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Control of Andreev-level occupation in a Josephson junction by a normal-metal probe
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We calculate the electrical current flowing through a mesoscopic superconductor—normal-metal—
superconductofSNS junction coupled to a normal-metal probe. This additional normal terminal models either
a scanning tunneling microscope probe or the gate electrode of a three-terminal SNS junction. We find the
Josephson current switches between two different values as the probe Wltagearied. This switching
occurs because the Andreev energy levels are populated with an effective electrochemical gdtevitiatn
the probe voltagéeV|> A, so that all of the Andreev levels are either filled or emptied, we show it is possible
to directly measure the “continuum” contribution to the Josephson current. The differential conductance
dI/dV at the normal probe can also be used to detect the density of Andreev [S@163-18207)09417-4

[. INTRODUCTION two Andreev levels in a short SNS junction to both be popu-
lated (or depopulated Once the Andreev levels are fillédr
Additional leads or “probes” attached to a conductor emptied, and therefore carry no net current, the total Joseph-
have long been employed in normal mesoscopic systengon current in the short SNS junction is also forced to zero.
both to control the energy-level occupation and to introduce When the normal-metal probe is weakly coupled-{0)
quantum-mechanical phase breakirfg.In normal mesos- to a long SNS junction I(>¢,), we show the Josephson
copic systems, the occupation of an energy level is detercurrent switches between two values as functionvVofor
mined primarily by the probe with the strongest coupling to|eV|<A. The Josephson current switching foeV|<A
that level. But the situation is somewhat different for elec-again arises from the populatidar depopulatioh of bound
trons trapped in the Andreev energy levet$ a Josephson Andreev levels inside the superconducting energy gap. The
junction?=8 As pointed out in Ref. 7, quasiparticles incident change in the current after populatiigr depopulating a
from a superconducting reservoir cannot elastically scattenew Andreev level we find to b&l=ev /(L +2&p). When-
into an Andreev level. In order to populate the Andreev lev-ever the Josephson current switches, i.e., when the electro-
els, Ref. 7 introduced an additional normal-metal probechemical potentiaéV of the normal lead crosses a new An-
coupled to the normal region of a superconductor—normal-
metal—-superconductaiSNS junction as shown in Fig. 1.
Even though quasiparticles can travel ballistically into the
strongly coupled superconducting leads, and must pass
through a tunnel barrier to enter the weakly coupled normal- \ /
metal lead, Ref. 7 shows it is the normal-metal probe which i 1o [ 1 S

i

controls the bound Andreev-level occupation.
In this paper we employ the Bogoliubov—de Gennes /
(BdG) equatioff to calculate the electrical currents through
the SNS junction shown in Fig. 1. An additional normal- €
metal probe is attached to the N region of the SNS junction,
following Ref. 7. The two superconducting leads are held at
zero voltage, while the normal lead is biased at a voltage
V. To describe the coupling of the normal-metal probe to the
SNS junction, we use a scattering matrix which forces the
quasiparticle to turn into the side prdfewith probability
e. We compute both the current flow into the superconduct-
ing leads and the current flow into the normal-metal lead as
a function of the macroscopic phase differentebetween
the two superconductors, the voltayye and the coupling
strengthe to the normal-metal lead.

Using a normal-metal side probe to control the Andreev-
level occupation also controls the Josephson current. In SNS ()
junctions shorter than the coherence lendtk&§,), and for
a weakly coupled normal-metal probe-0), we find the FIG. 1. (a) Geometry of an SNS junction coupled to a normal-
Josephson current switches abruptly to zero at a certain volinetal probe. The probe is biaseda;= eV, while the supercon-
age |[eV|<A and remains zero fofeV|=A. This single ducting leads are groundeh) Mathematical configuration of leads
switching event occurs when the probe voltagéorces the needed to represent the SNS junction.

(a) eV
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dreev level, the differential conductandé, /dV along the metal probes for each physical normal prd3elhese addi-
normal-metal lead also has a peak. The density of levels itional conceptual leads are labeled as channels 3 and 4 in
the SNS junction can therefore be detected by measuring theig. 1(b). For the type of side-probe considered in Ref. 7,
differential conductancell,/dV along the normal metal which breaks both momentum and phase of the quasiparti-
lead. cles, the additional channel 4 is unnecessary.

The continuum of energy levels outside the superconduct- As shown in Ref. 10, the standard Landauett®er for-
ing energy gap also contribute to the Josephson current inmalism for electrical transport in multiterminal mesoscopic
long SNS junction. It should be possible to directly measurenormal conductors applies directly to mesoscopic supercon-
this “continuum” contribution to the Josephson current by ductors, provided we replace every lead with by a separate
attaching a weakly coupled normal-metal prolke«0) to a  conceptual lead for electron and hole quasiparticles. We use
long Josephson junction. When the side probe voltage exhe indicesp,q=1,2,3,4 as the lead numbers ands the
ceeds the superconducting gdgV|=A), so that the An- quantum number of the injected state. We typically have
dreev levels are either completely filled or emptied, we findn=(k,8), wherek is the wave number of the injected state
the total current carried inside the superconducting energgndB= (e or h) denotes the injection of electronlike or hole-
gap is nearly zero. This leaves only the energy continuuniike quasiparticles. We therefore calculate the electrical cur-
available to contribute to the Josephson current. Since theent flow in leadp due to injection of a quasiparticle in the
continuum energy levels are more strongly coupled to then channel according 8!
superconducting leads than to the normal lead, so that their
occupation is nearly independent of the voltage applied to
the normal-metal lead, we find this continuum current flow o= (Jy+ ) oanfan— > (3,)0.an- 3
into the superconductors is nearly constant as a function of Pogn T TuRAman gy rerean
V when|eV|=A. The energy distribution of the Josephson o _ )
current between the discrete energy levels inside the gap arfd'e Schrdinger currents associated with the wavesind
the continuum of energy levels outside the gap can therefore from Eq. (1) are J,=(eA/m)Im{u*(x)Vu(x)} and
be directly measured as the terminal current flowing into onelo = (€/m)Im{v* (x) Vu(x)}. The “vacuum current” due

of the superconductors. to the filled hole band is argued in Ref. 10 to be zero, namely
2 an(dy) p:qn=0. The electrical current in E@3) is related to
Il. MODEL FOR THE GATED SNS JUNCTION a transmission coefficienft by

