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Coupled-cluster expansions for the self-charging model of a Josephson junction chain
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The critical behavior of the self-charging model of a chain of Josephson junctions is studied by the coupled-
cluster expansion method. It is shown that the system displays a Kosterlitz-Thouless transition, and the critical
point as well as the critical parameters are determined. The results agree reasonably well with those obtained
by other methodq.S0163-182807)01117-X

I. INTRODUCTION the critical behavior and the phase transition of the array.
In the self-charging model, the behavior of the array is

The coupled-cluster expansions with the eigenvalue equapproximated by the following Hamiltonigh:
tions truncated according to the continuum limit have proved
to be efficient in investigating the ground state, mass gaps, — 2_ b
and scaling behavior of lattice gauge thédnand the @3) H aOZ f 2Jozi cosdiva™ di).
nonlinearc model on lattice® ) )

In this paper, we study the critical behavior of the self- with [ni,¢i]=—i6, (1)
charging model of chains of Josephson junctfoby the  wheren, is the number operator for excess Cooper pairs on
coupled-cluster expansions method. Our purpose is to demhe ith grain anday is, in general, related to the inverse of
onstrate the effectiveness of our method in phase transitionpe capacitance of assembly of grains. The second term is
with an essential Singularity of correlation Iength SO as tOSpeCmed by the Josephson Coup”ng ene]g¥ﬁ|o/e, here
provide a technique to analyze the scaling behavior near thg, is assumed to be the same for all nearest-neighbor pairs of
critical point. Calculations were done for the mass gaps up trains(ij ).
tenth-order approximation. It is shown that the system dis- The Hamiltonian(1) has been studied by strong-coupling

plays a Kosterlitz-ThoulesgKT) transition. The critical expansions, mean-field theory, the variational method!*
point as well as the critical parameters are determined, anghd the equivalent partition function methbd.

the results agree reasonably well with that obtained by other |t js well known that the Hamiltoniarfl) is the lattice
-13 . . . .

methc_>d§’. . _ _ . version of the(1+1)-dimensionalO(2) nonlinears model!
This paper is organized as follows. Section Il contains ayhjch is defined by the following action:

description of the Hamiltonian of the self-charging model of

Josephson junction chains, and the truncated eigenvalue 1 > e s

equations. In Sec. lll, expressions are derived from these S_Ef Ag-Agdxdt with ¢-¢=1, 2)

truncated eigenvalue equations for the ground state wave . ] o ]

function and mass gaps. Finally, in Sec. IV, we give a disWhere ¢ is a two-component field. The actid@) on a dis-

cussion of the results and the conclusions. crete space-time lattice can be approximated as

1 X . St. .
IIl. THE HAMILTONIAN AND THE TRUNCATED S=- ?Z [ s b bt i dieify ©

EIGENVALUE EQUATIONS . . .
where 6x and 6t are the spacings in the space and time

We consider a linear array with lattice spaciagof N directions, respectively. An inessential constant has been
superconducting grains embedded in an insufafbne ith  dropped in Eq(3). If we take st= 8x, then the lattice theory
grain is described by a superconducting order parametds now equivalent to the statistical mechanical problem of
Ji=|y|e'® and containn; Cooper pairs of chargee2 The  two-component spins interacting via nearest-neighbor cou-
ith andjth grains are coupled by a Josephson junction withpling on a two-dimensional lattice, i.e., the two-dimensional
critical currentl ;. Even if at some low temperature the indi- XY model
vidual islands of the array are superconducting, it may re-
quire still lower temperature for the global phase coherence H=—J1> S-S= _J% cos ¢ — &) (4)

to establish across the whole array. It is interesting to predict {p
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The two-dimensionaXY model is conjectured to experience | h0) =€R|0), 9)
a KT phase transitiof characterized by a very weak singu-

larity in the free energy and an exponential divergence of th&/
correlation length¢ at a finit 8, i.e., E;|0)=0. (10)

%b
§~ex F

with 0<7=1-p/B.<1, o=1/2, andb=1.5. W] o) =Wo| tho). (19
The critical behavior of the two-dimensionXlY model -~ - .

has long been studied numerically by Monte CafléC) Substituting Eq(9) into Eq. (11), we find

simulations’ by high-temperature expansiohand by renor- 2

malization group method®.All these studies have produced [Ei.[Ei .RI]+[E;,RI[E; ,R]~ EGl:WOv (12)

increasing accurate verifications of the KT transition. How-

ever, another method, the coupled-cluster expansion trurwhere the repeated indeximplies a summation over all

cated according to the continuum limit for calculating thelattice space siteg and

mass gap and the scaling behavior of the Hamiltor{iBn

- 1 _
may still be valuable. G, == UUS - +UU.L ) =(11 13
Before studying the one-dimensional chain with the ! 22( Uit Uit =10, 13

