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Thermoelectric and thermophase effects in Josephson junctions

Glen D. Guttman, Benny Nathanson, Eshel Ben-Jacob, and David J. Bergman
School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University,

Ramat-Aviv 69978, Tel-Aviv, Israel
~Received 4 September 1996; revised manuscript received 21 November 1996!

We study the thermoelectric properties of a superconductor-insulator-superconductor Josephson junction.
The total electrical current across the junction is composed of three parts: a normal current, a Josephson
current, and an interference current. We show that only the normal part contributes to a thermocurrent~i.e., an
electrical current that flows in response to a temperature drop!. The fact that the interference current has no
thermoelectric properties provides insight into the physical nature of this term. We distinguish between two
mechanisms for the thermocurrent: one is the normal thermoelectric tunneling current; the other is a transport
phenomenon, which ensues from a nonequilibrium~charge-imbalance! state in the bulk superconductors com-
prising the junction. The latter effect gives rise to aphase-dependentthermocurrent. Finally, we consider an
open-circuit Josephson junction biased by a temperature drop. The possible steady states of the system are
studied using the resistively shunted junction model. In particular, we consider the zero-voltage state which
corresponds to canceling of the quasiparticle and condensate currents. We call this athermophaseeffect.
Experimental setups are suggested in order to detect this effect.@S0163-1829~97!11017-7#
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I. INTRODUCTION

In normal metallic systems, be they bulk or tunnel jun
tions, the thermoelectric coefficient is a measure of the
tropy transported by the carriers in the system.1 The carriers
are either electrons or holes. In superconducting syste
and in Josephson junctions in particular, the current is c
ried by normal quasiparticles and by pairs.2 The quasiparti-
cles~i.e., electronlike and holelike excitations! have normal-
metal transport properties. Namely, the transport is
nonequilibrium process which involves dissipation. The pa
transport, on the other hand, is an equilibrium property a
does not generate entropy.3 Therefore, only a quasiparticl
charge current will flow in the presence of a temperat
drop across the junction. However, there exists a coup
between the quasiparticles and the condensate in supe
ductors. We will show that this coupling affects the transp
properties of the conductor and introduces an interes
transport phenomenon.

One manifestation of this coupling is that in bulk supe
conductors and in Josephson junctions dc thermoelectric
rents are shorted out by reverse supercurrents. For exam
in homogeneous bulk superconductors the conventional t
moelectric effects, e.g., the Seebeck, Thompson, and Pe
effects, are absent.4 This experimental fact is usually ex
plained within the ‘‘two-fluid’’ picture5,6 and is related to the
Meissner effect. In an attempt to offer a more explicit exp
nation for this behavior, we propose a different interpretat
for those experimental findings: in response to a tempera
gradient, the superconductor develops a phase grad
which satisfies the constraint dictated by the Meissner eff
In other words, there exists a coupling between a tempera
gradient and the phase of the superconducting order pa
eter. In order to study the consequences of the quasipar
condensate coupling on a microscopic level, we study
thermoelectric properties of a Josephson junction. We a
focus on the explicit relation between a temperature d
550163-1829/97/55~18!/12691~10!/$10.00
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across the junction and the phase difference.
The coupling between quasiparticles and pairs is exh

ited in superconducting systems in various ways. For
ample, in bulk superconductors it gives rise to the so-ca
charge-imbalance effect.4 This is a nonequilibrium state in
which the population of the two branches of the quasipart
energy spectrum is different. A local net charge-density
velops, which is sustained by the large reservoir of pairs.
we shall see, the generation of a charge-imbalance sta
superconductor-insulator-superconductor~SIS! systems re-
sults in an interesting transport phenomenon. Another
ample of the coupling between quasiparticles and the c
densate is exhibited in Josephson junctions. Wh
performing the microscopic derivation of the total curre
through the junction, one can distinguish between three c
tributions: a quasiparticle current, a supercurrent, and an
terference current.7

The fact that the normal and super ‘‘fluids’’ in the syste
are coupled presents a challenge when attempting to dev
a consistent description of transport properties of a superc
ducting system. On one hand, the normal quasiparticle
grees of freedom are well described by thermodynamics.
transport of this ‘‘fluid’’ is accompanied by dissipation. O
the other hand, one must also account for the macrosc
quantum-mechanical degree of freedom of the condens
which yields supercurrents. A complete description must
clude all these degrees of freedoms. There are severa
proaches in the literature for doing this. One of these u
either the two-fluid theory or the Boltzmann equatio
coupled with the BCS gap equation.6 Other possibilities in-
clude treatments that start at a more microscopic level, ei
applying perturbation theory to the BCS Hamiltonian,2 or
starting from the Bogliubov–de Gennes equations.8 The sys-
tem we shall study is an SIS, consisting of conventional
perconductors modeled by the BCS Hamiltonian. An S
Josephson junction is a convenient system to study since
well approximated by a perturbative Hamiltonian model. T
12 691 © 1997 The American Physical Society
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superconductor on each side is assumed to be a reservo
particles in equilibrium. The system is driven out of equili
rium by biasing the two sides relative to each other. T
description allows us to explicitly consider the differe
transport mechanisms, such as tunneling of pairs and tun
ing of quasiparticles.

A more comprehensive approach for the study of Jose
son junctions, including weak links, SIS, an
superconductor-normal-superconductor~SNS! systems, is
described in Ref. 8. This is a continuum scattering appro
in which the particles are extended waves which scatte
the interfaces. The transport coefficients are derived us
the Bogliubov–de Gennes equations. The disadvantag
this approach is that all the physical mechanisms are
scure, since they are implicit in the equations. Other
proaches were utilized in order to study thermoelectric tra
port in SNS junctions9 and superconducting weak links.10 In
these systems the behavior was explained by the presen
Andreev reflection~which is absent in SIS systems!. None of
the above approaches accounts for the inhomogeneity
relaxation of the superconductor order parameter. This tu
out to be important with regard to the interference curren
the SIS system. A consistent approach calls for the use o
time-dependent Ginzburg-Landau theory.11 For simplicity,
we shall assume a jump in the order parameter across
junction, with a magnitude which is constant in time.