We describe quasiparticle motion in the SNS junction of -
Fig. 1 by the BdG equation (JutJu)pign=Tp:gn=©€VpTpiqn. (4)
HoO-u  AX) )(u(x) _E<u<x>
A*(x) = (H*(x)=p)/ \v(X) v(x)
where the one-electron Hamiltonian i$1(x)=—(%?/

2m)(d?/dx?). We model the SNS junction by a step change
of the superconducting order parameter, namely |p=82 UpTpgnfan- )
gn

wherev ,=fik,/m. Equation(3) then reduces to the standard
), 1) Landauer-Bttiker form familiar from normal mesoscopic
electron transport, namely,

A€’ x<O0,
The Fermi factorf ,, in Eq. (5) must be calculated prop-
A(x)=4 0, O<x<L, ) erly to obtain the correct electrical current. As also shown in
Ae'%2,  x>L. Ref. 10, the Fermi factors are different for injected electron-

) _ _ S like and holelike quasiparticles, namely,
This model for the pair potential (x) is justified because the

narrow portion of the conductor widens into two bulk super-
conductors, which can be regarded as order parameter fan=Tqe=T(E—eVyp), (6)
reservoirs. . o

The motion of electrons and holes in the normal regionwhere the Fermi function i§(E) =111+ exp(E/kgT)]. The
(0<x<L) is modified by coupling them to a normal-metal effective biasing voltageV,, applied to the §B)th lead is
probe (at x=a) as shown in Fig. (8). The quasiparticle contained in the Fermi factor in EQ). The_b|as applied to
waves in the side probe are also described by (Egwith the normzac)l—metal lead produces the effective electrochemical
x—y and A(y)=0. We use a parameter to describe the Potentials
coupling strength to the external probe. As outlined in Ap-
pendix A, a right-moving electron in the normal region in Va=V,.=V @)
Fig. 1(a) has a probabilitye of leaking into the normal lead. e T T
For e=0 the SNS junction and the normal conductor are
decoupled, while foe=1 the quasiparticle phase coherence Vah=Vg=—V. (8)
(necessary to establish the Josephson effes been com-
pletely broken. Because we wish to attach a normal-metdh this paper the superconducting leads are grounded so that
probe which only breaks the electron phase, but not its moeV;;=eV,z=0. Considering only the case where the super-
mentum, it is necessary to attach two ‘“conceptual” normal-conductors are both grounded greatly simplifies calculation,
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as the addition of a bias on either superconducting lead resuperconductor, anth(¢,e,V)=13(¢,€,V) +14(,€,V) in
quires the use of time-dependent BdG equatidns. the normal lead, shown in Fig(d). As detailed in Appendix

We apply Eg.(5) to calculate the electrical currents B, we obtain for the current flowing into the left supercon-
[1(¢,€,V) in the left superconductoty(¢,e,V) in the right  ductor

_ 2ee A E—eV 1 1-€ E—eV
_'1(¢’€'V)_TJ_Atam( ke T )(F(E,e,d))_ F(Ee— o f f ta”r( 2kBT)
u3 (1—e€)v3 e[ E \U(E,e) 1 1
“|DE ed) DEe—od) dE“Z_G)hJ ta”r(szT)wo vo|<D(Ee¢>) D(E,e,—qs))dE

9

The current into the right superconductor we obtain from

|2(¢,6,V)=|1(—¢,5,V). (10)
The current flowing out of the normal-metal lead we find to be

_2e62 A E—eV 1
—In(d,e,V)= Tf_Atanr( 2K )(F(E,e,—¢) "

1 1
X(D(E,e,—d)) - D(E,e,¢))dE

In Egs.(9)—(11) the functionD(E, €, ¢) is

D(E,e,¢)=Ug+va(1—€)?>—2uZv3(1—¢)

lslel
X co + ¢, (12
€o
the functionF(E, e, ¢) is
F(E,e,p)=1+(1—¢€)’>—2(1—¢)
><cos{—2005l —|+ E (L) + |,
A €o
(13

and the functiorld (E,€) is
U(E,e)=ug+va(1—e)—udvi[(1—4v3)e+2]. (14)

The coherence factorg, anduv, are

) - EZ_AZ
U0—1+—|E| , (15)
and
JEZ-AZ
20(2)=1—T, (16)

while the superconducting phase differencepis ¢,— ¢;.

Equationg9)—(11) satisfyl =14+ 1, as required for electri-

cal current conservation.

1
F(E,€,¢)

dE-i—e
h

[N

E—eV
@ kT

)[ug—(l—e)ugj

11

and Josephson junction are completely decoupled, namely,
€=0, the multiple Andreev reflections between the two su-
perconductors produce bound Andreev levels inside the su-
perconducting gap and weaker quasibound levels outside the
gap® These energy levels broaden as the coupknn-
creases, and their filling begins to be controlled by the volt-
age on the normal-metal probe. This can be seen from the
structure of Eqs(9)—(11). Terms containing the occupation
factor tanfi(E—eV)/2kgT] are currents injected from the
normal-metal lead, while terms with the occupation factor
tanH E/2kgT] are currents injected from the superconducting
contacts. By inspection of Eq$9)—(11) one immediately
infers that currents flowing in the energy range
—A<E=<A, i.e,, current flow through the broadened An-
dreev bound levels, are occupied by the Fermi factor of the
normal-metal lead. How the Andreev levels broaden and
shift in energy by coupling to the normal lead is determined
by the poles of the first term in Eq$9)—(11), namely the
complex energies at whick(E,e,¢)=0, as described in
Appendixes A and C.

