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dc-current transport and ac Josephson effect in quantum junctions at low voltage
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Multiple Andreev scattering in single-mode superconducting junctions with arbitrary normal electron trans-
parency 0,D,1 is studied in the limit of low applied voltageeV!D. A quasiclassical approach is developed
for investigation of the dense lattice of inelastic sidebands associated with multiple Andreev scattering, which
gives a global description of inelastic-scattering amplitudes and spectral distribution of the current. The cross-
over from the contact to the tunnel regime is investigated for the dc current and ac Josephson current as
function of junction transparency and applied voltage. A mesoscopic interference effect in junctions with
intermediate transparency is discussed. This effect shows up in oscillating features of the current of thermal
excitations.@S0163-1829~97!06418-7#
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I. INTRODUCTION

During the last 15 years significant effort has been
rected towards understanding the physical processes in
ased superconducting junctions at applied voltages sm
than the gap value,eV,2D ~Refs. 1–7!. The interest in the
problem is due to the fact that single-particle current tra
port at zero temperature is entirely blocked at subg
voltage,8 and that the current has multiparticle origin.9 Con-
siderable subgap current is systematically observed in
periment, especially in transparent junctions, manifestin
pronounced subharmonic gap structure.10–14 The multipar-
ticle mechanism of subgap transport has been found to
closely related to Andreev processes of electron-hole con
sions in the junction1,4 and to the formation of Andreev
bound states within the superconducting energy gap.15

The progress during the last few years has been du
careful investigations of quantum point contacts. Such str
tures are available in real experiments on break-junc
devices16,17 and on gated superconductor-semiconduc
devices.18

In quantum point contacts the problem of subgap curr
is presented in a refined form. The small size of the junct
on the scale of the phase-breaking length, and the separ
of transverse electron modes, makes it possible to treat
current through each separate mode in the spirit of the s
tering theory approach.19,20 The total current through the
junction then results from imbalanced currents of quasipa
cle scattering states originating from the left and right sup
conducting electrodes. Quasiparticle scattering in biased
perconducting junctions is inelastic because of nonstation
behavior of the superconducting phase difference at the ju
tion. It therefore involves an infinite set of sidebands in t
spectrum of scattered waves with energies shifted by an
teger number of quantaeV ~Ref. 15!. Furthermore, some o
the sideband states are created within the supercondu
gap in the form of Andreev bound states. These states c
current which is converted into supercurrent outside
550163-1829/97/55~18!/12666~12!/$10.00
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junction, providing transmission of Cooper pairs through t
junction. Thus, a dc pair current necessarily accompanies
single-particle current of real excitations.

Cancellation of the currents of different inelastic cha
nels, including normal and Andreev current components
extremely nontrivial. Perturbative analysis of the current
junctions with low normal electron transparencyD!1 has
shown15,21 that the normal and Andreev components of t
pair current are balanced in a such way that the pair cur
experiences rapid changes~onsets and spikes! near voltages
eV52D/n. Together with the onsets of the single-partic
current this yields the steplike subharmonic gap structure
shown in Fig. 1. The theoretical results perfectly fit brea
junction experimental data without fitting parameters.22 The
subharmonic gap structure in quantum junctions with ar
trary transparency has been numerically calculated using
ferent methods in Refs. 4,23,24.

At low applied voltages,eV!D, the number of inelastic
sidebands increases without limit. However, in junctio
with small transmissivity,D!1, the dc current decays expo
nentially with decreasing the applied voltage,25 Fig. 1. Very
different properties of the dc current have been revealed
the opposite limit of fully transparent junctions,D51. In
this limit, the dc current appears as the average of the ti
dependent current associated with adiabatic oscillations
the Andreev bound states, which approaches constant m
nitude at low applied voltage,23 giving rise to a zero-bias
peak of the junction conductance.7,24

In this paper we analyze the current through superc
ducting junctions at low applied voltageeV!D in the whole
range of junction transparency 0,D,1. Taking advantage
of the high spectral density of the sideband lattice, we
velop a quasiclassical description of the spectral distribut
of the inelastic-scattering amplitudes. This allows us to
vestigate the global structure of the inelastic scattering a
plitudes and the distribution of current among different
elastic channels.

The structure of the paper is the following: in Sec. II w
12 666 © 1997 The American Physical Society
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55 12 667dc-CURRENT TRANSPORT AND ac JOSEPHSON . . .
derive equations for inelastic-scattering amplitudes, wh
Sec. III is devoted to construction of quasiclassical solutio
of these equations. The dc current is calculated in Sec
and the ac current is finally discussed in Sec. V.

II. EQUATIONS FOR SCATTERING AMPLITUDES

We consider a superconducting quantum constriction w
a local scatterer in the neck~Fig. 2!. We assume here that th
junction is symmetric, that the constriction is smooth on
scale of the Fermi wavelength, and that there is only a sin
transport mode. We consider quasiparticle scattering by
junction using the Bogoliubov–de Gennes~BdG! equation27

i Ċ~ t !5ĤC~ t ! ~2.1!

with the Hamiltonian

FIG. 1. The subharmonic gap structure of a biased single-m
quantum point contact at zero temperature and at different junc
transparencies:D 5 0.01, 0.2, 0.5, 0.8. The solid lines represent t
result of a numerical calculation based on the exact recurrence
Eqs. ~3.2a!, ~3.2b!; dashed lines are the analytical result of qua
classical theory, Eqs.~ 4.4!, ~ 4.5!, ~ 4.9!.

