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We present studies of a simple Anderson model Hamiltonian fof"Gens in cubic symmetry with three
configurations {°,f*,f2). In different parameter regimes, our model Hamiltonian maps to the one-, two-, and
three-channel spin-1/2 Kondo models. Using third-order scdpegurbative renormalization groppnalysis,
we study the stability of the non-Fermi-liquid fixed point of the two-channel Kondo model f8f @ms in
cubic symmetry against the one-channel Kondo interaction. Using the noncrossing approxiie#on we
also report detailed studies for our simplified model of the competition between the Fermi-liquid fixed point of
the one-channel Kondo model and the non-Fermi fixed points of the two- and three-channel Kondo models.
We provide the phase diagram in the model parameter space and study the thermodynamics and the transport
properties of our simplified model Hamiltonian. Thermodynamics and transport coefficients show distinct
behaviors for different numbers of channels. We confirm in detail that the NCA is a valid numerical method for
the overcompensated multichanrgl=1/2 Anderson models. Our model study might be relevant to the
non-Fermi-liquid alloy Ce_,La,Cu, ,Si,. [S0163-18207)02313-§

I. INTRODUCTION sists ofM bands ofS.=1/2 conduction electrons coupled to
a spinS, impurity through an antiferromagnetic Heisenberg
The Kondo effecthas been of great interest in condensedexchange interaction. There are three regimes of the model:
matter physics since its observation. The proposed modgl) CompensatedHere M =2S, so that there is precisely
Hamiltonian, a magneti&, = 1/2 local moment interacting enough conduction spin to quench the impurity. In this case,
with the conduction electron gas, looked very simple but washe impurity moment vanishes at low temperatures as in the
nontrivial due to the many-body nature of the problem. Evercgnventional Kondo effect| =1=2S, for §,=1/2). It is
since, many generalized models have been studied to exteRggely believed that this model describes the Kondo effect
our understanding and to relate to real materials. The siMgor Mn jons in metallic hosts, since the Mn has a half-filled
plestS,=1/2 orbitally nondegenerate Anderson mddahd d shell with a “pure spin” ground state and, hence, negli-
s-d exchange model are now well understood for a single crystal field and spin-orbit effecthere M=5 and
impgrity case using several techniques. The numerical reno 5, =5/2). (i) UndercompensatedHereM < 25, so that there
mahzaﬂongroup(NRG) (Ref. 3 method was able to prowc!e is not enough conduction spin to quench the impurity, and as
complete information about the crossover from the hlgh_Noziéres and Blandi¥? argued, this will lead to a ground-

temperature fixed point to the low-temperature Fermi-liquid : : £ — M/2 with idual f
fixed point for these models. Subsequently, the exact diagoS-tate Impurity moment o8 — with residual ferromag-

nalization of these models was realized by the Bethe ansaf¥elic coupling to the conduction electroiisi.) Overcompen-
(BA),* which also gives an exact solution for the thermody-Satéd In this caseM>2S, , and so there is more conduction
namics of these models. However, it has not proved possib/@Pin than needed to quench the impurity. Nc@e and
to compute dynamical properties with the BA. Through theBlandin'® argued that this will give rise to a nontrivial fixed
noncrossing approximationﬁNCA)F dynamics as well as point with a non-Fermi-liquid excitation spectrum and criti-
thermodynamicshave been extensively studied for the infi- cal behavior in thermodynamic and dynamic quantities.
nite on-site Coulomb interaction models. The quantum The possibility of the experimental realization of the most
Monte Carlo methodQMC) (Ref. 7 has also been applied interesting overcompensated fixed point has been controver-
to study statics and dynamics for the simfle=1/2 models. ~ sial since its inception, when, in the contextafons, No-
Recently conformal field theoryCFT) (Refs. 8 and Phas  zieres and Blandit? argued that it would likely never be
been used to study all properties asymptotically close to thebserved. On the theoretical side, the multichannel Kondo
low-temperature fixed points. model is well understodd~2irrespective of the experi-
However, we are still far from a complete understandingmental situation. For example, the spin susceptibititf)
for realistic models which, for example, include the strongand specific heat coefficie€(T)/T for the two-channel
spin-orbit coupling, crystalline electric fiellCEP effects, S =1/2 magnetic Kondo model are proportional to
and multiple(more than twd configurations. In this paper, In(T/T) at low temperature$?**~*3whereT is the Kondo
we study a realistic extension of the conventional simpleenergy scale separating the high-temperature perturbative re-
approach to the Kondo effect for €& ions, including strong  gime from the low-temperature nonperturbative regime. The
spin-orbit coupling, crystalline electric field effects, and mul-dynamic  susceptibility shows marginal Fermi-liquid
tiple configurations. behavior** The resistivity increases logarithmically up to
In generalizing the Kondo model, Norés and Blandit? Tk as the temperature is lowered and saturates to a constant
introduced the multichannel Kondo model. This model con-below Ty, with p(T)~p(0)[1—a\T/T«] asT—08 On the
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other hand, the one-channgl=1/2 Kondo model leads to

the Fermi-liquid ground state. In that case, the magnetic sus- 100

ceptibility x(T) and specific heat coefficie@(T)/T saturate 80 [ @ 1

to constants of order Tf .>* The resistivity increases loga-

rithmically asT is lowered toTy and saturates to a constant = 6.0 r 1

below Tx with p(T)~p(0)[1—a(T/T)?] for T—0.° - d o
In this paper we study a model Hamiltonian for Ceons QL 40 ¢ :

in cubic metals with three configuration$®( f*, f2). The

nominal ground configuratiofi® can fluctuate tof® and f2 201 |

configurations by hybridizing with the conduction electrons. 0.0 \ . .

