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Electronic Raman scattering in YBa2Cu3O7 and other superconducting cuprates
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Superconductivity-induced structures in the electronic Raman spectra of high-Tc superconductors are com-
puted using the results ofab initio local-density approximation linear muffin-tin-orbital three-dimensional
band-structure calculations via numerical integrations of the mass fluctuations, either in the whole three-
dimensional Brillouin zone or limiting the integrations to the Fermi surface. The results of both calculations are
rather similar, the Brillouin-zone integration yielding additional weak structures related to the extended van
Hove singularities. Similar calculations have been performed for the normal state of these high-Tc cuprates.
Polarization configurations have been investigated and the results have been compared to experimental spectra.
The assumption of a simpledx22y2-like gap function allows us to explain a number of experimental features
but is hard to reconcile with the relative positions of theA1g andB1g peaks.@S0163-1829~97!05517-3#
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I. INTRODUCTION

To investigate the properties of the superconducting
function1–3 in high-Tc superconductors4 ~HTSC’s! a wide
range of experimental techniques can be employed. Am
these, Raman scattering has played an important role.5,6 The
dependence of the Raman response on the directions o
larization of the incident and scattered light yields seve
independent spectra which provide a considerable numbe
constraints on the assumedk dependence of the gap functio
Dk . However, Raman scattering is not sensitive to the ph
of the gap.

The Raman spectra at temperatures belowTc shows, in
most HTSC’s, a clear gaplike structure which lies in t
energy range of the optical phonons at theG point. These
phonons have been identified for most HTSC’s,7 and the sub-
traction of the corresponding structures from the spectra
become a standard procedure to isolate electronic struc
containing gap information. Electronic Raman-scatter
spectra are now available for many high-Tc materials and,
since they exhibit similar general features, most of these d
are considered to be reliable. In this paper, we attemp
interpret these spectra from a theoretical point of view ba
on the full three-dimensional~3D! one-electron band struc
ture. We pay attention to both line shapes andabsolutescat-
tering efficiencies.

The theory of electronic Raman scattering in superc
ductors was pioneered by Abrikosov and co-workers.8,9 In
Ref. 8, they developed a theory for the scattering efficie
of isotropic Fermi liquids under the assumption that the
tractive interaction between quasiparticles can be neglec
In Ref. 9, they extended this approach to anisotropic s
tems, introduced the effective-mass vertex concept, and
cluded Coulomb screening. The current form of the theor10

takes into account the attractive pairing interaction and e
phasizes the role of gauge invariance as well as the pola
tion dependence for anisotropic gaps. In order to comp
the theoretical predictions with the experiment, we evalu
them numerically in a quantitative manner~including abso-
lute scattering efficiencies! and compare them to the exper
mental findings.
550163-1829/97/55~18!/12725~11!/$10.00
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Several calculations of the electronic Raman-scatter
efficiency of HTSC’s have appeared. Some of them u
highly simplified 2D band structures and a decomposition
the Raman vertexgk in Fermi surface~FS! harmonics11 or
Brillouin-zone ~BZ! harmonics, as well as FS integration
instead of the required BZ integrations.5,12,13The results of
these calculations depend very strongly on the numbe
expansion coefficients used forgk and their relative values
Another approach14 involves the use of band structures ca
culated in the framework of the local-densi
approximation15 ~LDA ! using the linear muffin-tin orbital
~LMTO! method.16,17 Within the approximations of the
LDA, this Raman vertex is exact, i.e., the only errors ma
in such a calculation arise from limitations of the LD
method itself and from the discretization of the Brillou
zone or Fermi surface. Some of these calculations, howe
suffer from the fact that only the imaginary part of the Ts
neto function18 has been used, and that only 2D integratio
were performed.6

The present approach19 is based on the full 3D LDA-
LMTO band structure. It uses a BZ integration, screen
effects are included, and both the real and imaginary par
the Tsuneto function are used as required by the the
Electronic Raman spectra are calculated for YBa2Cu3O7 ~Y-
123! and YBa2Cu4O8 ~Y-124!. The orthorhombicity of the
cuprates is also taken into account in the Raman vertex s
we use as starting point the band structure of theorthorhom-
bic materials.

For the superconducting state, various forms for the g
function have been proposed. That which has received m
experimental support hasdx22y2 symmetry, i.e.,B1g symme-
try in tetragonal HTSC’s. The power of Raman scattering
confirm such gap function has been questioned, beca
among other difficulties to be discussed below, it only prob
the absolutevalue of the gap function, i.e., it cannot distin
guish between adx22y2-like gap function ~for instance,
cos2f!, and a ucos2fu gap function, which corresponds t
anisotropics (A1g) symmetry. However, it was pointed ou
that addition of impurities can be used to effect t
distinction.20

This paper is organized as follows: in Sec. II, we revie
12 725 © 1997 The American Physical Society
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12 726 55T. STROHM AND M. CARDONA
the main properties of the LDA-LMTO band structures
the investigated cuprates. Section III discusses the theor
electronic Raman scattering in systems with anisotropic b
structures. In Sec. IV we derive expressions for the Ram
susceptibility in the superconducting phase, and disc
some effects not directly contained in the presented form
the theory. Section V concerns the experimental aspects
pecially with regard to the comparison with the theory. F
nally, in Sec. VI the results of our numerical calculation a
presented and compared to the experimental results.

II. LDA BAND STRUCTURE

The basis of our calculation is the LDA-LMTO ban
structure of the HTSC’s under consideration.17 For the sake
of further discussion, we shall describe briefly such ba
structure.

The Fermi surface of YBa2Cu3O7 ~Y-123! ~Ref. 17! con-
sists of four sheets, an even and an oddpds-like plane band,
a pds-like chain sheet, and a very smallpdp-like chain
sheet. The latter is predicted by the full-potential LMTO c
culations as well as linear-augmented plane-wave~LAPW!
calculations.21 We use the atomic-sphere approximati
~ASA! to the LMTO, which does not reproduce this rath
small feature. In the case of Y-123 the threepds-like con-
duction bands extend from21 to 2 eV relative to the Ferm
energy. They are embedded in a broad valence band, w
ranges from27 to 2 eV and consists of 36 bands~mainly Cu
d and Op orbitals!. Below 27 eV, there is a gap of 4 eV
Above the conduction band, there is another gap of 0.5
above which are the lowest fully unoccupied bands wh
consist mainly ofd orbitals of Y and Ba.

