

(M>m). yond the ideal electron gas result, mean-field approaches for

. In the kinetic(scattering treatment* the interpretation is ¥(q,») have proved very powerful. The basic theory, the
different. In t_he frame of reference of the heavy proJeC_t”erandom-phase approximatidRPA), is given by
(M>m) the independent electrons are scattered by a fixed

potential, which represents the effect of the particle on the XA, 0)= X°(q,0)/[1+v(a)x%(q,0)], (2.2
system. The average momentum transfer suffered by the

scattering electrons is the source of the stopping power. Thie which v(q) is the Fourier transform of the bare electron-
kinetic treatment is, by its construction, a nonperturbativeelectron interaction potential(r). In the RPA the collective
one. On the other hand, knowledge of the effective scatteringspects of the system-particle motion are included at the
potential is crucial for this treatment. mean-field level. By taking Inf"(q,w) into Eq. (2.1) an
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important manifestation of the electron-electron interaction

appears in the expression faf(q,»). This manifestation is

the screening which is one of the most fundamental concepts

in conventional many-body theory.

Within the framework of generalized mean-field
approache&;one may modify Eq(2.2) by the inclusion of a
static local-field correctiors(q). Formally, G(q) is incor-
porated in Eq(2.2), beyond RPA, as

x°(d, )
1+v(P[1-G(q)Ix°(q, @)

xF(qw)= 2.3

In this paper we use a recent parametrized form for

G(q).° The energy-loss rate—(dE/dt) is defined in the
usual way’

dE

T (2.9

1
Wf d2q wW(q,w),
wherew=q-v—q%2M. We will consider Coulomb interac-
tion potentials, i.e.,.V(q)=—-2wZ,/q in Eq. (2.1) and
v(q)=2m/q for the direct electron-electron term in Egs.
(2.2 and(2.3). HereZ, denotes the charge of the in-moving
projectile. The integration limits in théw,q) plane are con-

strained by energy and momentum conservation and the dé—

tailed behaviors of Ing°(q, w).

lll. RESULTS

The basic idea of the present work is entirely formulated
in Eq. (2.4), as discussed in the preceding section. This sec
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FIG. 1. Friction coefficients, as a function of the density parameter
rs, for a recoilness, slows heavy-particle moving in a 2DEG. Dotted curve:
based on firs-order Born treatment for a bare Coulomb potential; see Eq.
(3.1). Dashed-dotted curve: based on exact treatment for a bare Coulomb
potential (see Ref. B Dashed curve: based on the RPA for the linear-
response function. Solid curve: based on the generalized mean-field ap-
roach of Ref. 9 for the linear-response function. Dots: based on nonlinear,

cattering calculations faZ,= —1 and are taken from Ref. 4.

3). This is due to the first-order Born approximation inherent
in a dielectric descriptior(see. Fig. 1 In their nonlinear

treatment Krakowski and Peréuased the low-velocity «
<pg) expressiohfor the stopping

tion is devoted to the presentation and discussion of our re-

sults.

A. Heavy particles

By fixing the velocityv=K/M of the projectile as input
guantity, the mass-dependence of the energy transfer
=(q-v—q°/2M appears in the recoil terg?/2M. In our

comparative study we first neglect this recoil term. In fact,

we suppose&K>pg, wherepg is the Fermi momentum de-
fined by the host densitpy as pg=(27ng)¥2 In this re-
stricted case the evaluation of Eq2.4) with Eq. (2.1) and
the ideal-gas response functiof(q, ), is simple. The re-
sult for the reduced energy-loss rdte- 1/v)dE/dt] is the
following:

WZ%U

1dE for v<pg

—— = 3.1
v dt ZWZHOZ?U for v>peg. @D

It is very important to note that theameresult arises from

S=novproy(2D,pg). (3.2
They evaluated the induced density and potetitifdr Z,
=—1 at various densities of the 2DEG and calculated the
phase-shift values to,(2D,pg) by numerical solutions of
scattering Schidinger equation with their nonlinearly
screened potential.

Figure 1 contains theecoiless(restricted low-velocity
results from the mentioned different approximations. In this
figure we plot the so-called friction coefficiepd=v7] as a
function of the density parameteg=v2/pg for Z;=—1. A
simple comparison of curves in Fig. 1 shows that the effects
of screening and nonperturbative treatment of scattering are
important ingredients of a consistent description of friction.

In the remaining part of this section we present our nu-
merical results obtained from E.4) with Egs.(2.1), (2.2),
and(2.3) for |Z,|=1, including the effect of recoil by means
of the variablew=q-v—q%2M. The reduced energy-loss
rate[ (— 1/v)dE/dt] is calculated for different values of the

the kinetic theory of the stopping for a bare Coulomb poten-density parameters, as a function of the given velocity. In

tial treated in the first Born approximation.