In Sec. II we derive the total current through an SIS J
sephson junction and discuss the thermoelectric propertie
the system. We show that only the quasiparticle curr
flows in response to a temperature drop. We argue that
suggests that the interference current does not correspo
a dissipative process. In Sec. III we find a thermocurrent
is phase dependent and is generated only when charge
balance occurs. Section IV includes a discussion of the p
sible steady states of an open-junction SIS system. In
case, an explicit relation between a temperature drop a
phase difference across the junction is defined as the t
mophase response. Two experimental setups, designed t
tect this effect, are suggested. Corresponding predictions
derived.

II. THERMOELECTRIC CURRENT
IN A JOSEPHSON JUNCTION

A. The total current through the junction

In order to determine the thermoelectric properties o
Josephson junction we calculate the total current flow
through the junction within the following model. The junc
tion is comprised of two BCS bulk superconductors se
rated by an insulating barrier. Experimentally, these el
trodes are small compared to the leads. We assume
superconductor is in equilibrium and is characterized by
many-body BCS HamiltonianH tot , a chemical potentialm,
and a temperatureT. The left-hand side~lhs! quantities are
denoted by the subindexl and the right-hand side~rhs! quan-
tities by r . The particle current is a tunneling current, the
fore the total Hamiltonian includes a tunneling eleme
HT . The total Hamiltonian can be written a
H tot5Hl1Hr1HT . The particle current is calculated usin
a microscopic perturbation theory, expanding in the sm
tunneling matrix element. The total particle current is eq
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to the rate of change of the averaged electron-number op
tor in the lhs reservoir with respect to time. The electric
current is, according to the quantum-mechanical equatio
motion,

I tot52e^Ṅl&5
2ei

\
^@H tot ,Nl #&, ~1!

wheree.0 denotes the electron charge. The outer brack
in Eq. ~1! represent a thermodynamic average over a gra
canonical ensemble. The electron-number operator is

Nl5(
k,s

Ck,s
† Ck,s , ~2!

whereCk,s
† andCk,s are single-electron creation and annih

lation operators in the momentum (k) and spin (s) represen-
tation. The momentum quantum-number of the lhs~rhs! su-
perconductor is denoted byk(q). The tunneling Hamiltonian
is

HT5 (
k,q,s

TkqCk,s
† Cq,s1H.c., ~3!

where the tunneling matrix element is denoted byTkq . Sub-
stituting the expressions for the operators into Eq.~1! we
obtain

I tot52
2e

\
ImF (

k,q,s
Tkq^Ck,s

† Cq,s&G . ~4!

In the first order of perturbation theory12 the total electrical
current becomes

I tot52
2e

\
Im(

k,q,s
E

2`

` È`dwdw8

~2p!2
@ f l~w!2 f r~w8!#

3F uTkqu2 Ak~w!Aq~w8!

w2w82Dm1 ih
1exp@2 i ~Du12Dmt !#

3TkqT2k2q

Bk~w!Bq~w8!

w2w82Dm1 ih G , ~5!

whereDu[u l2u r is the phase difference across the jun
tion. The quasiparticle distribution function at temperatu
T is denoted byf (w)51/@exp(w/kBT)11#, wherekB is the
Boltzmann constant. The spectral densities are

Ak~w!52p@ uuku2d~w2Ek!1uvku2d~w1Ek!#,

Bk~w!52pukvk@d~w2Ek!2d~w1Ek!#, ~6!

whereuk and vk are the coherence factors that satisfy t
relations uuku251/2(11jk /Ek) and uvku251/2(12jk /Ek).
Ek5Ajk

21Dk
2 is the BCS quasiparticle energy spectrum a

jk is the electron energy spectrum relative to the chem
potential. The difference between quasiparticle chemical
tentials of the two superconductors isDm[m r2m l . The
quasiparticle current pertains to the spectral-density op
tors Ak(w), and the pair current toBk(w). Substituting the
explicit expressions of the spectral densities into Eq.~5! and
summing with respect tok, q ands we find that
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I tot5I qp1I qp-pair1I pair5
4pe

\ E
2`

`

dw Q~w22Dmax
2 !NlNr uTlr u2@ f l~w!2 f r~w2Dm!#

uwuuw2Dmu

Aw22D l
2A~w2Dm!22D r

2

1
4pe

\ E
2`

`

dw Q~w22Dmax
2 !NlNr uTlr u2@ f l~w!2 f r~w2Dm!#cos@~Du12Dmt !#uD l uuD r u

3
sgn~w!sgn~w2Dm!

Aw22D l
2A~w2Dm!22D r

2
1
4e

\ E
2`

` È`

dw dw8 Q~w22D l
2!Q~w822D r

2!NlNr uTlr u2@ f l~w!

2 f r~w8!#P
sin@~Du12Dmt !#

w82w2Dm
uD l uuD r u

sgn~w!sgn~w8!

Aw22D l
2Aw822D r

2
. ~7!
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Note that in all the integrals in Eq.~7! aU function, which is
unity for a positive argument and zero for a negative ar
ment, restricts the quasiparticle energyw to be above the
BCS gap. In the first two integrals this i
Dmax[max@D l ,D r #, whereD l amd D r are assumed to b
constant. The normal-metal densities of states~DOS! func-
tions are denoted byNl ,r and the tunneling matrix element
Tlr . We emphasize that Eq.~7! is obtained from Eq.~5! only
if Nl ,r andTlr are assumed to be constant with respect to
electronic momentum. For this reason the momentum s
scriptsk,q are omitted. In general, these functions are ene
dependent and it is this dependence that gives rise to a
moelectric current, as we show below. The third integral
the rhs is a principal value of the pole which is depicted
P. As evident in Eq.~7!, the total current breaks up into thre
parts. The first integral is the normal current of quasipartic
tunneling. It vanishes when no thermodynamic generali
forces are applied, e.g.,Dm5DT50. The second integral is
known as the quasiparticle-pair interference current. Ma
ematically, this term originates from theB(w) functions in
Eq. ~5! that produce pair tunneling.2 Consequently, this cur
rent depends upon the phase difference across the junc
Yet, it satisfies features of a normal current, such as Oh
behavior for small voltages. In the literature this term is
terpreted as a product of the coupling between quasipart
and the superconducting condensate and is related to lo
the system. A detailed discussion about the nature of
‘‘cosDu’’ current can be found in Refs. 7, 13, 14, and refe
ences therein. The final part is the Josephson pair cur
which can flow even in the absence of the ordinary therm
electric generalized forces.

