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dc-current transport and ac Josephson effect in quantum junctions at low voltage
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Multiple Andreev scattering in single-mode superconducting junctions with arbitrary normal electron trans-
parency 6<D<1 is studied in the limit of low applied voltageV<<A. A quasiclassical approach is developed
for investigation of the dense lattice of inelastic sidebands associated with multiple Andreev scattering, which
gives a global description of inelastic-scattering amplitudes and spectral distribution of the current. The cross-
over from the contact to the tunnel regime is investigated for the dc current and ac Josephson current as
function of junction transparency and applied voltage. A mesoscopic interference effect in junctions with
intermediate transparency is discussed. This effect shows up in oscillating features of the current of thermal
excitations[S0163-18207)06418-7

[. INTRODUCTION junction, providing transmission of Cooper pairs through the
junction. Thus, a dc pair current necessarily accompanies the
During the last 15 years significant effort has been di-single-particle current of real excitations.
rected towards understanding the physical processes in bi- Cancellation of the currents of different inelastic chan-
ased superconducting junctions at applied voltages smallarels, including normal and Andreev current components, is
than the gap valuegsV<2A (Refs. 1-7. The interest in the extremely nontrivial. Perturbative analysis of the current in
problem is due to the fact that single-particle current transjunctions with low normal electron transparenby<1 has
. h 5,21
port at zero temperature is entirely blocked at subgaghowrt®?!that the normal and Andreev components of the
voltage® and that the current has multiparticle oridiGon-  pair current are balanced in a such way that the pair current
siderable subgap current is systematically observed in exexperiences rapid changénsets and spikgsiear voltages
periment, especially in transparent junctions, manifesting &V=2A/n. Together with the onsets of the single-particle
pronounced subharmonic gap structtffé” The multipar-  current this yields the steplike subharmonic gap structure, as
ticle mechanism of subgap transport has been found to bghown in Fig. 1. The theoretical results perfectly fit break-
closely related to Andreev processes of electron-hole convejunction experimental data without fitting paramet&3he
sions in the junctioh® and to the formation of Andreev subharmonic gap structure in quantum junctions with arbi-
bound states within the superconducting energy'gap. trary transparency has been numerically calculated using dif-
The progress during the last few years has been due terent methods in Refs. 4,23,24.
careful investigations of quantum point contacts. Such struc- At low applied voltagese V<A, the number of inelastic
tures are available in real experiments on break-junctiorsidebands increases without limit. However, in junctions
devices®!” and on gated superconductor-semiconductowith small transmissivityD <1, the dc current decays expo-
devicest® nentially with decreasing the applied voltagerig. 1. Very
In quantum point contacts the problem of subgap currendifferent properties of the dc current have been revealed in
is presented in a refined form. The small size of the junctiorthe opposite limit of fully transparent junction®,=1. In
on the scale of the phase-breaking length, and the separatidins limit, the dc current appears as the average of the time-
of transverse electron modes, makes it possible to treat thdependent current associated with adiabatic oscillations of
current through each separate mode in the spirit of the scathe Andreev bound states, which approaches constant mag-
tering theory approach?® The total current through the nitude at low applied voltag®, giving rise to a zero-bias
junction then results from imbalanced currents of quasipartipeak of the junction conductanté?
cle scattering states originating from the left and right super- In this paper we analyze the current through supercon-
conducting electrodes. Quasiparticle scattering in biased swhucting junctions at low applied voltage/<<A in the whole
perconducting junctions is inelastic because of nonstationargange of junction transparency< <1. Taking advantage
behavior of the superconducting phase difference at the jun®f the high spectral density of the sideband lattice, we de-
tion. It therefore involves an infinite set of sidebands in thevelop a quasiclassical description of the spectral distribution
spectrum of scattered waves with energies shifted by an inef the inelastic-scattering amplitudes. This allows us to in-
teger number of quantaV (Ref. 15. Furthermore, some of vestigate the global structure of the inelastic scattering am-
the sideband states are created within the superconductingitudes and the distribution of current among different in-
gap in the form of Andreev bound states. These states carmlastic channels.
current which is converted into supercurrent outside the The structure of the paper is the following: in Sec. Il we
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+[U(X)+eq(r,t)]o,+A(r,1). (2.2)

In Eq. (2.2), V(r) is the potential defining the constriction,
U(x) is the potential of the scatterek(r,t) and ¢(r,t) are

electromagnetic potentials, atﬂﬂt) is the superconduct-
ing order parameter given by the matrix

A 0 Aei)(/Z
A=( ) (2.3

Ae”™2 0

I, (eAm)

o, is the Pauli matrix, and the choice of units corresponds to
c=h=1.

