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Electronic Raman scattering in YBaCu;0; and other superconducting cuprates
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Superconductivity-induced structures in the electronic Raman spectra of higinperconductors are com-
puted using the results @b initio local-density approximation linear muffin-tin-orbital three-dimensional
band-structure calculations via numerical integrations of the mass fluctuations, either in the whole three-
dimensional Brillouin zone or limiting the integrations to the Fermi surface. The results of both calculations are
rather similar, the Brillouin-zone integration yielding additional weak structures related to the extended van
Hove singularities. Similar calculations have been performed for the normal state of thesE, lugprates.
Polarization configurations have been investigated and the results have been compared to experimental spectra.
The assumption of a simplg._,2-like gap function allows us to explain a number of experimental features
but is hard to reconcile with the relative positions of thg, andB,, peaks[S0163-1827)05517-3

I. INTRODUCTION Several calculations of the electronic Raman-scattering
efficiency of HTSC’s have appeared. Some of them use
To investigate the properties of the superconducting gapighly simplified 2D band structures and a decomposition of
functiont in high-T. superconductofs(HTSC’s) a wide the Raman vertex in Fermi surface(FS) harmonics! or
range of experimental techniques can be employed. AmonBrillouin-zone (BZ) harmonics, as well as FS integrations
these, Raman scattering has played an importanffoldle  instead of the required BZ integrations>** The results of
dependence of the Raman response on the directions of ptitese calculations depend very strongly on the number of
larization of the incident and scattered light yields severakxpansion coefficients used fog and their relative values.
independent spectra which provide a considerable number @fnother approactt involves the use of band structures cal-
constraints on the assumkdiependence of the gap function culated in the framework of the local-density
A, . However, Raman scattering is not sensitive to the phasapproximation® (LDA) using the linear muffin-tin orbital
of the gap. (LMTO) method!®'’ Within the approximations of the
The Raman spectra at temperatures belowshows, in  LDA, this Raman vertex is exact, i.e., the only errors made
most HTSC'’s, a clear gaplike structure which lies in thein such a calculation arise from limitations of the LDA
energy range of the optical phonons at fheoint. These method itself and from the discretization of the Brillouin
phonons have been identified for most HTSC&d the sub-  zone or Fermi surface. Some of these calculations, however,
traction of the corresponding structures from the spectra haguffer from the fact that only the imaginary part of the Tsu-
become a standard procedure to isolate electronic structur@sto function® has been used, and that only 2D integrations
containing gap information. Electronic Raman-scatteringwere performed.
spectra are now available for many high-materials and, The present approathis based on the full 3D LDA-
since they exhibit similar general features, most of these dataMTO band structure. It uses a BZ integration, screening
are considered to be reliable. In this paper, we attempt teffects are included, and both the real and imaginary part of
interpret these spectra from a theoretical point of view basethe Tsuneto function are used as required by the theory.
on the full three-dimensiondBD) one-electron band struc- Electronic Raman spectra are calculated for YBa0, (Y-
ture. We pay attention to both line shapes abdolutescat- 123 and YBaCu,Og (Y-124). The orthorhombicity of the
tering efficiencies. cuprates is also taken into account in the Raman vertex since
The theory of electronic Raman scattering in superconwe use as starting point the band structure ofdtteorhom-
ductors was pioneered by Abrikosov and co-worketdn bic materials.
Ref. 8, they developed a theory for the scattering efficiency For the superconducting state, various forms for the gap
of isotropic Fermi liguids under the assumption that the atfunction have been proposed. That which has received most
tractive interaction between quasiparticles can be neglectegxperimental support hak. 2 symmetry, i.e.B;4 symme-
In Ref. 9, they extended this approach to anisotropic systry in tetragonal HTSC’s. The power of Raman scattering to
tems, introduced the effective-mass vertex concept, and irconfirm such gap function has been questioned, because,
cluded Coulomb screening. The current form of the th&bry among other difficulties to be discussed below, it only probes
takes into account the attractive pairing interaction and emthe absolutevalue of the gap function, i.e., it cannot distin-
phasizes the role of gauge invariance as well as the polarizguish between ad,._2-like gap function (for instance,
tion dependence for anisotropic gaps. In order to compareos2p), and a|cos2p| gap function, which corresponds to
the theoretical predictions with the experiment, we evaluatenisotropics (A;,) symmetry. However, it was pointed out
them numerically in a quantitative mann@ncluding abso-  that addition of impurities can be used to effect the
lute scattering efficienciesand compare them to the experi- distinction®®
mental findings. This paper is organized as follows: in Sec. Il, we review
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the main properties of the LDA-LMTO band structures of the ASA. Therefore, theds chain band around th® point,

the investigated cuprates. Section Il discusses the theory afhich should be partly filled, is completely filled. Because of
electronic Raman scattering in systems with anisotropic banthe small number of states involved, we do not think this
structures. In Sec. IV we derive expressions for the Ramashould affect significantly our results.

susceptibility in the superconducting phase, and discuss As stressed above, our calculations are based on a band
some effects not directly contained in the presented form o$tructure obtained within the LDA. We are aware of the fact,
the theory. Section V concerns the experimental aspects, ethat the mean free path for transport in the direction ofahe
pecially with regard to the comparison with the theory. Fi-axis is smaller than the size of the unit cell, i.e., that a de-
nally, in Sec. VI the results of our numerical calculation arescription by means of a band structurg may be question-

presented and compared to the experimental results. able (loffe-Regel-limiy). Nevertheless a nontrivial band
structure in thec direction may simulate some of the
Il. LDA BAND STRUCTURE c-direction confinement effects and represent, after integra-