A one-channel Anderson hybridization interaction is present 0.0 05 10 15 50

betweenf® and f! configurations. A two-channel Anderson [T/To]o,fs

hybridization interaction is present betwe€hand f2 con-
figurations. We report detailed studies of our simplified
Hamiltonian using the NCA. This simple model is quite in- g1 1. Comparison of experimental resistivity with our numeri-

triguing in that we can study the competition between theca| calculation. Our numerical calculation show3™¥ behavior at
two different Kondo effects, that is, the Fermi-liquid fixed jow temperatures. The experimental resistivitpoints with

point of theM =1, §=1/2 model and the non-Fermi-liquid T,=10 K) from Ref. 17 is compared with our numerical results.
fixed points of theM=2,3, §=1/2 models. The distinct The three different symbols refer to three sets of model parameters
ground-state physics for different numbers of channels ig0 for model set 10 for model set 2A for model set 3 The
classified using the zero-temperature analysis of NCA intelow-temperature deviation suggests a possible crossover to a new
gral equations and third-order scalirfjgerturbative renor- fixed point.
malization group theory. We calculate the thermodynamics
and dynamics of this simple model and find that all the cal-ducting system with excess Cu shows almost isotropic mag-
culated physical quantities show a behavior corresponding tBetic susceptibility® That the pseudocubid’; magnetic
different channel numbers in the appropriate parameter redoublet inf! lies lowest is inferred from neutron scattering
gimes. The static magnetic susceptibility displays a scaling@xperiments?® The thermopower for CeGi$i, changes sign
behavior in excellent agreement with the exact Bethe ansatzear 70 K and stays negative below with a large extremum
results in the two- and three-channel cases. The NCA calcu— 20 to —30uV/K),'® suggesting the presence of strong
lation of the entropy and specific heat is also compared witthole resonance scattering. As we will show below, these
the Bethe ansatz results. The resistivity shows the corred¢hermopower results also support our interpretation of the
temperature dependence near zero temperature, agreeiigo-channel magnetic Kondo physics. Though other experi-
with the conformal field theory results in the two- and three-ments(e.g., specific heat and magnetic susceptibilgyp-
channel cases. The sign and magnitude of the thermopowprt the interpretation of them in terms of the two-channel
are dependent sensitively on the relevant channel number§ondo effect, the linear temperature dependence in the resis
The peak position in the dynamic magnetic susceptibility istivity remains as a puzzle. TheT behavior in the resistivity
almost linear in temperature in the overscreened cases. i predicted from a conformal field theory treatment of two-
short paper which presents some of these results has aphannel Kondo modefs’ In Fig. 1, we present our numeri-
peared elsewher&. cal calculation of the resistivity and experimental results
Our study is motivated in part by a recent discovery of themeasured in the alloy system (&, ,Cu,,Si,
non-Fermi-liquid system GCga;_,Cu,,Si, (x=0.1)1 (x=0.1)1"It can be seen that the data curve downwards at
Here, we briefly summarize the experimental findings of thidower temperature, which may indicate a crossover to a new
alloy system. The logarithmic divergence in both the mag4ixed point. From all these experimental findings, we believe
netic susceptibilityy(T) and the specific heat linear coeffi- that the alloy system Gé&a,_,Cu, 5Si, (x=0.1) is a strong
cient y(T) has been observed for {ea; ,Cu,,Si, candidate for a two-chann&,=1/2 magnetic Kondo sys-
(x=0.1). The two-channelS=1/2 magnetic Kondo tem. However, we do note that the experimental ther-
physic§®11~3provides a theoretical framework to explain mopower of the dilute system is positi#®&which may miti-
the thermodynamics of this system at low temperaturesgate the relevance of the two-channel model to this alloy.
v(T) initially increases in the presence of the magnetic field, In addition, the two-channels=1/2 Kondo effect may
which qualitatively agrees with the two-channel Kondo ef-be realized in other materials, notably through the two-
fect coming from the lifting of residual entropy.In the  channel quadrupolar Kondo effétin some U alloys and the
one-channel Kondo effect, the Sommerfeld coefficient detwo-level system Kondo effettin metallic point contacts.
creases in the magnetic field due to the destruction of th€andidate U alloy systems include oW ogPd3,>
Kondo effect. The Wilson ratio is estimated to Re<2.7  U,Th;_ RU,Si»2* UCuzsPd;5,2> Ug ThgoNisAl 3,25
from the slopes of two curvds(T) andy(T)], which com- U 4ProNi»Al 5,26 U,Sc;_,Pds,2" UqgThgBeis,?® and
pares well with the theoretical value 8/3 for the two-channelU,Th;_,Pd,Al 5.2° All the above systems show a logarith-
magneticS,=1/2 Kondo modef. The good agreement be- mic divergence at low temperature in the linear specific heat
tween the theoretical and the experimental Wilson ratios supsoefficient and a different temperature dependence to the
ports our crystalline electric field energy scheme describedtatic magnetic susceptibility, compatible with a quadrupolar
below. This system is pseudocubice., the crystal field Kondo effect. UTh;_,Ru,Si, (Ref. 29 (together, possibly,
scheme on the C¢ site appears cubicThe best supercon- with Ug.1ThgoNiLAl 3, U.1ProoNisAl 3, and
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U,Th;_,Pd,Al ;) is an exception, showing a logarithmi-
cally divergent magnetic susceptibility. The two-channel
guadrupolar Kondo physics has been invoked to explain the
non-Fermi-liquid behavior in the thermodynamic and trans-
port properties of Y ;_,Pd; for x=0.2 (Ref. 23 and other
U alloy systems. Recently, the resistivity in a metallic con-
striction was observed to obeyT behavior and was inter-
preted as due to two-channel Kondo scattering from atomic
two-level tunneling system®:3!