The band structure of YBa2Cu4O8 ~Y-124! shows similar
features. There is an additionalpds-like chain band, while
the pdp-like chain bands are predicted by both, fu
potential LMTO and LAPW to contain no holes, i.e., to b
completely filled.

An interesting feature of the band structure of both Y-1
and Y-124 is an extended saddle point16 on thekx axis near
theX point. This extended saddle point corresponds to a
Hove singularity at approximately 25 meV~Y-123! and 110
meV ~Y-124!, respectively, below the Fermi level. As wi
be shown, the comparatively large density of states in
energy region and the warped nature of the correspon
bands has an influence on the calculated electronic Ra
spectrum.

The band structure which we used in our numerical c
culations was evaluated for Y-123 on a mesh of 48348312
points in the first BZ, involving 4373 irreducible points. Th
band structure of Y-124 is less sensitive to the resolution
the grid ~because the extended saddle point lies deeper
respect to the Fermi surface!. It was thus sufficient to use
24324312 mesh with 1099 irreducible points. The calcu
tions of the self-consistent potential have been performe
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the ASA. Therefore, thepdp chain band around theS point,
which should be partly filled, is completely filled. Because
the small number of states involved, we do not think th
should affect significantly our results.

As stressed above, our calculations are based on a b
structure obtained within the LDA. We are aware of the fa
that the mean free path for transport in the direction of thc
axis is smaller than the size of the unit cell, i.e., that a
scription by means of a band structureenk may be question-
able ~Ioffe-Regel-limit!. Nevertheless a nontrivial ban
structure in thec direction may simulate some of th
c-direction confinement effects and represent, after integ
tion alongkz , a reasonable 2D band structure.

III. GENERAL THEORY

Two approaches have been used to derive the cross
tion ~called scattering efficiency when referred to unit pa
length in the solid! of electronic Raman scattering in supe
conductors with anisotropic Fermi surfaces. The first u
Green’s functions,8–10,22 and the second the kineti
equation.23,5 Both start with the simplification of the Hamil
tonian, usingk•p theory, which relates the Raman vertexgk
to the inverse effective mass tensor.9 We first briefly review
this procedure and, subsequently, the derivation of the
pression for the scattering efficiency using the diagramm
approach.

A. The Raman vertex

The electromagnetic field appears in the Hamiltonian
two terms,HAA5(r 0/2)A

2, quadratic in the vector potentia
andHA52(e/mc)A•p, linear in A @we use the transvers
gauge;r 05e2/(m0c

2) denotes the classical electron radiu#.
To describe the transitions relevant for Raman scattering,
termHAA has to be treated in first-order and the termHA in
second-order perturbation theory. Both contributions can
put together in theeffective Hamiltonian

HR5r 0^AS
1AL&r̃q , ~1!

which yields the transitions important for Raman scatter
in linear-response theory. The operatorAS

1 contains the cre-
ation operator for the scattered photon andAL contains the
annihilation operator for the incident photons. The mome
tum q5kL2kS denotes the momentum transferred from t
photon field to the sample. Note thatHR depends on the
Hamiltonian of the sample. The effective density operatorr̃q
can be expressed in the form

r̃q5(
n,k

gn~k!cn,k
1 cn,k ~2!

using fermionic creation and annihilation operators for Blo
electrons as well as theRaman vertex
gn~k!5eS* eL1(
nm

^nk1queS* punmk1kL&^nmk1kLueLpunk&
enk2enmk1kL

1vL1 i0
1

^nk1queLpunmk2kS&^nmk2kSueS* punk&
enk2enmk2kS

2vS1 i0
, ~3!



of
o

n
is

s
ctu

ion

tio

er
-

FS

si
t
p
g
e

te

t w

fe

a
n

d
ro
n
io
v
io
ce
u
t
th
o
ru
m
c
s
e
c

his
-
a
nsor
ues-
is

ef-
g
cy
k.
an
le.
is
gi-
-

tor,

n

r-
e
a

ain

ol-
ol-

55 12 727ELECTRONIC RAMAN SCATTERING IN YBa2Cu3O7 . . .
whereeL andeS , respectively, are the polarization vectors
the incoming, respectively, the scattered light. Their m
menta are denoted bykL andkS , respectively. We left out in
Eq. ~3! contributions of real interband transitions, i.e., tra
sitions with initial and final states in different bands. This
possible in the low-frequency region~i.e., for Raman shifts
below 50 meV!. In this region, no real interband transition
are possible as can easily be seen from the band stru
~Fig. 2 of Ref. 16!. See also Ref. 24.

We proceed by discussing a very important simplificat
of Eq. ~3!, the effective-mass approximation. Four different
cases will be discussed. First, the virtual intraband transi
with nm5n. In this case, up to first order invF/c, we have
^nmkupunk&5^nkupunmk& and enk2enmk50. Then, it can be
seen that the contributions of virtualintraband transitions
relative to the contribution of virtualinterband transitions~to
intermediate states! are of the order of the Raman shift ov
the laser frequency, i.e.,v/vL!1, and can therefore be ne
glected. The second case are the virtualinterband transitions
involving bands which are much farther away from the
than the light frequency. Then, because ofuen2enmu@vL ,
the light frequenciesvL as well asvS can be neglected in
Eq. ~3!. The third case also involves virtual interband tran
tions, but for bands at about the laser frequency above
Fermi surface. Here, the scattering is resonant, and the s
tra are expected to depend strongly on the laser wavelen
One can try to avoid this situation by using different las
lines. So we assume that in the third casevL andvS also can
be neglected. Finally, the forth case consists of virtual in
band transitions to neighboring bands withDe!vL . In this
case, neglectingvL andvS is more difficult to justify. We do
it nevertheless and reach the approximate conclusion tha
can neglect the light frequencies in Eq.~3! and can restrict
the sum in Eq.~3! to all nmÞn. Then, Eq.~3! becomes
completely equivalent to the expression for the inverse ef
tive mass fromk•p theory and we can write

gn~k!5
m

\2 (
i , j

eS,i*
]2enk
]ki]kj

eL, j , ~4!

i.e., the Raman vertex is equal to the inverse effective m
contracted with the polarization vectors of the laser light a
the scattered light, respectively.

