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Energy-loss rates of heavy and light charged particles in a two-dimensional electron gas
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Energy-loss rates for charged external particles moving in a two-dimensional electron gas of zero tempera-
ture are calculated. The transition probability per unit time for excitations in the host system is determined by
using weak coupling, i.e., linear-response theory. Contributions arising from electron-hole and collective ex-
citations to the total loss rate are separated at the levels of the random-phase approximation and a generalized
mean-field approach for the linear-response function. Substantial phase-space reduction in the excitations of
the fermion system is demonstrated for light external particles and interpreted as the effect of recoil. The
results obtained for heavy external particles are compared with recent strong-scattering predictions based on
the kinetic theory of the energy-loss process. A kinematical effect that influences the high-velocity form of the
loss rate for different masses of the projectiles is pointed out.@S0163-1829~97!03620-5#
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I. INTRODUCTION

The two-dimensional quantum electron gas~2DEG! is at-
tracting a steady interest in modern physics. Many aspec
this model have been studied. An important problem in
characterization of interactions between a 2DEG at zero t
perature and an in-moving external particle is the calcula
of energy-loss rates. In a response to an external particl
massM and velocityv, the system absorbs energyv and
momentumq, with a corresponding reduction in the initia
energyE and momentumK5Mv of the projectile. For fixed
values of the kinematical variables (K ,M ,E), the energy-
loss rate is constrained by conservation laws and regul
by statistical behaviors of the stationary host system in
equilibrium.

The energy-loss rate (2dE/dt) is related to the stopping
power (S) of a 2DEG forheavyexternal particles in a simple
way: S5(2dE/dt)v21. The stopping power is the energ
lost by a heavy projectile per unit length of its classical t
jectory. The reasonable assumption of essentially cons
velocity (v5const) for the caseM@m ~wherem is the elec-
tron mass! allows simplifications in the inherent kinematic
of the loss rate. Two main approaches have b
developed.1–4

In the linear, dielectric treatment1,2 one calculates the in
duced charge and potential. The retarding force (S) is inter-
preted as the gradient of this induced potential at the cla
cal location of the heavy projectile. This gradient
proportional to the imaginary part of the response funct
x~q,v! of the 2DEG withv5q•v in the large mass limit
(M@m).

In the kinetic~scattering! treatment3,4 the interpretation is
different. In the frame of reference of the heavy project
(M@m) the independent electrons are scattered by a fi
potential, which represents the effect of the particle on
system. The average momentum transfer suffered by
scattering electrons is the source of the stopping power.
kinetic treatment is, by its construction, a nonperturbat
one. On the other hand, knowledge of the effective scatte
potential is crucial for this treatment.
550163-1829/97/55~19!/12864~4!/$10.00
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In this paper we investigate the role of inherent kinem
ics in the energy-loss process by using the golden-rule
pression for the transition probabilities for excitations in t
host system. In this treatment,v5q•v2q2/2M , where the
term2q2/2M accounts for the effect of recoil at a givenv.

The paper is organized as follows. In Sec. II, the theor
ical framework is outlined. The results obtained for a hea
particle (M@m) are presented in Sec. III A, and compar
with recent strong-scattering predictions.3,4 Section III B
deals with the light- (M5m) particle case. Section IV is
devoted to the summary and comments. We use atomic u
(e25\5m51) throughout this work.

II. FORMALISM

The projectile scatters from a given momentum stateK
into a momentum stateK 85K2q. Its energyE is lowered
by v5q•v2q2/2M , wherev5K /M . At zero temperature of
the 2DEG the energy change is constrained byv>0. The
transition rate (W) for excitations in the host system is de
termined using the golden rule expression5

W~q,v!52puV~q!u2 ~1/p! Imx~q,v!, ~2.1!

in which V(q) is the Fourier transform of the time
independent interaction potentialV(r ) between the projectile
and particles of the system. The functionx~q,v! is the
density-density response function; it is a basic quantity in
description of the dynamics in many-body systems.

Concerning the approximations forx~q,v! the simplest
one refers to an ideal electron gasx0(q,v).6,7 In going be-
yond the ideal electron gas result, mean-field approaches
x~q,v! have proved very powerful. The basic theory, t
random-phase approximation~RPA!, is given by

xRPA~q,v!5 x0~q,v!/@11v~q!x0~q,v!# , ~2.2!

in which v(q) is the Fourier transform of the bare electro
electron interaction potentialv(r ). In the RPA the collective
aspects of the system-particle motion are included at
mean-field level. By taking ImxRPA(q,v) into Eq. ~2.1! an
12 864 © 1997 The American Physical Society
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important manifestation of the electron-electron interact
appears in the expression forW(q,v). This manifestation is
the screening which is one of the most fundamental conc
in conventional many-body theory.

Within the framework of generalized mean-fie
approaches;8 one may modify Eq.~2.2! by the inclusion of a
static local-field correctionG(q). Formally,G(q) is incor-
porated in Eq.~2.2!, beyond RPA, as

xLF~q,v!5
x0~q,v!