Hamiltonian(1), we first discuss its relation with the physi- Defining the order of clusters in the same way as in Refs.

cally interesting two-dimensional case. There exist compre: : . .
. ! ; : 1-3, we expandR as a series of clusters which are the vari-
hensive recent reviews on the two-dimensional Josephson

junction arrays with charging effect&®® The two- ous combinations olJ; with the same symmetry as the
dimensional arrays display interesting physics, such as th%round state
KT phase transition caused by vortices, the charge unbinding R=R;+R,+Rg+---, (14)
phase transition, charge-vortex duality, Aharonov-Casher ef-
fects, etc. In the critical region, the Hamiltoniét) for the ~ @nd choose
one-dimensional chain with a charging effect is equivalent to R.=c.G (15)
“ . ” . . . . 1 1 1

the “classical” two-dimensional arrays without the charging
term, i.e., the Hamiltoniari4). We will show, by explicit Wherec; is a coefficient to be determined. The first-order
calculation of the energy gap of the Hamiltonidn, that the  clusterG, is the simplest cluster with the symmetry as the
system displays a phase transition at some critical value ofacuum. The termiE; ,[ E;,G,]] will not produce new clus-
Jo/ay caused by competition between charge order anders
phase order. This phase transition corresponds to the KT
phase transition of the “classical” two-dimensional arrays. [Ei.[Ei,G1]]1=2Gy, (16)
We will leave the more interesting two-dimensional Josephwhile the term[E; ,G;][E;,G,] will produce new clusters
son junction arrays with charging effects for future investi-
gation. [Ei,Gi1l[Ei,G1]=—1+G31- G+ Go3,  (17)

We now calculate the mass gap of the Hamiltoniah  where
using the coupled-cluster expansion. Definldg=e'% and
E;=n; for convenience, the Hamiltoniai) is

here|0) is the bare vacuum satisfying

R is a functon of coupled clusters. The sthtg) satifies the
: 5 Schralinger equation

1 N
Goi=52 (URUKA+UCUR)=(22),

H=ao2 Ef=302 (UU5 14U Uiy, (6 L _
G2,2:§2k (UUgi 2+ Uk Ui 2)=(1,0,1,

H 1
Wza—=2i Ef - EEI (UiUy 1+ U UL, 1 . P _
0 Gz,fz% (UU Ukt U Ui Uy ) =(1,21).
1 18
with === (7) . 1o
9 o We define these three new clusters as the second-order clus-
) ) ters. We denote a cluster &, ;, wheren represent the
[Ei,Ujl=U;6;, [E\Ujl=-Uj ;. (8)  order andj the serial number of the cluster. ThRs can be
The Hamiltonian(6) with the commutatorg8) is very similar written as
to that of U1) lattice gauge Hamiltonian formalisnexcept 3
that the site variabl&; replaces the link variablg,, and the Ry=0C51G5 1+ €565 5t €2 3G, 3= Z C2;Gyj, (19
=1

link term U;U;", ; replaces the plaquette terth,. So the

calculations of the mass gap of E@) are similar to thatin  wherec,; (j=1,2,3) are coefficients to be determined. The

Ref. 2. We shall restrict our calculations to the case of zerderms[E;,G,][E;,G,;](j=1,2,3) will produce more new

temperatureT =0. clusters which are different from those Ry andR,. They
Let us start with a ground state of the form are defined as third-order clusters.
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In general, 2
[E;,R,]LE; ,Rm]=(n+m)th clusters- lower order clusters. 1 —— — orders
in rm 1] ——-—— order 6
(20) ] order 7

order 8
order 9
order 10

It has been shown in Ref. 1 that we can make a truncation
scheme , which preserves the continuum limit by computing
[E;,R,I[E;,Ry] only for n+m<M in Eq. (12), so that no
clusters with order higher thav are produced. In this trun- A
cation scheme, th¥th-order truncated eigenvalue equation

of the vacuum state is

I SRR 1

2
M M T
2 g
2 [EL[E R+ > [E RE.Rnl= 2Gi=wo,  E 1 ™~
n=1 n+m=2 g N
(21 ]
with 4
R:R1+R2++RM (22) .5
Next, let us consider the mass gaps. An excited state can
be represented by -6 i
|¥e)=F (V)| o) =F(U)e"|0), (23 - | | | -
which satisfies the equation 02 0.4 06 0.8 1.0 1.2 1.4
1/g?
W| ) = We| ), (24