) o tion alongk,, a reasonable 2D band structure.
The basis of our calculation is the LDA-LMTO band

structure of the HTSC’s under consideratidrior the sake

of further discussion, we shall describe briefly such band

structure. Two approaches have been used to derive the cross sec-
The Fermi surface of YB&£u;0; (Y-123) (Ref. 179 con-  tion (called scattering efficiency when referred to unit path

sists of four sheets, an even and an pdidr-like plane band, length in the solidl of electronic Raman scattering in super-

a pdo-like chain sheet, and a very smaldw-like chain  conductors with anisotropic Fermi surfaces. The first uses

sheet. The latter is predicted by the full-potential LMTO cal-Green’s function§; %22 and the second the kinetic

culations as well as linear-augmented plane-wéw&PW)  equatior?>® Both start with the simplification of the Hamil-

calculations! We use the atomic-sphere approximationtonian, usingk-p theory, which relates the Raman vertgx

(ASA) to the LMTO, which does not reproduce this ratherto the inverse effective mass tenSde first briefly review

small feature. In the case of Y-123 the thieéo-like con-  this procedure and, subsequently, the derivation of the ex-

duction bands extend from1 to 2 eV relative to the Fermi pression for the scattering efficiency using the diagrammatic

energy. They are embedded in a broad valence band, whicipproach.

ranges from—7 to 2 eV and consists of 36 ban@aainly Cu

d and Op orbitalg. Below —7 eV, there is a gap of 4 eV. A. The Raman vertex

Above the conduction band, there is another gap of 0.5 eV, o ) .

above which are the lowest fully unoccupied bands which The electromagnetic field appears in the Hamiltonian in

consist mainly ofd orbitals of Y and Ba. two terms,HAAz(rO/Z)A_, quadratlc in the vector potential,
The band structure of YBE&u,0, (Y-124) shows similar andHa=—(e/mc)A-p, linear in A [we use the transverse

features. There is an additionatio-like chain band, while ~92Ugeiro=e/(mec”) denotes the classical electron radius

the pdw-like chain bands are predicted by both, full- To describe the transitions relevant for Raman scattering, the

potential LMTO and LAPW to contain no holes, i.e., to be [€MMHaa has to be treated in first-order and the te#g in

completely filled. second-order perturbation theory. Both contributions can be
An interesting feature of the band structure of both Y-123Put together in theffective Hamiltonian

and Y-124 is an extended saddle p&irin thek, axis near Hos r (ASA NS n

the X point. This extended saddle point corresponds to a van rR=To{AsAL)Pqg.

Hove singularity at approximately 25 melY-123) and 110  which vyields the transitions important for Raman scattering
meV (Y-124), respectively, below the Fermi level. As will in |inear-response theory. The operafo¢ contains the cre-
be shown, the comparatively large density of states in thigtion operator for the scattered photon akdcontains the
energy region and the warped nature of the correspondingnnihilation operator for the incident photons. The momen-
bands has an influence on the calculated electronic Ramanm q:kL_kS denotes the momentum transferred from the
spectrum. photon field to the sample. Note thbty depends on the

The band structure which we used in our numerical calHamiltonian of the sample. The effective density operatpr
culations was evaluated for Y-123 on a mesh ok48X12  can be expressed in the form

points in the first BZ, involving 4373 irreducible points. The

band structure of Y-124 is less sensitive to the resolution of - N

the grid (because the extended saddle point lies deeper with qug Yn(K)Cn kCn,k @
respect to the Fermi surfacdt was thus sufficient to use a '

24x24x12 mesh with 1099 irreducible points. The calcula- using fermionic creation and annihilation operators for Bloch
tions of the self-consistent potential have been performed ielectrons as well as tHeaman vertex

Ill. GENERAL THEORY

(nk+ale§plnmk+ki)(nnk ki [e plnk)  (nk-+dle plnmk —ks)(nmk —Ksle5plnk)
Enk— €n_k+k, T oL TI0 €nk— €n_k—kg~ Wsti0
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whereg, andeg, respectively, are the polarization vectors of Because the Raman vertgy is, in the given approxima-
the incoming, respectively, the scattered light. Their mo-tion, the second derivative of the energy with respeck,to
menta are denoted gy andks, respectively. We left outin the A, component for tetragonal crystals vanishes in this
Eq. (3) contributions of real interband transitions, i.e., tran-version of the theoryA,, is the symmetry of an antisym-
sitions with initial and final states in different bands. This ismetric tensor. If one considers once more the effects of a
possible in the low-frequency regidne., for Raman shifts nearby resonance, it can be easily seen that the Raman tensor
below 50 meV. In this region, no real interband transitions does not have to be symmetric. This stresses again the ques-
are possible as can easily be seen from the band structutienability of the effective-mass approach if the scattering is
(Fig. 2 of Ref. 16. See also Ref. 24. resonant.
We proceed by discussing a very important simplification
of Eq. (3), the effective-mass approximatiofour different
cases will be discussed. First, the virtual intraband transition ) ) .
with n,=n. In this case, up to first order in:/c, we have Using the effective-mass approach, we arrived at the ef-
(nyk|pInk)=(nk|p|n,.k) and e — €, «=0. Then, it can be fective Hamiltonian(1) with the effective mass determining
m the Raman vertex. The derivation of the scattering efficiency
using linear-response theory is now a straightforward task.
The first step is finding a relation between the Raman
efficiency and a dynamical structure factor of the sample.
Then, in a next step, the fluctuation-dissipation theorem is

involving bands which are much farther away from the FSused to connect the dyna}mm_al structure factor to the imagi-
nary part of a susceptibility, in our case tRaman suscep-

than the light frequency. Then, because|gf— enm|>wL, tibility

the light frequencieso_ as well asws can be neglected i 1q estaplish the relation to the dynamical structure factor,
Eq. (3). The third case also involves virtual interband transi-ye add the time evolution factoe 't to the effective
tions, but for bands at about the laser frequency above thgamiitonian(1) and use the golden rule to find the transition
Fermi surface. Here, the scattering is resonant, and the spegie from a staté to a statef of the sample. Then, we sum
tra are expected to depend strongly on the laser wavelengtByer gl final states of the sample and do a thermal aver-
One can try to avoid this situation by using different laseryging over the initial stateis The transition rate from a state