11v~q!@12G~q!#x0~q,v!
. ~2.3!

In this paper we use a recent parametrized form
G(q).9 The energy-loss rate (2dE/dt) is defined in the
usual way10

2
dE

dt
5

1

~2p!2
E d2q vW~q,v!, ~2.4!

wherev5q•v2q2/2M . We will consider Coulomb interac
tion potentials, i.e.,V(q)522pZ1 /q in Eq. ~2.1! and
v(q)52p/q for the direct electron-electron term in Eq
~2.2! and~2.3!. HereZ1 denotes the charge of the in-movin
projectile. The integration limits in the~v,q! plane are con-
strained by energy and momentum conservation and the
tailed behaviors of Imx0(q,v).

III. RESULTS

The basic idea of the present work is entirely formula
in Eq. ~2.4!, as discussed in the preceding section. This s
tion is devoted to the presentation and discussion of our
sults.

A. Heavy particles

By fixing the velocityv5K /M of the projectile as input
quantity, the mass-dependence of the energy transfev
5q•v2q2/2M appears in the recoil termq2/2M . In our
comparative study we first neglect this recoil term. In fa
we supposeK@pF , wherepF is the Fermi momentum de
fined by the host densityn0 as pF5(2pn0)

1/2. In this re-
stricted case the evaluation of Eq.~2.4! with Eq. ~2.1! and
the ideal-gas response function,x0(q,v), is simple. The re-
sult for the reduced energy-loss rate@(21/v)dE/dt# is the
following:

2
1

v
dE

dt
5H pZ1

2v for v,pF

2p2n0Z1
2/v for v.pF.

~3.1!

It is very important to note that thesameresult arises from
the kinetic theory of the stopping for a bare Coulomb pot
tial treated in the first Born approximation.3

The next natural step in therestrictedcase~i.e., neglect-
ing recoil! is to use the representations given by Eqs.~2.2!
and ~2.3! in Eqs. ~2.1! and ~2.4!. Both require numerial
evaluation. The inclusion of the static local-field correctio9

enhances the low-velocity stopping in comparison with
RPA. This is due to the weaker screening~see Fig. 1!. On the
other hand the local-field modified description yields to
sults which are, at lower densities, higher than those obta
by the exact treatment for bare Coulomb potential~see Ref.
n
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3!. This is due to the first-order Born approximation inhere
in a dielectric description~see. Fig. 1!. In their nonlinear
treatment Krakowski and Percus4 used the low-velocity (v
!pF) expression

3 for the stopping

S5n0vpFs tr~2D,pF!. ~3.2!

They evaluated the induced density and potential11 for Z1
521 at various densities of the 2DEG and calculated
phase-shift values tos tr(2D,pF) by numerical solutions of
scattering Schro¨dinger equation with their nonlinearly
screened potential.

Figure 1 contains therecoiless~restricted! low-velocity
results from the mentioned different approximations. In t
figure we plot the so-called friction coefficient@S5vh# as a
function of the density parameterr s5&/pF for Z1521. A
simple comparison of curves in Fig. 1 shows that the effe
of screening and nonperturbative treatment of scattering
important ingredients of a consistent description of frictio

In the remaining part of this section we present our n
merical results obtained from Eq.~2.4! with Eqs.~2.1!, ~2.2!,
and~2.3! for uZ1u51, including the effect of recoil by mean
of the variablev5q•v2q2/2M . The reduced energy-los
rate @(21/v)dE/dt# is calculated for different values of th
density parameterr s , as a function of the given velocity. In
Figs. 2 and 3~for r s51 and r s53, respectively! we have
separated the contributions arising from electron-hole
collective excitations. The sharp plasmon contribution ess
tially influences~in contrast to the statements of Refs. 1 a
2! the value of reduced total rates around the maximu
especially for the lower density (r s53). In order to get a
clear physical picture about dynamical screening and col
tive excitation, in Fig. 4 we plot results~at r s51! based on
different approximations. It is important to note that beyo
the maximum position, the unscreened result of Eq.~3.1! is

FIG. 1. Friction coefficienth, as a function of the density paramete
r s , for a recoilness, slows heavy-particle moving in a 2DEG. Dotted cur
based on firs-order Born treatment for a bare Coulomb potential; see
~3.1!. Dashed-dotted curve: based on exact treatment for a bare Cou
potential ~see Ref. 3!. Dashed curve: based on the RPA for the linea
response function. Solid curve: based on the generalized mean-field
proach of Ref. 9 for the linear-response function. Dots: based on nonlin
scattering calculations forZ1521 and are taken from Ref. 4.
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very close to the numerical one~solid curve!. With the help
of Fig. 2 we can conclude from Fig. 4 that there is an alm
a complete cancellation of screening effect in the electr
hole channel with collective contribution, at high
velocities.1 On the other hand the curve based on the kine
theory illustrates the importance of a proper treatment
scattering which goes beyond the perturbative treatmen
Eq. ~2.4!.

A nonperturbative calculation, with the inclusion of th
collective channel is, therefore, highly desirable. Simi
conclusions can be drawn for otherr s values.