Due to the adiabatic geometry of the junctfSnye may
use the quasiclassical wave functions far from the scatterer,

W(rt)=2, wﬂ,x)ie‘ﬁfpd*«pﬂ(x,t), (2.4
3 N

where s, (x),#(x) are slowly varying functionsy, is the
normalized wave function of the transverse mode,
AeV p=+v2m(u—E,) is the longitudinal momentum of the qua-
siclassical electrony=p/m, and 8= = indicates the direc-

FIG. 1. The subharmonic gap structure of a biased single-modHOn Of €lectron motion. We will also explicitly separate out

guantum point contact at zero temperature and at different junctiothe phasey(r,t) of the superconducting order parameter

transparencie® = 0.01, 0.2, 0.5, 0.8. The solid lines represent thein Eq. (2.3) by means of a gauge transformation

result of a numerical calculation based on the exact recurrences in

Egs.(3.29, (3.2b; dashed lines are the analytical result of quasi- W;Hei"zx/z(pﬁ, (2.5

classical theory, Eqg.4.4), ( 4.5), ( 4.9.

and introduce a superfluid momentyg=V y/2—eA and a

derive equations for inelastic-scattering amplitudes, Wh'%auge-invariant electric potentidh = y/2+ee. The coeffi-

Sec. Il is devoted to construction of quasiclassical solutions.; B o
) . : ientsy” in Eq. (2.4) then obey the reduced BdG equation:
of these equations. The dc current is calculated in Sec. | v a.24 y q

and the ac current is finally discussed in Sec. V. - N
iy = (Bopo,+ P go,+vps rt AT Yl g (2.6)

Il. EQUATIONS FOR SCATTERING AMPLITUDES in the left (L) and the right R) electrodes. Within such an

We consider a superconducting guantum constriction Wit@pprpximation, the local scattere'r'in the neck of thg constric—
a local scatterer in the necKig. 2. We assume here that the tion imposes a boundary condition to E@.6), which is
junction is symmetric, that the constriction is smooth on thedetermined by the normal electron-scattering amplitudies
scale of the Fermi wavelength, and that there is only a singl@ndr (|d|?+[r|?=D+R=1, r/d=—r*/d*). If the scatter-
transport mode. We consider quasiparticle scattering by th#&'d amplitudes are _e_nergy-lndependegnt near the Fermi level,
junction using the Bogoliubov—de GennédG) equatior’  the boundary condition has the fotht

iW(t)=HW(t) (2.9 /s r deiz02| [yt

with the Hamiltonian g | =\ geioiz vl 2.7
x=0

where ¢ is the gauge-invariant difference of the supercon-
ducting phases of the right and left electrodes:

In the point-contact geometry, the effect of spreading out
X of the current gives rise to a negligibly small spatial devia-

tion of the order parametek from constant magnitud@,
A =const. For the same reason, practically the whole applied
FIG. 2. One-channel adiabatic superconducting constrictionvoltage dropV occurs at the jUﬂCtiOﬁQ oL~ ¢r=V. Ne-
The dark region represents the scatterer with normal electron tranglecting effects of penetration of the electromagnetic field
parency 6<D<1. into the superconductor, we omit the potentialsand ®
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from Eq.(2.6), ps=®=0. The relation® =0 yields the Jo- 1 [ e*mli2
sephson relation between the phase difference and the ap- u, = ( Ivn/Z)' (2.9
plied voltage,¢=2eV. 2\ ome
In view of the time dependence of the boundary condition IE |+ ¢
in Eq. (2.7), the scattering states are to be constructed from en="_"1"" 5 — sgn(E,),
the eigenstates of Eq.(2.6) for different energies A

E,=E+neV, shifted with respect to the enerdy of the
incoming wave by an integer multiple &V, —x<n<w. B VER—AZ, |En[>A
The wave functions of the scattering states, calculated at the &n= o, \/rEﬁ IE <A’

midpoint of the junction x=0), have the form
Combination of Egs.(2.7)—(2.9 yields equations for the
P 61\ Ug et e scattering amplitudes which reduce to a closed set of recur-
= —=e +; b u,e "=, (2.9 rences for the transmission amplitudes. For example, for a

+ - .
= jE 9.2 ‘/E in holelike quasiparticle incoming from the lefi€1), the re-
. . currences read
P 3| YE g c —a—iEpt
(lﬂr_e ‘E: 4 Ee | +2 £ une Pn+1 1 bﬂ—l) 2e7'Zsinhy, re_nlz)
! n = ——
: ] fn+l " fn—:L d\/E ey1/2 no”

wherej=1—4 labels scattering states having the same in-

coming energyE. In Eqgs.(2.8) u, is solution of the homo- R 2.10
geneous BdG equation, where the matriXM , has the form
|
. (e”n—(2/D)sinhy,)e” n+1tm-12  (2r/D)sinhy,e” ("n+17 -1/
M= onTn-s (—2r*/D)sinhy,en+1"m-0"2 (g7 "+ (2/D)sinhy,)eln+1t Y-/ 219
|
and where p )
(=00 =e2, Bluje(x0nl2 (2.14

DetM,,=1.
o ] . The current in Eq(2.14 can be calculated at either side of
The transmission amplitudes of the other scattering statege junction: identity of the both expressions is guaranteed
j=2—4 satisfy similar equations and are related to the sopy the unitarity of the matching matrix in E¢2.7).
lution of equationg2.10, (2.11) through the symmetry rela-  ~ The wave function¥(t) in Eq. (2.1) describes evolution
tions in time of a quasiparticle state which originates from an
eigenstate of the homogeneous BdG equation. According to
3n [ Tn . s the assumption of local equilibrium in the electrodes, a qua-
fan (y.r,d)= b, (= r*.d%), (2.123 siparticle distribution among the eigenstates corresponds to
the Fermi distribution. The total current results from Eq.
. (2.14) after summation over all quantum numbers of the in-
2n
(a2n filling factors. Expressing partial transmitted currents of in-
dividual scattering states in E(.14) through the scattering

f )(_ ) (2.12b coming states|E|>A, j=1—4, with account of the Fermi
The relation between the amplitudes of the scattering stategmplitudes, and making use of relatioi®s12 and the sym-

n
by,

j=4 andj=2 is similar to Eq.(2.123. metry relations
The charge current associated with a single scattering
state is given by the standard quantum-mechanical formula ba(—E,y.r,d)=onb* (E,— y,r*,d*), (2.19
e . . - -
lie(x,t)= ﬁ[(p—pﬂf dzri(‘P(r’,t),‘lf(r,t))}a i fa(=E yr,d)=0onfZy(E,—y,r*,d*),
r=r’