Ill. CURRENT FLOW IN GATED SNS JUNCTION
A. Equilibrium current and phase breaking

We first consider the side probe shorted to the two super-
conductors so thaeV=0. In this limit Egs.(9)—(11) give
In=0 andl ;= —1,. The zero-temperature Josephson current
I,(¢) is then suppressed by quasiparticle phase breaking as
shown in Figs. £a) and 2b). For both(a) short L <¢;) and

Equations(9)—(11) describe how the multiple Andreev (b) long (L>£,) SNS junctions? the current-phase relation
reflections between the two superconductors are modified by,(#) of the completely coherent e€0) Josephson
coupling to the normal-metal probe. When the normal probgunctiorf is rounded into the standard Ambegaokar-
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FIG. 2. The current-phase relation for@ short and(b) long SNS junction is rounded by quasiparticle phase breaking. The Andreev
energy levels are broadened with increasing phase breaking, as shown(bydheent density per unit energl(E) flowing through the
Andreev energy level in a short junctiofa) The critical current also decreases as the phase-breaking paranimetesases, for both short
(top curve and long(bottom curve junctions.

E\/L ho N
INRAVNAY *¢p=2mn, (17)

n=0,21*2.-..,in Fig. 3a). The BCS healing length in Eq.
17) is &g=rhvg/2A. The current , flowing into the second
uperconductor from Eq10) is shown in Fig. 8), while

the currently from Eq. (11) flowing out of the probe is
plotted in Fig. 3c). We seely<l,, indicating a weakly

Baratoff form I=I.sin(¢) as e increases. The coupling .
to the side probe in Figs. (& and 2b) is —2cos
e=0(dashed),1,25,50,75,100%.

Rounding of the current-phase relation into an
Ambegaokar-Baratoff form is accompanied by a broadenin
of the Andreev energy levels, illustrated in FigcRfor a
short SNS junction withp=27/3. The probe coupling used
in Fig. 2(c) is €=5,10,15,20 %. The electrical current den- coupled probe.

sity Jo(E), where I2:{—°°‘]2(E)dE’ spreads out over a The electrical current flows only through the discrete en-
!arger energy range asincreases. The Andreev-leveI.W|dth ergy levels of Fig. 8) in a short SNS junction, and the
is approximatelye(fivg)/(L+2£o) for small e, as obtained  occupation of these discrete levels is controlled by the volt-
in Appendixes A and C. Both the bound Andreev levels andagev on the side probe. In Fig.(8 we have therefore
weak quasibound Andreev resonances in the scattering Cograwn a dashed line corresponding to the bias voltage
tinuum are broadened by coupling to the normal-metal leads\/=q 75A.  The phase difference ¢=2cos {(E/A)
The critical cgrrent is also suppre_sseq with increasing COU=( 467, where an Andreev level crosses the energy
pling to the side probe as shown in Figdpfor both short g _ gy corresponding to the bias voltage, is also shown by a
(top) long (bottom) SNS junctions. Ag=1, so that the qua- \,artical dot-dashed line in Fig.(8.
siparticle phase is completely randomized, we find the criti-  gjnce the probe voltageV sets the effective electro-
cal currentl .—0. chemical potential for the Andreev levels, any Andreev level
havingE,<eV in Fig. 3@ is filled. When only one Andreev
level is filled, that is whenp< ¢, the electrical current is
nearly the same as when the probe is not connected to the
We now apply a voltage biasV>0 to the normal lead. SNS junction. When both Andreev levels are occupied, that
We consider first the case where the side probe is onlys for ¢o<p<<(27— ¢g), the two levels carry equal and
weakly coupled to the SNS junctior€ 1%), so thecurrent  opposite electrical currents. Fillingr emptying all the An-
Iy is small. We plot the Andreev bound levels from the dreev bound levelsby changing the voltage on the side
resonance conditién probe therefore forces the total current carried by the dis-

J’_

B. Current-phase relation for weak coupling to the side probe
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1.0 electrochemical potentialy= eV changes the discrete level
occupation. A small currenf(¢) from the normal lead also
flows into the junction when a new Andreev level falls below
0.5 the Fermi level of the side probe, as shown in Fil)4
N The lowest Andreev energy levél, in a long, ballistic
L‘;ﬁ 0.0 SNS junction’t namely,
i
5

-0.5 ’7Tﬁl)|:

/ \ EO_L+—2§O’ (18)
-1.0
0.0 0.5 1.0
(a) Phase ¢ / 2% sets the characteristic voltage scale for changes in the
current-phase relation. Figuregbj} and 4c) shows the
1.0 f = .
current-phase relation for several valuee®E,. For elec-
- d trochemical potentigly,=eV,;=E/2, the phase periodicity
% 0.5 | of the current ,( ) is halved and its amplitude reduced, as
g noted in Ref. 7. Whemuy,=eV,=E, the current ,(¢) is
§~ 0.0 {_ shifted by A¢=, again similar to Ref. 7. Current-phase
E relationsl ,(¢) intermediate between these two examples are
& also possible for different applied voltag®s Figure 4c)
3 -0.5 ; shows the Josephson current flowing through the discrete
levels being switched off by the bias voltage. For the param-
-1.0 eters in Fig. 4 we hav&y=0.61A, so for the bias voltage
0.0 0.5 1.0 eV=T7Eqy/4>A in Fig. 4(c) the bound Andreev levels are all
(b) Phase ¢ / 2n filled and carry no net current.

