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Coupled-cluster expansions for the self-charging model of a Josephson junction chain
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The critical behavior of the self-charging model of a chain of Josephson junctions is studied by the coupled-
cluster expansion method. It is shown that the system displays a Kosterlitz-Thouless transition, and the critical
point as well as the critical parameters are determined. The results agree reasonably well with those obtained
by other methods.@S0163-1829~97!01117-X#
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I. INTRODUCTION

The coupled-cluster expansions with the eigenvalue eq
tions truncated according to the continuum limit have prov
to be efficient in investigating the ground state, mass ga
and scaling behavior of lattice gauge theory1,2 and the O~3!
nonlinears model on lattice.3

In this paper, we study the critical behavior of the se
charging model of chains of Josephson junctions4 by the
coupled-cluster expansions method. Our purpose is to d
onstrate the effectiveness of our method in phase transit
with an essential singularity of correlation length so as
provide a technique to analyze the scaling behavior near
critical point. Calculations were done for the mass gaps u
tenth-order approximation. It is shown that the system d
plays a Kosterlitz-Thouless~KT! transition. The critical
point as well as the critical parameters are determined,
the results agree reasonably well with that obtained by o
methods.5–13

This paper is organized as follows. Section II contain
description of the Hamiltonian of the self-charging model
Josephson junction chains, and the truncated eigenv
equations. In Sec. III, expressions are derived from th
truncated eigenvalue equations for the ground state w
function and mass gaps. Finally, in Sec. IV, we give a d
cussion of the results and the conclusions.

II. THE HAMILTONIAN AND THE TRUNCATED
EIGENVALUE EQUATIONS

We consider a linear array with lattice spacinga of N
superconducting grains embedded in an insulator.4 The i th
grain is described by a superconducting order param
c i[ucueif and containni Cooper pairs of charge 2e. The
i th and j th grains are coupled by a Josephson junction w
critical currentI 0. Even if at some low temperature the ind
vidual islands of the array are superconducting, it may
quire still lower temperature for the global phase cohere
to establish across the whole array. It is interesting to pre
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the critical behavior and the phase transition of the array
In the self-charging model, the behavior of the array

approximated by the following Hamiltonian:4

H5a0(
i
ni
222J0(

i
cos~f i112f i !,

with @ni ,f i #52 id i j , ~1!

whereni is the number operator for excess Cooper pairs
the i th grain anda0 is, in general, related to the inverse
the capacitance of assembly of grains. The second term
specified by the Josephson coupling energyJ05\I 0 /e, here
J0 is assumed to be the same for all nearest-neighbor pai
grains^ i j &.

The Hamiltonian~1! has been studied by strong-couplin
expansions,5 mean-field theory,6 the variational method,7,11

and the equivalent partition function method.4

It is well known that the Hamiltonian~1! is the lattice
version of the~111!-dimensionalO(2) nonlinears model,7

which is defined by the following action:

S5
1

2g2E DfW •DfW dxdt with fW •fW 51, ~2!

wherefW is a two-component field. The action~2! on a dis-
crete space-time lattice can be approximated as

S52
1

g2(i H dx

dt
fW i•fW i1 t̂1

dt

dx
fW i•fW i1 x̂J , ~3!

where dx and dt are the spacings in the space and tim
directions, respectively. An inessential constant has b
dropped in Eq.~3!. If we takedt5dx, then the lattice theory
is now equivalent to the statistical mechanical problem
two-component spins interacting via nearest-neighbor c
pling on a two-dimensional lattice, i.e., the two-dimension
XY model

H52J(̂
i j &

SW i•SW j52J(̂
i j &

cos~f i2f j !. ~4!
12 701 © 1997 The American Physical Society
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The two-dimensionalXYmodel is conjectured to experienc
a KT phase transition,8 characterized by a very weak sing
larity in the free energy and an exponential divergence of
correlation lengthj at a finitb, i.e.,

j;expS btsD , ~5!

with 0,t[12b/bc!1, s51/2, andb.1.5.
The critical behavior of the two-dimensionalXY model

has long been studied numerically by Monte Carlo~MC!
simulations,7 by high-temperature expansions,9 and by renor-
malization group methods.10 All these studies have produce
increasing accurate verifications of the KT transition. Ho
ever, another method, the coupled-cluster expansion t
cated according to the continuum limit for calculating t
mass gap and the scaling behavior of the Hamiltonian~1!
may still be valuable.