lines. So we assume that in the third cageandws also can  \yith n, =n, . laser photons and no scattered photon to a
be neglected. Finally, the forth case consists of virtual inter- Lt

band transitions to neighboring bands witle<w, . In this state withn_—1 laser ph_oto_ns ands= Nigeg=1 s_cattered
case, neglecting, andws is more difficult to justify. We do ~ Photon at a temperatuf s given by the expression

it nevertheless and reach the approximate conclusion that we

B. The scattering efficiency

seen that the contributions of virtuaitraband transitions
relative to the contribution of virtuahterband transitiongto
intermediate state¢sre of the order of the Raman shift over
the laser frequency, i.eqw/w <1, and can therefore be ne-
glected. The second case are the virintdrband transitions

can neglect the light frequencies in E®) and can restrict T ) _ 2_77 20 At J=T
the sum in Eq.(3) to all n,#n. Then, Eq.(3) becomes (ke ks, €)= h rol(AsAL)I*S' (g, @) (5
completely equivalent to the expression for the inverse effec-
tive mass fronk-p theory and we can write (the superscripT denotes temperature dependengyhereas
Y (k)=m > ek ﬂq, (4) S(q,0)=2, e’ [(f[pgli)|?8(E¢—Ei+fiw) (6)
T RZ & S oKk, 2

is ageneralized dynamical structure fact@f the samplg

i.e., the Ram_an vertex is eq_ual to the inverse effect!ve mas$pe partition function is denoted b, and 3 is the inverse
contracted with the polarization vectors of the laser light a”dtemperature. Now. we sum over all final states in a certain

the scattered light, respectively. , regiondQ dws of k space arounds and normalize to the
According to the LMTO calculations, for Y-123 and incoming flux/cn, . This yields the expression

Y-124 there are bands above a band gap between approxi-
mately 2 and 2.5 eV above the Fermi energy. These bands
can present a problem with respect to the former discussion,
because they are almost resonant for typical laser wave- dQ do

lengths like 514.5 nm. The same is true for the conductior} the differential tiod20/dQ dw f .
bands, which extend until 2 eV above the Fermi surfacelo’ M€ différential Cross sectioo™or w lor a given
Raman shiftw and a given momentum transfgr This dif-

Note that due to the strong on-site interaction at thedCu . . 2 . ;
orbitals, correlation effects are expected to be important ir{erentlal Cross sectlc_m IS proportlon_al to the scatter_lng vol-
' me. When performing the calculation for a scattering vol-

the electronic structure. It is possible that at energies of th& t itvd2o/dQ dw b th I
order of 1 eV or more above the Fermi surface the picture of'M€ €gual to uni y.;d o105 aw becomes the commonly
sedRaman-scattering efficiency

the Hubbard bands is a better description of the band stru¢tSeC 4 ; .

ture and may explain the weak dependence of the Raman Finally, one can define a linear-response function Rbe
spectra on the laser frequency observed for laser frequenci@dn Susceptibility

in the visible range. The band structure shows many bands at )

about the laser frequency below the Fermi energy. These _r —10=BH[ (1) =

should yield resonant contributions to the Raman efficiency. Xramaf @ 1) i Tr{z""e [po(0).p o)1} (8)

d?c

<q,w>=z—f r257(q,w) )
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where terms of ordeg? have been dropped. In E(LO) we
have used the fact that,/(1— x;,V,) equals—yi(1-1/e),
and the factof1—1/e) is 1+ O(q/g+g)>.

Without taking into account Coulomb interaction, the
Green'’s functions have a well-known massless g@eld-

stone modg which is a consequence of the breaking of
gauge symmetry in the superconducting ptaséoulomb
interaction makes this pole acquire a finite mashich can
be shown to correspond to the plasma frequgnsy if we
correctly include Coulomb screening we no longer have a
FIG. 1. Incorporation of screening effects into the theory of Goldstone mode, but a massive Anderson-Bogoliubov mode.
Raman scattering by electronic excitations in HTSC’s. The greyThis mode has the ener@yup (wp is the plasma frequengy
shaded bubbles are sums of ladders contracted with vediegsl gt thel” point and is therefore negligible for the low-energy
b. Wavy lines correspond to the long-range Coulomb interactionhehavior of the Raman spectra.
dashed I_ines to the attractive pairing interaction. The equation on The susceptibilitiesp, in Fig. 1(b) are like a ladder sum
the last line corresponds to EQLO). contracted with vertices, andb, and can be written as a
sum

"

l~<

<
+
‘

and its Fourier-transformegk,mafd,w). To relate the imagi-
nary part of this quantity to the structure functi®h(q,w),

we use the fluctuation-dissipation theorem. The result is Xab(q:o'“’):; Abihi(w), 1D

which involves the Tsuneto functibhz,(w). For small val-
ues ofg (compared to the inverse coherence lengémd the
Fermi wave vectoky), the attractive interaction does not
have to be taken into account in the summation of the ladder,
with the Bose facton,, . and the Tsuneto function is given simply by a unmodified

Equations(7) and(9) relate the Raman efficiency directly bubble and can be evaluated easily to be

~ 1
ST(q,w):_; (1+n,)IMxramakd, @) 9

to the imaginary part of the Raman susceptibility. The evalu- 5

ation of the Raman susceptibility shall be given in Sec. IV AN @) = Ai tani‘(i ( 1 n 1

for the superconducting phase and Raman shifts of the order " EE 2T)\2Ex+w+i0  2E—w—i0)’

of the gap. (12

Equation(12) involves the gap functiod, (which depends
on the temperatujeand the quasiparticle dispersion relation
E2=¢£2+ A% with £2=(ec—€r)?. The constantd: and kg