FIG. 2. One-channel adiabatic superconducting constrict
The dark region represents the scatterer with normal electron tr
parency 0,D,1.
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Ĥ5F @ p̂W2szeAW ~rW,t !#2

2m
1V~rW !2mGsz

1@U~x!1ew~rW,t !#sz1D̂~rW,t !. ~2.2!

In Eq. ~2.2!, V(rW) is the potential defining the constriction
U(x) is the potential of the scatterer,AW (rW,t) andw(rW,t) are
electromagnetic potentials, andD̂(rW,t) is the superconduct
ing order parameter given by the matrix

D̂5S 0 Deix/2

De2 ix/2 0 D . ~2.3!

sz is the Pauli matrix, and the choice of units corresponds
c5\51.

Due to the adiabatic geometry of the junction,26 we may
use the quasiclassical wave functions far from the scatte

C~rW,t !5(
b

c'~rW' ,x!
1

Av
eib*pdxcb~x,t !, ~2.4!

wherec'(x),c
b(x) are slowly varying functions,c' is the

normalized wave function of the transverse mod
p5A2m(m2E') is the longitudinal momentum of the qua
siclassical electron,v5p/m, andb56 indicates the direc-
tion of electron motion. We will also explicitly separate o
the phasex(rW,t) of the superconducting order parameterD̂
in Eq. ~2.3! by means of a gauge transformation

cb→eiszx/2cb, ~2.5!

and introduce a superfluid momentumpW s5¹x/22eAW and a
gauge-invariant electric potentialF5ẋ/21ew. The coeffi-
cientscb in Eq. ~2.4! then obey the reduced BdG equatio

i ċL,R
b 5~bv p̂sz1FL,Rsz1vpsL,R1Dsx!cL,R

b ~2.6!

in the left (L) and the right (R) electrodes. Within such an
approximation, the local scatterer in the neck of the const
tion imposes a boundary condition to Eq.~2.6!, which is
determined by the normal electron-scattering amplituded
andr (udu21ur u25D1R51, r /d52r * /d* ). If the scatter-
ing amplitudes are energy-independent near the Fermi le
the boundary condition has the form21,28

S cL
2

cR
1D 5S r deiszf/2

de2 iszf/2 r D S cL
1

cR
2D

x50

, ~2.7!

wheref is the gauge-invariant difference of the superco
ducting phases of the right and left electrode
f(t)5xR(0,t)2xL(0,t).

In the point-contact geometry, the effect of spreading
of the current gives rise to a negligibly small spatial dev
tion of the order parameterD from constant magnitude,29

D5const. For the same reason, practically the whole app
voltage dropV occurs at the junction,30 wL2wR5V. Ne-
glecting effects of penetration of the electromagnetic fi
into the superconductor, we omit the potentialsps and F
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12 668 55BRATUS’, SHUMEIKO, BEZUGLYI, AND WENDIN
from Eq. ~2.6!, ps5F50. The relationF50 yields the Jo-
sephson relation between the phase difference and the
plied voltage,ḟ52eV.

In view of the time dependence of the boundary condit
in Eq. ~2.7!, the scattering states are to be constructed fr
the eigenstates of Eq.~2.6! for different energies
En5E1neV, shifted with respect to the energyE of the
incoming wave by an integer multiple ofeV, 2`,n,`.
The wave functions of the scattering states, calculated a
midpoint of the junction (x50), have the form

S cL
2

cR
1D

jE

5S d j ,1

d j ,2
D uE2AE

e2 iEt1(
n

S abD
jn

un
1e2 iEnt, ~2.8!

S cL
1

cR
2D

jE

5S d j ,3

d j ,4
D uE1AE

e2 iEt1(
n

S cf D
jn

un
2e2 iEnt,

where j5124 labels scattering states having the same
coming energyE. In Eqs.~2.8! un is solution of the homo-
geneous BdG equation,
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1

A2
S e6gn/2

sne
7gn/2D , ~2.9!

egn5
uEnu1jn

D
, sn5 sgn~En!,

jn5HAEn
22D2, uEnu.D

isnAD22En
2, uEnu,D

.

Combination of Eqs.~2.7!–~2.9! yields equations for the
scattering amplitudes which reduce to a closed set of re
rences for the transmission amplitudes. For example, fo
holelike quasiparticle incoming from the left (j51), the re-
currences read

S bn11

f n11
D 5M̂nS bn21

f n21
D 2

2eg0/2sinhg0

dAE
S re2g1/2

eg1/2 D dn,0 ,

~2.10!

where the matrixM̂n has the form
M̂n5snsn21S ~egn2~2/D !sinhgn!e
2~gn111gn21!/2 ~2r /D !sinhgne

2~gn112gn21!/2

~22r * /D !sinhgne
~gn112gn21!/2 ~e2gn1~2/D !sinhgn!e

~gn111gn21!/2D , ~2.11!
of
ed

an
g to
ua-
s to
q.
in-
i
in-
and where

DetM̂n51.

The transmission amplitudes of the other scattering st
j5224 satisfy similar equations and are related to the
lution of equations~2.10!, ~2.11! through the symmetry rela
tions

S b3nf 3n
D ~g,r ,d!5S f nbnD ~2g,r * ,d* !, ~2.12a!

S c2na2n
D ~g!5s0snS f nbnD ~2g!. ~2.12b!

The relation between the amplitudes of the scattering st
j54 and j52 is similar to Eq.~2.12a!.
The charge current associated with a single scatte

state is given by the standard quantum-mechanical form

I jE~x,t !5
e

2m H ~ p̂2 p̂8!E d2r'„C~rW8,t !,C~rW,t !…J
rW5rW8

.

~2.13!