According to the LMTO calculations, for Y-123 an
Y-124 there are bands above a band gap between app
mately 2 and 2.5 eV above the Fermi energy. These ba
can present a problem with respect to the former discuss
because they are almost resonant for typical laser wa
lengths like 514.5 nm. The same is true for the conduct
bands, which extend until 2 eV above the Fermi surfa
Note that due to the strong on-site interaction at the Cd
orbitals, correlation effects are expected to be importan
the electronic structure. It is possible that at energies of
order of 1 eV or more above the Fermi surface the picture
the Hubbard bands is a better description of the band st
ture and may explain the weak dependence of the Ra
spectra on the laser frequency observed for laser frequen
in the visible range. The band structure shows many band
about the laser frequency below the Fermi energy. Th
should yield resonant contributions to the Raman efficien
-

-

re

n

-
he
ec-
th.
r

r-

e

c-

ss
d

xi-
ds
n,
e-
n
.

in
e
f
c-
an
ies
at
se
y.

Because the Raman vertexgk is, in the given approxima-
tion, the second derivative of the energy with respect tok,
the A2g component for tetragonal crystals vanishes in t
version of the theory~A2g is the symmetry of an antisym
metric tensor!. If one considers once more the effects of
nearby resonance, it can be easily seen that the Raman te
does not have to be symmetric. This stresses again the q
tionability of the effective-mass approach if the scattering
resonant.

B. The scattering efficiency

Using the effective-mass approach, we arrived at the
fective Hamiltonian~1! with the effective mass determinin
the Raman vertex. The derivation of the scattering efficien
using linear-response theory is now a straightforward tas

The first step is finding a relation between the Ram
efficiency and a dynamical structure factor of the samp
Then, in a next step, the fluctuation-dissipation theorem
used to connect the dynamical structure factor to the ima
nary part of a susceptibility, in our case theRaman suscep
tibility .

To establish the relation to the dynamical structure fac
we add the time evolution factore2 ivt to the effective
Hamiltonian~1! and use the golden rule to find the transitio
rate from a statei to a statef of the sample. Then, we sum
over all final statesf of the sample and do a thermal ave
aging over the initial statesi . The transition rate from a stat
with nL[nkLeL laser photons and no scattered photon to

state withnL21 laser photons andnS[nkSeS51 scattered
photon at a temperatureT is given by the expression

GT~kL ,eL ;kS ,eS!5
2p

\
r 0
2u^AS

1AL&u2S̃T~q,v! ~5!

~the superscriptT denotes temperature dependency!, whereas

S̃T~q,v!5(
i , f

e2bEi

Z u^ f ur̃qu i &u2d~Ef2Ei1\v! ~6!

is a generalized dynamical structure factor~of the sample!.
The partition function is denoted byZ, andb is the inverse
temperature. Now, we sum over all final states in a cert
regiondV dvS of k space aroundkS and normalize to the
incoming flux\cnL . This yields the expression

d2s

dV dv
~q,v!5

vS

vL
r 0
2S̃T~q,v! ~7!

for the differential cross sectiond2s/dV dv for a given
Raman shiftv and a given momentum transferq. This dif-
ferential cross section is proportional to the scattering v
ume. When performing the calculation for a scattering v
ume equal to unity,d2s/dV dw becomes the commonly
usedRaman-scattering efficiency.

Finally, one can define a linear-response function, theRa-
man susceptibility

xRaman~q,t !5
i

\
Tr$Z21e2bH0@ r̃q~ t !,r̃2q~0!#% ~8!
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12 728 55T. STROHM AND M. CARDONA
and its Fourier-transformedxRaman~q,v!. To relate the imagi-
nary part of this quantity to the structure functionS̃T~q,v!,
we use the fluctuation-dissipation theorem. The result is

S̃T~q,v!52
1

p
~11nv!ImxRaman~q,v! ~9!

with the Bose factornv .
Equations~7! and~9! relate the Raman efficiency directly

to the imaginary part of the Raman susceptibility. The eva
ation of the Raman susceptibility shall be given in Sec.
for the superconducting phase and Raman shifts of the or
of the gap.

IV. THEORY: SUPERCONDUCTING PHASE

As pointed out in Ref. 10, the Raman susceptibility due
pair breaking and including screening is given by a polariz
tionlike bubble made of a renormalized Raman vertexLk , a
Raman vertexgk , and in between two Green’s-function line
for Bogoliubov quasiparticles@Fig. 1~a!#. The vertex renor-
malization includes corrections for Cooper-pair-producin
attractive interaction as well as the repulsive Coulomb inte
action, the Dyson equation for the vertexLk in the limit
q→0 is given by Fig. 13 in Ref. 10.

To show more clearly the effect of screening, we write th
equation for the Raman susceptibility as given in Figs. 1~b!
and 1~c!. Figure 1~b! ~with a5gk andb5gk! shows the un-
screened susceptibilityxgg given by a bare polarization
bubble with two Raman verticesgk and the contraction of a
BCS-like ladder sum with two Raman vertices. Therefor
xgg includes the attractive Cooper-pair-producing intera
tion. We include Coulomb screening by virtue of a random
phase-approximation~RPA!-like sum given in Fig. 1~c!. The
effect of screening on the electronic Raman scattering c
now easily be seen.9 If we denote byxab a bubble, renor-
malized by pairing interaction, with verticesa andb at the
ends as in Fig. 1~b!, the RPA chain can be easily summed u
@see Fig. 1~c!# yielding

xRaman~q→0,v!5xgg~v!2
xg1
2 ~v!

x11~v!
, ~10!