B. Thermoelectric currents

Next, we study the thermoelectric properties of the e
pression for the total tunneling current. We confine the d
cussion to the caseDm50. The main contribution to the
thermoelectric transport in the junction ensues from
asymmetry in the electron-hole transport, induced by the
sulating barrier. A temperature drop between the coup
superconductors will give rise to a normal electrical curre
This currentI qp(DT)5L12

s DT is analogous to the thermo
electric effect in the semiconductor model.15 The transport
coefficientL12

s is the thermoelectric coefficient of the junc
tion in the superconducting state. It is proportional to t
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energy derivative of the energy-dependent quantities, e
the product of the tunneling matrix element and the DOS
the bulks.

This effect has been studied thoroughly in Ref. 16. In t
paper the quasiparticle current was derived using the s
Hamiltonian described above. The Hamiltonian, expresse
electron field operators, was transformed into quasipart
operators using the Bogliubov transformation. The therm
electric quasiparticle current was obtained by invoking
‘‘golden rule.’’ As a result the normal current was identic
to I qp in Eq. ~7! with one difference: the tunneling matri
element was assumed to be energy dependent and wa
lated to the tunneling ofquasiparticles. Therefore, the ther-
mocurrent was nonzero whenuTlr (w)u2 was expanded in
powers of thequasiparticleenergyw ~assuming the DOS is
constant!. This approach yields the following expression f
the thermocurrent in a symmetric junction

I qpuDm50~DT!5
8peaNl~0!Nr~0!DT

\T

3E
Dmax

`

dw
w4

Aw22D l
2Aw22D r

2
S 2

] f

]w
D ,
~8!

to first order in DT. In Eq. ~8! we used the expansio
uTlr (w)u2'uTlr (0)u21aw with a51/2 (duTlr uw50

2 /dw). The
normal-metal DOS functions of the two bulks are appro
mated by their value atm l5m r .

The approach taken here is different. We derive the c
rents through the junction from the microscopic equation
motion, which is expressed by the electron field operato
The basic process is tunneling ofelectrons~rather than qua-
siparticles! and consequently, in order to obtain the the
mocurrent we use Eq.~5!. We expanduTlr (j)u2 in powers of
theelectronenergyj5e2m, and only then do we transform
j into the quasiparticle energyw. The expression obtained i
this way is

I qpuDm50~DT!5
8peaNl~0!Nr~0!DT

\T E
D

`

dw w2 S 2
] f

]wD ,
~9!

wherea51/2 (duTlr uj50
2 /dj). Note that the expression fo

I qp as calculated by Eq.~9! is well behaved: it is finite and
monotonic in the average temperatureTav[(Tl1Tr)/2, as
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illustrated in the inset of Fig. 1. The discrepancy between
two approaches arises form the fact that the golden rule is
averagedresult. When the energy dependence of the expr
sions in Eq.~7! is important, one must go back to Eq.~5! and
rederive the golden rule explicitly. As we have shown, it
precisely this energy dependence that is important for
thermoelectric effect. However, expansion of Eq.~7! in pow-
ers of the quasiparticle energy is tantamount to the neglec
this energy dependence—that is why such a procedure m
lead to a wrong result.

This point is also relevant when studyingI qp2pair and
I pair. Note that both terms stem from the integral that i
cludes the functionsB(w) in Eq. ~5!, hence, the analysis is
similar in both cases. ExpandinguTlr u2 in the quasiparticle
spectrumw in the expressions of Eq.~7! results in a nonzero
thermocurrentI qp2pair(DT). Consequently, we obtain a qua
siparticle thermoelectric coefficientL12

qp2pair that depends on
the phase differenceDu. Apparently, these calculations ar
wrong. A more careful analysis reveals that when expand
uTlr u2 and integrating over theelectronenergy in Eq.~5! we
obtain L12

qp2pair50. The reason is that in Eq.~5! the inte-
grands are odd inj. We understand the absence of the the
moelectric effect inI qp2pair in the following way:I qp2pair is
an effective transport of quasiparticles—it involves a sup
position of tunneling pairs and events which break or cre
pairs in the bulk superconductors. Yet the physical proc
that underlies this current is the tunneling of pairs. Since
supercurrent is indifferent to the asymmetry in hole-electr
transport, no thermoelectric effect can develop. Note a
that for these boundary conditions the Josephson current
be shown to be approximately proportional t
I pair(Tl)1I pair(Tr) and is independent ofDT.

In view of the above discussion, we suggest a differe

FIG. 1. A numerical calculation of the coefficientL tp as function
of temperature, Eq.~ 23!. The units ofL tp are arbitrary. The inset
illustrates the behavior of the superconducting junction th
mopowerI qp/DT, normalized by the normal coefficient, as functio
of temperature.
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interpretation of the interference current. The vanishing
the thermoelectric coefficient may imply that the current
I qp2pair is nondissipative. Consider the case of a nonze
voltage. We will show below that this is a ‘‘running’’ stead
state, i.e.,V5V(t). For certain values of the voltage
I qp2pair;V(t). In this case one can define a ‘‘Joule heating
generated by this term:I qp2pairV5V(t)2cos„Du(t)…. Note
that this ‘‘heating’’ oscillates in time. This means that unlik
an Ohmic resistor, which only dissipates energy, the sys
draws heat from the surroundings part of the time. We int
pret this behavior as areversibletransformation of electrica
energy, gained by the pairs traversing the voltageV(t), into
magnetic energy stored in the magnetic field. The chang
the magnetic field is manifested as a change of the ph
difference across the junction, giving rise to an ac pair c
rent. From this point of view one may perceiveI qp2pair as an
inductive response of a pair current andnot as a normal
resistive current. In this sense it is comparable to the Jose
son current. The interpretation ofI qp2pair as a pair current is
consistent with the mathematical origin of this term. Add
tional support for this view is found in a numerical calcul
tion of the time-averaged Joule heating generated
I qp2pair. We calculated the time-dependent phase differe
and voltage on the junction in the ‘‘running’’ state@including
the ‘‘cosDu(t)’’ term# and inserted the solution into the ex
pression for the Joule heating. The result is that the aver
over time of the heating due toI qp2pair vanishes. Note that a
small part of the electrical energy carried by the pairs
dissipated as radiation. We neglected this effect in
model.