(213 we finally arrive at an equation for the total current,

The brackets in Eq.2.13 denote a scalar product in

electron-hole space. E€R.13 is a particular form of a gen- _© . i2Nthfde E
eral equation for the charge current in nonequilibrium super- ()= wN;m € A & tank(E/ZT)n;;,dd Kn+anns
conductors derived, e.g., in Ref. 31. In the quasiclassical ap- (2.19

proximation of Eq.(2.4) the current(2.13), calculated at the
junction has form where
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Knm:(llz)(l"_a'no'm){[(ur: aur;)f:fm_(u: aur_;)b:bm] — — — 2rsinhy,
A bniotArby ot Apby=———e
—[y——71h (2.17 dVE/A

When deriving Eq.(2.17) we have taken into account the —ogo_1e707 7025, ),

fact that the products of scattering amplitudisf,, and (3.2b
b’ b, depend on the scattering probabiliti®sandR rather
than on the scattering amplituddsandr [see below Egs.

(e 705,

where the coefficients are given by

(3.2), (3.3)]. sinhy,,

The form of the recurrences in E.10, together with Al =—0n0n, €0 22—
equation Eq(2.17) for the current spectral density, allows us sinfyn.
to make an important observation. The matrix elements in .
Eq. (2.11) are related, for alh, as A, =—0n_ 10,6t anz)/zlsmﬂ’ (3.3

sinhyn—1
— — — — *
M1i(y)=Ma—=7v), M y,r)=Ma(—y,r%). 4 sinhy, sinhy,,
(2.18 A,==sinfPy,+en Mni1——— +e Wmim1———
"D " s”f]h’)’n-#l Slnh'yn—l,

Within the superconducting gap the quantitigsin Eq. (2.9 o
are imaginary, and the symmetry relations in Efj18 take A(y)=A(—7).

the form
Then, taking advantage of the short period of the sideband

Ay lattice and the slow variation of the coefficients in E@3),
MnoMp=07. (219 \ye transform the difference equatiof@?2) into differential
equations and apply the familiar technique of the quasiclas-
sical approximation. Such a method allows us to calculate
current-voltage characteristics in the whole range of junction
|bn|?=fn|?= const, |En|<A, (220  transparency &D<1. However, in thd-V characteristics

obtained with this method the subharmonic gap structure is
which imposes a constant distribution of the time-lost because the sideband lattice is washed(ibig is illus-
independent currentN=0) of each scattering statamong trated in Fig. ).

This generates a conservation law

the Andreev bound states. Below we will use dimensionless quantiti€A,E,/A
— E,E,. Expanding(the homogeneolisequation (3.23
IIl. QUASICLASSICAL SOLUTIONS from the lattice E,, n=odd to the continuous axis,

E,— €, and keeping the nonlocality of the coefficierig3)
Although a formal solution of the homogeneous equatiorto first order ineV/A, we arrive at the following equation:
in Eq. (2.10 is easily obtained:

k= 1—2’y'(a+cothy) gud/de
ban+1) o ~ [b1 2
=[1 My , (3.1

k=1 fl

f2n+1

J’_

w
1- Ey’(a—cothy))e‘”d’dE

this is not very helpful because in junctions with arbitrary
transparency # 1, the matrice$/ , do not commute and the
product in Eq.(3.1) cannot be calculated analytically. The
exception is a perfect constrictioR=0, where the matrices )
~ . . . . U(e)=1+(2/D)(e"—1).
M, are diagonal and explicit calculation of the scattering
amplitude is possibl€ In the limit of low voltage, In Eq.(3.4), w=2eV/A is the dimensionless Josephson fre-
eVIA<1, the matrice$7|n change slowly witm and nearly quency,y’'=dvy/de, and the indexa=* is introduced in
commute if their indices are close to each other, which al-order to keep trace of both solutions wittyy, necessary for
lows application of the two-scale expansion technique forcalculation of the current in Eq$2.16, (2.17). Equation
approximate calculation of the product. (3.4 is valid on the whole axig except of the poin=0

In this paper we will use another way of approximatewhere the coefficientd™ in Eq. (3.3) have a discontinuity in
calculation. We split the matrix equatid®.10 into two in-  the limit w— 0. This results in discontinuity of the function
dependent second-order difference equations f, which can be taken into account by multiplying the con-

tinuous solutionf of Eq. (3.4 by a discontinuity factor,

—2U(e)+awy']f(e)=0, (3.9

2sinhy,

dVE/A

—ogo_e 0t -D25, ),

An+fn+2+Ar:fn—2+Anfn: - (ei(yOerl)lzﬁn,l f(e) :eia('rrIZ)H(e)’f'( €). (3.5
Equation(3.4) in the classical limitws—0 has a simple
physical interpretation: it describes one-dimensional motion