0.015 By controlling the discrete level occupation with the side
probe voltage, we can directly measure the energy distribu-
tion of the Josephson current. The total Josephson current

§ flow is typically broken down into a portion carried by the

& 0010 discrete and continuum levels, namely),(¢,V)

s =1l,4(,V)+15.(0,V). If we completely populatdor de-

el populate all the discrete states with an applied voltage

§ 0.005 | leV|=A, the total current,y carried by the bound Andreev

3 levels will be zero, namely,4(¢,|eV|=A)=0. Since the
superconducting leads are strongly coupled to the continuum

0.000 J . L states, while the side probe is only weakly coupled to the

“70.000 0.500 1.000 states outside the superconducting gap, the portion of the
© Phase ¢ / 2% currentl ., carried by the energy continuum will be approxi-

mately independent of the applied voltage, i.e.,
FIG. 3. (@ Andreev energy level€ (&), (b) currentl,(p)  loc(h,V)=I,.(¢). By forcing l,4(¢,€|V|=A)=0, we

flowing into the second superconductor, dadcurrentl () flow-  should then be able to directly measure the continuum cur-
ing out of the normal-metal lead of a short SNS junction weaklyrent | ,(¢,|eV|=A)=1,,(¢). This “continuum current” is
coupled to a normal-metal side probe. the remaining current which flows wheeV|=A in Fig.

4(c).
crete levels to zero. In a short SNS junction, this also forces To better understand the energy distribution of the Jo-
the Josephson current to zero as seen in Flg. 3he varia-  sephson current in a long SNS junction as a sum of “dis-
tion of currentl y( ¢) flowing out of the normal-metal lead in crete” and “continuum” currents, we graphy(¢,V=0) in
Fig. 3(c) is also controlled by Andreev energy levels cross-a long SNS junction having=0 in Fig. 5. In Fig. 5 the
ing the Fermi level of the normal-metal probe. discrete current ,4(¢,V=0) (dashed and the continuum

The Josephson current flow in a long SNS junction carcurrentl,.(¢,V=0) (solid) both contribute to the total cur-

also be controlled by a normal-metal side probe weaklyent 1,(¢,V=0) (dot-dashed Comparing the Josephson
coupled €=1%) to the SNS junction. We plot the Andreev current flow when|eV|=A in Fig. 4(c) to the continuum
bound levels in a long SNS junction from E@.7) in Fig.  current in Fig. 5, we see they are identical. The continuum
4(a), the currentl, flowing into the second superconductor currentl,.(¢) can then be directly measured as a terminal
from Eq.(10) in Figs. 4b) and 4c), and the currentty from current. Such a measurement should resolve any remaining
Eg. (12) flowing out of the probe is plotted in Fig(d). The  questions raised in Refs. 4,8,14—16 concerning the energy
supercurrenti,(¢) in Figs. 4b) and 4c) is again altered distribution of the Josephson current between the discrete
from its equilibrium value(dashedl because the effective and continuum energy levels.
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FIG. 4. (a) Andreev energy level& (¢) for a long SNS junction weakly coupled to a normal-metal side probe. The bias voltage
eV=E,/2, whereE, is the lowest Andreev energy level, is shown by the dotted lineand(c) Current-phase relatiory(¢) for different
bias voltage®V/E,. (d) Currentl y(¢) flowing in from the normal lead wheaV/Ey= 1/2 (solid) and 1(dashegl

C. Andreev-level spectroscopy
and Josephson current switching

The differential conductancely(#,V)/dV along the even -
weakly coupled normal-metal lead can also be used to prob&— 0 limitin Appendix C that
the Andreev resonances from Ed.7). Figure 6 shows the

the side probe is weakly coupled, Fig. 6 shows that the dif-
ferential conductancdly(¢,V)/dV directly detects the An-
dreev levels. Using Eq11) we also find analytically for the

differential conductance in an SNS junction having two An-

dreev levels fore=1%(bottom),50,75,100 % /(top). When

diy  4e?

ViR

n,a

ry

I'2+(eV—E®)?

(19
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FIG. 5. Current-phase relatidn(¢) for a long SNS junction
having eV=0. The portion of the Josephson current flowing FIG. 6. Differential conductancély/dV (¢==/2) for a long
through the continuum energy levels in this isolated=0) SNS  SNS junction containing two Andreev levels. The probe coupling is
junction (solid) can be directly measured as a terminal current bye=1,50,75,100 %. The Andreev levels appear as sharp peaks in
applying a voltaggeV|=A to a weakly coupled SNS junction, as dly/dV for e=1%. The differential conductancdly/dV ap-
shown by the curve havingV=7Ey/4>A in Fig. 4(c). proaches that of a ballistic NS junctions @s> 100 %.
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3.0 Fig. 7(a), the current steps round off due to Andreev-level
broadening. The current also begins to increase Wijthince
more current is being admitted from the side probe. When
2.0 €=100% (top), the I,(V) relation saturates to that of two
ballistic NS junctions in parallel.

The switching of the Josephson current in Fig. 7 can be

Current I (¢=r/2,V) / (2eA/h)

10 understood more quantitatively using the result from Appen-
dix C, where we find the current flowing inside the super-
0.0 conducting energy gap in the weak-coupling lirait-0 is
1.0 Lag(6, V) =2 {15 () FE, ($)—eV)
0.0 1.0 2.0 n
@ Voltage eV /4 T AHE (D) —eV). (20
0.3

In Eq. (20) the I, (¢) are currents carried by the Andreev

% level n and the voltageV appears inside the Fermi factors
3 as an effective electrochemical potential. The magnitude of
=z the change in current for each switching event when
S €e=1% in Fig. 7 is approximately constant. This constant
éﬁ magnitude of the current change arises because, in a long
g SNS junction, the currents carried by alternating Andreev
2 energy levels have nearly equal magnitude and opposite
5 signs, namely
&

0.3 ' . _ eug

0.0 0.5 1.0 15 |;(¢):+L+2§ . (21)