FIG. 1. Incorporation of screening effects into the theory
Raman scattering by electronic excitations in HTSC’s. The gr
shaded bubbles are sums of ladders contracted with verticesa and
b. Wavy lines correspond to the long-range Coulomb interactio
dashed lines to the attractive pairing interaction. The equation
the last line corresponds to Eq.~10!.
-

er

o
-

r-

e
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where terms of orderq2 have been dropped. In Eq.~10! we
have used the fact thatVq/~12x11Vq! equals2x11

21~121/e!,
and the factor~121/e! is 11O~q/qTF)

2.
Without taking into account Coulomb interaction, th

Green’s functions have a well-known massless pole~Gold-
stone mode! which is a consequence of the breaking
gauge symmetry in the superconducting phase.25 Coulomb
interaction makes this pole acquire a finite mass~which can
be shown to correspond to the plasma frequency!, so if we
correctly include Coulomb screening we no longer have
Goldstone mode, but a massive Anderson-Bogoliubov mo
This mode has the energy\vp ~vp is the plasma frequency!
at theG point and is therefore negligible for the low-energ
behavior of the Raman spectra.

The susceptibilitiesxab in Fig. 1~b! are like a ladder sum
contracted with verticesak andbk and can be written as a
sum

xab~q50,v!5(
k
akbklk~v!, ~11!

which involves the Tsuneto function18 lk~v!. For small val-
ues ofq ~compared to the inverse coherence lengthj and the
Fermi wave vectorkF!, the attractive interaction does no
have to be taken into account in the summation of the lad
and the Tsuneto function is given simply by a unmodifi
bubble and can be evaluated easily to be

lk~v!5
Dk
2

Ek
2 tanhS Ek

2TD S 1

2Ek1v1 i0
1

1

2Ek2v2 i0D .
~12!

Equation~12! involves the gap functionDk ~which depends
on the temperature! and the quasiparticle dispersion relatio
Ek
25jk

21Dk
2 with jk

25(ek2eF)
2. The constants\ and kB

have been set equal to 1. As already mentioned, vertex
rections due to the pairing interaction are neglected. T
approximation is valid forq!j21, kF ~Ref. 13! andv!vp ,
because the Anderson-Bogoliubov pole at the plasma
quency is no longer included.

A first and very important fact in the expressions above
that they contain only the absolute square of the gap fu
tion, i.e., Raman scattering isnot phase sensitive, and con-
sequently cannot distinguish between a strongly anisotrops
gap udx22y2u and adx22y2 gap.

In the preceding calculation of the unscreened correla
functions xab , we have neglected impurity scattering~as
well as scattering between quasiparticles!. In isotropic
s-wave superconductors atT50 and for Raman shifts
v!2D, it is perfectly reasonable to neglect impurity scatte
ing, because in this regime pair breaking is not possibl26

Ford-wave superconductors this is no longer true. The eff
of impurities will be discussed in the next subsection.

The second term of Eq.~10!, representing screening, van
ishes if the average ofgk•lk does. The Tsuneto function i
fully symmetric, i.e., hasA1g ~D4h group! or Ag (D2h) sym-
metry regardless of gap symmetry. As a consequence,
screening term vanishes unless the Raman vertex has
same symmetry as the crystal. In the tetragonal ca
A1g-like vertices are screened, butB1g- andB2g-like are not.
This is different for orthorhombic HTSC’s of the YBCO
type. In this case the Tsuneto function hasAg symmetry, and

f
y

,
n
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the same is true for thedx22y2-like component of the mas
~B1g of D4h group,Ag of D2h!. Consequently, in these ortho
rhombic crystals, theB1g component is also screened. Th
discussion is also applicable to Bi2Sr2CanCun11O2n16, but
with interchanged roles ofB1g andB2g modes because of th
different orientation of the crystallographic unit cell with r
spect to the Cu-O bonds.

In tetragonal systems, theB1g component of the Rama
vertex has nodes at the same position as the gap func
This has severe consequences for the low-energy part o
spectra.13 In two dimensions, the existence of the nodes
the gap function in the case of adx22y2 gap results in a linea
density of states at low energies. If the vertex has a fin
value in this region, the imaginary part of the Raman susc
tibility is also linear in the frequency. If the vertex has
node, however, its magnitude squared becomes quad
with respect to the gap on the Fermi surface. This causes
additional powers of the frequency to appear, theB1g com-
ponent of the scattering efficiency is cubic at lo
frequencies.5 Two effects can alter this behavior: an orth
rhombic distortion and impurities.

In our calculations, we focus on adx22y2-like gap func-
tion which is only a function of the direction ink space, but
not of the magnitude ofk, since the values of the gap func
tions sufficiently far from the Fermi surface do not affect t
results. We are using the same gap function for all ba
involved.

A. Effect of impurities

In contrast to scattering at nonmagnetic impurities in c
ventional~isotropic! superconductors, the influence of imp
rity scattering plays an important role for superconduct
with highly anisotropic gaps and its effect on the Ram
spectrum is most pronounced for superconductors which
hibit regions ink space where the gap almost or complet
vanishes. It was shown27,20 that in the case ofd-wave pair-
ing, impurity scattering can be described by extending
nodal points on the 2D FS to small finite regions with va
ishing gap. This causes a nonvanishing density of state
the Fermi energy. For anisotropics-wave pairing the gap
anisotropy becomes smeared out leading to an increase o
minimum gap valueDmin . In the case of audx22y2u gap, this
minimum gap increases monotonically with the impur
concentrationnimp for small values ofnimp ~Ref. 27!.

The renormalization of the gap function by the presen
of impurities causes an additional contribution, which is l
ear in the Raman shiftv for small Raman shiftsv, in the
Raman spectra.20 This has consequences for theB1g spec-
trum of a tetragonalcrystal, which, according to the theory
has a cubicv dependence, because a linear frequency dep
dence is added. As will be discussed in the next subsec
the orthorhombicity of the YBCO compounds also cause
linear addition to the cubic behavior of theB1g channel spec-
trum.