FIG. 1. Calculated values of Ima) vs 14> The plot com-
posed of solid circles is the fitting of E¢30) to the tenth-order
curve.

whereF(U) is a function ofU; with appropriate symmetry
so as to makeir) possessing the required quantum num-
bers. The expansion & in terms of coupled clusters up to

Mth order is
I1l. CALCULATION OF THE VACUUM WAVE FUNCTION

F=F,+F,+ - +Fy. (25) AND MASS GAPS

The Mth-order truncated eigenvalue equation for ftie) in To compute the mass gaps, we must first determine the
the scheme preserving the continuum limit is vacuum state. The left-hand side of E@1) can be ex-
pressed as a linear combinaton of clusters with order

M M 1~ M. All those clusters are independent from one another.
2 [Ei.[E;,F, 11+ E 2[E; ,F,I[E;,Rn] Therefore, the coefficient of each cluster in both sides of Eq.
n=1 n+tm=2 (21) should be equal to each other. This led to a system of

M nonlinear equations forc,;, n=1,2,...,M}. Solving
=WFOZ Fn, (26)  these equations, we get the coefficients of Mé order
expansion ofR, and hence the stat|0). After obtaining
the vacuum wave function, we determine the mass gaps by
Wro=Wg—Wo. (27 solving the eigenvalue equatiai26). Generally, there are

We do the calculation for the antisymmetric and symmetrid@ny solutions when the ordéd is larger than three, we
lowest-lying excited states of the model under a parity transt@ke the smallest non-negative real nuzmber as the value of
formation, denoted byn, andms, respectively. The lowest Wro in Eq. (26). The mass gap ima=(g°/2a)Wo.

order termF, in expansion(25) is We carry out the calculation favl = 3,4,5,6,7,8,9,10. The
larger M is, the more the number of independent clusters
S,=5,G; formg increases as the order rises. For example, the number of in-
depedent clusters for the vacuum state is 10Mor 3, and
and 30 forM =4, but 7355 forM =9. The plots of Infn,a) and

In(mga) against 1g> with M=5 are presented in Fig. 1 and
Fig. 2, respectively. The results witkl =6 show that the
system displays a clear phase transition. Since the curves
apparently exhibit the trend of convegence as the order is
wheres; and a,; are coefficients to be determined. Higher increasing, we think the results are meaningful and the tenth-
order terms can be produced in the same way as in the caseder results can be taken as good approximations to the
of the vacuum state. mass gap.

1
Ar=ay 52 (ViU —=Uf Uiy for my,  (28)
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FIG. 2. The mass gap Im(a) vs 1h42. The plot with solid circles
is the fitting of Eq.(30) to the tenth-order curve.

Both tenth-order results afi, andmg show a phase tran-
sition at

L (29)
g

with the same accuracy. Therefore, the results for the critical
point and the critical exponent in E(B1) are more reliable.

IV. CONCLUSIONS AND DISCUSSION

By using the coupled-cluster expansion with the eigen-
value equations truncated according to the continuum limit,
we have shown that, at=0, the self-charging model of
Josephson junction chains has a KT transition at
Q.=1.064, and the critical exponeat=0.493. The chain is
superconducting foQ=Q,., and is insulating foIQ<Q.,
and the correlation length is exponential devergent near the
critical point Q.. The result is not surprising, because
Q< Q. means the Coulomb coupling between the grains in
the chain is strong enough comparing to the Josephson cou-
pling even at zero temperature. The transition to a supercon-
ducting state can be suppressed entirely in favor of an insu-
lating state in which there is an energy gapass gapfor
transfer of charge between grains.

It is interesting to compare our results with those of other
works. The variational calculation by Kampf and $Soho
gives Q.=0.725 and the mean-field the8rgives Q.=0.5,
but does not give the critical behavior of the correlation
length. The analytic method give®,=1.11. A recent MC
simulation also gives this resu.