The brackets in Eq.~2.13! denote a scalar product i
electron-hole space. Eq.~2.13! is a particular form of a gen
eral equation for the charge current in nonequilibrium sup
conductors derived, e.g., in Ref. 31. In the quasiclassical
proximation of Eq.~2.4! the current~2.13!, calculated at the
junction has form
es
-

es

g
a

r-
p-

I jE~60,t !5e(
b

buc jE
b ~60,t !u2. ~2.14!

The current in Eq.~2.14! can be calculated at either side
the junction: identity of the both expressions is guarante
by the unitarity of the matching matrix in Eq.~2.7!.

The wave functionC(t) in Eq. ~2.1! describes evolution
in time of a quasiparticle state which originates from
eigenstate of the homogeneous BdG equation. Accordin
the assumption of local equilibrium in the electrodes, a q
siparticle distribution among the eigenstates correspond
the Fermi distribution. The total current results from E
~2.14! after summation over all quantum numbers of the
coming states,uEu.D, j5124, with account of the Ferm
filling factors. Expressing partial transmitted currents of
dividual scattering states in Eq.~2.14! through the scattering
amplitudes, and making use of relations~2.12! and the sym-
metry relations

bn~2E,g,r ,d!5snb2n* ~E,2g,r * ,d* !, ~2.15!

f n~2E,g,r ,d!5snf2n* ~E,2g,r * ,d* !,

we finally arrive at an equation for the total current,

I ~ t !5
e

p (
N52`

`

ei2NeVtE
D

`dE E

j
tanh~E/2T! (

n5odd
Kn12N,n ,

~2.16!

where
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55 12 669dc-CURRENT TRANSPORT AND ac JOSEPHSON . . .
Knm5~1/2!~11snsm!$@~un
2 ,um

2! f n* f m2~un
1 ,um

1!bn* bm#

2@g→2g#%. ~2.17!

When deriving Eq.~2.17! we have taken into account th
fact that the products of scattering amplitudesf n* f m and
bn* bm depend on the scattering probabilitiesD andR rather
than on the scattering amplitudesd and r @see below Eqs.
~3.2!, ~3.3!#.

The form of the recurrences in Eq.~2.10!, together with
equation Eq.~2.17! for the current spectral density, allows u
to make an important observation. The matrix elements
Eq. ~2.11! are related, for alln, as

M11~g!5M22~2g!, M12~g,r !5M21~2g,r * !.
~2.18!

Within the superconducting gap the quantitiesgn in Eq. ~2.9!
are imaginary, and the symmetry relations in Eq.~2.18! take
the form

M̂nszM̂n
†5sz . ~2.19!

This generates a conservation law

ubnu22u f nu25 const, uEnu,D, ~2.20!

which imposes a constant distribution of the tim
independent current (N50) of each scattering stateamong
the Andreev bound states.

III. QUASICLASSICAL SOLUTIONS

Although a formal solution of the homogeneous equat
in Eq. ~2.10! is easily obtained:

S b2n11

f 2n11
D 5)

k51

k5n

M̂2kS b1f 1 D , ~3.1!

this is not very helpful because in junctions with arbitra
transparencyDÞ1, the matricesM̂n do not commute and the
product in Eq.~3.1! cannot be calculated analytically. Th
exception is a perfect constriction,R50, where the matrices
M̂n are diagonal and explicit calculation of the scatteri
amplitude is possible.23 In the limit of low voltage,
eV/D!1, the matricesM̂n change slowly withn and nearly
commute if their indices are close to each other, which
lows application of the two-scale expansion technique
approximate calculation of the product.

In this paper we will use another way of approxima
calculation. We split the matrix equation~2.10! into two in-
dependent second-order difference equations

An
1 f n121An

2 f n221Anf n52
2sinhgn

dAE/D
~e2~g01g1!/2dn,1

2s0s21e
~g01g21!/2dn,21!,

~3.2a!
in

n

l-
r

Ān
1bn121Ān

2bn221Ānbn5
2rsinhgn

dAE/D
~e~g12g0!/2dn,1

2s0s21e
~g02g21!/2dn,21!,

~3.2b!

where the coefficients are given by

An
152snsn11e

~gn2gn12!/2
sinhgn

sinhgn11
,

An
252sn21sn22e

~2gn1gn22!/2
sinhgn

sinhgn21
, ~3.3!

An5
4

D
sinh2gn1egn2gn11

sinhgn

sinhgn11
1e2gn1gn21

sinhgn

sinhgn21
,

Ā~g!5A~2g!.

Then, taking advantage of the short period of the sideb
lattice and the slow variation of the coefficients in Eqs.~3.3!,
we transform the difference equations~3.2! into differential
equations and apply the familiar technique of the quasic
sical approximation. Such a method allows us to calcul
current-voltage characteristics in the whole range of junct
transparency 0,D,1. However, in theI -V characteristics
obtained with this method the subharmonic gap structur
lost because the sideband lattice is washed out~this is illus-
trated in Fig. 1!.

Below we will use dimensionless quantitiesE/D,En /D
→ E,En . Expanding ~the homogeneous! equation ~3.2a!
from the lattice En , n5odd to the continuous axis
En→e, and keeping the nonlocality of the coefficients~3.3!
to first order ineV/D, we arrive at the following equation:

F S 12
v

2
g8~a1cothg! Devd/de

1S 12
v

2
g8~a2cothg! De2vd/de

22U~e!1avg8] f ~e!50, ~3.4!

U~e!511~2/D !~e221!.