In the case of audx22y2u-like, Ag symmetry gap function
the impurity-induced minimal gapDmin causes an excitation
free region to show up in the electronic Raman spectr
below a Raman shift of 2Dmin .
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B. Effect of orthorhombic distortion

As already mentioned, orthorhombic distortions, i.e., d
viations from the tetragonal symmetry, have a different
fect on Y-123 and on Bi-2212. Consider theB1g (D4h) com-
ponent of the inverse mass tensor in atetragonalhigh-Tc
superconductor with adx22y2-like gap. TheB1g (D4h) mass
has its nodes in directions diagonal to the axes of the cop
planes; the same is true for the gap function. As mentio
above, this results in thev3 dependence of the Raman effi
ciency forB1g (D4h) scattering, in contrast to thev depen-
dence predicted forA1g andB2g scattering. Let us now con
sider the orthorhombic distortion present in Y-123. The ze
of the B1g (D4h) mass shift because there are no long
mirror planes through the~110! axes. For this reason, th
low-energy part of the spectrum acquires a linear compon
in addition to thev3 component of theD4h case.

In Bi-2212 the situation is different because the orth
rhombic crystallographic cell is rotated by 45° with respe
to the a and b axes: the orthorhombic distortion preserv
the mirror planes [a6b,c]. Consequently, theB1g zeros stay
at the same position, the low-energy efficiency acquires
linear component.

C. Effect of multilayers

In systems with one layer of Cu-O2 planes per unit cell
there is only one sheet of Fermi surface and the mass fl
tuations are essentially intraband mass fluctuations, wh
are very sensitive to the scattering polarizations. The sca
ing related to the average mass is fully screened. The s
plestA1g (D4h) scattering is related to a Raman vertex of t
form cos4f symmetry whileB1g (D4h) scattering is ob-
tained for a cos2f vertex. In multilayer systems, interban
fluctuations between the various sheets of the FS are
important. The lowest component of such fluctuations cor
sponds to differentaveragemasses in each FS sheet. Su
fluctuations do not depend on the scattering polarizations
lead to unscreened scattering ofAg symmetry.

D. Effect of sign change ofgk on the Fermi surface

The behavior of the Raman vertex near the Fermi surfa
especially its sign, is crucial for the scattering efficiency a
in particular, for the effect of screening.Antiscreening, i.e.,
anenhancementof the scattering efficiency by screening, ca
occur if the Raman vertex changes sign on the Fermi surf
This can be seen by considering the screening part

ImxScr52Im
xg1
2

x11
~13!

of the Raman susceptibility. A positive value of ImxScr en-
hances the efficiency, i.e., corresponds to antiscreening.

To show how antiscreening arises, we first write t
screening term ImxScr in terms of the real and imaginar
partsl8[Rel andl9[Iml of the Tsuneto function and th
Raman vertexg as

ImxScr5
^gl8&2^l9&2^gl9&2^l9&22^gl8&^gl9&^l8&

^l8&21^l9&2
.

~14!
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12 730 55T. STROHM AND M. CARDONA
The imaginary part of the Tsuneto functionl9 is a positived
function. Consequently, the quantity^l9& is a positive func-
tion of the Raman shiftv. If gk changes sign in a regio
around the Fermi surface, it is possible that^gl9& changes
sign as a function ofv, i.e., has a zero. At the position of th
zero, the second and the third term in the numerator of
~14! vanish. The first term,̂gl8&2^l9&, is positive and can
become dominant in Eq.~14!. In this case antiscreening re
sults. Antiscreening is particularly sensitive to the sign of
Raman vertex on parts of the Fermi surface around the
rections of the nodes of the gap functionDk .

V. EXPERIMENTAL SPECTRA

The experimental determination ofabsolute Raman-
scattering intensities is plagued by a number of difficulties~a
reason why usually ‘‘relative units’’ are found in the litera
ture!. The first is related to the presence of elastically sc
tered light in the spectra, in particular when nonideal sam
surfaces are involved. Depending on the quality of the sp
trometer this leads to contributions extending typically,
the parameters of the present work, up to 50 cm21 from the
center of the laser line. These contributions can be filte
out using a premonochromator or notch filters but, in a
case, Raman-scattering measurements below 50 cm21 re-
main difficult. The measurements discussed here have b
performed by comparison with the known efficiency of si
con after correcting for differences in the scattering volum
The procedure leads to errors of about 50%.

We use for comparison with the calculation the expe
mental data of Krantzet al.6 in the case of Y-123, and Dono
vanet al.28 in the case of Y-124. Our Figs. 4 and 5 are tak
from these publications. In the case of Fig. 4 we have c
rected a scale error in the abscissa found in Ref. 6. In
case of Fig. 5 we have calculated theA1g component from
the experimental results for the (x8x8) and (xy) polariza-
tions.

The classification of the measured spectra according
irreducible representations of the symmetry group of
crystal is performed with the use of the Raman tensoR̂
which is related to the Raman efficiency through the expr
sion I;ueLR̂eSu

2, bilinear in the Raman tensor. In the calc
lations, the Raman tensor does not appear explicitly, the
verse effective mass]2E/(]ki]kj ) playing its role. It is
important to note that the Raman efficiency as given by
theory @Eqs. ~7!, ~9!, and ~10!# is bilinear in the inverse ef-
fective mass of the Raman vertex~including the screening
part!, i.e., contains the same interferences as the appro
involving the Raman tensor. Note that the Tsuneto funct
l is fully symmetric.

In most of the measurements of the Raman efficiency
orthorhombic high-Tc superconductors, anA1g component
has been given. Strictly, this irreducible representation d
not exist inD2h but only inD4h. In orthorhombic crystals
the Raman tensor contains twoAg components which corre
spond to theAg andB1g components of the tetragonalD4h
case, and which are not distinguishable inD2h because they
transform in the same way. Nevertheless, quantities can
constructed in the orthorhombic case which correspond
the tetragonalA1g component.