As pointed out in Ref. 10, the Raman susceptibility due tohave been set equal to 1. As already mentioned, vertex cor-
pair breaking and including screening is given by a polarizaf€ctions due to the pairing Interaction are neglected. This
tionlike bubble made of a renormalized Raman vertgx a  approximation is valid fog<¢™ °, ke (Ref. 13 andw<wy,
Raman vertexy, , and in between two Green’s-function lines Pecause the Anderson-Bogoliubov pole at the plasma fre-
for Bogoliubov quasiparticlefFig. 1(a)]. The vertex renor- guency is no longer included. _ _
malization includes corrections for Cooper-pair-producing A firstand very important fact in the expressions above is
attractive interaction as well as the repulsive Coulomb interfhat they contain only the absolute square of the gap func-
action, the Dyson equation for the vertéy in the limit ~ tion, i.e., Raman scattering isot phase sensitiveand con-
g—0 is given by Fig. 13 in Ref. 10. sequently cannot distinguish between a strongly anisotpic

To show more clearly the effect of screening, we write thedapP|dxz—y2| and ad,z_y2 gap. _
equation for the Raman susceptibility as given in Figé) 1 In the preceding calculation of the unscreened correlation
and Xc). Figure 1b) (with a=1, andb=1y,) shows the un- functions x,p, we have neglected !mpquty scgtterlmgs
screened susceptibility,, given by a bare polarization well as scattering between quasipartiglesn isotropic
bubble with two Raman verticeg, and the contraction of a S-Wave superconductors af=0 and for Raman shifts
BCS-like ladder sum with two Raman vertices. Therefore, @<24, it is perfectly reasonable to neglect impurity scatter-
Xy, includes the attractive Cooper-pair-producing interacn9 because in this regime pair breaking is not possible.
tion. We include Coulomb screening by virtue of a random-Ford-wave superconductors this is no longer true. The effect
phase-approximatio(RPA)-like sum given in Fig. {c). The of impurities will be discussed in the next subsect_lon.
effect of screening on the electronic Raman scattering can The second term of E410), representing screening, van-
now easily be seehlf we denote byy,, a bubble, renor- ishes if the average ofi-A, does. The Tsuneto function is
malized by pairing interaction, with verticesandb at the  fully symmetric, i.e., ha#\;4 (D4, group or Ay (D2p,) sym-

ends as in Fig. (b), the RPA chain can be easily summed upmetry regardless of gap symmetry. As a consequence, the
[see Fig. 10)] yielding screening term vanishes unless the Raman vertex has the

same symmetry as the crystal. In the tetragonal case,
Aq4-like vertices are screened, Bit,- andB,,-like are not.
This is different for orthorhombic HTSC's of the YBCO
type. In this case the Tsuneto function Hgssymmetry, and

IV. THEORY: SUPERCONDUCTING PHASE

_ Xil(w)
x1(w)’

XRamar(qHOuw):ny(w) (10
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the same is true for thd,2_2-like component of the mass B. Effect of orthorhombic distortion

(B1q Of Dyp group,Aq of Doy). Consequently, in these ortho-  ag already mentioned, orthorhombic distortions, i.e., de-
rhombic crystals, th@,; component is also screened. This yjations from the tetragonal symmetry, have a different ef-
discussion is also applicable t0 BrCa,Cth 10216, bUt  fect on Y-123 and on Bi-2212. Consider tBg, (D 4,) com-
with interchanged roles CBlg and BZg modes because of the ponent of the inverse mass tensor irtetragonal high-T,
different orientation of the crystallographic unit cell with re- superconductor with dy2_y2-like gap. TheB,4 (Dy4,) mass
spect to the Cu-O bonds. has its nodes in directions diagonal to the axes of the copper
In tetragonal systems, th#,, component of the Raman planes; the same is true for the gap function. As mentioned
vertex has nodes at the same position as the gap functioabove, this results in the> dependence of the Raman effi-
This has severe consequences for the low-energy part of triency forB,4 (D,p) scattering, in contrast to the depen-
spectra® In two dimensions, the existence of the nodes ofdence predicted foh;, andB,, scattering. Let us now con-
the gap function in the case ofz_ 2 gap results in a linear sider the orthorhombic distortion present in Y-123. The zeros
density of states at low energies. If the vertex has a finit®f the B,y (D4n) mass shift because there are no longer
value in this region, the imaginary part of the Raman suscepirror planes through th€110) axes. For this reason, the
tibility is also linear in the frequency. If the vertex has a lOW-energy part of the spectrum acquires a linear component
node, however, its magnitude squared becomes quadratié addition to thew” component of thd,, case.

with respect to the gap on the Fermi surface. This causes tw% In Bi'2212 the situgtion is_ different becauose _the ortho-
additional powers of the frequency to appear, Byg com- rhombic crystallographic cell is rotate_zd b_y 45_ with respect
ponent of the scattering efficiency is cubic at low to thea and b axes: the orthorhombic distortion preserves

i +
frequencies. Two effects can alter this behavior: an ortho- the mirror planeslé__b,c]. Consequently, t.h.Blg Zeros stay
o ) ) . at the same position, the low-energy efficiency acquires no
rhombic distortion and impurities.