The next natural step in theestrictedcase(i.e., neglect-
ing recoil is to use the representations given by Egs2)
and (2.3) in Egs. (2.1) and (2.4). Both require numerial
evaluation. The inclusion of the static local-field correction

Figs. 2 and 3(for r¢=1 andr¢=3, respectively we have

separated the contributions arising from electron-hole and
collective excitations. The sharp plasmon contribution essen-
tially influences(in contrast to the statements of Refs. 1 and
2) the value of reduced total rates around the maximum,

enhances the low-velocity stopping in comparison with theespecially for the lower densityr {(=3). In order to get a

RPA. This is due to the weaker screenisge Fig. 1L On the

clear physical picture about dynamical screening and collec-

other hand the local-field modified description yields to re-tive excitation, in Fig. 4 we plot resuli@t r;=1) based on
sults which are, at lower densities, higher than those obtainedifferent approximations. It is important to note that beyond

by the exact treatment for bare Coulomb potenfsale Ref.

the maximum position, the unscreened result of Bql) is
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0 1 2 3 4 5 6 in the heavy-particle case. Furthermore, the reduced energy-
v (a.u.) loss rate tends, asymptotically, to a value which is one-half

of the corresponding value obtained for heavy projectile.

FIG. 2. Reduced energy-loss ra{e- 1/v)dE/dt] for heavy particles as . . . . .
a function of the velocity atrg=1 and|Z,=1|. Dashed curve: total loss This km_emat'cal' "e". reduc_ed'mass erendence of rates is
rate at the level of the RPA. Dash-dotted curve: contribution from electron-&bsent in the three-dimensional version of our problem. In

hole excitation within the RPA. Solid curve: total loss rate at the level of thethe following, we give a simple explanation of this observa-
generalized mean-field approach. Dotted curve: contribution from electrontjgn.
hole excitation within this approximation. For high velocities of the projectile one may consider the

| h ical lid With the hel electron gas as effectively at rest. The effect of the Pauli
V?E’. cc;se to the numle(rjlcaf or(e'<__)_| zULVG)- h 'th the elp restriction is then removed and the behavior is independent
of Fig. 2 we can conclude from Fig. 4 that there IS an almosy particle statistics. In fact, the results are also applicable
a complete cancellation of screening effect in the electronf0 a two-dimensional charged Bose gasBy using un-
hole . phannel with collective contribution, at hlgher_ screened Coulomb potential in E@.1) we perform the in-
velocities! On the other hand the curve based on the kineti egrations in Eq(2.4) with w=q-v—g2/2M. The result is as
theory illustrates the importance of a proper treatment 0? llows (w>0; at .zero temperature '
scattering which goes beyond the perturbative treatment oP '
Eq. (2.9). _ _ 252

A nonperturbative calculation, with the inclusion of the (1hv) dB/dt = (1/v) 27°Zino M/(1+M). 3.3
coIIectlv_e channel is, therefore, highly desirable. Similary;g simple expression shows, that the energy-loss rate is
conclusions can be drawn for otheyvalues. influenced by the reduced mass for high-velocity projectiles
moving in planeof a 2D gas.
B. Light particles

As we mentioned in Sec. Il A, the effect of recoil is 57 T T T T !
expected to be more important for light projectilg®sitron -
than for heavy onegproton, antiprotop In the following we i e
use theunrestrictedcase for evaluation of Eq2.4), with ;o
Egs.(2.1), (2.2), and(2.3), i.e., we applyo=q-v—q?%/2M. [ R
We consider the case of positrofid =1 andZ,=1) which i M A
is of most physical interest. ]

The reduced energy-loss raé— 1/v)dE/dt] is calcu-
lated for different values of the density parametgr as a
function of the given velocity. lllustrative results are plotted
in Figs. 5 and 6, forg=1 and 3, respectively. The contribu-
tions arising from electron-hole and collective excitations are C
again separated in these figures. It is important to note that i
the onsetand theshapeof the plasmon contribution is the L/ . ' . . ,
same as the corresponding results obtdihéat an external e
electron. The relative contribution of the collective channel 0 1
to the total(reducedl loss rate is enhanced in comparison to
the heavy-particle cagsee Figs. 2 and)3At low velocities FIG. 4. Reduced energy-loss rates obtained from different approxima-
the combined effects of Pauli restriction in the excitation andions atr=1 and|Z,|=1, for heavy particles. Dash-dotted curve: based on

recoil lead to a substantial reduction of the energy-loss rateg!storder Bom treatment for a bare Coulomb potential; see Bd).
Dashed curve: total loss-rate obtained using the RPA response function.

Well beyond the posmor! OT the maXIma_" le., at hlgh_ veloci- Solid curve: total loss rate obtained within the generalized mean-field ap-
fues one can observe a similar c_ancellatlo_n of screening effeghoach of Ref. 9. Dotted curve: based on the kinetic théseg Ref. Bwith
in the electron-hole channel with collective contribution, asthe exact treatment for Coulomb scattering.