Most of the experimental work done on almost every ty
of Josephson junction provides evidence for the existenc
the interference current. However, the agreement with
theory of tunnel junctions, presented here, was not compl
The magnitude of the measured current was in line with
theory, whereas the sign was reversed.14 Other theoretical
approaches, which resolved this discrepancy, involved re
ation processes, suggesting that the interference curre
dissipative.11 However, in Ref. 14 the authors reported th
they found evidence for both positive and negative interf
ence currents in different temperature regions. They c
cluded that this must be a result of two mechanisms at p
one corresponds to the prediction of the perturbation the
given here; the other involves dissipative processes. Our
derstanding is that the first mechanism corresponds to n
dissipative pair tunneling.

III. THE EFFECT OF CHARGE IMBALANCE

So far we have assumed that the bulk superconductors
in equilibrium. Next, we consider a modified SIS system
which the superconducting electrodes are driven out of e
librium due to charge imbalance. This state could be indu
in elongated electrodes to which a temperature gradien
applied. Another possibility is to inject quasiparticles into t
superconductor via a normal-superconductor~NS! interface
or a normal-insulator-superconductor junction~NIS!.4 We
show that in the case of a temperature gradient in the bul
different type of thermoelectric transport takes place. A
cording to Tinkham,17 the symmetry in the quasiparticle en

-
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ergy spectrum at the Fermi surface is broken in the prese
of a supercurrent. When, in addition, the populations of
electronlike branch and the holelike branch are not equ
net quasiparticle charge per unit volumeQ* develops in the
superconductors. Charge neutrality is maintained by an
justment of the charge of the condensate. The excess ch
generation competes with a relaxation due to elastic and
elastic scattering. The effect is also understood within
phenomenological two-fluid theory. The theory predicts t
the quasiparticle charge density that develops is proportio
to the difference between the quasiparticle and pair chem
potentials, i.e.,Q*}mqp2mpair. Experimental evidence is in
agreement with theory, see Ref. 4 and references therei
particular, a temperature gradient within either bulk sup
conductor accompanied by a flow of supercurrent will indu
the phenomenon.

A. Incorporating charge imbalance on the microscopic level

In order to study the effect of charge imbalance onI tot we
can insert the branch-population asymmetry into Eq.~5!.
Note that the sum in this equation is on the electronlike a
holelike branches. Hitherto, we implicitly assumed that
distribution function f (w) for the different branches wa
identical. This is not the case for the nonequilibrium sta
hence we must sum over the two branches separately. T
so, we define a distribution function for eac
branch: f.(,)(w) is the distribution function of the
electron~hole!like branch; in other words,f.(,)(w) is the
the population of quasiparticles in the degenerate quasip
cle statesw5AD21jk

2 which corresponds tojk.(,)0. In
nonequilibrium f.(w)Þ f,(w). We also distinguish be
tween the coherence factorsuk

.(,) andvk
.(,) . These factors

satisfy

uuk
.u25uvk

,u2, uuk
,u25uvk

.u2

uuk
.u22uvk

.u252~ uuk
,u22uvk

,u2!5
ujku
Ek

. ~10!

In order to calculate the charge imbalance we rewrite Eq.~5!,
distinguishing between the two branches in the sum: first
separate the rhs of Eq.~5! into a term includingf k(w) and a
term includingf q(w); then the sum in the first term, assoc
ated with the lhs electrode of the junction, is separated
(k→(k.1(k,. The sum over the rhs momentumq does
not contribute to charge imbalance in the lhs electrode, a
hence, it can be transformed into an integral over the elec
spectrumjq . The second term, corresponding tof q(w), is
treated similarly. Inserting Eq.~6! and using the relations in
Eq. ~10! we find that charge imbalance is relevant only to t
quasiparticle current. Mathematically, charge imbalance c
responds to the way the coherence factors enter in the no
spectral densitiesA(w) andB(w) in Eq. ~6!. In the expres-
sions forI qp2pair andI pair the coherence factors enter only
products likeukvk . Such terms are even in the electron e
ergyj, and therefore no charge imbalance is produced. A
some manipulations we obtain the following expression
the normal current:
ce
e
a

d-
rge
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I qp5
4peNlNr

\ E
2`

`

dwQ~w22Dmax
2 !

3
uwuuw̃uuTlr ~w!u2

Aw22D l
2Aw̃22D r

2

1

2 H @ f l
.~w!1 f l

,~w!#

1
Aw22D l

2

w
@ f l

.~w!2 f l
,~w!#2@ f r

.~w̃!1 f r
,~w̃!#

2
Aw̃22D r

2

w̃
@ f r

.~w̃!2 f r
,~w̃!#J , ~11!

wherew̃5w2Dm. Note that we assumed that the tunneli
matrix elementTlr is insensitive to the branch. In any cas
cross-branch tunneling is forbidden. The charge-imbala
state is manifested in the terms which inclu
f.(w)2 f,(w)Þ0. In analogy to a normal-superconductin
junction,17 we define the nonequilibrium excess quasiparti
charge per unit volume as

Ql*[22eNl~0!E
Dr

`

dwDr~w̃!@ f l
.~w!2 f l

,~w!#,

Qr*[22eNr~0!E
D l

`

dwDl~w!@ f r
.~w̃!2 f r

,~w̃!#. ~12!