(3.23 of a particle with the dispersion law c@s in the potential
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FIG. 3. Energy-phase diagram of static Andreev bound-state 3 \\

bandse(¢). b / .......... T

—U(e), cosvm—U(€)=0. This motion corresponds to adia-

batic oscillations of the Andreev bound st&fe¥33in a : K, C
voltage-biased junction: /
e($)=*+J1-Dsi[p(7)/2], ¢(T)=wT, T=AL. o £
-1 0 1 €

(3.6 :
Furthermore, Eq(3.6) determines classically allowed re-
gions in Eqg.(3.4) which coincide with the position of the
static Andreev bound bandsg ¢), \/§<|€|<1a Fig. 3. The FIG. 4. Scattering state on the energy ax&:effective poten-

energy gap between the Andreev banjd$< VR, together tial; (b) solution of Eq.(3.4): the dotted line represents an envelope

with the continuum spectrung|>1, constitute forbidden of rapidly oscillating wave function; in region¥ - V the incoming

regions. Applicability of the quasiclassical approximation re-and the reflected waves are shown separately, indicated by arrows;

quires that the size of each region is much larger than thé&) spectral distribution of the dc current, which is constant inside

spacing of the sideband lattice, the gap due to compensation of normg) &nd Andreev ) current
channels; this compensation is absent in regdn¥ 1.

min(D,VR)> w. (3.7

The wave equatiofB.4) gives a description of the dynam- I E P ,
ics of the Andreev bound states in an energy domain which Sal€o:€) Lode ((u [i— arccoshU(e")]]
is complementary to the time-domain description developed

in Ref. 23; it allows us to treat nonadiabatic effects of An- ai
dreev bound-state dynamics. The quasiclassical solution of +2\/ﬁ
Eq. (3.4 reads

. le<VR. (3.90

1/4 In Egs. (3.8, (3.9 only the main branch of the function
e Sal€0:9), (3.8 ¢(e) in Eg.(3.6) is used, since we are only interested in the
values off(e) on the latticee=E, where all branches give
In classically allowed region&egionsll andIV in Figs. 3  the same magnitude dt
and 4, the quasiclassical expone8} has the form It is interesting to note the role of small nonadiab#fim-
portional to w) corrections to the coefficients of equation
(3.4). These terms contribute to the pre-exponential factors
' in the quasiclassical solutions and cannot be neglected. Con-
taining an imaginary part, they cause violation of the conser-
JR<|e|<1. (3.93 vatio_n_ of the probability current in Eq3.4); Fhis_ Iea_lds to
specific interference effects in the spectral distribution of the
In the forbidden regions outside the superconducting energinelastic-scattering amplitud¢see below Eq(4.6) and fol-
gap (regionsl andV—VI), the quasiclassical expone§j, lowing discussiolh Also, they cause suppression of reflec-
reads tion at the edges of the superconducting ¢elp=1, which
are the singular points of the quasiclassical solutions.

€ i
Sa(eo,e)zf de’(—arccosJ(e’)Jr
0 w

€

2\Je'“*—R

e |1 , a sgre’ Indeed, in the vicinity of the gap edge poirds £ 1, Eq.
S,( 60,6) = ffodé ; aI'CCOSﬂ]J(E )_Z\/ﬁ ) (3.4) reduces to
le|>1, (3.9h w2

2¢m __
while within the Andreev gajfregionlll) ' 2(e¥1)

f’_8 F1)f=
+5(6+1) —0,
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the exact  solution of  which, f=exd*=(4/ rapid oscillations of the solutions by introducing
3)y2/D w?(* e—1)%?, does not contain any reflected wave. f=¢ melog. Then Eq.(3.4) reduces to a parabolic cylinder
Thus, the matching conditions at the superconducting gapquation in the vicinity of each turning point,

edges are determined by analytic continuation of the expo-
nentsS, in Eqgs.(3.9): )
4 2_n +2|aw

VD

v v
fx(le)—f(Le). If the turning points are well separate®sD ', Eq.(3.11)

In contrast to the superconducting gap edges, the edges fifrther reduces to the Airy equation. Then the standard

the Andreev gape= = +/R, are true turning points. To derive matching procedure carried out, e.g., at the peaiat— VR,

the matching conditions at these points we first separate owields the relation

w?g"+ g=0. (3.1)

fl(-Le)—fl(-1e), (3.10

CI+II (1/2)eiﬂ'/4 (llz)efiﬂ'/47277i(E+\fﬁ)/w C|+|
CL“ - e*iﬂ'/4+277i(E+ VR)/w ei wl4 Cll (312
|
between the coefficients of linear combinations whereTl is theT function and Dei= — 1.
The off-diagonal matrix elemeiy, of the transfer matrix
f(©)=C.Ti(eq)+C T (ege) (313 J te

t has the meaning of inverse amplitude of tunneling through
in regions!ll andll (the quasiclassical exponents are herethe Andreev gap. The probability of tunnelinf=|t,, 2
counted from the boundam= — R). The matching equa- resulting from Eq.(3.19 is

tion (3.12 takes into account exponentially small terms in

the asymptotics of the Airy functions in the under-the-barrier e TAREV D1,

region3* which is necessary for consistency with the conser- W=e %= (2A/eV)In(D/16) (3.17
vation law (2.20. The solutions in region$ll and 1V are € » D=1

related in a similar way. Combining both matching equanonsm the high transparency limiR<1 the result(3.17 coin-

V.Vith the _solution in.side the Andreev gap,\/'§< €< ‘/ﬁ W€ cides with the tunneling probability that follows directly
find a direct relation between the coefficier@s. in Eq. from Eq.(3.16).