In our calculations, we focus ond2_2-like gap func- linear component.
tion which is only a function of the direction ik space, but
not of the magnitude ok, since the values of the gap func-
tions sufficiently far from the Fermi surface do not affect the In systems with one layer of Cu,(planes per unit cell
results. We are using the same gap function for all bandthere is only one sheet of Fermi surface and the mass fluc-
involved. tuations are essentially intraband mass fluctuations, which

are very sensitive to the scattering polarizations. The scatter-
ing related to the average mass is fully screened. The sim-
A. Effect of impurities plestA;4 (D4p) scattering is related to a Raman vertex of the

In contrast to scattering at nonmagnetic impurities in con-form cos4p symmetry whileByg (Dypn) scattering is ob-

ventional(isotropig superconductors, the influence of impu- tained for a cosg vertex. In multilayer systems, interband
P P ’ PU" fluctuations between the various sheets of the FS are also

rit_y scgttering _plays an important _role for SlJperCOndUCtorﬁmportant. The lowest component of such fluctuations corre-
with highly anisotropic gaps and its effect on the Ramang,qn4s 1o differenaveragemasses in each FS sheet. Such
spectrum is most pronounced for superconductors which ey,cyations do not depend on the scattering polarizations and
hibit regions ink space where the gap almost or completelyjeaqd to unscreened scatteringAyf symmetry.

vanishes. It was showh? that in the case ofl-wave pair-
ing, impurity scattering can be described by extending the
nodal points on the 2D FS to small finite regions with van-
ishing gap. This causes a nonvanishing density of states at The behavior of the Raman vertex near the Fermi surface,
the Fermi energy. For anisotropgwave pairing the gap €specially its sign, is crucial for the scattering efficiency and,
anisotropy becomes smeared out leading to an increase of tHe particular, for the effect of screeningntiscreeningi.e.,
minimum gap value\,. In the case of &d,> 2| gap, this anenh_ancemerﬂf the scattering eff|C|_ency by screening, can
minimum gap increases monotonically with the impurity oceur if the Raman vertex _changes sign on th_e Fermi surface.
concentratiomy,, for small values of,, (Ref. 27. This can be seen by considering the screening part

The renormalization of the gap function by the presence 5
of impurities causes an additional contribution, which is lin- IMyse=— |m)ﬂ (13)
ear in the Raman shif for small Raman shiftso, in the ser X11
Raman spectr® This has consequences for tBe, spec-
trum of atetragonalcrystal, which, according to the theory, > . . .
has a cubia» dependence, because a linear frequency depeft@nces the efficiency, i.e., corresponds to antiscreening.
dence is added. As will be discussed in the next subsection, 10 Show how antiscreening arises, we first write the
the orthorhombicity of the YBCO compounds also causes £C'€€Ning term I, in terms of the real and imaginary
linear addition to the cubic behavior of tBg, channel spec- Parsh =Re\ and\"=ImA of the Tsuneto function and the
trum. Raman vertexy as

In the case of 4d,2_2|-like, A; symmetry gap function o o , o
the impurity-induced minimal gapy,, causes an excitation- | _ _ADTA) = () AN) — 20N ) (NN )
free region to show up in the electronic Raman spectrum  XS¢f (N)2+(\")? '
below a Raman shift of 2., (14)

C. Effect of multilayers

D. Effect of sign change ofy, on the Fermi surface

of the Raman susceptibility. A positive value of }a, en-
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The imaginary part of the Tsuneto functiafiis a positives |, containA;y andB,4 (D4p), and also an interference term
function. Consequently, the quantify”) is a positive func-  which cancels whet,, andl,, are added. The,., effi-
tion of the Raman shiftw. If y changes sign in a region ciency containsB;y and A,y (Dgy). If we assume that the
around the Fermi surface, it is possible tligh”) changes  antisymmetric componerif,, in D) of the Raman tensor
sign as a function ok, i.e., has a zero. At the position of this R vanishes(i.e., lyy=1yx) lxrys cOrresponds to tetragonal
zero, the second and the third term in the numerator of E(:Bng and cancels thB,, contribution inl, andl . Provided
(14) vanish. The first term(y\')\"), is positive and can pat theA,, component of the Raman tensor vanishéb,

become dominant in E14). In this case antiscreening re- . rresponds to the,  of the tetragonal case. Note that the
sults. Antiscreening is particularly sensitive to the sign of the . . 19
antisymmetric componen®,,— R,,)/2 of the Raman tensor

Raman vertex on parts of the Fermi surface around the di¥" "™ ) X . _
rections of the nodes of the gap functiaq. vanishes in the effective mass vertex theory given in Sec. llI
because ofy,,= vy, regardless of the symmetry of the crys-

tal, and also in the experiment in the case of tetragonal crys-
tals but not necessarily for orthorhombic crystals. The equal-

. N ity of 1, andl,, in the calculation is an artifact of the theory.
The experimental determination odbsolute Raman- Y Oy yx© . @) y
A second possible construction fak,y is I'“=1,/,

scattering intensities is plagued by a number of difficultes . . )
reason why usually “relative units” are found in the litera- . lxy. The Ly efficiency containsh,, and B, contribu-

ture). The first is related to the presence of elastically scat;['ons' '_I'he interference term of these two contnbuuohs van-

tered light in the spectra, in particular when nonideal sampldSnes in the tetragonal as well as the orthorhombic case.

surfaces are involved. Depending on the quality of the spec30th, Bzg (D4n) andA,g are contained iy, . But if the Ay

trometer this leads to contributions extending typically, forcomponent of the Raman tensor vanishé8), also corre-

the parameters of the present Work, up to SUemﬂom the Sponds to théAl of the tetragonal case. Both of the expres-

center of the laser line. These contributions can be filteredions forl ™ and1® contain contributions of thé, (D 4p,)

out using a premonochromator or notch filters but, in anyRaman tensor component. This component may be present in

case, Raman-scattering measurements below 50" @  the experiment, but not in the theory, a fact, that has to be

main difficult. The measurements discussed here have beg@pt in mind when comparing the numerical results to the

performed by comparison with the known efficiency of sili- measurements. Note that the Raman efficienciesy) and

con after correcting for differences in the scattering vqumes(X/y/) polarization configurations also contain contributions