We assume the normal DOS,N(0), and thetunneling matrix
elements are taken at the electronic chemical potential. N
that the excess charge that develops on the lhs~rhs! super-
conductor depends on the normalized DOS of the rhs~lhs!
superconductor

Dr~w̃![
uw̃u

Aw̃22D r
2
,

Dl~w![
uwu

Aw22D l
2
. ~13!

The terms in Eq.~11! that include the sumf.(w)1 f,(w)
can be approximated, in the limit of linear response,
2 f̄ (w). f̄ (w) depicts the average branch distribution fun
tion. Having defined the above quantities, we can rewrite
~11! in the following way:

I qp5
4pe

\
Nl~0!Nr~0!E

2`

`

dw Q~w22Dmax
2 !

3Dl~w!Dr~w̃!uTlr ~w!u2 @ f̄ l~w!2 f̄ r~w̃!#

2
4puTlr ~0!u2

\
@Nr~0!Ql*2Nl~0!Qr* #. ~14!

The first part of Eq.~14! is just the quasiparticle tunnelin
current in Sec. II. The second part is the current that flo
through the junction due to the charge imbalance in each
the bulk superconductors. Note that if the system is symm
ric then the current due to charge imbalance cancels out
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B. Phenomenological theory of charge imbalance

At this stage we can incorporate the phenomenolog
theory of charge imbalance into the expression we obtai
for I qp. From the two-fluid theory we have the relation

Q*522eN~0!~mqp2mpair! ~15!

for either side of the junction. The bulk nonequilibrium sta
in which mqpÞmpair has been described phenomenologica
within the thermodynamic theory of irreversible process
Schmid18 has shown that in addition to the coupled quasip
ticle current and heat current, a third scalar ‘‘curren
mqp2mpair, can be added consistently. The correspond
generalized force is the scalar quantity¹• j s where j s is the
superconducting current density. This quantity is analog
to the quasiparticle chemical-potential gradient and temp
ture gradient. The resulting transport matrix is therefo
(333), and satisfies the relevant Onsager reciprocity re
tions. In particular, we can write the following equation f
the charge imbalance:

mqp2mpair5L31vs•¹mqp1L32vs•¹T1L33¹• j s , ~16!

wherevs is the condensate velocity andLi j are the transpor
coefficients that correspond to the thermodynamic gene
ized forces. One can calculate the coefficients by mic
scopic theory and then compare the prediction to experim
This has been done withL32, which represents charge im
balance induced by the simultaneous presence of a supe
rent and a temperature gradient in the bulk. Experime
results are in reasonable agreement with theory.19 Since we
are interested in thermoelectric effects, we focus on the c
of a temperature gradient in the two bulk superconduc
comprising the Josephson junction, and disregard the co
bution from lastL33 term. Note that in this system the ge
eralized forces and currents are one-dimensional. For s
plicity, we consider the case¹mqp50 in both
superconductors. We also impose a temperature drop
tween the two superconductors. With these boundary co
tions we can rewrite Eq.~14!: the first part of the equation i
expanded to linear order in the temperature drop across
junction; regarding the second part, we invoke the pheno
enological relations Eqs.~15! and~16! on both superconduct
ors. For a nonsymmetrical junction, the quasiparticle curr
then becomes

I qp5I qp~DT!1
pD

2snse
3R2 @L32

l ¹ lT2L32
r ¹ rT#sin~Du!,

~17!

whereR5@4pe2Nl(0)Nr(0)uTlr (0)u2/\#21 is the normal-
junction resistance,s is the cross section of the junction, an
ns is the bulk pair density. The notation¹ l (r ) denotes the
gradient on the lhs~rhs! of the junction.

The first part of the rhs of Eq.~17! is just the normal
thermoelectric current through a tunnel junction. It is prop
tional to the temperature drop across the junction and
a51/2(dTlr /dj)uj50. The latter quantity is a measure of th
asymmetry in the transport of electrons and holes. The
ond part describes a different effect which also produce
thermocurrent, i.e., an electric current that flows in respo
to a temperature drop. This effect does not correspond to
al
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conventional quasiparticle thermoelectric current in the bu
Indeed, the second part of Eq.~17! does not include a term
proportional toL12

s . The physical origin of this term, like the
normal effect, is based on an asymmetry. However, in t
case it is an asymmetry of the excitation spectrum about
Fermi surface. An interesting property of this current is th
it depends linearly on the temperature gradient and also
Du. The latter dependence results from current conservat
the supercurrent flowing through the lhs bulk tunnels to
rhs and is, therefore, proportional to sin(Du). In the deriva-
tion of Eq. ~17! we used the relationvs5pDsin(Du)/
(2e)2Rnss. The phenomenological transport coefficientL32
appearing in Eq.~17! has been calculated in different way
using the Boltzmann equation~see Ref. 4 and reference
therein!. The resulting expression depends on the assum
quasiparticle relaxation mechanisms. We use the result
L32 in the case of a dirty superconductor nearTc from the
review by Scho¨n.4 Also, in order to get an order of magn
tude estimate for the charge-imbalance induced thermo
rent @the second term of the rhs of Eq.~17! denoted by
ICI#, we assume for simplicity that a temperature gradi
exists only on the left side of the junction. In this way we g

ICI5
bTcD~T!¹ lT

eR2t~12t !s
sin~Du!. ~18!

Here we denote the reduced temperature byt5T/Tc , where
Tc is the transition temperature, whileb is a numerical factor
of order 10215. SinceD(T);A12t nearTc , we find that the
current diverges near the transition like 1/A12t. For a nu-
merical estimate of the thermocurrent in a dirty Sn-O-
tunnel junction we approximate¹ lT'D lT/ l , whereD lT is
the temperature difference between the edges of the lhs e
trode of length l . For a junction of cross section
s;0.1mm2 the resistance isR;0.1 V. We choosel to be
several millimeters in order to allow for a realistic temper
ture gradient in the electrode. Takingt50.9, we obtain a
maximal current of the order of 10210 (A/K) D lT. This
means that even for a small temperature difference acros
electrode, of the order several K, there will be a measura
effect. The effect is enhanced asTc is approached.