(3.13 in the allowed regionsl andlV, Evaluation of the coefficient€.. in all regions is com-
pleted by taking into account the boundary condition at in-

v 1
(C+ —1 Cs 3.14 finity, f(£)=0, and the source term in E¢B.2). Assum-
cV c')’ ing in Eq. (3.2
where transfer matrix has elements f o 1 =ANKEBATK  fu=CYI\TK (3.8
_t* _ira® -0 —2miElw
L=ty =i(e"+e "/4)e ' (3.15 for k=0,1 with A =exy arccoslJ(E)], and neglecting the

- variation of the coefficients withn, we find
tllz t’2\—2: (qu_ e*¢b/4)e21ﬂ \eR/w’

Defi=—1, B=§(J5+a), CV'—A=§(J5—Q)’§<D-
(3.19

The explicit form of the coefficient€.. in all regions for
) ) different choices of boundaries, is presented in Table I.

If the Andreev gap is narrowR<D o™, and the turning Calculation of the scattering amplitudesn Eq. (3.2b is
points are not well separated, the transfer maitrix found  carried out in a similar way. This leads to the equations
directly from equation3.113),

1R
d>=—f de arccoshU(e)|.
w)_ R

1/3

t12:t,2€1: ievTR/w—Z'n'iE/w, (316) B= a_gry C\ilztizBe—ZS,a(v‘ﬁ,e)_ a_gr (320
d tio d
t11=t5,= VRI2mwl (iR/w)(1-e*™~w)e™ TRz The other coefficients in regioris- VI have the same ana-
Xexp(—(iIR/w)[1+In(w/R)] lytical form as the ones in Table. I, the coefficieBitbeing
given by Eq.(3.20 and the exponen$_, substituting for
—27iRlw—mil4), S,
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TABLE I. Reference pointg, and coefficient€... of linear form in Eq.(3.13 for quasiclassical solutions
of wave equation(3.4) for transmitted amplitudé in different regiond —VI.

€p C+ C_
| -1 0
Ee—zsa( VR.1)—S,(LE)
tio
[ -JR 0 B ske
to
1] - |
R EE_SQ(VR’E)E_ mil4—27mi (E+\R)/ 0 Ee—sn( \e‘ﬁ,E)ewiM
2t12 t12
v R Be S«(\RE)
VR 2 Be S«(‘RE)
tin
\Y 1 Be Su«(1E)
€ 286_23‘1( VR,1)—S,(LE)
tio
VI E 0
22ge25,R8 1 £ (B a)
The solutions found above resemble scattering states of gions 11 — 1V, —1<e<1), and current of the ground-state

quantum particle propagating along the energy axis throughodesl . (regionsV—VI, e>1),
a potential barrier, related to the gap between Andreev bound

bands as illustrated in Fig. 4. The amplitude of the incoming
wave is determined at the injection pok E by the source lo=l<+Tx+1-. (4.2
terms in Eqgs(3.2). Decaying towards the superconducting

gap edge, the _incoming wave transforms Withqut reflection According to the conservation law E€2.20, the current
into a propagating wave within the superconducting gap. Apgseciral density, does not depend oa within the super-
proaching the Andreev gap, it is partially reflected and par'conducting gapKo(e€) =const (Fig. 4). K, is easily evalu-

tially transmitted through the Andreev gap with probability ; 1
W into the other Andreev band. Then, after approaching thé’thGd at superconducting gap edge — 1,

other superconducting gap edgeeat — 1, it finally decays
outside the superconducting gap. The condition of wave- 4£°W
function decay at infinity plays the role of the outgoing con- Ko(E,|e]<1)=Ko(E,~1)= —=e 2518 (4.3
dition in conventional scattering problems determining trans- VD
mitted and reflected waves. Such a scattering state along the
E axis gives a complete description of the spectral distribu-Thus the current spectral density is exponentially sraadl
tion of inelastic-scattering amplitudes of the original scatter-erywhere within the superconducting gédpR>w, i.e., for
ing problem—it therefore provides a basis for calculation ofsufficiently low voltage[cf. Eq. (3.17)]. Multiplying equa-
the current through the junction. tion (4.3) by 2, the size of the gap region, and performing
integration over energi, we get
IV. TIME-INDEPENDENT CURRENT
. . L w
In this section we evaluate the time-independent compo- s tanh A/2T). (4.9

nent of the current. This current consists of the sum of inco- ™
herent contributiond\ =0, of all the sidebands in E¢R.16).
Assuming that the current spectral dendity, varies slowly  This current gives the main contribution to the time-
with sideband index, we approximate the sum overwith independent current at zero temperature. We notice, that the

the integral along, voltage dependence enters E4.4) only through the tunnel-
oA (=dEE q inglprobability W, while the large pre-exponential factor
_ea¥dEE © de o™ in Eqg. (4.1 related to the large number of Andreev
o= 7 J1 tanh(EA/2T) J\7:x3 0] Ko(B,e), (4.0 bound states is compensated for by a small phase volume of
relevant scattering state§—1~(Dw?)Y. In accordance
Ko(E,€)=coshiRey(e){[|f(E,€)|?—|b(E,¢€)|?] with the voltage dependence W in Eq. (3.17), the current
in Eq. (4.4) undergoes crossover from the contact to the tun-
~(y==7} nel regime aeV~7RA (cf. Refs. 23,25 as shown in Fig.
We will distinguish three components in the averaged cur5.
rent: single-particle current of the real excitatidns(region The current spectral densitg, rapidly decays with de-