In Eq. ~3.4!, v52eV/D is the dimensionless Josephson fr
quency,g85dg/de, and the indexa56 is introduced in
order to keep trace of both solutions with6g, necessary for
calculation of the current in Eqs.~2.16!, ~2.17!. Equation
~3.4! is valid on the whole axise except of the pointe50
where the coefficientsA6 in Eq. ~3.3! have a discontinuity in
the limit v→0. This results in discontinuity of the functio
f , which can be taken into account by multiplying the co
tinuous solutionf̃ of Eq. ~3.4! by a discontinuity factor,

f ~e!5eia~p/2!u~e! f̃ ~e!. ~3.5!

Equation~3.4! in the classical limitv→0 has a simple
physical interpretation: it describes one-dimensional mot
of a particle with the dispersion law cosvt in the potential
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12 670 55BRATUS’, SHUMEIKO, BEZUGLYI, AND WENDIN
2U(e), cosvt2U(e)50. This motion corresponds to adia
batic oscillations of the Andreev bound states28,32,33 in a
voltage-biased junction:

e~f!56A12Dsin2@f~t!/2#, f~t!5vt, t5Dt.
~3.6!

Furthermore, Eq.~3.6! determines classically allowed re
gions in Eq.~3.4! which coincide with the position of the
static Andreev bound bandse(f), AR,ueu,1, Fig. 3. The
energy gap between the Andreev bands,ueu,AR, together
with the continuum spectrum,ueu.1, constitute forbidden
regions. Applicability of the quasiclassical approximation
quires that the size of each region is much larger than
spacing of the sideband lattice,

min~D,AR!@v. ~3.7!

The wave equation~3.4! gives a description of the dynam
ics of the Andreev bound states in an energy domain wh
is complementary to the time-domain description develo
in Ref. 23; it allows us to treat nonadiabatic effects of A
dreev bound-state dynamics. The quasiclassical solutio
Eq. ~3.4! reads

f̃6~e0 ,e!5U D

e22RU1/4e6Sa~e0 ,e!. ~3.8!

In classically allowed regions~regionsII and IV in Figs. 3
and 4!, the quasiclassical exponentSa has the form

Sa~e0 ,e!5E
e0

e

de8S ivarccosU~e8!1
a

2Ae822R
D ,

AR,ueu,1. ~3.9a!

In the forbidden regions outside the superconducting ene
gap ~regionsI andV2VI), the quasiclassical exponentSa
reads

Sa~e0 ,e!5E
e0

e

de8S 1v arccoshU~e8!2
a sgne8

2Ae822R
D ,

ueu.1, ~3.9b!

while within the Andreev gap~region III )

FIG. 3. Energy-phase diagram of static Andreev bound-s
bandse(f).
-
e

h
d
-
of

gy

Sa~e0 ,e!5E
e0

e

de8S 1v @ ip2 arccoshuU~e8!u#

1
a i

2AR2e82
D , ueu,AR. ~3.9c!

In Eqs. ~3.8!, ~3.9! only the main branch of the function
f(e) in Eq. ~3.6! is used, since we are only interested in t
values of f̃ (e) on the latticee5En where all branches give
the same magnitude off̃ .

It is interesting to note the role of small nonadiabatic~pro-
portional tov) corrections to the coefficients of equatio
~3.4!. These terms contribute to the pre-exponential fact
in the quasiclassical solutions and cannot be neglected. C
taining an imaginary part, they cause violation of the cons
vation of the probability current in Eq.~3.4!; this leads to
specific interference effects in the spectral distribution of
inelastic-scattering amplitudes@see below Eq.~4.6! and fol-
lowing discussion#. Also, they cause suppression of refle
tion at the edges of the superconducting gapueu51, which
are the singular points of the quasiclassical solutions.

Indeed, in the vicinity of the gap edge pointse561, Eq.
~3.4! reduces to

v2f 92
v2

2~e71!
f 87

8

D
~e71! f50,

te

FIG. 4. Scattering state on the energy axis:~a! effective poten-
tial; ~b! solution of Eq.~3.4!: the dotted line represents an envelo
of rapidly oscillating wave function; in regionsIV - V the incoming
and the reflected waves are shown separately, indicated by arr
~c! spectral distribution of the dc current, which is constant ins
the gap due to compensation of normal (f ) and Andreev (b) current
channels; this compensation is absent in regionsV, VI.
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55 12 671dc-CURRENT TRANSPORT AND ac JOSEPHSON . . .
the exact solution of which, f5exp@6(4/
3)A2/Dv2(6e21)3/2], does not contain any reflected wav
Thus, the matching conditions at the superconducting
edges are determined by analytic continuation of the ex
nentsSa in Eqs.~3.9!:

f6
I ~21,e!→ f7

II ~21,e!, ~3.10!

f6
V ~1,e!→ f6

IV~1,e!.

In contrast to the superconducting gap edges, the edge
the Andreev gap,e56AR, are true turning points. To deriv
the matching conditions at these points we first separate
r
-
in
ie
er

n

p
o-

of

ut

rapid oscillations of the solutions by introducin
f̃5eipe/vg. Then Eq.~3.4! reduces to a parabolic cylinde
equation in the vicinity of each turning point,

v2g91F 4D ~e22R!1
2iav

AD Gg50. ~3.11!