(b) Voltage eV / A 0

The size of the -current step is thereforél,
FIG. 7. Current-voltage relatioh (¢=m/2,V) for along SNS = +ep/(L+2&,) when e=1% in Fig. 7, approximately
junction havingL = 20&,. In (a) the coupling strengtis = 1, 50, 75,  independent of the phase differenge
100 % andp= /2.1, approaches the current-voltage relation fora  Both the average current and the duty cycle of the switch-
ballistic NS junction ag— 100%. Switching of the Josephson cur- ing when e=1% depend on the phase differenge as
rent 1, when |eV|<A occurs for the weakly coupled junction shown in Fig. Tb). The continuum current flowing for
(e=1%). Theduty cycle of the switching changes (b), when the ge\/IZA when e=1% in Fig. 7b), depends strongly on
phase difference across the Josephson junction changes. The ph $e8incé the continuum current d’etermines the average or
differences in(b) are ¢=m/4 (dashedl ¢=m/2 (solid), and b K q t where= 1% in Fig. Tb), th
b=37/4 (dot-dashey ackground” current where 0 |n“ ig. , ,(’e average
current depends strongly o#. The “duty cycle” for this
switching is set by the Andreev-level spacing, which also
depends ong. For ¢==/2 chosen in Fig. (&) the duty

i 0, i -
energy-dependent BCS coherence distance, anfhare cycle_: is 5_0 0%. The phase qllfference across the SNS Joseph
son junction can be set using a phase bias network of larger

the Andrgev gnergy—level solutions to E@.7). As € in- Josephson junctions, as done in Ref. 20.
creases in Fig. 6, the Andreev resonances apparent in

din(¢,V)/dV become smeared and approach the differential _ o
conductance of two ballistic NS junctiolfsin parallel. A D. Nonideal junctions
possible physical realizaton of this “Andreev spectrometer”  The electrical characteristic discussed here for a one-
in is to apply a scanning tunneling microscdSaM) tip'®to  dimensional, ballistic SNS junctions will be altered if the
the normal region of an SNS junction. The measurement ofunction is not ideal. If the superconducting contacts to the
the Andreev resonances in SNS junctions using the weaklgNS junction are not perfectly ballistic, the Josephson cur-
coupled side probe is similar to the McMillan-Rowell reso- rent will still display current switching whee|V|<A. How-
nances in thd-V relation of an NINS junctior}? ever, the magnitude of the change in current will be smaller
Varying the probe voltag¥ also changes the current flow than for a ballistic SNS junction. If the SNS junction is not
into the superconductors. In Fig(af we show the current purely one-dimensional, the additional available lateral
I, for another long junctiolf having a fixed phase difference modes will complicate the switching behavior. In the sim-
¢=ml2. Each graph is for a different coupling strength plest treatment of a wide SNS junction, each mode will con-
€=1%¢bottom),50,75,100 %(top). As the voltage on theduct independently but with its own Fermi velocity. Conse-
normal probe increases, the curréptV) corresponding to quently, each mode will switch at a different protgmate
the weakly coupled probeeE&1%) in Fig. 4a) switches voltage.
abruptly several times wheeV|<A. Each switching of the Dephasing the quasiparticles with a dephasing timge
current in Fig. 7a) corresponds to another Andreeev levelwill only slightly affect the Josephson current switching and
being populated, i.e., wheeV=E, (¢). As € increases in Andreev-level spectroscopy discussed in this paper. Al-

when |eV|<A. The resonance widti", in Eq. (19) is

T.=eA[&/(L+2&(E,)], &(E)=¢éo(AIVAZ—E?) is the
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though the dephasing time, will increase the Andreev
energy-level broadening, the broadened levels will still be
filled according to the electrochemical potential of the side
probe. Of course the dephasing time must satisfy
veT4s>L+ 2§, for any Josephson effect to exist, whether or
not the side probe is present.

Inelastic scattering inside the SNS junction will force the
Andreev-level occupation towards the electrochemical po-
tential of the superconductors rather than the electrochemical
potential of the side probecomplicating the observation of
these effects. In order for the side probe to control the
Andreev-level occupation, the lifetime in the Andreev level
[see Eqs(A19) or (C8)] must be shorter than the inelastic-
scattering timer,, namely 7> (L+2&p)/vge for small e.

An electron incident from the side probe must therefore FIG. 8. Scattering state for an electronlike quasiparticle injected
transmit into the SNS junctiofcouple with some minimum from the left superconductor. This injection from lead 1 imposes an
transmission probabilityT o= €> (L +2&0)/ver for the  electrical current flow in the other leads.

side probe to control the Andreev-level occupation.

The |-V and|-¢ characteristics described in this paper,amountAl=evg/(L+2¢,) as the probe voltage varies be-
however, do not depend on the detailed nature of the weakveene|V|<A. The differential conductancel /dV along
connection between the SNS junction and a normal-metdhe side probe has a peak whenever the Josephson current
probe. Although the probe coupling used in Ref. 7 breakswitches, permitting spectroscopy of the Andreev energy
both the quasiparticle momentum and phase, whereas thevels. We find also that, with a suitable phase biasing net-
probe we employ here breaks only the quasiparticle phas&york and where|V|=A, one can directly observe the con-
either type of weakly coupled probe will produce the samdinuum piece of the Josephson current as a terminal current.
|-V characteristics in the weak-coupling limit. As long as theSome of the unusual current-phase relations predicted here
normal-metal probe remains weakly coupled to the Josephmight also be measured in an experiment similar to that of
son junction, the probe voltage will control the Andreev- Ref. 21.
level occupation without significantly altering the wave func-
tions and energy-level spectrum of the SNS junction. It ACKNOWLEDGMENTS
should therefore be possible to observe both the switching of ) ) .
the Josephson current described here, and to directly measure We thank Supriyo Datta for many useful discussions. We
the continuum contribution to the Josephson current in a we@ratéfully acknowledge financial support from the David and

designed experiment. Lucile Packard Foundation and from the National Science
Foundation MRSEC program under Grant No. ECS-
9201446-01.