Before studying the one-dimensional chain with t
Hamiltonian~1!, we first discuss its relation with the phys
cally interesting two-dimensional case. There exist comp
hensive recent reviews on the two-dimensional Joseph
junction arrays with charging effects.14,15 The two-
dimensional arrays display interesting physics, such as
KT phase transition caused by vortices, the charge unbind
phase transition, charge-vortex duality, Aharonov-Casher
fects, etc. In the critical region, the Hamiltonian~1! for the
one-dimensional chain with a charging effect is equivalen
the ‘‘classical’’ two-dimensional arrays without the chargin
term, i.e., the Hamiltonian~4!. We will show, by explicit
calculation of the energy gap of the Hamiltonian~1!, that the
system displays a phase transition at some critical valu
J0 /a0 caused by competition between charge order
phase order. This phase transition corresponds to the
phase transition of the ‘‘classical’’ two-dimensional array
We will leave the more interesting two-dimensional Jose
son junction arrays with charging effects for future inves
gation.

We now calculate the mass gap of the Hamiltonian~1!
using the coupled-cluster expansion. DefiningUi5eif i and
Ei5ni for convenience, the Hamiltonian~1! is

H5a0(
i
Ei
22J0(

i
~UiUi11

1 1Ui
1Ui11!, ~6!

W[
H

a0
5(

i
Ei
22

1

g4(i ~UiUi11
1 1Ui

1Ui11!,

with
1

g4
5
J0
a0

[Q2, ~7!

@Ei ,Uj #5Ujd i j , @Ei ,Uj
1#52Uj

1d i j . ~8!

The Hamiltonian~6! with the commutators~8! is very similar
to that of U~1! lattice gauge Hamiltonian formalism2 except
that the site variableEi replaces the link variableEl , and the
link term UiUi11

1 replaces the plaquette termUp . So the
calculations of the mass gap of Eq.~6! are similar to that in
Ref. 2. We shall restrict our calculations to the case of z
temperature,T50.

Let us start with a ground state of the form
e

-
n-

-
on

he
g
f-

o

of
d
T
.
-
-

o

uc0&5eRu0&, ~9!

whereu0& is the bare vacuum satisfying

Ei u0&50. ~10!

R is a functon of coupled clusters. The stateuc0& satifies the
Schrödinger equation

Wuc0&5w0uc0&. ~11!

Substituting Eq.~9! into Eq. ~11!, we find

@Ei ,@Ei ,R##1@Ei ,R#@Ei ,R#2
2

g4
G15w0 , ~12!

where the repeated indexi implies a summation over al
lattice space sitesi , and

G15
1

2(i ~UiUi11
1 1Ui

1Ui11![~1,1̄!. ~13!

Defining the order of clusters in the same way as in Re
1–3, we expandR as a series of clusters which are the va
ous combinations ofUi with the same symmetry as th
ground state

R5R11R21R31•••, ~14!

and choose

R15c1G1 , ~15!

wherec1 is a coefficient to be determined. The first-ord
clusterG1 is the simplest cluster with the symmetry as t
vacuum. The term@Ei ,@Ei ,G1## will not produce new clus-
ters

@Ei ,@Ei ,G1##52G1 , ~16!

while the term@Ei ,G1#@Ei ,G1# will produce new clusters

@Ei ,G1#@Ei ,G1#5211G2,12G2,21G2,3, ~17!

where

G2,15
1

2(k ~Uk
2Uk11

12 1UK
12Uk11

2 ![~2,2̄!,

G2,25
1

2(k ~UkUk12
1 1UK

1Uk12![~1,0,1̄!,

G2,35
1

2(k ~UkUk11
12 Uk121UK

1Uk11
2 Uk12

1 ![~1,2̄,1!.