If the turning points are well separated,R@Dv1/3, Eq.~3.11!
further reduces to the Airy equation. Then the stand
matching procedure carried out, e.g., at the pointe52AR,
yields the relation
SC1
III

C2
III D 5S ~1/2!eip/4 ~1/2!e2 ip/422p i ~E1AR!/v

e2 ip/412p i ~E1AR!/v eip/4
D SC1

II

C2
II D ~3.12!
gh

y

in-

-

between the coefficients of linear combinations

f ~e!5C1 f1~e0 ,e!1C2 f2~e0 ,e! ~3.13!

in regionsIII and II ~the quasiclassical exponents are he
counted from the boundarye052AR). The matching equa
tion ~3.12! takes into account exponentially small terms
the asymptotics of the Airy functions in the under-the-barr
region,34 which is necessary for consistency with the cons
vation law ~2.20!. The solutions in regionsIII and IV are
related in a similar way. Combining both matching equatio
with the solution inside the Andreev gap,2AR,e,AR, we
find a direct relation between the coefficientsC6 in Eq.
~3.13! in the allowed regionsII and IV,

SC1
IV

C2
IVD 5 t̂ SC1

II

C2
II D , ~3.14!

where transfer matrixt̂ has elements

t125t21* 5 i ~eF1e2F/4!e22p iE/v, ~3.15!

t115t22* 5~eF2e2F/4!e2p iAR/v,

Dett̂521,

F5
1

vE2AR

AR
de arccoshuU~e!u.

If the Andreev gap is narrow,R!Dv1/3, and the turning
points are not well separated, the transfer matrixt̂ is found
directly from equation~3.11!,

t125t21* 5 iepR/v22p iE/v, ~3.16!

t115t22* 5AR/2pvG~ iR/v!~12e2pR/v!e2pR/2v

3exp„2~ iR/v!@11 ln~v/R!#

22p iAR/v2p i /4…,
e

r
-

s

whereG is theG function and Dett̂521.
The off-diagonal matrix elementt12 of the transfer matrix

t̂ has the meaning of inverse amplitude of tunneling throu
the Andreev gap. The probability of tunnelingW5ut12u22

resulting from Eq.~3.15! is

W5e22F5H e2pDR/eV, R!1,

e~2D/eV!ln~D/16!, D!1.
~3.17!

In the high transparency limitR!1 the result~3.17! coin-
cides with the tunneling probability that follows directl
from Eq. ~3.16!.

Evaluation of the coefficientsC6 in all regions is com-
pleted by taking into account the boundary condition at
finity, f (6`)50, and the source term in Eq.~3.2!. Assum-
ing in Eq. ~3.2a!

f22k215Alk1Bl2k, f 2k115CVIl2k, ~3.18!

for k50,1 with l5exp@ arccoshU(E)#, and neglecting the
variation of the coefficients withn, we find

B5
j

d
~AD1a!, CVI2A5

j

d
~AD2a!,j!D.

~3.19!

The explicit form of the coefficientsC6 in all regions for
different choices of boundariese0 is presented in Table I.

Calculation of the scattering amplitudesb in Eq. ~3.2b! is
carried out in a similar way. This leads to the equations

B5
ajr

d
, C2

VI5
t22
t12

Be22S2a~AR,e!2
ajr

d
. ~3.20!

The other coefficients in regionsI2VI have the same ana
lytical form as the ones in Table. I, the coefficientB being
given by Eq.~3.20! and the exponentS2a substituting for
Sa .
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TABLE I. Reference pointse0 and coefficientsC6 of linear form in Eq.~3.13! for quasiclassical solutions
of wave equation~3.4! for transmitted amplitudef in different regionsI2VI.

e0 C1 C2

I 21 B

t12
e22Sa~AR,1!2Sa~1,E!

0

II 2AR 0 B

t12
e2Sa~AR,E!

III 2AR B

2t12
e2Sa~AR,E!e2p i /422p i ~E1AR!/v

B

t12
e2Sa~AR,E!ep i /4

IV AR Be2Sa(AR,E) t22
t12

Be2Sa~AR,E!

V 1 Be2Sa(1,E) t22
t12

Be22Sa~AR,1!2Sa~1,E!

VI E 0 t22
t12

Be22Sa~AR,E!1
j

d
~AD2a!
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The solutions found above resemble scattering states
quantum particle propagating along the energy axis thro
a potential barrier, related to the gap between Andreev bo
bands as illustrated in Fig. 4. The amplitude of the incom
wave is determined at the injection pointe5E by the source
terms in Eqs.~3.2!. Decaying towards the superconductin
gap edge, the incoming wave transforms without reflect
into a propagating wave within the superconducting gap. A
proaching the Andreev gap, it is partially reflected and p
tially transmitted through the Andreev gap with probabil
W into the other Andreev band. Then, after approaching
other superconducting gap edge ate521, it finally decays
outside the superconducting gap. The condition of wa
function decay at infinity plays the role of the outgoing co
dition in conventional scattering problems determining tra
mitted and reflected waves. Such a scattering state along
E axis gives a complete description of the spectral distri
tion of inelastic-scattering amplitudes of the original scatt
ing problem—it therefore provides a basis for calculation
the current through the junction.

IV. TIME-INDEPENDENT CURRENT

In this section we evaluate the time-independent com
nent of the current. This current consists of the sum of in
herent contributions,N50, of all the sidebands in Eq.~2.16!.
Assuming that the current spectral densityKnn varies slowly
with sideband indexn, we approximate the sum overn with
the integral alonge,

I 05
eD

p E
1

`dE E

j
tanh~ED/2T!E

2`

` de

v
K0~E,e!, ~4.1!

K0~E,e!5cosh@Reg~e!#$@ u f ~E,e!u22ub~E,e!u2#

2~g→2g!%.

We will distinguish three components in the averaged c
rent: single-particle current of the real excitationsI, ~region
I , e,21), pair current of the Andreev bound statesID ~re-
f a
h
nd
g

n
-
r-

e

-
-
-
the
-
-
f

-
-

r-

gions II2IV, 21,e,1), and current of the ground-stat
modesI. ~regionsV2VI, e.1),

I 05I,1ID1I. . ~4.2!