One of these isI (1)5(I xx1I yy)/22I x8y8 . Both, I xx and
q.
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I yy containA1g andB1g (D4h), and also an interference term
which cancels whenI xx and I yy are added. TheI x8y8 effi-
ciency containsB1g andA2g (D4h). If we assume that the
antisymmetric component~A2g in D4h! of the Raman tenso
R̂ vanishes~i.e., I xy5I yx!, I x8y8 corresponds to tetragona
B1g and cancels theB1g contribution inI xx andI yy . Provided
that theA2g component of the Raman tensor vanishes,I (1)

corresponds to theI A1g of the tetragonal case. Note that th

antisymmetric component (Rxy2Ryx)/2 of the Raman tenso
vanishes in the effective mass vertex theory given in Sec
because ofgxy5gyx regardless of the symmetry of the cry
tal, and also in the experiment in the case of tetragonal c
tals but not necessarily for orthorhombic crystals. The equ
ity of I xy andI yx in the calculation is an artifact of the theory

A second possible construction forA1g is I (2)5I x8x8
2I xy . The I x8x8 efficiency containsA1g andB2g contribu-
tions. The interference term of these two contributions v
ishes in the tetragonal as well as the orthorhombic ca
Both,B2g (D4h) andA2g are contained inI xy . But if theA2g
component of the Raman tensor vanishes,I (2) also corre-
sponds to theI A1g of the tetragonal case. Both of the expre

sions forI (1) andI (2) contain contributions of theA2g (D4h)
Raman tensor component. This component may be prese
the experiment, but not in the theory, a fact, that has to
kept in mind when comparing the numerical results to
measurements. Note that the Raman efficiencies in (xy) and
(x8y8) polarization configurations also contain contributio
from the antisymmetric part of the Raman tensor. In view
these uncertainties inA1g we mainly focus in the next sec
tion on the directly observable components of the Ram
tensor.

We shall conclude this section by taking up again t
question of the validity of the effective-mass approximatio
In the experiment, this can be checked in two ways. First,
the dependence of the spectra on the laser frequency w
should make it possible to distinguish the contributions to
Raman efficiency resulting from resonant and nonreson
transitions, respectively. The second way involves the m
surement of theA2g component of the mass. If the effective
mass approximation is valid, the Raman vertex should
symmetric (gxy5gyx), i.e., theA2g (D4h) component should
vanish. A nonvanishingA2g component of the measure
scattering would cast doubts on the appropriateness of
effective-mass approximation. For a more detailed disc
sion see Ref. 29.

VI. NUMERICAL RESULTS AND DISCUSSION

To carry out the numerical BZ and FS integrations, w
employed a tetrahedron approach.30,31 The convergence o
the integrations was checked by using different meshes
Figs. 2 and 3, the results of full BZ integrations for Y-12
and Y-124, respectively, are plotted. The correspond
spectra obtained through FS integrations can be seen in
19. The Bose factor has not been included, hence the re
apply to zero temperature. Thedx22y2-like gap function
Dk5D0cos2f has been used. In both figures, the Raman s
is given in units of the gap amplitudeD0. Since the calcu-
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lated scattering efficiencies for BZ integrations, contrary
FS integrations, are not only a function of the reduced f
quency but depend also weakly on the value ofD0, we took
for the calculationsD05220 cm21. This value ofD0 falls in
the range ofD0’s determined by Raman scattering and oth
methods. Thed function peaks in the Tsuneto function ha
been broadened phenomenologically by introducing a fi
imaginary partG50.3D0 of the frequency variablev.

Figures 2 and 3 display spectra for each of the polar
tion configurations (yy), (x8x8), (xx), (x8y8), and (xy), as
well as the symmetry componentA1g (D4h) ~defined by
I A1g5I x8x82I xy!, the unscreened intensities, the screen
part Eq.~13!, and the total intensities, equal to the differen
between unscreened and screening parts. Note that
(x8y8) configuration corresponds to theB1g (D4h) compo-
nent because of the vanishing of theA2g component in the
theory.

We discuss first the results for Y-123. TheA1g component
~in the rest of this section we use tetragonal notation un
explicitly stated! is subject to rather strong screening, ho
ever its unscreened part is comparable to that of theB1g
component. The relation between the unscreened and
screened~total! spectral weight of theA1g component is
about three. Nevertheless, the shapes of the unscreene
the screened parts are the same and, consequently,there is
almost no shift in the peak position due to screening~con-
trary to the results of Ref. 5!. The peak is located almos
exactly at 2D0. Note that there is no antiscreening in theA1g
component. The low-energy part of allA1g spectra~screened

FIG. 2. Results from the BZ integration for Y-123. Each of t
six panels contains the total absolute Raman efficiency for e
tronic Raman scattering according to Eqs.~7! and ~9! and its two
constituents, the unscreened and the screening part accordi
Eq. ~10!.
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and unscreened! is linear, as predicted by the theory.
As already mentioned, the (x8y8) component~equal to

the B1g component in the nonresonant case! is almost four
times stronger than its screenedA1g counterpart. The screen
ing is very small, its nonvanishing being an effect of t
distorted tetragonality of the crystal. There is, in this case
very small amount of antiscreening in the region below 2D0.
As in the case of theA1g component, the (x8y8) component
peaks at almost exactly the 2D0 frequency shift. The low-
frequency part has anav1bv3 frequency dependence, th
linear part arising from the distorted tetragonality, i.e., t
fact that theB1g mass does not vanish at exactly the sa
position on the Fermi surface as the gap function does.

The efficiency of the peak in the (xy) configuration
~equal to theB2g component in the nonresonant case! is also
four or five times smaller than that of theB1g peak. The (xy)
peak is located at about 1.3D0, as expected from the fact tha
in the neighborhood of the region where the gap is large,
B2g mass vanishes. Consequently, the peak is not as sha
in the former cases and screening vanishes since these
tra correspond to a nonsymmetric (B1g) representation of the
orthorhombic group (D2h).