Bradly and Doniachfound that the self-charging model
of the Josephson junction chain is equivalent to the isotropic
two-dimensional XY model with coupling constant
(Jo/ap)Y? and lattice constang, if ay<A and Jo<A,
where A is the superconducting energy gapTat 0. They
then conclude that the system has a KT transition at
Q.=1.11, which is well known for the two-dimensional
XY model. All previous investigations on the critical expo-
nent and critical point refer to the two-dimensiondly

Near the phase transition point, the mass gaps exhibit essemodel. On the other hand, in our method, there is no such

tial singularities characterized $¥

b
ma=cexp ————— - 30
p[ (gz—gi)"] 40
The values of)., o, b, andc determined by fitting E¢(30)
to the tenth curve in Fig. 1 are

1
QC=52=1.0641, 0=0.4928, b=1.7551, Inc=1.5372,
C

(31
and to the tenth curve in Fig. 2 are

=1.064, ¢=0.467, b=1755 Ic=1578,
(32

We have plotted the results of E(BO) with its parameters
taking the values in Eq:31) and Eq.(32) in Fig. 1 and Fig.
2, respectively. The fit fom, is quite well up to correlation
length £=40.

The results in Eq(31) differ slightly from those in Eq.
(32). It is because the mass ofig is larger than that of

Qc=

e

restriction for the value o, andJg, and the critical behav-
ior of the KT transition is naturally derived in the Hamil-
tonian formulation.
It is known that the critical coupling consta@. depends
on regulation schemes while the critical exponent such as
o is independent of the schemes. For example, in Ref. 12,
the strong-coupled expansion was used to study the lattice
XY model in action formulation. When the lattice is square,
triangular, and honeycomb, the value @f is about 1.11,
0.67, and 1.44, respectively. Since the lattice Hamiltonian
formulation and the action formulation are two different
regulation scheme®$, our result ofQ, is not unreasonable.
Besides the antisymmetric mass gap which is related
to the inverse correlation length of the two-dimensioKk:
model, we have also calculated the symmetric mass gap
m. Near the critical pointmg shows the same behavior as
m, . This provides further evidence for the scaling charac-
teristics of the system near its critical point. The results of
this paper also show that the coupled-cluster expansion with
appropriate truncaton scheme is effective for studying the
critical behavior of physical systems with phase transitions.

ACKNOWLEDGMENT

m, . Generally, the larger the mass gap is, the more compli- This work was a part of the project supported by the Na-
cated and larger coupled clusters are needed to obtain resuttsnal Natural Science Foundation of China.



55 COUPLED-CLUSTER EXPANSIONS FOR THE SELF- ... 12 705

1S. H. Guo, Q. Z. Chen, and L. Li, Phys. Rev.49, 507 (1994; ’G. Fox, R. Gupta, U. Martin, and S. Otto, Nucl. Phys2@5, 188
Q. Z. Chen, S. H. Guo, W. H. Zheng, and X. Y. Faiigd. 50, (1982.
3564(1994; Q. Z. Chen, X. Q. Luo, and S. H. Guo, Phys. Lett. 8J. Kosterlitz and O. Thouless, J. Phys.6C 1181 (1973; D.
B 341, 349(1995; Q. Z. Chen, X. Q. Luo, S. H. Guo, and X. Y. Thoulessjbid. 7, 1046(1974.
Fang,ibid. 348 560(1999; S. H. Guo, Q. Z. Chen, X. Y. Fang, °p. Butera and M. Comi, Phys. Rev.4, 11 969(1993.
J. M. Liu, X. Q. Luo, and W. H. Zheng, Nucl. Phys. @roc. 10| Biferale and Petrouzio, Nucl. Phys. 28 677 (1989.
Suppl) 47, 827(1996. 1A, Kampf and G. Scho, Phys. Rev. B36, 3651(1987.

2 .
X.'Y. Fang, J. M. Liu, and S. H. Guo, Phys. Rev.33, 1523 12\g campostrini, A. Pelissatto, P. Rossi, and E. Vicampub-
, (199, _ lished.
X. Y. Fang, S. H. Guo, J. M. Liu, and Q. Z. Chen, Phys. Rev. D13J K. Kim (unpublishedl
54, 6521(1996. o : .
R. Fazio, A. van Otterio, Gerd SchpH. S. J. van der Zant, and
4R. M. Bradley and S. Doniach, Phys. Rev.3B, 1138(1984). o

. J. E. Mooij, Helv. Physica Act&5, 228(1992.
5
(i.lg%gamer, J. Kogut, and L. Susskind, Phys. Red 93091 153, E. Mooij and Gerd Schp NATO Advanced Study Institute

6D. M. Wood and D. Stroud, Phys. Rev. %5, 1600 (1982; E. . Series BVol. 294 (Plenum, New York, 1992 Chap. 8, p. 275.
Roddick and D. Stroudbid. 48, 16 600(1993. A. Hasenfrantz and P. Hasenfratz, Nucl. Phyd.93, 210(1981).