~18!

We define these three new clusters as the second-order
ters. We denote a cluster asGn, j , where n represent the
order andj the serial number of the cluster. ThusR2 can be
written as

R25c2,1G2,11c2,2G2,21c2,3G2,35(
j51

3

c2,jG2,j , ~19!

wherec2,j ( j51,2,3) are coefficients to be determined. T
terms @Ei ,G1#@Ei ,G2,j #( j51,2,3) will produce more new
clusters which are different from those inR1 andR2. They
are defined as third-order clusters.
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In general,

@Ei ,Rn#@Ei ,Rm#5~n1m!th clusters1 lower order clusters.
~20!

It has been shown in Ref. 1 that we can make a trunca
scheme , which preserves the continuum limit by comput
@Ei ,Rn#@Ei ,Rm# only for n1m<M in Eq. ~12!, so that no
clusters with order higher thanM are produced. In this trun
cation scheme, theM th-order truncated eigenvalue equati
of the vacuum state is

(
n51

M

@Ei ,@Ei ,Rn##1 (
n1m52

M

@Ei ,Rn#@Ei ,Rm#2
2

g4
G15w0 ,

~21!

with

R5R11R21•••1RM . ~22!

Next, let us consider the mass gaps. An excited state
be represented by

ucF&5F~U !uc0&5F~U !eRu0&, ~23!

which satisfies the equation

WucF&5wFucF&, ~24!

whereF(U) is a function ofUi with appropriate symmetry
so as to makeucF& possessing the required quantum nu
bers. The expansion ofF in terms of coupled clusters up t
M th order is

F5F11F21•••1FM . ~25!

TheM th-order truncated eigenvalue equation for theucF& in
the scheme preserving the continuum limit is

(
n51

M

@Ei ,@Ei ,Fn##1 (
n1m52

M

2@Ei ,Fn#@Ei ,Rm#

5wF0(
n51

M

Fn , ~26!

wF05wF2w0 . ~27!

We do the calculation for the antisymmetric and symme
lowest-lying excited states of the model under a parity tra
formation, denoted bymA andms , respectively. The lowes
order termF1 in expansion~25! is

S15s1G1 forms

and

A15a1•
1

2(i ~UiUi11
1 2Ui

1Ui11! for mA , ~28!

wheres1 and a1 are coefficients to be determined. High
order terms can be produced in the same way as in the
of the vacuum state.
n
g

an

-

c
-

se

III. CALCULATION OF THE VACUUM WAVE FUNCTION
AND MASS GAPS

To compute the mass gaps, we must first determine
vacuum state. The left-hand side of Eq.~21! can be ex-
pressed as a linear combinaton of clusters with ord
1;M . All those clusters are independent from one anoth
Therefore, the coefficient of each cluster in both sides of E
~21! should be equal to each other. This led to a system
nonlinear equations for$cn, j , n51,2, . . . ,M %. Solving
these equations, we get the coefficients of theM th order
expansion ofR, and hence the stateeRu0&. After obtaining
the vacuum wave function, we determine the mass gaps
solving the eigenvalue equation~26!. Generally, there are
many solutions when the orderM is larger than three, we
take the smallest non-negative real number as the value
wF0 in Eq. ~26!. The mass gap isma5(g2/2a)wF0.

We carry out the calculation forM53,4,5,6,7,8,9,10. The
largerM is, the more the number of independent cluste
increases as the order rises. For example, the number of
depedent clusters for the vacuum state is 10 forM53, and
30 forM54, but 7355 forM59. The plots of ln(mAa) and
ln(msa) against 1/g

2 with M>5 are presented in Fig. 1 and
Fig. 2, respectively. The results withM>6 show that the
system displays a clear phase transition. Since the cur
apparently exhibit the trend of convegence as the order
increasing, we think the results are meaningful and the ten
order results can be taken as good approximations to
mass gap.