We have distinguished between two processes that lea
a normal thermocurrent through a Josephson junction:
first is a consequence of the ‘‘discrete’’ nonequilibrium b
tween the two sides of the junction—it was discussed in S
II B. The second, which is discussed here, is a result o
nonequilibrium state in the bulk superconductors compris
the junction, and of the Josephson coupling between
bulks. The second process is independent of the first pro
and can be measured if one applies a temperature gradie
the type shown in Fig. 2, where there is no temperature
ference across the oxide barrier. Such a profile is achiev
if one can control the temperature of each electrode se
rately. If a temperature drop is applied to the opposite si
of the system, a temperature drop will occur on the barrie
well. In this case the thermocurrent will have two indepe
dent contributions. However, as we have shown, onlyICI

will be sensitive to the phase drop across the junction. T
phase dependence ofICI can be measured by controlling e
ther the supercurrent~in an open circuit! or a magnetic field
~in a ring configuration!. In Ref. 10 it is shown that a simila
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effect occurs in a weak link Josephson junction. The curr
was calculated for a superconducting weak-link with a te
perature drop applied between the two edges of the sys
In this case the entire superconducting system was in a
equilibrium state. The resulting current was interpreted a
thermoelectric response. The thermoelectric coefficient
found to depend onDu, but in a different way than was
found in our system. Andreev reflections were suggeste
the explanation of the phase dependence. We believe tha
derivation may imply that the origin of the phase-depend
thermoelectric effect in the weak-link system is actually
result of the charge-imbalance phenomenon. This mec
nism is obscured when the system is treated as a continu
as was done in Ref. 10. Our model is discrete in the se
that each of the bulk superconductors is treated separate
this case the physical mechanisms are explicit and dis
guishable.

Another point to be noted is that in nonequilibrium bu
superconductors the normal current, given by the two-fl
model, is proportional to¹Q* . This is the continuum limit
of the result obtained here. We considered the tunneling q
siparticle current between two superconductors and foun
to be proportional toNr(0)Ql*2Nl(0)Qr* . The physical dif-
ference between the systems is in the charge-trans
mechanism. In the bulk transport is via diffusion, whereas
the junction it is by tunneling. The latter mechanism induc
the sin(Du) dependence in Eq.~17!. Finally, we already men-
tioned that charge imbalance can be induced by injec
quasiparticles into a superconductor. This has been meas
for NS and NIS systems.4 In our system weassumedthat the
charge imbalance was induced externally~e.g., by a tempera
ture gradient! and Eq.~5! was modified accordingly. We sus
pect that a self-consistent treatment of an SIS system
show that the inevitable tunneling of quasiparticles betw
the superconductors~in response to a current source atT
Þ0) results in charge imbalance. Consequently, invok
Eq. ~16!, this may lead to a temperature gradient in the bu

IV. THE THERMOPHASE RESPONSE

Consider a superconductor biased by a temperature g
ent. As explained in the introduction, the steady state of

FIG. 2. Suggested temperature gradient across the system
the direction of the one-dimensional coordinateX. This particular
configuration of an SIS junction gives rise to a thermoelectric c
rent which is exclusively due to charge imbalance generated in
superconducting bulksSl andSr .
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open circuit is a normal thermoelectric current which is ca
celed by a reverse supercurrent. We interpret this situat
in analogy to the thermoelectric effect, as a response of
system to the applied temperature gradient. From this p
of view, the temperature gradient stimulates a supercond
ing phase gradient, which in turn drives the reverse sup
current. In other words, there exists a coupling between¹T
and¹u. We are careful not to characterize¹u as a thermo-
dynamic generalized force, since in all theories the phase
mechanicalparameter. The flow of a supercurrent is anequi-
librium state, and is not associated with the production
entropy. Therefore, within a conventional theory, the co
pling between¹T and¹u cannot be done systematically b
the thermodynamic theory of irreversible processes. We
refer to the mechanism which couples these gradients
thermophaseeffect.

A. The RSJ model for a Josephson junction

In order to study this effect we propose to consider
discrete system such as the Josephson junction modele
the previous section. In this system we want to underst
the relation between a temperature drop and the phase
ference between the two equilibrium bulk superconducto
Note that due to gauge invariance the voltage across
junction, which is also a thermodynamic generalized force
proportional to the time derivative of the phase differen
across the junction. Consider the following experiment.
open-circuit Josephson junction~i.e., the junction is driven
by a current source which setsI tot50) is biased by a tem-
perature drop. The currents in the junction have been
tained in Sec. II. Applying these boundary conditions, w
can write the total current in the following form:

I qp~V,T!uDT501I qp~DT,T!uV501I qp-pair~V,T!cosDu

1I csinDu50, ~19!

whereV5Dmqp/e. The amplitudes of the currents on the lh
of Eq. ~19! are given in Eq.~7!. I c is the critical Josephson
current. Under the condition of an open junction with a fix
temperature drop, we may regard the quasiparticle th
mocurrentI qp(DT,T)uV50 as an external current bias. In th
case we recognize Eq.~19! to be the overdamped limit of the
resistively shunted-junction~RSJ! model equation of
motion20 with the addition ofI qp2pair. Therefore, in order to
study the relation between the temperature drop on the ju
tion and the phase difference, we must find the steady st
of the system in this model. For simplicity, we shall consid
the limit of linear response:I qp(V,T)uDT50'V/R and
I qp(DT,T)uV50'L12

s DT. Although experimentalI -V curves
of Josephson junctions are nonlinear in the vicinity
V52D/e, the linear response is a good approximation abo
and below this region. In addition, we neglectI qp2pair, since
a numerical solution of this model that we carried out h
shown that this term does not qualitatively affect the stea
state solutions of the system. We also neglect char
imbalance effects.