Our paper is organized as follows. In Sec. Il, we introduce FIG. 2. Crystal electric field energy level scheme f8f?,f2

our simple model Hamiltonian and analyze this model using.,nfiqurations. The one-channel and two-channel Anderson model
third-order - scaling (perturbative renormalization grolp amiitonians are developed from these CEF energy states. The one-
theory. We briefly introduce the NCA in Sec. Ill. A zero- channel Kondo model derives from tfi& singlet and the magnetic
temperature analysis of NCA integral equations follows infir . goublet which mix through hybridization with tHe, conduc-
Sec. IV. In Sec. V, we present detailed numerical analysis ofion electrons. The two-channel Kondo model derives from the
our simple model Hamiltonian using the NCA. We concludemagneticf'I'; doublet and the nonmagnetfél'; doublet which

and discuss possible research directions in Sec. VI. mix through hybridization with thdg conduction electrons.

Il. MODEL HAMILTONIAN actions, which removes thef? configuration from
consideratiofy and, as a result, has no chance to get the
The single-impurity one-channel Anderson mddehs  two-channel Kondo effect, which we shall explain below.
been very successflih describing Kondo systemeaning  When we relax the assumption about infinite on-site Cou-
magnetic transition metal elements embedded in normal metomb interactions and we include detailed atomic energy
als and dilute rare earth or actinide allpy$he thermody- structure, we can develop a variety of model Hamiltoni&ns.
namics is rather well explained by the single-impurity prop-  In the simplest model, which we study in this paper, we
erties for even highly concentrated Ce all3y.Coherence  assume that the magnefié)=5/2I", CEF doublet lies low-
effects, arising from the lattice of Anderson or Kondo ions atest in the f! configuration, and we keep two excited
low temperatures, do not play an important role in thermostates—a singlet from th& configuration and the nonmag-
dynamics. Transport properties also are well explained byetic f2I'; CEF doublet. We find the one-channel Anderson
the single-impurity model except for the low-temperature remodel in mixing betweerf® and f* configurations and the
gime where coherent Bloch state formation leads to a vango-channel Anderson model in mixing betwethand 2
ishing resistivity at zero temperatu(the residual resistivity  configurations’ Other interesting Kondo interactioisarise
is larger than the room-temperature value in the dilute impuwhen the excited triplets in thi& configuration are included.
rity limit). This one-channel Anderson model can explain the  aAccording to group theoretic analysis, the hybridization is
complete screening of the magnetic moment at the local Mamediated only by the cubiEg conduction electrons between
ment sites, leading to the local Fermi-liquid ground statef! andf2 (I,@I';=T'g) and byl'; betweenf® andf? for the
discussed in the Introduction. _ o mixing potential allowed in the cubic crystal. CEF states are
~ Our primary interest in this paper is to examine, in ourschematically drawn in Fig. 2 for this simple model. To see
simplified model, the conditions under which aCeion in  the essential physics, we restrict our attention to the simple
a metal can undergo a two- or three-channel Kondo effect. Igase of isotropic hybridization and a free conduction band
general, the stability of the two- or three-channel groundyith Lorentzian-Gaussian density of statd30S). In this
state can be tricky to realize since realistic perturbations cagjmple case, two components of the conduction partial waves
destabilize the fixed point. For example, even for a singlqcz& jc=5/2,7/2, can mix with the atomic orbitals. The
two-channel orbital Kondo impuritfquadrupolar or two-  gominant hybridization is expected to be in fhe-3 channel
level system the channel symmetry is guaranteed by time-que to the primaryf character of the C¥ states. In this
reversal symmetry, but the ground-state degeneracy may b ner we will consider only the.=3, j = 5/2 partial waves
lited by the Jahn-Teller effect In general, the orbital of the conduction band for our model study. Under the action
Kondo model has exchange anisotropy. It has been showgy the crystal field, these partial waves will be split into a
that exchange anisotropy is irrelevant for two-channelr_ goublet andr's quartet. The former couples tHé and
$=1/2 Kondo modelS! As shown in another publicatio, {1 ¢onfigurations exclusively, and comes in effectively as a
the two-channel magnetic Kondo fixed point for Teis  single S=1/2 conduction band in our model. The quartet
unstable to the perturbation of channel asymmetry due to th@ouples thef! and f2 configurations together and may be

orbital nature of the channel degrees of freedSrane Such  yiewed as twaS=1/2 bands, given that the irreducible rep-
term arises naturally in the Schrieffer-Wolff transformation .osentation may be written as a tensor product of “spin”

integrating out virtualf*-f2 fluctuations®>3¢ However, the e L
samge Sct?rieffer-Wolff transformation generates the channe F;)Fag% O{Egaleﬁégg) of t?éleainr:hrotEgh a;gsmldtﬁ)nr?t)éf
mixing Kondo interaction that restores the stability of the; 8_5/5 argt.' | is studied ext 9 lvin R fp35
two-channel fixed point® We direct the reader to this latter JeTore partia; Waves 1S SIrled exiensively i Re. 2.