In the A1g and (x8y8) spectra there should be a sma
peak at aboutv52AevH

2 1Dmax
2 '3.9D0 due to the van Hove

singularity on thekx axis near theX point. The correspond-
ing structure, however, is very weak, and practically inv
ible in Fig. 2. This is not unexpected for a 3D calculatio
These peaks appear strongly when 2D calculations are
formed through BZ integrations.32

In general, the efficiencies in Y-124~Fig. 3! are about a
factor of 3 less than those for its Y-123 counterpart. Mo
over, the screening of theA1g component of Y-123 is much

FIG. 3. Results from the Brillouin-zone integration for Y-12
For details see the caption of Fig. 2.c-

to
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12 732 55T. STROHM AND M. CARDONA
stronger than that of Y-124. This may be, at least in part,
to the additional chain band: The (yy) component of Y-124
is less screened than the (yy) component of Y-123. At low
frequencies, we correspondingly have antiscreening eve
A1g, a fact which reveals a change of sign of the effect
mass on the Fermi surface~see Sec. IV D!. Due to this anti-
screening, the peak in theA1g spectrum is shifted from 2D0
towards approximately 1.6D0. In contrast to the situation in
Y-123, the Y-124 spectra show clearly the influence of
van Hove singularity on the spectra, as a small hump~vH!
located near 2AevH

2 1Dmax
2 '7D0. In the A1g spectrum this

hump is almost screened out whereas in the (x8y8) spectrum
it appears slightly increased by the influence of antiscre
ing.

To compare these predictions with the experiment let
first focus on the peak positions. The experimental results
Y-123 ~Fig. 4! clearly show that the position of the (yy),
(x8x8), and (xx) peaks is at about 300 cm21, whereas the
(x8y8) peak is located at 600 cm21, i.e., at twice the fre-
quency of the former. This fact is in sharp contrast with t
calculated spectra and has been at the center of the co
versy concerning the topic at hand.33,12 It has been suggeste
by Devereaux and co-workers5,12 that theB1g component
peaks at 2D0, and theA1g component becomes shifted dow

FIG. 4. Experimental Raman-scattering efficiencies for Y-1
from Ref. 6. The vertical scales are absolute Raman efficienc
measured atT510 K and an exciting laser wavelength ofl5488
nm ~Note that a scale error found in Ref. 6 has been corrected!. The
A1g component extracted according toI A1g5(I xx1I yy)/22I x8y8 is
plotted in the lower panel together with the quasitetragonalB1g and
B2g components.
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to almostD0 by the screening. This interpretation contradic
our numerical results which clearly suggest that the influe
of screening on the position of theA1g mode is usually
smaller. The frequency renormalizations of phonons aro
Tc also seem to contradict the interpretation in Refs. 5 a
12. It has been shown34 that lowering the temperature of th
sample in the superconducting phase causes theA1g 435
cm21 phonon ~plane-oxygen, in-phase! to shift up in fre-
quency and theB1g ~D4h notation! 340 cm

21 phonon~plane-
oxygen, out-of-phase! to shift down. This, in turn, implies an
amplitude of the gap 2D0 between 300 and 360 cm21 and is
consistent with our interpretation of the electronic Ram
spectra with theA1g peak at 2D0.

Note that the (yy), (x8x8), and (xx) spectra donot con-
tain contributions of theA2g (D4h) antisymmetric compo-
nent of the Raman tensor, while the (x8y8) component does
So, the experimental results may suggest that the shift of
position of the (x8y8) spectrum with respect to the pea
position of the other spectra is due to resonance effects.
(xy) spectrum is also influenced by theA2g component. It is
difficult to determine its peak position from Fig. 2, but
seems to be located at the same position as that of the (yy),
(x8x8), and (xx) configurations. The calculation predicts
to be located at about 1.3D0, the shift to 2D0 can also be
attributed to the existence of anA2g component, like in the
case of the (x8y8) configuration.

To compare the relative intensities of the spectra w
different polarizations, we refer to Table I, which lists the
together with the corresponding absolute intensities, bot
the peak position. The detailed results of our FS integrat
have already been reported earlier.19 We begin with Y-123
~upper panel in Table I! and compare BZ integration resul
to the experimental ones. With the possible exception of
A1g component@and the (x8x8) component, which is very
similar toA1g#, the agreement is rather good. The deviati
of theA1g component may be attributed to screening, wh
is very sensitive to sign changes and other details of
Raman vertex near the Fermi surface~such as details of the
band structure and especially the exact position of the Fe
energy!.

The second compound, Y-124~lower panel in Table I!,
also shows reasonable agreement between the results o
BZ integration and the experiment. However, we also ha
problems with theA1g component, as we did for Y-123.

The measured absolute intensities agree particularly w
with the calculations in the case of Y-123. With the exce
tion of A1g, the discrepancy between theory and experim
is only a factor of 2, which can easily be related to t
difficulties in measuring absolute scattering cross sections
the case of Y-124, the discrepancy is a bit larger, but a fa
of 4 can still be considered good. We should also keep
mind that resonances ofvL or vS with virtual interband
transitions are expected to enhance the simple effective m
Raman vertex, a fact which could also explain why the m
sured scattering efficiencies are usually larger than the
culated ones.

We close the discussion of the numerical results with
remark about the Fermi surface integration. For Y-124,
results of the former correspond rather closely to the res
from the BZ integration. The situation is different for Y-12
Here, the (xx) peak height is almost a factor of 4 larger
the FS integration than in the BZ integration. This is likely

s,
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TABLE I. Comparison of the experimental peak scattering efficiencies given in units of 128

cm cm21 sr21 to the theoretical predictions~from Fermi surface integrations, Ref. 19, as well as Brillou
zone integrations, present work! for Y-123 and Y-124.

Y-123
Polarization

FS integration~Ref. 19! BZ integration Experiment~Ref. 6!