In the RSJ model one considers an equivalent circuit c
sisting of a nonlinear inductance, a capacitance, and a re
tor in parallel. The nonlinear inductance represents the n
linear Josephson coupling, and the capacitor represents
geometric capacitance of the junctionC. Loss in the system
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12 698 55GUTTMAN, NATHANSON, BEN-JACOB, AND BERGMAN
is represented by a resistanceR. Note that in our description
of the Josephson junction we neglected the charging en
due to the capacitance. The total current in the circui
therefore

I ext5CV̇1
V

R
1I csinDu, ~20!

whereI ext is an external current bias. Recalling the relati
2eV/\5d(Du)/dt, Eq.~20! can be viewed as an equation
motion for a classical ‘‘particle’’ with coordinateDu moving
in a ‘‘potential’’ U(u)52I ccosDu. The steady-state solu
tions of this system have been thoroughly studied and
results have been verified experimentally.21

Solutions of Eq.~20! fall into two regimes: an over-
damped regime (1/R@A2CIc /eRQ whereRQ is the quan-
tum resistance! and an underdamped regime in the oppos
case. In the overdamped regime the inertia termCV̇ can be
neglected. When the external current is smaller than the c
cal Josephson currentI c , the steady state of the system
static: the quasiparticle current is shorted by a reverse
sephson current and no voltage develops on the junct
This state is analogous to the behavior of a bulk superc
ductor. When I ext.I c a ‘‘running solution’’ develops in
which an oscillating voltageV(t) is generated across th
junction. In the underdamped regime, whenI ext.I c the
‘‘running state’’ occurs as before. Below a threshold curre
Imin , only the static solution exists. When the external c
rent satisfiesImin,I ext,I c , both solutions exists.

B. The definition of a thermophase coefficient

Consider an open-circuit Josephson junction. We imp
the constraintI tot50 and apply an external temperature dro
As explained above, this system can be described by the
equation of motion with the normal thermoelectric curre
acting as an effective external current. For clarity, we lim
ourselves to the static solutionV50. Neglecting charge-
imbalance generation, we can define the thermophase ‘‘c
ficient,’’ in analogy with the definition of the thermoelectr
transport coefficients. In the limit of smallDT and small
Du we can write

I qp~DT!5L12
s DT52I csinDu'2I cDu. ~21!

We have setI qp2pairs50 as is the case forDm50. We define

L tp[2
d~Du!

DT U
I tot50,Dm50,DT→0

5
L12
s

I c
. ~22!

The notationd(Du) is used in order to emphasize the pha
difference that develops due to the temperature drop.
explicit form of L tp includes the microscopic parameters
given by Eq.~7!. The final expression for a symmetric J
sephson junction is given by

L tp~T!5
2a

TuTlr ~0!u2D~T!
E

D

`

dw w2 S 2
] f

]wD , ~23!

where we have expandeduTlr u2 as in Eq.~9!. Equation~23!
was evaluated numerically as function of temperature. T
results are given in Fig. 1. An estimate of the magnitude
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L tp can be given using Eq.~22!. NearTc the thermopower
approaches the normal values. Thus,L12

s ;1026/R, where
R is the resistance inV and L12 is in V/V K. Taking
R;0.1 V for a typical Sn-O-Sn junction of cross sectio
0.1 mm2, we obtainL tp;1025/I c whereI c is in A andL tp is
in K21. Note that for this junctionI c is of the order of mA
for T!Tc , but it vanishes as we approach the transiti
temperature. Therefore, as we approachTc we find L tp→`.
The divergence indicates that the definition ofL tp breaks
down at the superconducting phase transition. We expect
behavior, based on the understanding that the effect is a
sult of a coupling between the condensate and the quas
ticle populations. The phase difference is generated b
transient Seebeck voltage induced by the temperature d
The steady-state value of the phase difference is determ
by the constraint thatI pair exactly cancels the quasipartic
current andV50. When an oscillating state is possible, t
relation between the phase difference and the tempera
drop is more complicated but the mechanism is the sa
The temperature dependence ofL tp (V50) is now evident.
Since at low temperatures few excitations exist, the coup
between the condensate and the quasiparticle curren
small. As the temperature is increased, a largerDu is needed
to cancel the thermoelectric current.

We emphasize that the coefficientL tp is nota well-defined
transport coefficient since it cannot be obtained within a s
tematic use of thermodynamics. The initial stateDTÞ0 cor-
responds to a nonequilibrium state, however, the state
DuÞ0 is an equilibrium state. As a consequence, it is
clear that we can invertL tp , in the sense of the Onsage
relations. Under the assumptions made, Eq.~21! only pre-
dicts that fixing a temperature drop across a junction w
generate a phase difference. The physical mechanism of
process is understood. However, it is not clear if an app
phase difference~in a closed circuit! will induce a tempera-
ture drop on the junction. Note that we have already s
that the phase-dependent currentsI qp2pair and I pair do not
depend onDT, because these currents do not involve t
transport of electrons and holes but rather of pairs. Hen
these currents cannot contribute to the generation of a t
perature drop. If the effect exists only in the directio
DT→Du, thenL tp is no more than a technical definition th
is proportional to the thermoelectric coefficient. However,
the reverse process indeed exists, then the thermophas
fect constitutes a real physical effect.

C. Experimental detection of the thermophase effect

The thermophase response, defined in an open circuit,
be realized and measured experimentally in a closed-cir
system. Indeed, this has been done indirectly in Ref. 16
closed-circuit superconductor tunnel junction was heated
one side by a laser. A thermoelectric current was measu
above a certain temperature and disappeared below it.
interpretation was that a quasiparticle thermoelectric curr
was canceled by a reverse Josephson current only bene
threshold temperature, at which the supercurrent was la
enough. This result corresponds to a thermophase ef
When the junction was biased by an additional ac curr
~which was interpreted as an external voltage by the autho!,
a thermoelectric current was measured even below
threshold temperature. The explanation was that the Jos
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55 12 699THERMOELECTRIC AND THERMOPHASE EFFECTS IN . . .
son current oscillated as a result of the external bias. Thu
did not contribute to the average dc signal, and could
cancel the thermoelectric quasiparticle current. This exp
mental setup enables an indirect measurement of the
pling between a temperature drop and the phase differe
across a junction. There was no direct control over the ph