I, e<—1), pair current of the Andreev bound statgs(re-  parture from the energy gap into regiband is concentrated
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15— —r—r—r—

D=08,T=0,ev/iA=001

I/(etim)

Iy (E), K1 (E)

- 05 1.0 15 20 b
eVIA R
FIG. 5. Current ; vs applied voltage at different junction trans-
parencies. ]
in a narrow intervale+1~ (Dw?)*3. This yields a small i | .
magnitude of the current of real excitationsin comparison 20 S T T 120
with the pair current , B
eAW . . _
I<=—a(Dw2)1’3tanr(A/2T), (4.5 FIG. 6. Currents in region¥ —VI calculated from the exact
2 recurrence$2.10); currentsl\,(E) andly,(E) represent current den-
sities Ky andKy' from Eq. (4.6) respectively, integrated over.
a=T'(2/3)/6Y3=0.742. The currentl,, reveals pronounced oscillations Esreflecting the
interference term in Eq4.6b), while the interference effect iR, is
Let us now discuss the currents in regions VI: much smaller. The asymptotics at laf§ecorrespond to the current

) spectral density in the normal junctions.
K})’(E,e) = ﬁe*ZS(l,E)(eZS(l,e)_ |Q|2e*28(l,e))
the dissipative currenty determines the rat€ of energy

(468 transfer from the external source to the electron system:
482 E=VI,. This energy is expended for creation of real excita-
KE,"(E,e)= — — g 25(19)(g281F) 1 |Q|2e~281E) tions; it consists of the product of energy dost to single
D excitation, the tunneling probability/, and the frequency of
_ attempts eV: E~2AWeV. This rough estimate yields
2\/§ReQ. (4.6 lo~1,. Direct calculation of noninterference currents in
The quantity Egs.(4.6) supports the above conclusion: the currents of re-
) gionsV—VI compensate each other with exponential accu-
ol t_zzex B ﬂjl arcco¥/ dE (4.7  "acy after integration over enerdg, giving the result
t1o o J R ' '
. : . . eAW
in Egs.(4.6) has the meaning of the amplitude of reflection |.=——a(Dw?)3. 4.9
from the superconducting gap. The ratio 2m
tyolt)= \/me—iw/Z-F(Ziw/w)(E—v‘ﬁ) 4.9 This coincides with the current of real excitatiohs, Eq.

(4.5). At the same time, the interference current is not can-
is the reflection amplitude caused by the Andreev gap, andeled but yields a residual oscillating current which is not
the oscillating factor in Eq(4.7) contains the additional exponentially small. This result apparently contradicts the
phase gained during propagation through the regjariThus  above argument@&xponentially small ;) and also the result
the first terms in the brackets in Eq4.6) correspond to the of exact numerical calculation of the subharmonic gap struc-
currents of incoming and reflected waves while the thirdture in Fig. 1, which does not show any background current
term in Eqg.(4.6b is the interference current. in the limit of low voltage.

In contrast to regions— 1V, the current spectral densities  The correct behavior is revealed by detailed numerical
Ky andKy' are not exponentially smalFig. 4. However, at  investigation of the currents in regios- V1 carried out on
zero temperature one should expect very precise cancellatidhe basis of the exact recurrences in Efj10. In Fig. 6, the
of these currents since the imbalance effect is only producecdurrentsl,(E) andl,(E) show the integral contribution of
by the creation of a tiny amount of real excitations. Indeedthe regionsV and VI [the current densities in Eq$4.6)
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integrated overe]. The current in regionVl shows pro-
nounced interference oscillations similar to our analytical re-
sult in Eqg.(4.6b. The current in regiolV also possesses an
oscillating component but with much smaller amplitude.
This oscillating component is not present in £4.63 be-
cause of its small magnitude-(w), which exceeds the ac-
curacy of the quasiclassical approximation. The full-scale
rapid oscillations of current in regiok| are reduced after
integration over energy and they are perfectly compensated
for by the current from regioW.

At finite temperature the current compensation is lifted
due to the energy-dependent Fermi factor in @ql), which
yields a current of thermal excitations that is not exponen-
tially small (with respect toeV). The smooth part of this
current, resulting from noninterfering terms in E¢8.6), has

the form
2V [mAD .
—e , T/IA<D. (4.10
T 2T

In the opposite limit the current of thermal excitations is

I-(T)=

D<T/A,L
(4.11

The result of numerical evaluation of the smooth current
component is plotted in Fig. 7 with dashed lines. The solid
lines show the exact current of thermal excitations which
manifests pronounced oscillating features. Although the ac-
curacy of the quasiclassical approximation is not sufficient
for analytical evaluation of the amplitude of current oscilla-
tions 4l s, as previously explained, the oscillation period
IT: 8l J(AleV)+11]=6l,{AleV), can easily be evalu-
ated from Egs.(4.7), (4.8). Since integration over energy
selects the energ=1, the oscillation period is

A
cosh 2—,

e’DV A [
2T

D=7 7lz71

v

= = g)de(e)”

whereE(¢) is the static Andreev bound-state spectrum, Eq.
(3.6). For low transparency, E¢4.12 reads

(4.12

In Fig. 8, the junction conductandg@=1/V is plotted as a
function of inverse voltage. The oscillations are clearly peri-

odic and the period does not depend on temperature. The

numerical evaluation of the period is in nice agreement with
Eq. (4.12.