According to the conservation law Eq.~2.20!, the current
spectral densityK0 does not depend one within the super-
conducting gap,K0(e)5const ~Fig. 4!. K0 is easily evalu-
ated at superconducting gap edgee521,

K0~E,ueu,1!5K0~E,21!5
4j2W

AD
e22S~1,E!. ~4.3!

Thus the current spectral density is exponentially smallev-
erywhere within the superconducting gapif R.v, i.e., for
sufficiently low voltage@cf. Eq. ~3.17!#. Multiplying equa-
tion ~4.3! by 2, the size of the gap region, and performi
integration over energyE, we get

ID5
2eDW

p
tanh~D/2T!. ~4.4!

This current gives the main contribution to the tim
independent current at zero temperature. We notice, tha
voltage dependence enters Eq.~4.4! only through the tunnel-
ing probability W, while the large pre-exponential facto
v21 in Eq. ~4.1! related to the large number of Andree
bound states is compensated for by a small phase volum
relevant scattering states,E21;(Dv2)1/3. In accordance
with the voltage dependence ofW in Eq. ~3.17!, the current
in Eq. ~4.4! undergoes crossover from the contact to the t
nel regime ateV'pRD ~cf. Refs. 23,25!, as shown in Fig.
5.

The current spectral densityK0 rapidly decays with de-
parture from the energy gap into regionI and is concentrated
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in a narrow intervale11;(Dv2)1/3. This yields a small
magnitude of the current of real excitationsI, in comparison
with the pair currentID ,

I,5
eDW

2p
a~Dv2!1/3tanh~D/2T!, ~4.5!

a5G~2/3!/61/350.742.

Let us now discuss the currents in regionsV2VI:

K0
V~E,e!5

4j2

AD
e22S~1,E!~e2S~1,e!2uQu2e22S~1,e!!

~4.6a!

K0
VI~E,e!52

4j2

AD
e22S~1,e!~e2S~1,E!1uQu2e22S~1,E!

22ARReQ!. ~4.6b!

The quantity

Q5
t22
t12

expS 2
2i

v E
AR

1

arccosVdED , ~4.7!

in Eqs.~4.6! has the meaning of the amplitude of reflecti
from the superconducting gap. The ratio

t22/t125A12We2 ip/21~2ip/v!~E2AR! ~4.8!

is the reflection amplitude caused by the Andreev gap,
the oscillating factor in Eq.~4.7! contains the additiona
phase gained during propagation through the regionIV. Thus
the first terms in the brackets in Eqs.~4.6! correspond to the
currents of incoming and reflected waves while the th
term in Eq.~4.6b! is the interference current.

In contrast to regionsI2IV, the current spectral densitie
K0
V andK0

VI are not exponentially small~Fig. 4!. However, at
zero temperature one should expect very precise cancella
of these currents since the imbalance effect is only produ
by the creation of a tiny amount of real excitations. Inde

FIG. 5. CurrentI 0 vs applied voltage at different junction tran
parencies.
d

ion
d
,

the dissipative currentI 0 determines the rateĖ of energy
transfer from the external source to the electron syst
Ė5VI0. This energy is expended for creation of real exci
tions; it consists of the product of energy 2D lost to single
excitation, the tunneling probabilityW, and the frequency of
attempts eV: Ė;2DWeV. This rough estimate yields
I 0;ID . Direct calculation of noninterference currents
Eqs.~4.6! supports the above conclusion: the currents of
gionsV2VI compensate each other with exponential ac
racy after integration over energyE, giving the result

I.5
eDW

2p
a~Dv2!1/3. ~4.9!

This coincides with the current of real excitationsI, , Eq.
~4.5!. At the same time, the interference current is not c
celed but yields a residual oscillating current which is n
exponentially small. This result apparently contradicts
above arguments~exponentially smallI 0) and also the resul
of exact numerical calculation of the subharmonic gap str
ture in Fig. 1, which does not show any background curr
in the limit of low voltage.

The correct behavior is revealed by detailed numeri
investigation of the currents in regionsV2VI carried out on
the basis of the exact recurrences in Eq.~2.10!. In Fig. 6, the
currentsI V(E) and I VI(E) show the integral contribution o
the regionsV and VI @the current densities in Eqs.~4.6!

FIG. 6. Currents in regionsV2VI calculated from the exac
recurrences~2.10!; currentsI V(E) andI VI(E) represent current den
sities K0

V and K0
VI from Eq. ~4.6! respectively, integrated overe.

The currentI VI reveals pronounced oscillations vsE reflecting the
interference term in Eq.~4.6b!, while the interference effect inI V is
much smaller. The asymptotics at largeE correspond to the curren
spectral density in the normal junctions.
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integrated overe#. The current in regionVI shows pro-
nounced interference oscillations similar to our analytical
sult in Eq.~4.6b!. The current in regionV also possesses a
oscillating component but with much smaller amplitud
This oscillating component is not present in Eq.~4.6a! be-
cause of its small magnitude (;v), which exceeds the ac
curacy of the quasiclassical approximation. The full-sc
rapid oscillations of current in regionVI are reduced afte
integration over energy and they are perfectly compens
for by the current from regionV.

At finite temperature the current compensation is lift
due to the energy-dependent Fermi factor in Eq.~4.1!, which
yields a current of thermal excitations that is not expon
tially small ~with respect toeV). The smooth part of this
current, resulting from noninterfering terms in Eqs.~4.6!, has
the form

I.~T!5
2e2V

p
ApDD

2T
e2D/T, T/D!D. ~4.10!