B. Light particles

As we mentioned in Sec. III A, the effect of recoil
expected to be more important for light projectiles~positron!
than for heavy ones~proton, antiproton!. In the following we
use theunrestrictedcase for evaluation of Eq.~2.4!, with
Eqs. ~2.1!, ~2.2!, and ~2.3!, i.e., we applyv5q•v2q2/2M .
We consider the case of positrons~M51 andZ151! which
is of most physical interest.

The reduced energy-loss rate@(21/v)dE/dt# is calcu-
lated for different values of the density parameterr s , as a
function of the given velocity. Illustrative results are plotte
in Figs. 5 and 6, forr s51 and 3, respectively. The contribu
tions arising from electron-hole and collective excitations
again separated in these figures. It is important to note
the onsetand theshapeof the plasmon contribution is th
same as the corresponding results obtained12 for an external
electron. The relative contribution of the collective chann
to the total~reduced! loss rate is enhanced in comparison
the heavy-particle case~see Figs. 2 and 3!. At low velocities
the combined effects of Pauli restriction in the excitation a
recoil lead to a substantial reduction of the energy-loss ra
Well beyond the position of the maxima, i.e., at high velo
ties one can observe a similar cancellation of screening e
in the electron-hole channel with collective contribution,

FIG. 2. Reduced energy-loss rate@(21/v)dE/dt# for heavy particles as
a function of the velocityv at r s51 anduZ151u. Dashed curve: total loss
rate at the level of the RPA. Dash-dotted curve: contribution from electr
hole excitation within the RPA. Solid curve: total loss rate at the level of
generalized mean-field approach. Dotted curve: contribution from elect
hole excitation within this approximation.
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in the heavy-particle case. Furthermore, the reduced ene
loss rate tends, asymptotically, to a value which is one-h
of the corresponding value obtained for heavy project
This kinematical, i.e., reduced-mass dependence of rate
absent in the three-dimensional version of our problem.
the following, we give a simple explanation of this observ
tion.

For high velocities of the projectile one may consider t
electron gas as effectively at rest. The effect of the Pa
restriction is then removed and the behavior is independ
of the particle statistics. In fact, the results are also applica
to a two-dimensional charged Bose gas.13 By using un-
screened Coulomb potential in Eq.~2.1! we perform the in-
tegrations in Eq.~2.4! with v5q•v2q2/2M . The result is as
follows ~v.0; at zero temperature!:

2 ~1/v ! dE/dt5 ~1/v ! 2p2Z1
2n0 M /~11M ! . ~3.3!

This simple expression shows, that the energy-loss rat
influenced by the reduced mass for high-velocity projecti
moving in planeof a 2D gas.

-
e
n-

FIG. 3. The same as in Fig. 2, atr s53.

FIG. 4. Reduced energy-loss rates obtained from different approxi
tions atr s51 anduZ1u51, for heavy particles. Dash-dotted curve: based
first-order Born treatment for a bare Coulomb potential; see Eq.~3.1!.
Dashed curve: total loss-rate obtained using the RPA response func
Solid curve: total loss rate obtained within the generalized mean-field
proach of Ref. 9. Dotted curve: based on the kinetic theory~see Ref. 3! with
the exact treatment for Coulomb scattering.
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IV. SUMMARY AND COMMENTS

In this paper we have investigated the energy-loss r
for different-mass external projectiles moving in plane o
two-dimensional quantum electron gas. Our description
based on the golden-rule expression of the transition rate
excitations in the host system. In this way, the Pauli princi
and the recoil effect are, naturally, incorporated in the cal
lation. For the case of heavy external particles a compar
is made with earlier results obtained with the recoiless
sumption. Contributions arising from the electron hole a
collective excitations are separated at the levels of rand
phase approximation and a generalized mean-field appro
Phase-space reduction in the excitation of the fermion s
tem and a mass-dependent kinematical effect are pointed
The electron-electron interaction beyond the RPA was inc
porated in our first-order Born treatment by a static loc
field correction. This static correction is related to the eq
librium pair-correlation function of the homogeneo
system. Furthermore, one may characterize the exte
particle-electron interaction in the medium by another pa
correlation function.18 This latter is related to the densit
enhancement or depletion around the projectile. In fact,
related to the question of nonlinear screening and will

FIG. 5. The same as in Fig. 2, for a light particle, atr s51.
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investigated in subsequent works. The detailed and separa
roles of these above-mentioned pair-correlation function
~exchange-correlation and nonlinearity! need further investi-
gation in 2D.

The comparative study, presented here for heavy pa
ticles, signals the importance of the nonperturbative trea
ments of screening3 and scattering.4 On the other hand, a
nonlinear treatment of screening at higher velocities is a no
trivial task.14 It would be desirable to investigate the capa
bility of a higher-order response function treatment15 for
2DEG.

For light particles the problem of nonlinearity seems to b
even more complicated. The effect of recoil excludes16 a
straightforward application of standard methods for scree
ing, and the description of scattering beyond the first-ord
Born approximation needs a more careful and detaile
study.10,17
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