IV. CONCLUSIONS

We have solved the BdG equations to calculate the elec- APPENDIX A: SCATTERING STATES

trical current through an SNS junction coupled to normal-  To evaluate the electrical current operator in E). for
metal side probe. The normal probe models either an STMhe SNS junction coupled to a normal-metal probe, we must
tip or the gate electrode of a three-terminal SNS junctionfirst obtain the scattering states for the junction. Consider an
The side probe randomizes the quasiparticle phase inside tRgectronlike quasiparticle injected from the left supercon-
junction, the same as for normal mesoscopic conductors. Biyfyctor (x<0) shown in Fig. 8. In Andreev’s approximation,
more importantly, a voltage applied to the side probe conthe injected electronlike quasiparticle and the Andreev re-

trols the occupation of the discrete Andreev-levels in theflected holelike quasiparticle in the left superconductor

SNS junction, even if the probe is only weakly coupled to(x<0) have the wave function

the SNS junction. The probe voltage functions an effective

Fermi level which controls the Andreev-level occupation. uge' 1 voe' 1

Since a significant portion of the Josephson current flows (

through the discrete Andreev energy levels, this control of

the Andreev-level occupation allows significant control of We can neglect normal reflections in E@1), since our

the Josephson current by changing the voltage of the sideoupling to the side probe does not generate normal reflec-

probe. tions. The transmitted electronlike quasiparticle in the right
When the side probe is weakly coupled to the SNS juncsuperconductorx>L) has the wave function

tion, the probe voltage can change the Andreev level occu- _

pation without significantly altering the wave functions from C( Uge' %2

) e+ B ) elknx, (A1)

Vo Uo

those of an isolated SNS junction. For a short SNS junction
in this weak-coupling limit, we find a finite bias on the side

probe can completely switch off the Josephson current as afhe coherence factorg, andvg in Egs.(Al) and (A2) are
Andreev level crosses the Fermi level of the probe. In a longyiven by Eqs.(15) and(16). The wave vector&, andky, in
SNS junction, we find the Josephson current switches by akgs.(Al) and(A2) are

)eike(XL). (A2)
Vo
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2m 0y -
ke: \/?(M"r JVES—A ), (A3) b4( 1>e'khy. (Ag)
and The scattering matri from Eq. (A7) relates the current
5 amplitudes for electrons, obtained from E¢s5)—(A9), as
m
Al [F2_A2 =
Kn \/ 7 (n=VET=A%). (A4) 0 (Bug+ug)e' Pre'ked
i pomike(@a—L)
Matching the waves at the pair potential interfagesO Cloeze =(S) 0
andx=L allows us to obtain the quasiparticle wave function az 0
in the normal region (&x<L). To the left of the coupler 0 0
(0<x<a) we have (A10)

The current amplitudes for holes, obtained also from Egs.

(BUO+ uO)ei¢1) ei’lzex-}— eiEhX (A5) (A5)—(A9) are related as
0 (BUO+ UO) ! ’
ik
while, to the right of the couplera<x<L), the wave func- (Bug+uvg)e'“nd (3
tion is 0 Cuelkn@-b
0 =(S) 0 . (A1)
Cuoeid)Z ei;e(X*L)_i_ 0 ei’lzh(X*L) (AG) b 0
0 CUO ) 4

We solve the marix equations in Eq&10) and(Al11l) to

The wave vector&, andk,, in the normal region are calcu- obtain the wave-function amplitudes as

lated from Eqs(A3) and (A4) with A=0.
At x=a andy=0 in Fig. 1, the quasiparticle wave am- (

?) [(1-e)e ¢eike WL _1)/d,  (A12)

0
2
v
[
0

plitudes are connected by a scattering matRefs. 1 and 2 B=
to the normal-metal side probe. The scattering matrix

couples the electrical current amplitugef electrons in the

normal region to electrons in the side probe, and holes in the C=1—¢
normal region to holes in the side probe B§'=Smjm,

where the lead indices atlem=1,2,3,4. Hencg${"' is the 5
current amplitude flowing out of the coupler in lead 1, etc. as=/eu 1_(@)
We use the sam& matrix to independently randomize the 3 0 Ug
phase of both the electrons and holes. Breaking the electron ,
and hole phases in a correlated manner would lead to less Vo
energy-level broadening. bs=Ve(1=€)vo l_<u_0)

In order to break only the phase of quasiparticles without (A15)
altering their momentum, we couple right-moving quasipar-
ticles in leads 1 and 2 only to lead 3. Left-moving quasipar-Where
ticles in leads 1 and 2 we allow to scatter only into lead 4. _

2 ~
For the scattering matrix we therefore chobise d=1- (Q) (1—e)e ' Peike L, (A16)
Uog

0 \1~e Ve 0 The poles of Egs(A12)—(Al15) define the quasibound
l1-¢€ 0 0 Je energy level®¥ for right-moving electrons confined inside
S= Je 0 0 —J1—el’ (A7) the SNS junction. By settind=0 from Eq.(A16) we obtain
these poles from the solution of
0 Ve —V1-¢ 0

e idgikel/q, (A13)

c

eidrgikedsq (A14)

e—idai(ke—H)Lgiknayg ,

The wave function for the electronlike quasiparticle transmit- 1= (u_o) (1- e)e 1% (kehL, (A17)
ted into lead 3, having a group velocity in they direction, 0
is (y<O0) The right-hand side of EqA17) is the product of probability

amplitudes for an electron moving from a NS interface to-
iy wards the coupler, passing through the coupler, moving to-

e e (A8)  wards the other NS interface, Andreev reflecting as a hole,

returning to the coupler, passing through the coupler again,
The Andreev reflected holelike quasiparticle, incident on thegpropagating back the NS interface, and Andreev reflecting as
coupler from lead 2, will produce a transmitted holelike qua-an electron. The compex energy=Eg+iE, which solves
siparticle wave function only in lead 4. The wave function Eq. (A17) contains the resonant enerfy and the lifetime
for the transmitted holelike quasiparticle in lead 4, which#/|E,| of the bound level. For energies inside the supercon-
also has a group velocity in they direction, is (<0) ducting gap, Eq(A17) requires®

a30
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27in=In(1—¢e)—2icos Y (Ex+iE|)/A] The leakage rate, which sets the energy level wij&, is
) ) _ then simply rate /L at which the quasiparticle encounters
+i[(Er+iE)/A](LI &) —i . (A18)  the coupler times the probability of leaking out into the