V. TIME-DEPENDENT CURRENT

Proceeding to calculation of the time-dependdxt#(0)

frequency current harmonic®lw<<1. Within such an ap-

of coefficients of bilinear form in Eq(2.17),

I/(eAD/x)

10° |

10 &

107 |

10% |

107 |

R 10-2

1/(eAD/x)

FIG. 7. 1-V characteristics of junctions with transparendies-

0.2 (uppey andD = 0.8 (lower) at different temperaturdsormal-
part of the current in Eq(2.16), we note that the quasiclas- ized byA(T)]. Bold lines represent exact numerical results for the
sical approximation only allows us to investigate low- current of thermal excitationgegionsV - VI); dashed lines are the
results of quasiclassical theory without inclusion of the interference

proximation one can neg|ect the difference between indice?rm; thin lines show the total dc current, COinCiding with the ther-
mal excitation current at low voltage.

10°°

BRATUS’, SHUMEIKO, BEZUGLYI, AND WENDIN

eV/a




G/Gycosh{a/2T)

G/Gy cosh? (A/2T)

FIG. 8. Oscillations of the normalized junction conductance
G(T)=I(T)/V vs inverse voltage at different temperatures in junc-
tions with transparencie® = 0.2 (uppe) andD = 0.8 (lowen);

Gn=¢€?D/ is the conductance of the normal junction. The period
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of oscillations is given by Eq4.12.

80

100

eA & (~dEE
lacm— > L Ttanr(EA/zT)

T N=1

—o0

xf 52 REeNOK \(E, )], (5.1)

Kn(E,e)=cosh Rey(e)l{[f*(e+Nw)f(e)
—b*(e+Nw)b(e)]—(y—— )}

Furthermore, when calculating products of scattering ampli-
tudes in Eq.5.1), we will assume coinciding arguments in
the pre-exponential factors in E¢3.8) and expand quasi-
classical exponentsS(e+Nw)~S(€)+S'Nw. The main
contribution to the ac current at all temperatures results from
regionsll and|V—classically allowed regions for Andreev
bound-state oscillations. The current spectral den(sﬁ)dif—

fers from the static Eq4.3) containing the additional expo-
nential factor exg® Nw)~exdiN¢(e)]:

4£2W

K\ (E, €)= e 2S(1B)giNd(e) (5.2

where ¢(¢€) is given by Eq.(3.6). The current spectral den-
sity in regionlV only consists of incoherent contributions of
incoming waves and waves reflected from the Andreev gap,

4¢2 : :
KQ/(E, E) — _6725(1,E)(67IN¢(6)_ |Q|2€IN¢)(6))
VD
(5.3

(the interference current vanishes in the quasiclassical ap-
proximatior). Combination of Egs(5.2), (5.3, and (5.1
yields the ac current,

(5.9

1-w) SinwT
( J1—-Dsirf(w/2)
4(1— \/ﬁ)

|sinew 7| "
— S ,
1—-Dsirf(w7/2) g

eAD A
IQC*'V:Ttanh?—T

w

which consists both of sine and cosine componéndsl and
even with respect to time reversand undergoes crossover
from cosine-like behavior in the contact limibD=1
(W=1) to sine-like behavior in the tunnel limb<1
(W<1). A similar crossover occurs with decreasing voltage
when R<1: from cosine-like behavior at comparatively
large voltagegeV>RA, to sine-like behavior at low voltage
eV<RA. We note that the instant current in E§.4) in the
limit V—0 does not approach the static Josephson current,
having different temperature dependence. The dc Josephson
current possesses a temperature dependence
tanhE&()A/2T) with E(¢) given by Eq.(3.6), which re-
flects the equilibrium population of the static Andreev bound
states. In contrast, the temperature factor in (Bgj) reflects
the nonequilibrium population of oscillating Andreev states
through the Fermi filling factor at the gap edge=1. Such a
difference persists unless the period of Josephson oscillations
exceeds the inelastic relaxation tirh'

The last, time-independent, term in E&.4) is equal to
the zeroth harmonic of the current of regiohislV, and
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results from the interference ternf§ (e+Nw)f_(€), and
other similar terms, which combine growing and decaying
elementary solutions. The first harmonics in E§.6) have

the same order of magnitude as the cosine current of oscil-
lating Andreev states in Eq5.4). The harmonic amplitudes
exponentially grow withN,

4eAW A R\ Y2
1 _ _ N Y
In = tanhz—_l_( 1) ( N )

X exp(N arccoskil+2R/D)), N>1,

until Nw exceeds the size of regidhl , Nmax~\/§/w.