Absolute Relative Absolute Relative Absolute Relative

yy 20.0 1.00 19.6 1.00 40 1.00
xx 28.0 1.40 7.2 0.37 19 0.48
xy 3.0 0.15 2.5 0.13 4 0.10
x8x8 5.0 0.26 26 0.65
x8y8 4.8 0.24 10.6 0.54 12 0.30
A1g 19.2 0.96 3.0 0.15 18 0.45

Y-124
Polarization

FS integration~Ref. 19! BZ integration Experiment~Ref. 28!

Absolute Relative Absolute Relative Absolute Relative

yy 6.3 1.00 4.4 1.00 18.0 1.00
xx 1.5 0.24 1.4 0.32 7.2 0.40
xy 1.1 0.17 0.5 0.11 2.6 0.14
x8x8 1.4 0.32 12.0 0.66
x8y8 2.8 0.44 2.3 0.52 5.6 0.31
A1g 1.1 0.17 1.0 0.23 6.9 0.38
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result from the close proximity of the van Hove singular
to the FS in the case of Y-123~25 meV!, as compared to
Y-124 ~110 meV!.

To verify the predictions related to the effect of orth
rhombic distortions as discussed in Sec. IV B, we perform
a fit of the functionav1bv3 to the low-frequency part of the
B1g data for Y-123 reported in Refs. 6 and 35 as well as
Bi-2212 ~taken from Ref. 36! and to the results of our nu
merical calculations for Y-123. The ratios of the linear
cubic parts~at v5300 cm21! of the fit to the low-frequency
efficiency are given in Table II.

Both measurements for Y-123 agree in their large lin
part, which should be due mainly to the lack of exact tetra
nality and the presence of impurities. The results of the
integration show a smaller linear part, because they do
take into account the influence of impurities. Finally, t
result for Bi-2212 is completely different from the forme
results for Y-123. The linear part almost vanishes, in agr
ment with the preceding discussion.

VII. CONCLUSIONS

In spite of the striking ability to predict not only gener
features of the observed spectra but also their peak inte
ties, our calculations are not able to predict the relative
sitions of theA1g andB1g peaks. According to Figs. 2 and
theA1g spectrum should peak only slightly below 2D0 while
B1g should peak at 2D0. The experimental data of Figs. 4 an
5, however, indicate that theB1g spectra peak nearly at twic
the frequency ofA1g. Since the observedA1g peak is con-
siderably sharper than that ofB1g, we may want to assign th
A1g peak to 2D0. Our calculations show that it is impossib
to reproduce both peak frequencies with a simple gap of
form D0cos2f wheref is the direction of thek vector. A
reasonable fit was obtained in Ref. 6 with a two-dimensio
FS which did not take into account the chain component
d
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e

l
d

assignedd- ands-like gaps to the two bonding and antibon
ing sheets of the FS of the two planes in anad hocway.
Within the present three-dimensional band structure the
cannot be broken up into bonding and antibonding plane
chain components since such sheets are interconnecte
general points ofk space. It is nevertheless clear that there
no reason why the gap function should be the same in
various sheets for a givenk direction. Thus the remaining
discrepancy in the peak positions between theory and exp
ment could be due to a more complicatedDnk than a simple
D0cos2f used here. Another possible source of this discr
ancy is scattering through additional excitations of a type
considered here~e.g., magnetic excitations! contributing to
and broadening theB1g peak.

A BCS-like theory, which involves an attractive pairin
potential as well as the repulsive Coulomb potential and u
an anisotropicdx22y2-like gap function in connection with
the effective-mass approximation used in the calculation
the absolute Raman-scattering efficiencies yields res
which are in significant agreement with the experimen
spectra. One exception, the peak positions of theA1g and the
B1g components, remains unexplained. The theory pred
them to be both located nearv52D0, but the experiment
shows the peak inB1g at almost twice the frequency of th
peak inA1g. The weakB2g spectrum agrees in intensity an

TABLE II. The ratio between the linear and cubic parts of t
low-energy Raman efficiency inB1g (D4h) configuration of several
high-Tc compounds at a Raman shift ofv5300 cm21.

HTSC Linear: cubic inB1g Reference

Y-123 1 Krantzet al. ~Ref. 6!
Y-123 1 Hacklet al. ~Ref. 35!
Y-123 0.35 BZ integration
Bi-2212 0.07 Stauferet al. ~Ref. 36!
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12 734 55T. STROHM AND M. CARDONA
FIG. 5. Upper panel: experimental absolute Raman efficien
given for the five specified polarization configurations for Y-1
from Ref. 28. These data are taken atT510 K with an exciting
laser wavelength ofl5514.5 nm. Lower panel: smoothed curv
and theA1g spectrum additionally extracted from the former.
both panels, consecutive offsets of 0,1, . . . ,432.531028

cm21 sr21 cm were used.
J.

ch
peak position with calculations for adx22y2-like gap. The
results of other experiments, involving the temperature
pendence of phonon frequencies,34 suggest that theA1g peak
position corresponds to the gap amplitude 2D0. The shifting
of the B1g peak towards higher frequencies may have
origin different from the mass-fluctuation-modified charg
density excitations described in the theoretical part of t
paper but could also be due to a multisheeted gap funct
more complicated than the simpledx22y2-like D0cos2f gap
assumed in our calculations. The initial variation of theA1g
andB1g scattering efficiencies vsv are linear as expected fo
that gap. TheB1g symmetry becomesAg in the presence of
the orthorhombic distortion related to the chains. Con
quently, the scattering efficiency at low frequency is not p
portional tov3 but should have a small linear compone
which is found both in the calculated and the measured sp
tra. In the corresponding spectrum of Bi-2212, with an orth
rhombic distortion along (x1y), theB1g (D4h) excitations
also have a nonsymmetricB1g (D2h) orthorhombic charac-
ter. Consequently, for smallv no component linear inv is
found in the measured spectra.

We have performed our calculations using either BZ
FS integration. In the case of Y-124 the spectra so obtai
are very similar. For Y-123 quantitative differences appe
they are probably related to the presence of a van Hove
gularity close to the FS. These singularities appear as w
structures in the calculated spectra, as expected for a
band structure.
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