For very weak couplingd—0), we find the positiorEg of ~ SId€ Probe.

the quasibound levels is given by HE@47), while the leakage

; ) APPENDIX B: ELECTRICAL CURRENT
rate ZE, /f is set approximately as

In this appendix, we outline the derivation of the electrical

_ 2B Cn(1—e) 206 VF current flowing into the left superconductor. Converting the

h € A[L+2&(ER)] 6[L+2§(ER)]' sum overk into an integral over the injected energies, and
(A19) making the Andreev approximation, we obtain

l1(¢,€,V)=¢

N

+ef VeNg (E)[Ti.an+ T1.anl f(E+eV)dE, (B1)

UFN:(E)[T1;1e+T1;1h+T1;2e+T1;2h]f(E)dE+ef_ VeN (E)[T1:3e+ T1.4el f(E—eV)AE

where the transmission probabiliti#sare functions of E, ¢,¢€). From the calculation in Appendix A we directly obtain
ugtvg(l— )+ udvd[(1—e)?(1—4v3)+(1—4u3)]
D(E,e,— @) '

whereD (E, €, ¢) is defined in Eq(12). T.4. is the only transmission coefficient one can directly obtain from the calculation
in Appendix A. The other transmission coefficients we find by calculations similar to the one in Appendix A as

Tl;le: _[1+|B|2+4U000R$]: -

(B2)

ugtvg(1—e)2+usvd(1—€)?(1—4vd)+(1—4ud)]

T1.1n= D(E,e,¢) ! (B3)
_(1-e)(up—v)?
1;2e™ D(E,6,¢) ’ (B4)
(1—e)(u3—v2)?
BT Ee ) >
_[eudID(Ee,¢);  [EI>A
T1i5e= 2¢lF(E,e,¢); |E|<A, (B9
_USE(]._G)/D(Elei_d)); |E|>A
T14e= —2€e(1—¢€)/F(E,e,— ¢); |E|<A, &7
—euj/D(E,e,—¢); [E|>A
Tian=) —2e/F(Ee,— ), |E|<A, B8)
v%e(l—e)/D(E,e,d)); |E|>A
T1,an= 2¢(1—¢€)/F(E,€,¢); |E|<A, (B9)

where the functiorF (E, €, ¢) is defined in Eq(13). In Eq. (B1) the factorN_ (E) is the superconducting density of states for
right-moving quasiparticles, and is related to the normal density of statesl (i) by

1
Ng (E)= >N, (E). (B10)
* lug—vol "

Using the identityv N, (E)=1/h, and applying Eqs(B1)—(B10), we obtain
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1($,6,V)= U f

1
—2—2—(2 G)U(E 6)(D(E,e,d))_D(Ele’_¢))dE

f 2179 |t e evde— f 2€ 2el=e) |4 ErevdE
h F(E,e, ¢) F(E,e,—¢) h —¢) F(E.e¢)
e J—A+Joc uje vie(l—e) (E—ev)dE e j—A+Jw
— — _e —_——
"] |pEed DEe—a " Al ).t
Uoe vel=9 ) ey ovdE B11
D(Ee,—¢) D(Ecg | - eVIE (B11
|
The functionU(E,€) is defined in Eq(14). To obtain Eq. E—eV
(9) from Eq. (B11), apply the identities for the Fermi func- —In(p,e,V)= h f tanh —— )
tion f(E) — f(—E)=2f(E) — 1= —tanhE/2kgT) to convert B
the integration over negative energies in EB11) to run €2 €2
instead over the positive energies. Since the probe breaks X( — )dE
only the quasiparticle phase but not its momentum, the cur- FE.e—¢) F(Eed)
rent in Egs.(9)—(11) is independent of the position of the (C4
probe k=a). To expand the integrand near a resonance we write
APPENDIX C: ELECTRICAL CURRENT e €2 €2
IN THE WEAK-COUPLING LIMIT F(Eie,¢) €+2(1-e)[l—cod] € +2[1-cosh]’
In this appendix we calculate the currénf,V) flowing (CH

into the right superconductor and the currégte,V) flow-  Following Ref. 22, we Taylor expand o@sear the resonant
ing out of the normal-metal probe in the weak-coupling limit energiesE> as

€—0. In taking thee—0 limit of Egs. (9)—(11) one must

consider possible resonances inside the integrals, namely, 1
where eitherD(E,e—0,+¢)=0 or F(E,e—0,=¢)=0. [1—cosf(E, = )]25[0(E,i¢)—277n]2
Resonances in the discrete spectrum occur when the denomi-
natorF(E, e, * ¢) =0 in Eqg.(13), namely the energies where 1[dé(E, = ¢)]? .
= E[T (E-E)%

1+(1—€)?—2(1—e€)cog O(E,* ¢)]=0. C1
(1-€)*=2(1—e€)cod O(E, = ¢)] (Cy cH)
Here 6(E, = ¢) is the round-trip phase a bound quasiparticle

acquires when traversing the SNS junction, namely Our approximation for the integrand in E(C4) then be-

comes

E

0(E,)=—2cos * n

+

Lo © € [
&/ F(Ee,=¢) T2 . +(E-Eq)2’ €7

identical to the left-hand side of Eq17). Resonances in \ynhere the resonance widhy, . is defined as

A

F(E,e—0,+¢)=0 therefore occur when
0(E,=¢)=2mn, i.e., at energies equal to the Andreev € eA g,
bound levels in an isolated SNS junction. Consider next pos- | R (C8)

sible resonances in the denomina®(E, e, + ¢)=0 from o (0B, =) B)e-gr  LH+24(Ey)

Eq. (12), namely, the energies where SinceE, = —E, , we havel', , =T, _=I,. Equation(C8)

is therefore the same resonance width obtained from Eq.