. . o With the above assumptions, our model Hamiltonian is
reference for more details on this surprising result.

A common assumption in modeling €e impurities is to

take the simplifying limit of infinite on-site Coulomb inter- H=Hg+Hy+Hq, D
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:

Wherecer7a (Cer7a) andcersna (c ) are the annihilation

(creation operators for conduction electrons Bf andI'g,

respectively. The label=1T,| denotes the time-reversal pair ~ FIG. 3. Schematic diagrams of two channel degrees of freedom.
of states in thd’; irreducible representation, amd==* is  The upper figure is fol'g+ and the lower figure fol'g— of

the quadrupolar index for thE; irreducible representation J=5/2 conduction electron partial waves. Each orbital shape mea-
which acts here as the channel index. The conduction elegures a channel label.

trons are assumed to be described by an uncorrelated

Lorentzian-Gaussian density of states with bandwidith 3 Ig@lg=T,0T & 302,02 s. (6)

eV. Hereey 1 , are the configuration energies for the empty
(e0=0), singly occupied, and doubly occupied configura-
tions, respectively. We have lumped all Clebsch-Gordon co
efficients into the hybridization constantg; andV,,, ex-
cept for the phase dependence on the cubic degenera . :
indF;ces. The pﬁase depepndence on the Kramers douk?let inggerator {';) and a trio of spin operatord’y). Indeed, the
arises from proper consideration of time-reversal symmetry: chrieffer-Wolff transformation leads to two interaction

We will consider these two hybridization constants to pelerms: the spin exchange interaction and the pure potential

independent of each other in this study in order to probe th&cattering term. The relevant termslaf tensor operators are
competition between the one-channel and two-channdf'® 24 irreps in our model; these are spin operators which
Kondo physics. may be formed from thg.=5/2,'g partial waves. In the

We note that in the language of the single-channel Anderconduction electrorl’s tensor space, one of the two,’s
son model,e; corresponds toe; and e, corresponds to 9iVes rise to thg ordinang.=1/2 spin operators with two
2¢,+ U, . For real C8" ions, e;~—2 eV andU;~5-6 degenerate orbital channels and the other to one channel of
eV and so one would expea,~1-2 eV. However, in Sc=3/2 Spin operators.

this simple model we shall consider situations in whéghis We note that the other operators in thg®l's tensor
zero or negative. This unrealistic choice is a limitation of theSPac€ are not relevant here as they cannot couple to the im-

simplicity of our model, in which we try to represent thime ~ PUrity tensors. One set of tH&; irrep tensors igdominantly
T doublets of thef2 configuration by a single state. Indeed, duadrupolar tensors afz,yz xy character. Thé',®1'; irrep
it may be seen that a generalized NCA including all nine ofl€NsOrs are, respectively, a predominantly magnetic octupole
these doublets leads to a correctly enhanced Kondo scale f@Perator ¢-J,JyJ;) and an |rre(2:iu0|tz)le rzepresentatlon pair of
the two-channel coupling which sums the effective exchang@redominantly quadrupoldr-J;—J7,3);—J(J+1)] opera-
integrals of all the doublet¥, which we discuss later in this tors. They are responsible for the two-channel quadrupolar
section and in Appendix A. Kondo coupling to al'; ground doublet for U* and
When the real charge fluctuations are removed from th&@r>" ions in cubic symmetrg->’
model system in the Kondo limit, we have to construct tensor Hence, there are three distinct channel labels for conduc-
Operators representing each CEF state forfﬂ]eonﬁgura- tion electron partial wave states about the Ce |mpUr|ty in this
tion and couple these to tensor operators from the partigiimple model. One channel is just the doublet. The other
wave and CEF projected conduction electron CEF states. [0 are thel's+ “orbital” states of thel's quartet. Each
this paper, the relevant tensor operators arelfgg CEF  I'3* orbital has al'; “spin” doublet (recall 'g=I";®I'3.)
states. We can show using the standard means of charac#®$ shown in Fig. 3 ford=5/2 conduction partial waves, the
table decomposition of tensor products of irreducible+ orbital is “stretched” along the quantized axisne of the
representatiofi§ that three principal cubic axes, taken to behere for definite-
ness) The “—" orbital is “squashed” in thexy plane. We
I'yel;=Tely,, (5 note that the simplest example ofl’g partial wave quartet

+
el'gna

In the direct product, the first CEF states are written as ket
and the second as bra. TH&, tensor operator product
g%xz tensoy decomposes into the direct sum of a charge
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is, for zero spin-orbit coupling,d-wave states with
+—3z?—r? and— —x?—y?. The “spin” index is then real
spin of the electrons.

In the Kondo limit with a stablé* configuration, we may

remove thef®—f1, f1-f2 charge fluctuations from the Hamil-

tonian of Eq.(4) using the Schrieffer-Wolff transformatith
to find the effective Hamiltonian.