The procedure leads to errors of about 50%. _from the antisymmetric part of the Raman tensor. In view of
We use for comparison with the calculation the experi-ese yncertainties iA,, we mainly focus in the next sec-

mental data of Krantet al® in the case of Y-123, and Dono- .
; . ! tion on the directly observable components of the Raman
vanet al?®in the case of Y-124. Our Figs. 4 and 5 are taken, oo y P

from these publications. In the case of Fig. 4 we have cor- We shall conclude this section by taking up again the

rected a scale error in the abscissa found in Ref. 6. In the . - . >
case of Fig. 5 we have calculated thg, component from guestion of the validity of the effective-mass approximation.

the experimental results for the’(’) and (y) polariza- In the experiment, this can be checked in two ways. First, via
tions. the dependence of the spectra on the laser frequency which
The classification of the measured spectra according tghould make_ it possible t_o distinguish the contributions to the
ireducible representations of the symmetry group of thék@man efficiency resulting from resonant and nonresonant
crystal is performed with the use of the Raman tenRor transitions, respectively. The second way involves the mea-
which is related to the Raman efficiency through the expressurement of theé\,, component of the mass. If the effective-
sionl~|eLReS|2, bilinear in the Raman tensor. In the calcu- Mass approximation is valid, the Raman vertex should be
lations, the Raman tensor does not appear explicitly, the inSymmetric (., = vy,), i.€., theA,; (D4,) component should
verse effective massaZE/(akiakj) playing its role. It is vanish. A nonvanishingA,, component of the measured
important to note that the Raman efficiency as given by thescattering would cast doubts on the appropriateness of the
theory[Egs. (7), (9), and(10)] is bilinear in the inverse ef- effective-mass approximation. For a more detailed discus-
fective mass of the Raman vertéixcluding the screening sion see Ref. 29.
pard, i.e., contains the same interferences as the approach
involving the Raman tensor. Note that the Tsuneto function

V. EXPERIMENTAL SPECTRA

A is fully symmetric. - _ VI. NUMERICAL RESULTS AND DISCUSSION
In most of the measurements of the Raman efficiency in
orthorhombic highF, superconductors, aA;,; component To carry out the numerical BZ and FS integrations, we

has been given. Strictly, this irreducible representation doesmployed a tetrahedron approafi The convergence of

not exist inDy, but only inD,,. In orthorhombic crystals, the integrations was checked by using different meshes. In

the Raman tensor contains twg components which corre- Figs. 2 and 3, the results of full BZ integrations for Y-123

spond to theA; and B,4 components of the tetragonBl,,  and Y-124, respectively, are plotted. The corresponding

case, and which are not distinguishableDip, because they spectra obtained through FS integrations can be seen in Ref.

transform in the same way. Nevertheless, quantities can bEd. The Bose factor has not been included, hence the results

constructed in the orthorhombic case which correspond tapply to zero temperature. The2_-like gap function

the tetragonah, 4 component. A =A,c0s2p has been used. In both figures, the Raman shift
One of these id®M=(l,,+1,,)/2—1,,. Both, I,, and is given in units of the gap amplituds,. Since the calcu-
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FIG. 2. Results from the BZ integration for Y-123. Each of the  F|G. 3. Results from the Brillouin-zone integration for Y-124.
six panels contains the total absolute Raman efficiency for elecgor details see the caption of Fig. 2.
tronic Raman scattering according to E¢#). and (9) and its two
constituents, the unscreened and the screening part according to
Ea. (10 and unscreeneds linear, as predicted by the theory.
As already mentioned, thex{y’') component(equal to
the B, component in the nonresonant cagealmost four
lated scattering efficiencies for BZ integrations, contrary totimes stronger than its screen,egg counterpart. The screen-
FS integrations, are not only a function of the reduced freing is very small, its nonvanishing being an effect of the
quency but depend also weakly on the value\gf we took  distorted tetragonality of the crystal. There is, in this case, a
for the calculations\,=220 cm *. This value ofA, falls in  very small amount of antiscreening in the region belavy.2
the range ofAy's determined by Raman scattering and otherAs in the case of thé,;; component, thex'y’) component
methods. The’ function peaks in the Tsuneto function have peaks at almost exactly theAg frequency shift. The low-
been broadened phenomenologically by introducing a finitérequency part has anw+ Bw® frequency dependence, the
imaginary partl’=0.3A, of the frequency variable. linear part arising from the distorted tetragonality, i.e., the
Figures 2 and 3 display spectra for each of the polarizafact that theB,y mass does not vanish at exactly the same
tion configurations yy), (x'x"), (xx), (x'y’), and ky), as  position on the Fermi surface as the gap function does.
well as the symmetry componer;y (D) (defined by The efficiency of the peak in thexy) configuration
IAlg:IX,X,—IXy), the unscreened intensities, the screeningequal to theB,, component in the nonresonant chisealso
part Eq.(13), and the total intensities, equal to the differencefour or five times smaller than that of til ; peak. The Xy)
between unscreened and screening parts. Note that tfR@ak is located at about A3, as expected from the fact that
(x'y") configuration corresponds to tiB4 (D,,) compo- N the ne|ghbo_rhood of the region where the gap is large, the
nent because of the vanishing of tAg, component in the Bz, mass vanishes. Consequently, the peak is not as sharp as
theory. in the former cases and screening vanishes since these spec-
We discuss first the results for Y-123. TAg, component  tra correspond to a nonsymmetrig () representation of the
(in the rest of this section we use tetragonal notation unles8rthorhombic group@5y,).
explicitly stated is subject to rather strong screening, how- In the A;g and x’y") spectra there should be a small
ever its unscreened part is comparable to that ofBhg  peak at abou&>=2\/e\,2H+A2maxw3.9Ao due to the van Hove
component. The relation between the unscreened and trsngularity on thek, axis near theX point. The correspond-
screened(total) spectral weight of theA;, component is ing structure, however, is very weak, and practically invis-
about three. Nevertheless, the shapes of the unscreened dhbt in Fig. 2. This is not unexpected for a 3D calculation.
the screened parts are the same and, consequémehg is These peaks appear strongly when 2D calculations are per-
almost no shift in the peak position due to screenioon-  formed through BZ integratior¥.
trary to the results of Ref.)5The peak is located almost In general, the efficiencies in Y-12&ig. 3) are about a
exactly at 2,. Note that there is no antiscreening in thg,  factor of 3 less than those for its Y-123 counterpart. More-
component. The low-energy part of &l spectrascreened over, the screening of th&;; component of Y-123 is much
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50 " . r to almostAg by the screening. This interpretation contradicts
Y-123 T=10K. A=488nm our numer_ical results whic_h clearly suggest thap the influence
’ ’ of screening on the position of th&;; mode is usually
smaller. The frequency renormalizations of phonons around
T. also seem to contradict the interpretation in Refs. 5 and
12. It has been showhthat lowering the temperature of the