(-1/v) dE/dt (a.u.)
[\*)

v (a.u.)
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v (an) investigated in subsequent works. The detailed and separated
FIG. 5. The same as in Fig. 2, for a light particle rat 1. roles of these above-mentioned pair-correlation functions
(exchange-correlation and nonlineayityeed further investi-
gation in 2D.

IV. SUMMARY AND COMMENTS )
The comparative study, presented here for heavy par-

In this paper we have investigated the energy-loss ratesicles, signals the importance of the nonperturbative treat-
for different-mass external projectiles moving in plane of aments of screenirfigand scattering.On the other hand, a
two-dimensional quantum electron gas. Our description isionlinear treatment of screening at higher velocities is a non-
based on the golden-rule expression of the transition rate farivial task* It would be desirable to investigate the capa-
excitations in the host system. In this way, the Pauli principlebility of a higher-order response function treatrrénfor
and the recaoil effect are, naturally, incorporated in the calcu2DEG.
lation. For the case of heavy external particles a comparison For light particles the problem of nonlinearity seems to be
is made with earlier results obtained with the recoiless aseven more complicated. The effect of recoil excldfes
sumption. Contributions arising from the electron hole andstraightforward application of standard methods for screen-
collective excitations are separated at the levels of randoring, and the description of scattering beyond the first-order
phase approximation and a generalized mean-field approacBorn approximation needs a more careful and detailed
Phase-space reduction in the excitation of the fermion sysstudy*
tem and a mass-dependent kinematical effect are pointed out.

The elec.tron-ele_ctron interaction beyond the RPA was incor- ACKNOWLEDGMENTS

porated in our first-order Born treatment by a static local-

field correction. This static correction is related to the equi- One of us(A.B.) thanks the “Hezkuntza, Unibertsitatea
librium pair-correlation function of the homogeneous eta lkerketa Saila” of the Basque Government for financial
system. Furthermore, one may characterize the externalpport. One of uél.N.) was supported in part by the Hun-
particle-electron interaction in the medium by another pair-garian OTKA(Grant No. 02122Band the Spanish DGICYT
correlation functiort® This latter is related to the density (SAB95-0234. One of us(P.M.E) gratefully acknowledges
enhancement or depletion around the projectile. In fact, it ig§inancial support by the Spanish CAICYT and the Basque
related to the question of nonlinear screening and will beGovernment.

*Electronic address: wmbvejaa@lg.ehu.es Solid State Physics: Advances in Research and Applicatedited by
"Permanent address: Department of Theoretical Physics, Institute E- H. Ehreinreich and D. TurbullAca-demic, New York, 1990 Vol.

of Physics, Technical University of Budapest, H-1521 Budapest11’6\43K'rakowSky and J. K. Percus, Phys. Rev58, 7901 (1995

| Hungary. 2p_Hawrylaket al, Phys. Rev. B37, 10 187(1988.

A. Bret and C. Deutsch, Phys. Rev.4B, 2994 (1993. 13R. M. May, Phys. Rev115, 254 (1959

) . M. May, Phys. .

Y. N. Wang and T. C. Ma, Phys. Lett. 200 319(1995. 4E. Zarembaet al, Nucl. Instrum. Methods Phys. Res. Sect98 619

31. Nagy, Phys. Rev. B51, 77 (1995, and references therein.

4A. Krakowsky and J. K. Percus, Phys. Rev5B R2305(1995.

5D. Pines and Ph. NoziereShe Theory of Quantum Liquid@ddison-
Wesley, New York, 1989 Vol. 1; K. Gottfried, Quantum Mechanics
(Addison-Wesley, New York, 1989Vol. 1.

SF. Stern, Phys. Rev. Letl8, 546 (1967.

(1995.

15C. D. Hu and E. Zaremba, Phys. Rev3R 9268(1988; H. Esbensen and
P. Sigmund, Ann. PhygN.Y.) 201, 159 (1990; A. Bergara and J. M.
Pitarke, Nucl. Instrum. Methods. Phys. Res. SecB@604 (1995; J.
M. Pitarkeet al, Phys. Rev. B52, 13 883(1995.

7M. H. Lee and J. T. Nelson, J. Math. Phyai, 689 (1990. 16C. H. Leung, M. J. Stott, and C. O. Almbladh, Phys. L6RA, 26 (1976.
8A. A. Kugler, J. Stat. Physl2, 35 (1975. 17C. A. Kukkonen and J. W. Wilkins, Phys. Rev. B, 6075 (1979; S.
®A. Gold and L. Calmels, Phys. Rev. 48, 11 622(1993. Naganoet al, ibid. 29, 1209(1984.

0C. Zhanget al, Phys. Rev. B37, 7326(1988; P. M. Echeniqueet al, in 18A. Sjolander and M. J. Stott, Phys. Rev.532103(1972.