In the opposite limit the current of thermal excitations is

I.~T!5
e2DV

4p

D

T S p

2
21D cosh22

D

2T
, D!T/D,1.

~4.11!

The result of numerical evaluation of the smooth curr
component is plotted in Fig. 7 with dashed lines. The so
lines show the exact current of thermal excitations wh
manifests pronounced oscillating features. Although the
curacy of the quasiclassical approximation is not suffici
for analytical evaluation of the amplitude of current oscil
tions dI osc, as previously explained, the oscillation perio
P: dI osc@(D/eV)1P#5dI osc(D/eV), can easily be evalu
ated from Eqs.~4.7!, ~4.8!. Since integration over energ
selects the energyE51, the oscillation period is

P5
p

*0
p~p2f!dE~f!

, ~4.12!

whereE(f) is the static Andreev bound-state spectrum, E
~3.6!. For low transparency, Eq.~4.12! reads

P'
8

D
, D!1.

In Fig. 8, the junction conductanceG5I /V is plotted as a
function of inverse voltage. The oscillations are clearly pe
odic and the period does not depend on temperature.
numerical evaluation of the period is in nice agreement w
Eq. ~4.12!.

V. TIME-DEPENDENT CURRENT

Proceeding to calculation of the time-dependent (NÞ0)
part of the current in Eq.~2.16!, we note that the quasiclas
sical approximation only allows us to investigate low
frequency current harmonics,Nv!1. Within such an ap-
proximation one can neglect the difference between ind
of coefficients of bilinear form in Eq.~2.17!,
-

.

e

ed

-

t
d
h
c-
t

.

-
he
h

s

FIG. 7. I -V characteristics of junctions with transparenciesD 5
0.2 ~upper! andD 5 0.8 ~lower! at different temperatures@normal-
ized byD(T)#. Bold lines represent exact numerical results for t
current of thermal excitations~regionsV - VI); dashed lines are the
results of quasiclassical theory without inclusion of the interferen
term; thin lines show the total dc current, coinciding with the the
mal excitation current at low voltage.
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55 12 675dc-CURRENT TRANSPORT AND ac JOSEPHSON . . .
FIG. 8. Oscillations of the normalized junction conductan
G(T)5I (T)/V vs inverse voltage at different temperatures in jun
tions with transparenciesD 5 0.2 ~upper! andD 5 0.8 ~lower!;
GN5e2D/p is the conductance of the normal junction. The peri
of oscillations is given by Eq.~4.12!.
I ac5
eD

p (
N51

` E
1

`dEE

j
tanh~ED/2T!

3E
2`

` de

v
2 Re@eiNvtKN~E,e!#, ~5.1!

KN~E,e!5cosh@ Reg~e!#$@ f * ~e1Nv! f ~e!

2b* ~e1Nv!b~e!#2~g→2g!%.

Furthermore, when calculating products of scattering am
tudes in Eq.~5.1!, we will assume coinciding arguments i
the pre-exponential factors in Eq.~3.8! and expand quasi
classical exponents:S(e1Nv)'S(e)1S8Nv. The main
contribution to the ac current at all temperatures results fr
regionsII and IV—classically allowed regions for Andree
bound-state oscillations. The current spectral densityKN

II dif-
fers from the static Eq.~4.3! containing the additional expo
nential factor exp(S8Nv)'exp@iNf(e)#:

KN
II ~E,e!5

4j2W

AD
e22S~1,E!eiNf~e!, ~5.2!

wheref(e) is given by Eq.~3.6!. The current spectral den
sity in regionIV only consists of incoherent contributions o
incoming waves and waves reflected from the Andreev g

KN
IV~E,e!5

4j2

AD
e22S~1,E!~e2 iNf~e!2uQu2eiNf~e!!

~5.3!

~the interference current vanishes in the quasiclassical
proximation!. Combination of Eqs.~5.2!, ~5.3!, and ~5.1!
yields the ac current,

I ac
II1IV5

eDD

2
tanh

D

2TF ~12W!
sinvt

A12Dsin2~vt/2!
~5.4!

1WS usinvtu

A12Dsin2~vt/2!
2

4~12AR!

pD

D sgnVG ,
which consists both of sine and cosine components~odd and
even with respect to time reversal! and undergoes crossove
from cosine-like behavior in the contact limitD51
(W51) to sine-like behavior in the tunnel limitD!1
(W!1). A similar crossover occurs with decreasing volta
when R!1: from cosine-like behavior at comparative
large voltage,eV@RD, to sine-like behavior at low voltage
eV!RD. We note that the instant current in Eq.~5.4! in the
limit V→0 does not approach the static Josephson curr
having different temperature dependence. The dc Josep
current possesses a temperature depende
tanh(E(f)D/2T) with E(f) given by Eq. ~3.6!, which re-
flects the equilibrium population of the static Andreev bou
states. In contrast, the temperature factor in Eq.~5.4! reflects
the nonequilibrium population of oscillating Andreev stat
through the Fermi filling factor at the gap edgeE51. Such a
difference persists unless the period of Josephson oscillat
exceeds the inelastic relaxation time.7,24

The last, time-independent, term in Eq.~5.4! is equal to
the zeroth harmonic of the current of regionsII ,IV, and

-
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therefore represents the time-averaged magnitude of the
ac current of the oscillating quasistatic Andreev states. It w
pointed out in Ref. 23 that in fully transparent junction
R50, the dc current is entirely produced by oscillating A
dreev states. In junctions with finite reflectivity,R.0, ac-
cording to Eq.~5.4! only part of dc pair current, Eq.~4.4!,
results from oscillating Andreev states—the remaining p
is contributed by nonadiabatic states within the Andreev
~region III ).