FIG. 1. Calculated values of ln(mAa) vs 1/g2. The plot com-
posed of solid circles is the fitting of Eq.~30! to the tenth-order
curve.
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Both tenth-order results ofmA andms show a phase tran
sition at

1

gc
2;1. ~29!

Near the phase transition point, the mass gaps exhibit es
tial singularities characterized by4,8

ma.cexpH 2
b

~g22gc
2!s J . ~30!

The values ofQc , s, b, andc determined by fitting Eq.~30!
to the tenth curve in Fig. 1 are

Qc5
1

gc
2 51.0641, s50.4928, b51.7551, ln c51.5372,

~31!

and to the tenth curve in Fig. 2 are

Qc5
1

gc
2 51.064, s50.467, b51.755, lnc51.578,

~32!

We have plotted the results of Eq.~30! with its parameters
taking the values in Eq.~31! and Eq.~32! in Fig. 1 and Fig.
2, respectively. The fit formA is quite well up to correlation
lengthj.40.

The results in Eq.~31! differ slightly from those in Eq.
~32!. It is because the mass ofms is larger than that of
mA . Generally, the larger the mass gap is, the more com
cated and larger coupled clusters are needed to obtain re

FIG. 2. The mass gap ln(msa) vs 1/g
2. The plot with solid circles

is the fitting of Eq.~30! to the tenth-order curve.
en-

li-
ults

with the same accuracy. Therefore, the results for the crit
point and the critical exponent in Eq.~31! are more reliable.

IV. CONCLUSIONS AND DISCUSSION

By using the coupled-cluster expansion with the eige
value equations truncated according to the continuum lim
we have shown that, atT50, the self-charging model o
Josephson junction chains has a KT transition
Qc.1.064, and the critical exponents.0.493. The chain is
superconducting forQ>Qc , and is insulating forQ,Qc ,
and the correlation length is exponential devergent near
critical point Qc . The result is not surprising, becaus
Q,Qc means the Coulomb coupling between the grains
the chain is strong enough comparing to the Josephson
pling even at zero temperature. The transition to a superc
ducting state can be suppressed entirely in favor of an in
lating state in which there is an energy gap~mass gap! for
transfer of charge between grains.

It is interesting to compare our results with those of oth
works. The variational calculation by Kampf and Scho¨n11

givesQc50.725 and the mean-field theory6 givesQc50.5,
but does not give the critical behavior of the correlati
length. The analytic method gives8 Qc51.11. A recent MC
simulation also gives this result.13

Bradly and Doniach4 found that the self-charging mode
of the Josephson junction chain is equivalent to the isotro
two-dimensional XY model with coupling constan
(J0 /a0)

1/2 and lattice constanta, if a0!D and J0!D,
whereD is the superconducting energy gap atT50. They
then conclude that the system has a KT transition
Qc51.11, which is well known for the two-dimensiona
XY model. All previous investigations on the critical exp
nent and critical point refer to the two-dimensionalXY
model. On the other hand, in our method, there is no s
restriction for the value ofa0 andJ0, and the critical behav-
ior of the KT transition is naturally derived in the Hami
tonian formulation.

It is known that the critical coupling constantQc depends
on regulation schemes while the critical exponent such
s is independent of the schemes. For example, in Ref.
the strong-coupled expansion was used to study the la
XY model in action formulation. When the lattice is squa
triangular, and honeycomb, the value ofQc is about 1.11,
0.67, and 1.44, respectively. Since the lattice Hamilton
formulation and the action formulation are two differe
regulation schemes,16 our result ofQc is not unreasonable.

Besides the antisymmetric mass gapmA which is related
to the inverse correlation length of the two-dimensionalXY
model, we have also calculated the symmetric mass
ms . Near the critical point,ms shows the same behavior a
mA . This provides further evidence for the scaling chara
teristics of the system near its critical point. The results
this paper also show that the coupled-cluster expansion
appropriate truncaton scheme is effective for studying
critical behavior of physical systems with phase transition
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