H1=318r,(0)-8p,+32 2 Srn(0)-Sr, (D)

2|Voy|? 2|Vyy®
31—_—61, J QP 8
S 1 1. e 1.
S = EZB 15T 70) 0 ,p(f5 T8 9

Sr, is thef* pseudospinS;r_(0) andSr--(0) are the con-

duction electron pseudospin densities at the impurity site oﬁ

symmetryI’; andI'g, respectively. When thé! configura-
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I I; I I; I;
BN\ L 6 i
I
L T,

1—‘7 & 1—‘8n

FIG. 4. Scaling diagrams of one-channel and two-channel
Anderson model up to third order. Dashed lines are for th&*Ce
impurity I'; pseudospins and the solid lines are for theor I'g,
conduction electrons. The diagrams labeled as above lead to the
scaling equation for the one-channel exchange cougdingo ob-
tain the scaling equations for the two-channel exchange coupling
», the labeldl'; for the external conduction electrofsolid lineg
hould be replaced b¥g,, .

tion is stable, its pseudospin is coupled to the conduction

band in a one-channel vi&® configuration and in a two- @z o’ — EgTr[gZ], (12)
channel viaf? configuration. Both couplings are antiferro- X 2

magnetic. The unique feature of our Hamiltonian is that it

can generate one-, two-, and three-channel ground states de- g=N(0)J. (13

pending on the model parameters. The competition betwe
the Fermi-liquid fixed point and the non-Fermi-liquid fixed
points can thus be investigated using this model Hamil-
tonian.

We first analyze our simple model Hamiltonian using
third-order scaling arguments, i.e., the perturbative renormal-
ization group(RG).1%*2 At a given temperatur&, only the
thermally excited conduction electrons within an effective
bandwidth of ordefT about the Fermi level play an impor-
tant role in determining physical properties. Thus we carHerex=In(D/T). We can identify three fixed points related
integrate out the band edge stateistually excited statesto ~ to one-, two-, and three-channel Kondo physics. The one-
find the effective Hamiltonian. Though the following analy- channel, strong-coupling fixed pointg],g3)=(%,0) is
sis is restricted to energig®|, T<D and the perturbative stable, leading to the Fermi-liquid ground stétdhe three-
regime (weak-coupling limi}, we can obtain qualitatively channel fixed point (2/3,2/3) is stable along the line
correct results from this study. For quantitative results, a fullg; =g, in theg,-g-> plane, but unstable for any small pertur-
numerical renormalization grouNRG) study is required. bation from g;=g,. Finally, the two-channel fixed point

It can be deduced from the scaling theory that the low-0,1) is stable, leading to the logarithmically divergent ther-
temperature and low-energy physics is dominated by thenodynamic properties at zero temperature. From the scaling
one-channel or two-channel Kondo effect depending on it@analysis, we can infer the ground-state physics: one channel
relative magnitude of the antiferromagnetic couplings. Tofor J;>J,, two channel forJ;<J,, and three channel for
see this, we introduce an exchange coupling matrix in theéd;=J,. As will be shown in Sec. IV, a zero-temperature
channel space which is convenient for the derivation of thenalysis of the NCA equations leads to the same conclusion.
scaling equations. We can thus rewrite the one-channel and We now discuss the neglecteB; irreps in the f?
two-channel Kondo models in the foff configuratiort® The ninel's CEF states all contribute to the

enhancement of the two-channel exchange coupling between

*Phe scaling equations in components are

ag 1
a—xl:gi_zgl[g%"‘zQ%], 9:=N(0)J;>0, (14

‘992_ 2

1
— 95901 +203],  92=N(0)3>0. (15

H,=J®5,0)-§, (10)  f'I'; spin and thdy conduction electron spins:
Jy, 0 O :2 2 —qyetlgi ot T (2T
0 J 0 Hl & ( 1) lZCersna| 7a>< 3n| +H.c.
J= 2 (11 16
0o 0 J,

The NCA can treat this problem with the extension that now
Here §C and §| are S=1/2 operators. The scaling equations the fI'; Green’s function becomes a® matrix. See Ap-
of our simple model Hamiltonian up to the third-order dia- pendix A for more details. The Schrieffer-Wolff transforma-
grams of Fig. 4 are tion leads to
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=33 Sire(0)- Sy, 17 L
(@) - i_"-
11 i f
2|V ’
= —. (18)
=1 eme L L
Here €, is the energy level for théth f2I'; state. Hence (®) - _Q_ -+ - _m_ _
multiple I'; states in thé? configuration lead to an enhance- £ T,
ment of the two-channel exchange coupling.
Particle-hole asymmetry in the conduction band density r
of states(DOY) is also important in determining the ground- 3
state weights of the one-channéf{f') and the two-channel (c) Q
(f1-f2) contributions. In our scaling approach, the particle- £

hole asymmetry is completely neglected, though it is in prin-

ciple possible to include. However, the NCA can take into _ _

account this particle-hole asymmetry. The occupied conduc- FIG- 5. Leading skeleton self-energy diagrams from the NCA.

tion electron stategholes contribute to thef© self-energy Since two different symmetry conduction electrons are involved in
idi ] 0_fl 152 )

(see Sec. I, while the unoccupied statégarticleg contrib-  the hybridizations off f* and f -, our NCA self-energy dia-

ute to thef2 self-energy. Hence increased weight on thedrams become simplified. The diagrdan is the self-energy for the

: . . I O atomic statewiggly line). Diagrams(b) are for thef!T"; atomic
article side can enhance the effective hybridization strength, 2 i i ; . 7
Eetweenfl and f2 confiqurations AIternei/tiveI a Conduc-g state(dashed ling Diagram(c) is for the f2I"; atomic statgdotted
tion band DOS with dorr?inant par.ticle weight xill lead to the line). The solid line is the conduction electron propagator: The first

. two are for thel'; and the second two are for tHg conduction
enhancement of the two-channel exchange coupling. electrons