1 -1

40

8

absolute Raman efficiency (10" cm cm’ 'sr )

30 F

) samPIe in the superconducting phase causesAthe435

cm - phonon (plane-oxygen, in-phageo shift up in fre-

or btk —— quency and th®, 4 (D, notation 340 cmi * phonon(plane-
AT e i (XX)’ oxygen, out-of-phageo shift down. This, in turn, implies an

. amplitude of the gap &, between 300 and 360 crhand is

by ) consistent with our interpretation of the electronic Raman
S e ) spectra with theA;, peak at 2.
% 500 1000 1500 2000 Note that the YY), (x'x’), and (x) spectra danot con-
Raman shift (em) tain contributions of theA,, (D,4y) antisymmetric compo-
20 , , : nent of the Raman tensor, while the'¢') component does.

So, the experimental results may suggest that the shift of the
position of the &'y’) spectrum with respect to the peak
position of the other spectra is due to resonance effects. The
(xy) spectrum is also influenced by the, component. It is
difficult to determine its peak position from Fig. 2, but it
seems to be located at the same position as that ofythe (
(x'x"), and (x) configurations. The calculation predicts it
to be located at about 1A3, the shift to 2y can also be
attributed to the existence of &, component, like in the
case of theX'y’) configuration.
To compare the relative intensities of the spectra with
; o s = 200 different pqlarizations, we ref_er to Table I,_which_ _Iists them
Raman shift (om™) together with the corresponding absolute intensities, both at
the peak position. The detailed results of our FS integration
FIG. 4. Experimental Raman-scattering efficiencies for Y-123have already been reported earfigive begin with Y-123
from Ref. 6. The vertical scales are absolute Raman efficienciedupper panel in Table) land compare BZ integration results
measured aT =10 K and an exciting laser wavelength 488  to the experimental ones. With the possible exception of the
nm (Note that a scale error found in Ref. 6 has been correcté® A,y componentand the &’x’) component, which is very
A1g component extracted according It = (lxx+1yy)/2— 1y is  similar to A;g], the agreement is rather good. The deviation
plotted in the lower panel together with the quasitetragéngland  of the A;; component may be attributed to screening, which
B,y components. is very sensitive to sign changes and other details of the
Raman vertex near the Fermi surfasech as details of the
stronger than that of Y-124. This may be, at least in part, dugand structure and especially the exact position of the Fermi

to the additional chain band: Thgy) component of Y-124  energy.
is less screened than thgy) component of Y-123. At low The second compound, Y-124bwer panel in Table)]
frequencies, we correspondingly have antiscreening even iflso shows reasonable agreement between the results of the
Aq, a fact which reveals a change of sign of the effectiveBz integration and the experiment. However, we also have
mass on the Fermi surfa¢see Sec. IV ) Due to this anti-  problems with theA,, component, as we did for Y-123.
screening, the peak in th®y spectrum is shifted from&, The measured absolute intensities agree particularly well
towards approximately 14, In contrast to the situation in  with the calculations in the case of Y-123. With the excep-
Y-123, the Y-124 spectra show clearly the influence of thetion of A, ,, the discrepancy between theory and experiment
van Hove singularity on the spectra, as a small huwt)  is only a factor of 2, which can easily be related to the
located near ey,+ A7 ,~7A. In the A,y spectrum this  difficulties in measuring absolute scattering cross sections. In
hump is almost screened out whereas in thig() spectrum  the case of Y-124, the discrepancy is a bit larger, but a factor
it appears slightly increased by the influence of antiscreenef 4 can still be considered good. We should also keep in
ing. mind that resonances ab, or wg with virtual interband

To compare these predictions with the experiment let usransitions are expected to enhance the simple effective mass
first focus on the peak positions. The experimental results foRaman vertex, a fact which could also explain why the mea-
Y-123 (Fig. 4) clearly show that the position of they), sured scattering efficiencies are usually larger than the cal-
(x'x"), and (x) peaks is at about 300 crh whereas the culated ones.
(x'y’) peak is located at 600 cm, i.e., at twice the fre- We close the discussion of the numerical results with a
qguency of the former. This fact is in sharp contrast with theremark about the Fermi surface integration. For Y-124, the
calculated spectra and has been at the center of the contresults of the former correspond rather closely to the results
versy concerning the topic at hafiti:?It has been suggested from the BZ integration. The situation is different for Y-123.
by Devereaux and co-workér¥ that the B,y component Here, the kx) peak height is almost a factor of 4 larger in
peaks at &, and theA,; component becomes shifted down the FS integration than in the BZ integration. This is likely to

1 -1

absolute Raman efficiency (10‘ch cm sr)

Y-123, T=10K, A=488nm
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TABLE |. Comparison of the experimental peak scattering efficiencies given in units of 10
cm cm L st to the theoretical predictiondrom Fermi surface integrations, Ref. 19, as well as Brillouin-
zone integrations, present woror Y-123 and Y-124.