The spectral density of the ac current in regiorapidly
decays with departure from the superconducting gap edge,
FIG. 9. Spectral distribution of the cosine harmonics of the acSimilarly to the dc current. Therefore, its contribution is
Josephson current. The solid line is the fully transparent junctiosMall with respect to the cosine current of the Andreev

(R=0); dotted line is the junction with finite reflectiviyRe w),  States,

contribution of Andreev bound states; dashed line is the junction eAW A
with finite reflectivity (R> ), total cosine current with account of IN<=—(Dw2)l’3aNtanh2—, (5.7
contribution of the Andreev gap. ™ T
therefore represents the time-averaged magnitude of the total J' * 2 3 2 32
I N = xexp — 5x*“—=(x+2N/N
ac current of the oscillating quasistatic Andreev states. It was an 0 dxe 3 3( INo)™

pointed out in Ref. 23 that in fully transparent junctions,
R=0, the dc current is entirely produced by oscillating An- No=(D/w)"2.

dree_v states. In junctions with finite reflectivitR,>O, ac-  The currents in region¥ and V| nearly compensate each
cording to Eq.(5.4) only part of dc pair current, Eq4.4),  other at zero temperature, yielding a total current coinciding
results from oscillating Andreev states—the remaining partyith the contribution of region, Iy~ =Iy~. At nonzero
is contributed by nonadiabatic states within the Andreev gagemperature the current compensation is lifted, which leads
(regionlIl). to an ac current of thermal excitations. The smooth, nonin-
The conclusion drawn above about the exponentiallterference component of this current,

small magnitude of the cosine current in the tunnel regime 5

4€°A _ar ~dx —2TR/A

e D | —5(1—e 2TX7h
m o X

concerns, rigorously speaking, only the low-frequency part _
. In>(T)

of the ac current. The suppression of the low-frequency cur-

rent is caused by the conservation law in Ej20), which is

nearly fulfilled in this frequency region and which estab- xexp(—2N\Dx), /A<D, N<N,

lishes approximate balance of the normal and Andreev cur- (5.9

rents. On the other hand, one has to expect that highs . . -1 s

frequency harmonics are not suppressed: harmonics in th%ecreases with harmonic numbéras N <. At N>N, the

. " current harmonics decay exponentially.
regionNw>> R should not be sensitive to the presence of a™ \yq conclude this section with a remark about the sign of

gap in the static Andreev spectrum and must approximatelyhe cosine currenisee the discussion in Ref. B&lthough
have the same magnitude as the cosine harmonics in ful%e signs of all harmonics in E@5.8) are positive, the sign
transparent junctionsR=0. Such arguments lead to the q¢ the total cosine current may be negative due to competi-
spectrum of the cosine ac current sketched in Fig. 9: thegn \ith the cosine current of the Andreev bound states in
amplitudes of the harmonics, being exponentially small agqq (5.4) and (5.6). In particular, the contribution by the
smallN, rapidly grow withN and after approaching a maxi- andreev bound states to the first cosine harmonic is nega-
mum atNw~ R decay with a power law, similarly to the tive.

spectrum of the transparent junction. The nonadiabatic effect

of exponential growth of the harmonic amplitudes at low VI. CONCLUSION

frequency is provided by the contribution of the forbidden _
region| . In conclusion, we have calculated the dc current and the

The contribution of forbidden regions to the ac current is2¢ Josephson current in quantum superconducting junctions
always restricted to the cosine component at low applied voltage V<A in the whole range of junction
transparency €D < 1. The global structure of multiple An-

” dreev scattering and the distribution of currents among
lac= 2 IncogNw7). (5.9 inelastic-scattering channels is described in terms of the
Nt wave function of an effective quasiclassical particle propa-
The current contribution of regioki| gating along the energy axis.

_ The main physical characteristic, which determines the

I :—4eAWtam’;(—1)Nf\RdECOS|q(N arccoshU(e€)|) properties of low-biased junctions Wi_th intermediate trans-
™ T 0 parency, is the energy gap in the static Andreev bound-state

(5.6 spectrum. Opening of the Andreev gap yields exponential
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suppression of the dc current, and determines the crossovaretal-superconductor junctions, junctions with resonance
from the contact to the tunnel regime of both the dc currentunnel barriers, and other structures where electron-hole
and the ac Josephson current as functions of junction trangtephasing effects are important. It has been shown in Ref. 36
parency and applied voltage. Quasiparticle reflection fromhat the electron-hole dephasing gives rise to modification of
the edges of the Andreev gap causes mesoscopic phenomefa spectral equatiofB.6) to the form cog=F[r(E),d(E)],
manifested in oscillating features on current-voltage characyhere F is a universal function of the electron-scattering
teristics at finite temperature. _ amplitudes of the normal part of the junction. Therefore,
At zero temperature, the pair current always gives theythoygh the shape of the effective potential in the energy-
main contribution to the dc current and is homogeneouslyjomain wave equatiof8.4) is specifically modified for each

distributed within the superconducting energy gap. In theyaricular junction, the whole scenario remains unchanged.
tunnel regime eV<RA, the suppression of the low-

frequency cosine harmonics of the ac current is lifted at
higher frequency: the amplitudes of the cosine harmonics
grow exponentially with the harmonic numbed, and
achieve aNeV~RA a magnitude of the order of the non-  This work has been supported by the Swedish National
suppressed current in a pure constriction. Science Research CoundiNFR), the Swedish National

The present investigation has been concerned with jundoard for Technical and Industrial DevelopméNUTEK),
tions whose scattering properties in the normal state do nand the Swedish Royal Academy of Sciend€¥A ). Part of
depend on energy, which is true for all kinds of weak linksthe work has been supported by Grant No. INTAS-94-3861
with lengths shorter than the coherence length. However, thand by the Ukrainian State Foundation for Fundamental Re-
method can be extended to long superconductor—normasearch, Grant No. 2.4/136.
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