III. NONCROSSING APPROXIMATION model, the same symmetry conduction electron can be in-
_ o volved in the two mixing processes, e.t;f! andf!-f2 for
We now apply the noncrossing approximatiNCA)  ce3*+ aioms. Generally, a specific vertex correction is re-
(Ref. 5 to study our simple model system. This model is g ired to get the right Kondo energy scales in this case.
highly simplified as compared with the full mo&%Whmh _ Recently, such vertex corrections were included in the study
can have stable one-, two-, and three-channel fixed pointg; ihe finiteU spin-1/2 Anderson modél.A nice feature of
together with an infinite number of unstable fixed points.qyr model Hamiltonian is that this leading vertex correction
However, we can use this simple model Hamiltonian toyanishes; since two different symmetry conduction electrons
study the properties of the competiiy=1,2,3 fixed points 516 involved in the hybridizationg®-f1 (I';) and fi-f2

of the full Hamiltonian. . _ (T'g). This feature greatly simplifies the numerical work and
In the NCA, our starting basis is the conduction band plusormalism.

the atomic Hamiltonian projected to the atomic electron g5 the leading-order skeleton diagrams of Fig. 5, we
Fock space with the hybridization between the conductioniq the self-consistent NCA integral equations

band and the atomic orbital treated as a perturbation. The

strength of this approach is that the strong on-site Coulomb ot ~

interaction for atomic electrons is treated accurately at the 2o(2)= 72 f deN(e)f(e)Gy(z+e), (19
outset. Pseudopatrticle Green’s functions are introduced for “

each atomic electron occupation state. The price we pay is r _

that we cannot apply conventional Feynmann diagram tech- S.(2)= —Olf deN(e)f(—e)Go(z—€)

nigues to this strongly correlated problem. Thus special 77

Green'’s function techniques have been developed by many r _

investigators:®*3~® This approach may be justified as a + -2 fdeN(e)f(e)Gz(er €), (20
self-consistent expansion in the inverse of the ground-state mon
degeneracy, N, which reorders the diagrams by treating

NVZ as O(1). In theNCA, pseudoparticle self-energy dia- S.(2)= F_HE f deN(e)f(—€)Gy(z—€), (21
grams include only the leading-order skeletooncrossiny T "

diagrams and they are solved self-consistently. For the one-

channel models, this theory includes all the diagrams up to 1

Gn(2) T=7N0)|V;%. (22

O(1/N) order together with an infinite-order subset of z—ey—20(2)]
higher-order diagrams. Vertex corrections, of ordeiNg)/ - . ) )
are not included. This approach has been shown to be HereN(e) is the conduction band DOS at the Fermi level
conserving approximatiotf. For the overscreened multi- normalized so thal(0)=1. HereX, ; {z) andGg 1 {z) are
channel Anderson models, it has been shidinat the 1N the self-energy equations and Green's functions f&r
approach becomes exact in the limit,N—c with fixed f'T';, and f?I'; atomic states, respectively(e) is the
M/N ratio (M is the number of channgls Fermi-Dirac distribution functionl’;; = WN(O)ViZj is the hy-

When we study the most general three-configuratiorbridization strength characterizing the width of the renormal-
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ized atomic electron spectral function peak. One of then this conserving approximatidit. From now on, we will
strong points of the NCA approach is that we can easilyuse the notatiompg;,p1 in favor of pr,.pr,. This approxi-

study any form of the conduction band DOS, as opposed tdnation does not include any vertex corrections.

e.g., Bethe ansatz or conformal field theory methods. For From the leading bubble diagrainthe static magnetic
simplicity here, however, we use structureless Lorentziangysceptibility per C&* impurity is

Gaussian DOS to get at the low-energy many-body physics.
We will solve the above coupled integral equations numeri- 1 . 75
cally and analyticallyin the low-temperature limjtto study x(T)= §M§ﬁXf(T): Miﬁ:4_glu’281 (28)
the thermodynamics and dynamics of the model Hamil-
tonian. 4

Note that pseudoparticle Green’s functions are not di- ;(T):__f d¢a, (¢, T)ReG(L,T). (29)
rectly measurable. All the physically measurable quantities Zs
are given by suitable convolutions of the pseudoparticl . :
Green’s functions. Now it is convenient to introduce theq:;rig;SLﬁslsetgﬂebilﬁg/hirsmagneton. The reduced dynamic mag-
spectral function Ay(w)] for each pseudoparticle Green's

function and its corresponding “negative-frequency” spec- 1—e Be
tral function[ ay(w)]. These are defined by Y (0, )= Z—J déa, (¢, T)A({+w,T). (30
f
Ay(@)=— ;Im 1 23) Note thaty is a self-convolution within thé* I'; sector of

states. This makes sense since any magnetic excitation must
involve a change of state within that sector.

w—ey—2n(w)’

ay(w)=e"PAy(w). (24

. . IV. ZERO-TEMPERATURE ANALYSIS
The negative-frequency spectra play the role of generalized
Boltzmann weight factors, accounting for the modification of At zero temperature, it is possible to analyze the NCA
the discrete atomic states into continua through hybridizatiointegral equations analyticafff*®to obtain a qualitative un-
processes. We will see that thg(w) functions always ap- derstanding of our model system. In particular, this may be
pear in combination with the impurity partition functi@in used to compare with the conformal field theory appr8ach
any measurable guantity, and thus there is an arbitrariness which calculated the operator scaling dimensions and critical
the overall scale of the negative-frequency spectral functionbehavior of physical properties in an asymptotically exact
in its definition. Note that the above NCA integral equationsway (T—0) for the multichannel Kondo exchange models
do not haveay(w) in them[a separate set of integral equa- with any size of impurity spin. In Ref. 14, an evaluation is
tions must be introduced for tha, (Refs. 5, 6, and 43—-4%  given of the operator scaling dimensions and physical prop-
In the numerical work, we calculateay(w)’s self- erties for the SUM)XSU(N) multichannel Anderson,