Vo123 FS integrationRef. 19 BZ integration ExperimentRef. 6
Polarization Absolute Relative Absolute Relative Absolute Relative
yy 20.0 1.00 19.6 1.00 40 1.00
XX 28.0 1.40 7.2 0.37 19 0.48
Xy 3.0 0.15 25 0.13 4 0.10
x'x’ 5.0 0.26 26 0.65
x'y’ 4.8 0.24 10.6 0.54 12 0.30
Alg 19.2 0.96 3.0 0.15 18 0.45
Vo124 FS integration(Ref. 19 BZ integration ExperimentRef. 28
Polarization Absolute Relative Absolute Relative Absolute Relative
yy 6.3 1.00 4.4 1.00 18.0 1.00
XX 1.5 0.24 1.4 0.32 7.2 0.40
Xy 1.1 0.17 0.5 0.11 2.6 0.14
x'x’ 1.4 0.32 12.0 0.66
X'y’ 2.8 0.44 2.3 0.52 5.6 0.31
Alg 1.1 0.17 1.0 0.23 6.9 0.38

result from the close proximity of the van Hove singularity assigned!- ands-like gaps to the two bonding and antibond-
to the FS in the case of Y-12@5 me\), as compared to ing sheets of the FS of the two planes in ah hoc way.
Y-124 (110 meV. Within the present three-dimensional band structure the FS
To verify the predictions related to the effect of ortho- cannot be broken up into bonding and antibonding plane and
rhombic distortions as discussed in Sec. IV B, we performeahain components since such sheets are interconnected at
a fit of the functionacw+ Bw® to the low-frequency part of the general points ok space. It is nevertheless clear that there is
B,y data for Y-123 reported in Refs. 6 and 35 as well as fomo reason why the gap function should be the same in the
Bi-2212 (taken from Ref. 3band to the results of our nu- various sheets for a givek direction. Thus the remaining
merical calculations for Y-123. The ratios of the linear to discrepancy in the peak positions between theory and experi-
cubic parts(at =300 cm %) of the fit to the low-frequency ment could be due to a more complicatgl than a simple
efficiency are given in Table II. A cos2p used here. Another possible source of this discrep-
Both measurements for Y-123 agree in their large lineamncy is scattering through additional excitations of a type not
part, which should be due mainly to the lack of exact tetragoconsidered heré¢e.g., magnetic excitatiopnsontributing to
nality and the presence of impurities. The results of the BZand broadening thB,, peak.
integration show a smaller linear part, because they do not A BCS-like theory, which involves an attractive pairing
take into account the influence of impurities. Finally, the potential as well as the repulsive Coulomb potential and uses
result for Bi-2212 is completely different from the former an anisotropicd,:2_2-like gap function in connection with
results for Y-123. The linear part almost vanishes, in agreethe effective-mass approximation used in the calculation of
ment with the preceding discussion. the absolute Raman-scattering efficiencies yields results
which are in significant agreement with the experimental
spectra. One exception, the peak positions ofAthgand the
B,y components, remains unexplained. The theory predicts

In spite of the striking ability to predict not only general them to be both located neay=2A,, but the experiment
features of the observed spectra but also their peak intensiiows the peak i, at almost twice the frequency of the
ties, our calculations are not able to predict the relative poP€ak inA4. The weakB,y spectrum agrees in intensity and
sitions of theA,;, andB, 4 peaks. According to Figs. 2 and 3
the A,4 spectrum should peak only slightly below2while
B,4 should peak at&,. The experimental data of Figs. 4 and
5, however, indicate that tH#, , spectra peak nearly at twice

VII. CONCLUSIONS

TABLE Il. The ratio between the linear and cubic parts of the
low-energy Raman efficiency B4 (D4,) configuration of several
high-T. compounds at a Raman shift =300 cni .

the frequency ofA,4. Since the observed,; peak is con- Tsc Linear: cubic inB Reference
siderably sharper than that Bf 4, we may want to assign the 19

Aqq peak to A,. Our calculations show that it is impossible Y-123 1 Krantzet al. (Ref. 6
to reproduce both peak frequencies with a simple gap of thi-123 1 Hacklet al. (Ref. 35
form Aycos2p where ¢ is the direction of thek vector. A y-123 0.35 BZ integration
reasonable fit was obtained in Ref. 6 with a two-dimensionahj-2212 0.07 Staufeet al. (Ref. 36

FS which did not take into account the chain component and
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peak position with calculations for d,2_,2-like gap. The
results of other experiments, involving the temperature de-
pendence of phonon frequencidsuggest that thé,, peak
position corresponds to the gap amplitudi, 2The shifting

of the By, peak towards higher frequencies may have an
origin different from the mass-fluctuation-modified charge-
density excitations described in the theoretical part of this
paper but could also be due to a multisheeted gap function,
more complicated than the simptg._-like Ajcos2p gap
assumed in our calculations. The initial variation of thg,
andB, 4 scattering efficiencies we are linear as expected for
that gap. TheB,4 symmetry becomes, in the presence of
the orthorhombic distortion related to the chains. Conse-
quently, the scattering efficiency at low frequency is not pro-
portional to w® but should have a small linear component
which is found both in the calculated and the measured spec-
tra. In the corresponding spectrum of Bi-2212, with an ortho-
rhombic distortion alongx+Yy), the B;4 (Dgp) excitations
also have a nonsymmetri8,, (D,p) orthorhombic charac-
ter. Consequently, for smadb no component linear im is
found in the measured spectra.

We have performed our calculations using either BZ or
FS integration. In the case of Y-124 the spectra so obtained
are very similar. For Y-123 quantitative differences appear;
they are probably related to the presence of a van Hove sin-
gularity close to the FS. These singularities appear as weak
structures in the calculated spectra, as expected for a 3D
band structure.
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