In order to measure this coupling directly we propose
following systems. Consider a dc superconducting quan
interferenced device~SQUID! configuration,2 illustrated in
Fig. 3. Such a system enables one to control the phase
ference on the Josephson junctions via the magnetic
through the ring. This is reflected in the following relation

Du l2Du r52p
F

F0
1E

lhs
dr¹u1E

rhs
dr¹u, ~24!

whereF is the total flux threading the ring andF0 is the
quantum unit flux.¹u is the continuous superconductin
phase gradient along the wires of the ring, and the lhs and
integrals are along counterclockwise paths. The effect
temperature onDu can be measured in two ways. The fir
experimental setup is an open circuit illustrated in Fig. 3~a!.
If the two junctions comprising the ring are equivalent, t
current circulatingI cir in the ring is given by2

I cir~F!5I csinS Du l2Du r
2 D cosS Du l1Du r

2 D , ~25!

whereI c is the critical current of either junction.I cir(F) can
be controlled by an external fluxfext. In order to attain a
nonzero circulating supercurrent, we apply an external fl
According to Eq.~25! the resulting current will be smalle
than the critical current of the ring. Suppose we heat
upper half of the ring with respect to the lower half~avoiding
temperature gradients in the wires!. As long as the tempera
ture drop is not too large, the static steady state~i.e.,V50 on
both junctions! will be sustained. In this case no addition
circulating current is generated by the thermoelectric effe
since the thermoelectric current is canceled by a reverse
percurrent on both junctions. However, an additional ph
drop will develop on both junctions due to the thermopha
effect, which is proportional to the temperature drop. T
phase shift will alter the circulating supercurrent and c

FIG. 3. Two experimental setups of dc SQUID circuits. A
initial phase difference is set on each junction of the SQUID b
magnetic fluxF. The top part of the ring is heated homogeneou
to a temperatureT1DT. Thus, we obtain a temperature drop on t
Josephson junctions, with no temperature gradients in the supe
ducting leads.~a! An open circuit with a circulating curren
I cir(F). ~b! A closed circuit in which an interference current flow
I (F).
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thus be detected. Note that the argument of the cosine t
in Eq. ~25! is a sum. Hence, the response of the two junctio
is added. We can, therefore, use a homogeneous ring to m
sure the effect. A quantitative prediction for such an expe
ment is obtained by substitutingDu(DT)'Du(0)1d in Eq.
~25!. Here,d is the ~linear-response! thermophase respons
and it satisfies Eq.~22!. In the static steady state, both jun
tions will produce the same phase correctiond. Expanding
the cosine in Eq.~25! in d, and invoking the definition Eq
~22!, we find

DI uDT→05I csinS Du l1Du r
2 D sinS pF

F0
DL tpDT. ~26!

This can be detected as an additional fluxF tp(DT)5LDI ,
whereL is the geometric self-inductance of the ring. No
thatDI is periodic in the flux threading the ring with a perio
of 2F0. When the temperature drop exceeds a critical valu
‘‘running state’’ will develop in the ring. This critical tem-
perature depends on the fluxF through the ring as
sin(pF/F0). This is essentially the same as the functi
I cir(F) which appears in Eq.~25!. This running state was
predicted to occur in and measured in SNS SQU
systems.22 A similar effect was also predicted and demo
strated in single SNS junctions.23,24

Another experimental setup is illustrated in Fig. 3~b!. It
comprises of a closed-circuit system in which a supercurr
can flow. The current will flow in parallel, through the tw
Josephson junctions, and interfere. The interference pa
is realized when measuring the current as function of
magnetic flux threading the ring. Suppose we fix the exter
magnetic flux, in the absence of a temperature drop, so
the current is smaller than the critical current of the rin
Now we heat the upper half of the ring with respect to t
lower half, as before. In the static steady state this will aff
the interference pattern. A quantitative prediction for such
experiment can be calculated by following the derivation
the open-circuit setup. The change of the current in respo
to the temperature drop is given by

DI

DT U
DT→0

522I ccosS Du l1Du r
2 D cosS pF

F0
DL tp . ~27!

Equation ~27! relates the experimental measureme
(DI /DT) to the theoretical prediction. As before, the exce
current generated by the temperature drop is periodic in
magnetic field threading the ring. If the experimental se
corresponds to an underdamped junction, an ac voltage
develop on each junction. The effect can be calculated
before and compared to experiment.

As discussed above, the definition ofL tp reflects the cou-
pling between the currents of the condensate and the qu
particles. Such a coupling is manifested in other phenome
e.g., the charge-imbalance state andI qp2pair. Our understand-
ing of the thermophase coupling is the following: the ma
roscopic normal thermoelectric voltage couples to the ph
difference on the junction via the quantum-mechanical re
tion V;d(Du)/dt. This mechanism bridges the macroscop
thermodynamic properties of the system with the mac
scopic quantum-mechanical phase. We note that the t
mophase effect in Josephson junctions differs from the s
ation in homogeneous bulk superconductors. In an op
circuit system subjected to a temperature drop, the st
V50 state is observed in both Josephson junctions and
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12 700 55GUTTMAN, NATHANSON, BEN-JACOB, AND BERGMAN
superconductors. However, the physics is different: in bu
the steady state must satisfy the Meissner effect, wherea
Josephson junctions this does not necessarily apply. The
superconducting electrodes are isolated from each other,
the behavior of the system is understood within the R
model, as discussed above. Furthermore, in contrast to
superconductors, a Josephson junction has solutions o
than the static solution. In these cases the thermophase
pling is manifested by the running state. Finally, we do n
know if the reverse effect, in which a phase difference acr
the junction induces a temperature drop, exists. This ques
can be resolved experimentally in setups similar to th
introduced here. However, it has been brought to our at
s

s

B

s
in
o
nd
J
lk
er
ou-
t
s
on
e
n-

tion that type-II bulk superconductors in a magnetic fie
exhibit a thermoelectrically induced phase slippage effec
see Ref. 25 and references therein. This effect might be
lated to the thermophase effect discussed here. Moreover
reverse effect was also measured in such systems.26 These
experiments were conducted in high-Tc superconductors.
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