consistently. Cogblin-Schrieffer models using the functional integral for-
The impurity partition function for our simple model is mulation. The saddle point conditions for the model yield the
defined by NCA self-consistent integral equations. The simple exchange

models become congruent with the 3WY X SU(N) models
when the impurity spin i§;=1/2 (N=2).
Zfzf dw[ay(w)+2a,(w)+2a,(w)]. (25) The main results of the zero-temperature analysis of the
NCA integral equations for our model are as follows.
This partition function includes the many-body effects of the (1) We can find a criterion to assess whether the ground
interaction between the impurity and conduction band and istate will be that of the one-, two-, or three-channel model.
exact in form. We shall evaluat; approximately with our (2) The Kondo energy scal€l) can be estimated ana-
solutions to the NCA integral equations. lytically for the casel'y;=I"15,. Here T, in the one- and
In our simple model, only two kinds of conduction elec- two-channel model parameter regimes is shown to vanish as
tron states are presefit; andI'g. Hybridization will mix the  the f2I'; energy level approaches that of th& configura-
corresponding creatiofestruction operators with operators tion.
that creatgdestroy f states of the same symmetry. The full  (3) We obtain the correct scaling dimensions for the over-
measurable spectral functions of thésstates are defined as compensated cases which agree with the conformal field
a convolution of two neighboring configuration spectraltheory results.
functions, since to add or remove dnelectron requires a (4) The crossover physics between the parameter regimes
change of configuration. It can be shoWiif®~“®that these for different numbers of channels can be fully characterized.
measurabld-state spectral functions are given by The self-consistent NCA integral equations can be trans-
formed into differential equations for the flat conduction
1+e Ao band in the wideband limitD>|e; J. We analyze the zero-
pr(w)= Z—J dfag(HAL({+ w)=porw), (26)  temperature NCA equations in the asymptotic limit
f |w—Eg|<T,. HereE, is the thresholdground-stateenergy
14 e Fo below which the pseudoparticle Green’s functions become
pry(@)= Z—J dda; ()AL + w)=pifw), (27) furely real. We introduce the inverse Green’s functions and
ransform the self-energy equations at zero temperature into
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coupled nonlinear differential equatioffsgiven by

Oo(w)=—1Gy(w), gi(w)=—-1/G;(w),

(31
g2(w)=—1/Gy(w),
d oy 1 )
EQO(‘U)__]'_TW’ go(—D)=D, (32
d __1_F01 1 2F12 1
dwgl(w)_ T go(w) T gz(w), (33)
g1(—D)=D+ey,
d _ 2l 3
%QZ(w)__l_TM’ g(—D)=D+e,.

(34
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This relation can be proved by using the boundary condition
at o=E,. We calculate the physical atomic spectral func-

tions and the dynamic magnetic susceptibility defined in Sec.
IV using

por(w) = J de[ag(€)Ai(e+w)+Ag(€)a(e+ w)],

43

puto)= | deaeAlet @)+ A (et o)),
(44)

T(w)= f defas(e)Ag(e+ @)~ Ag()ar(e+ o)1,
45)

From the o dependence of the spectral functions near

Note that we have included appropriate boundary condition& =0, We can infer the finite-temperature dependence of

for these equations. Theg, and g, can be shown to be

transport coefficients as will be discussed below.

related by We now discuss the phase diagram in the model param-
eter space using the zero-temperature analysis. The param-
g, Qo 1 eter y. decides the low-energy and low-temperature behav-
T T (w—Ep)+ e, (35  jors of our model Hamiltoniany, measures the relative
1z o o1 12 magnitude of the antiferromagnetic coupling strengths when
&—Ey Ep the charge fluctuation is removed in the model Hamiltonian.
Y= Fo + oy (36)  Noting thatEy~ e, + O(V3;,V3,), we find
In the zero-temperature analysis, it is more convenient to - 2 11 (46)
define the ‘“negative-frequency” spectral functions by Ye 7N(0)|J, Iy

a(w)=e P°A;(w)/Z;. These spectral functions vanish

above the threshold ener@y and satisfy

d . 2Tg
%[ao(w)|go(w)| ]:—731(60), (37
d 5 01 12
M[al(a)”gl(a)” ]=_7ao(w)_Taz(w),
(39
d 2r
dola@)g(e))?= - —Fa(e). (39

It can be shown from the above relations that

d
—dw[ao(w)go(w)+2a1(w)g1(w)+2a2(w)g2(w)]
(40

= ao((x)) + 2a1(w) + 2a2((1)).

By integrating this equation frome= — to w=E,, we find
the additional relation

[ao(®@)go(w) +22;(w)g1(w) +285(w)Po(®)] =g, = 1.
(41)

which illustrates the correspondence to the scaling analysis.
If v, is greater than zero, divergent behavior shows up in the
f9 Green’s function, and not in thé®> Green’s function.
Hence the system will be dominated by tHeandf* sector,
leading to the one-channel Kondo effect. Whgpnis less
than zero, divergent behavior shows up in tifeGreen’s
function, and not in thé® Green’s function. In this case the
f1 andf? sector(two-channel Kondo physigsietermines the
low-temperature behavior of the system. When=0, f°
and f2 become equivalent asymptoticallya(— Eq|<T).
Both Green’s functions develop singular behaviors at the
ground-state energy. In this model parameter regime, the
three-channel Kondo model fixed point is realizedrat 0.