The conclusion drawn above about the exponentia
small magnitude of the cosine current in the tunnel regi
concerns, rigorously speaking, only the low-frequency p
of the ac current. The suppression of the low-frequency c
rent is caused by the conservation law in Eq.~2.20!, which is
nearly fulfilled in this frequency region and which esta
lishes approximate balance of the normal and Andreev
rents. On the other hand, one has to expect that h
frequency harmonics are not suppressed: harmonics in
regionNv@AR should not be sensitive to the presence o
gap in the static Andreev spectrum and must approxima
have the same magnitude as the cosine harmonics in
transparent junctions,R50. Such arguments lead to th
spectrum of the cosine ac current sketched in Fig. 9:
amplitudes of the harmonics, being exponentially small
smallN, rapidly grow withN and after approaching a max
mum atNv;AR decay with a power law, similarly to the
spectrum of the transparent junction. The nonadiabatic ef
of exponential growth of the harmonic amplitudes at lo
frequency is provided by the contribution of the forbidd
region III .

The contribution of forbidden regions to the ac current
always restricted to the cosine component,

I ac5 (
N51

`

I Ncos~Nvt!. ~5.5!

The current contribution of regionIII

I N
III 5

4eDW

p
tanh

D

2T
~21!NE

0

AR
decosh„N arccoshuU~e!u…

~5.6!

FIG. 9. Spectral distribution of the cosine harmonics of the
Josephson current. The solid line is the fully transparent junc
(R50); dotted line is the junction with finite reflectivity (R.v),
contribution of Andreev bound states; dashed line is the junc
with finite reflectivity (R.v), total cosine current with account o
contribution of the Andreev gap.
tal
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results from the interference termsf1* (e1Nv) f2(e), and
other similar terms, which combine growing and decayi
elementary solutions. The first harmonics in Eq.~5.6! have
the same order of magnitude as the cosine current of o
lating Andreev states in Eq.~5.4!. The harmonic amplitudes
exponentially grow withN,

I N
III 5

4eDW

p
tanh

D

2T
~21!NS pAR

N D 1/2
3exp„N arccosh~112R/D !…, N@1,

until Nv exceeds the size of regionIII , Nmax;AR/v.
The spectral density of the ac current in regionI rapidly

decays with departure from the superconducting gap ed
similarly to the dc current. Therefore, its contribution
small with respect to the cosine current of the Andre
states,

I N,5
eDW

p
~Dv2!1/3aNtanh

D

2T
, ~5.7!

aN5E
0

`

dxexpS 2
2

3
x3/22

2

3
~x12N/N0!

3/2D ,
N05~D/v!1/3.

The currents in regionsV andVI nearly compensate eac
other at zero temperature, yielding a total current coincid
with the contribution of regionI , I N.5I N, . At nonzero
temperature the current compensation is lifted, which le
to an ac current of thermal excitations. The smooth, non
terference component of this current,

I N.~T!5
4e2D

p
e2D/TADE

0

`dx

x2
~12e22Tx2/D!

3exp~22NADx!,T/D!D, N!N0 ,

~5.8!

decreases with harmonic numberN asN21. At N@N0 the
current harmonics decay exponentially.

We conclude this section with a remark about the sign
the cosine current~see the discussion in Ref. 35!. Although
the signs of all harmonics in Eq.~5.8! are positive, the sign
of the total cosine current may be negative due to comp
tion with the cosine current of the Andreev bound states
Eqs. ~5.4! and ~5.6!. In particular, the contribution by the
Andreev bound states to the first cosine harmonic is ne
tive.

VI. CONCLUSION

In conclusion, we have calculated the dc current and
ac Josephson current in quantum superconducting junct
at low applied voltageeV!D in the whole range of junction
transparency 0,D,1. The global structure of multiple An
dreev scattering and the distribution of currents amo
inelastic-scattering channels is described in terms of
wave function of an effective quasiclassical particle prop
gating along the energy axis.

The main physical characteristic, which determines
properties of low-biased junctions with intermediate tran
parency, is the energy gap in the static Andreev bound-s
spectrum. Opening of the Andreev gap yields exponen

c
n

n
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suppression of the dc current, and determines the cross
from the contact to the tunnel regime of both the dc curr
and the ac Josephson current as functions of junction tr
parency and applied voltage. Quasiparticle reflection fr
the edges of the Andreev gap causes mesoscopic pheno
manifested in oscillating features on current-voltage cha
teristics at finite temperature.

At zero temperature, the pair current always gives
main contribution to the dc current and is homogeneou
distributed within the superconducting energy gap. In
tunnel regime eV!RD, the suppression of the low
frequency cosine harmonics of the ac current is lifted
higher frequency: the amplitudes of the cosine harmon
grow exponentially with the harmonic numberN, and
achieve atNeV;ARD a magnitude of the order of the non
suppressed current in a pure constriction.

The present investigation has been concerned with ju
tions whose scattering properties in the normal state do
depend on energy, which is true for all kinds of weak lin
with lengths shorter than the coherence length. However,
method can be extended to long superconductor–norm
,
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metal-superconductor junctions, junctions with resona
tunnel barriers, and other structures where electron-h
dephasing effects are important. It has been shown in Ref
that the electron-hole dephasing gives rise to modification
the spectral equation~3.6! to the form cosf5F@r(E),d(E)#,
where F is a universal function of the electron-scatterin
amplitudes of the normal part of the junction. Therefo
although the shape of the effective potential in the ener
domain wave equation~3.4! is specifically modified for each
particular junction, the whole scenario remains unchange
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