4 4
Ugtug :252_ 1=cos{(5) L + . (C3) (A19) in Appendix A, ngmerIn= —E|_.
2u2v2 A AJ\ & Substituting Eq(C7) into Eq. (C4) gives the currenty
flowing out of the normal lead as
The only real energyE|=A for which Eq. (C3) can be
satisfied is at the gap edgé= = A, which can be included 2e A r2
in the discrete spectrum. In(,€,V) h % I_A Fﬁ+(E—Eﬁ)2)

We now turn to the currenity(¢,V) flowing out of the
normal-metal probe from Eq11). Taking thee—0 limit of }‘(E—ev
Xtan

Eqg. (11) only the first term survives, namely, kT dE, (C9
B
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wherea= —,+. The differential conductance along the nor- 2e rA E—eV
mal lead we can now obtain directly by differentiating Eq. l2d(p,€,V)= e_hf —tanl‘(m)
(C9) as A B
dly  2es (A r2 sH(E—eV) x( < € )dE
N n _ .
W_Fnya JLA m)ZG(—T)dE F(E,E, ¢) F(E,E,¢)
(C10 (C16

In the zero-temperature limit, where—df(E—eV)/ SinceF(E, e, — ¢)=F(~E,e,4), we can write Eq(C16 as

JE— S(E—eV), the differential conductance provides a

4e (A
means for Andreev energy-level spectroscopy as l2q(d,€,V)= —hf f(E—eV)
enj_a
dIN 462 Fﬁ ) 2 2
LA O s E— (C11) € ___€
v T eV “FEe-0 FEed/®®
At finite temperature the differential conductance in Eq. (C1?

(C11) is thermally broadened by convolving it in energy with
the thermal smearing function

( &f(E))_ 1 H(
TTOE |7 akgTcC

We now apply our Lorentzian approximation for the inte-
grand in Eq.(C17), yielding

. (C12

E
4e A
2kgT Izd(¢>,e,V)zE; J_Af(E—e\/)

The sizeAly of the steps in the current along the normal

2 2
lead are obtained by integrating E@10 over the voltage % I _ I's dE
(near a resonant leveas (E-E,)?+TI'2 (E—E/)?+T3/
. d I N . ev = (C18)
Al N_f avdVEers 2¢(E,) (C13 whereE; is the Andreev energy described in Hd7).

) Approximating the Lorentzian functions &@sfunctions in
The height of the current steps along the normal lead are thegg. (C18), we obtain

simply the current carried by an Andreev level times the

coupling e of the normal lead to the Andreev level. 4e A T.f(E,—eV)
We now turn to a computation of the current |2d(¢,E,V)2$E Iy, f Ade
I,(4,e—0)V) flowing into the right superconductor. The " - n n
current 1,=1,4+1,, again consists of two contributions, A T HE —eV)
I,q from an energy ranges inside ahd from energies out- —( f deE } (C19
side the gap. We find from Ed10) that current flowing -al n n
outside the energy gap consists only of a contribution in-The integrations in Eq.C19) produce
jected from the superconducting leads themselves as
A r,
2e (= E J —— 5 ——dE=7. (C20
- = _AE—EX)?+T
loc( ) h fA tanl‘( 2KeT n n
The final result for the current flowing into the right super-
X [u2—?) 1 1 ) (C19 conductor is
- — ’
° "9ID(E,~¢) D(E¢)

where |2d(¢av):; {In(PF(E,(d)—eV)

D(E,¢)=D(E,e=0,4) +a (A (Er(p)—eV)},  (C2)

E h
=ué+vé—2u§v§cos{(—) —|+4|. c15 "€
AL ev
+ — F
Equation(C14) is identical to the continuum piece of the |E(¢)=+—L+2§(Ei)- (C22
n

Josephson current calculated in Ref. 8, and is independent of
the probe voltagé/. Therefore, the weakly coupled probe WheneV=0, Eq.(C21) reduces to the discrete part of the
only controls the discrete curretiby(,V), but does not Josephson current described in Ref. 8. Howevergfid 0
affect the continuum currenit,.(¢) in the weak-coupling Eg. (C21) shows that the applied voltage on the normal-
limit. metal probe is an effective electrochemical potential for the
In the limit e—0, the contributionl,4(#,V) from the  Andreev-level occupation. EquatiofC22) is simply the
discrete energy spectrum can be written down from(#€)  electrical current carried by an Andreev bound level of the
as isolated Josephson junctfon
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Equation(C21) gives the size of the Josephson currentanalysis yeilds Eq(21) for the size of the current steps

steps produced when a new Andreev level is occupied. Wheshown in Fig. 7, namelyAl,=*evg/(L+2&,). Note that

the applied voltageV=E,, the current,4 has a step of size the size of the current steps Ip4 are independent of the

|, =evp/[L+2&(E,)]. When the applied voltage crosses coupling strengthe. The total current, is now

the next Andreev level, namelgV=E", the currentl,q

experiences a step of sidd = —eve/[L+2&(ES)]. The (e, V)=124q(p,V) +15.(), (C23

currentl,y therefore steps alternately up and down as the

voltage V varies. Furthermore, these current steps are alko that the continuum curremt. is simply a background

approximately the same height. As long as the Fermi level igurrent which sets the dc current level. The discrete current

not too near the gap edge, we can neglect the energy depehny switches as a function of the voltayg riding on top of

dence of the coherence distance so thgE,)=&, This the background current levej..
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