The characteristic Kondo energy scdig is found from
an integration constant which connects the low- and high-
energy states. We can obtain the integration constant for the
casel'1,=T"p;(=TI"). We will analyze this case in detail and
indicate subsequently how to extend the zero-temperature
analysis to the case of arbitrary relative hybridization
strength.

A. Symmetric hybridization limit I'j,=T(=T")

When we take the symmetric hybridization limit
I',2=Ty(=T), the T=0 NCA equations are simplified. In

This identity will be useful in finding the asymptotic behav- particular,

ior of the “negative-frequency” spectral functions. As a cor-

ollary, we have another identity in the— E limit,

ao(®)|go(@)]*  ap(w)|ga(w)|?
Lot P '

(42

'yc:Fa (47)

92=0o ™ €2, (48)
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aoggzazg; (49) behavior at the threshold, leading to the two-channel ground

) ) ~ state. The integration constant and the Kondo temperature
The last two relations hold true in the asymptotic limit 5.

|o—Eg|<T,. The ground state is determined solely by the
1/2

sign of thef? configuration energy relative to tHé configu- 01 (02— 091) g2 | 702

ration energy. Removing the variablte, we can find the T_o: eXF{Tﬂl @ A (58)
differential equations between the inverse Green’s functions.

Integrating from the values at=—D to those atw, we find e, Uy m(€1—€)

the integration constant To=D D [ﬁ exp{T} (59

Note that the Kondo temperature vanishes wth-0. We

folg T
DD D can find the asymptotic behavior following the standard
zero-temperature analysis as

This expression is valid in the wide conduction band limit

T
ex f[go_gl““ €1]

D>|e, . We identify three cases for evaluatifig. go(@)=ga(@) +|eg], (60)
(1) One-channel case/.>0 or €,>0. In this case the
fO Green’s function d_evelogs a divergent behavior at the 91(‘”):51/2[1+Cl§1/2+ o], (61)
threshold energy, while thé“ Green’s function does not. To
Thus the ground-state physics is dominated by the sector
f0-f, leading to the one-channel Kondo effect. The integra- O2(@) ~,, =12 =
tion constant and the Kondo temperature are A =0 1+c0 0], (62)
91 [90]"] Y0 m(9o—91) E.—
=== Pt - T ~ 0w
T A} 1+ .| | (51) 0=4 T (63)
e[ T *? F{’WE]_
To=D|=Z|| =5 e (52 1 A)_E __ 1 A)_ To
D|| 7D 2r Cy 6 2 1+|€2| A ,Co 6 1+|62| 2A .
Here A=T"/7. We can find the asymptotic behavior of the (64)

Green's functions for each atomic state as The asymptotic behavior above the ground-state enBgy

Go(®) ~ can be obtained from the expressions beByby analytic

Q%o (53 continuation. Furthermore, we find for the “negative-
A frequency” spectra that
gi(w) ~_ d ToA
T, O 0 43 0% 7 A 9
g2(@)=go(w) + €, (55) d , ToA | 66
—a,07= —[zaptay],
— Eyw T 191 2 [2a0t+as] (
0=3——, (56)
0 d , ToA 7
—a =——ay,
w=%, a=}. (57) an % 2

Although the scaling dimension is not corregt leads to  which implies for|w—Ey|<T, that

non-Fermi-liquid behavior in this single-channel modéte A

estimated Kondo temperature is correct within order unity B =4 =1/ ~

and y(0)~1/T, as expected for the one-channel model. An a0—4|62|2(2 T1=x00"*+ 0], (68)

interesting observation is that the Kondo temperature van-

ishes ase, tends to zero, i.e., as we approach the three- 1~ ~1n ~

channel parameter reginfeee the discussion belpw "’1124—1-0Q 11-x,0Y2+0(0)], (69
A detailed derivation of the asymptotic behavior is not

included in this case since the NCA does not produce a 1 - _ _

Fermi-liquid fixed point in the one-channel model. We just a,=-— 0" 1-x,0"+0(Q)], (70)

give a brief summary of the zero-temperature analysis which 44

is relevant to our studyA,(w) vanishes a§)?? at the thresh-

old energy, whileA, (A;) diverges as)~ 23 (013 as XOZE(201+C2)+ZAZ_ 1+ E) (71)
w—Eg. Thus, the physical spectral functign, vanishes as 3 € 3 | €]
|w|* at the Fermi energy, whilpy, is finite.

(2) Two-channel case.<0 or e,<0. In contrast to the « =f(20 te ):E 1+ i) 72
one-channel case, thi¢ spectral function has a divergent 1732l les| )’
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2 epr2 To 73 ! T 84
—
Xp= 3(01 CZ) 3 A ( ) T((I)) plZ(w! ) ( )

Note thatxq ; >0. Now we can find the asymptotic behavior Near zero temperature, we may replaeg(w,T) by our
of the pseudoparticle spectral functions as zero-temperature one and find th& temperature depen-
dence. A complication arises here due to angular averaging.
Since the angular harmonic conjugateptg is positive defi-
nite, still the above simple argument applies; that is, the an-
isotropy will not affect the conclusion of the low-
temperature NCA analysis. Hence, we expect, Nbe 2,3,
that the calculated scaling dimensions will agree with those
obtained from conformal theory. In the one-channel case, the
important angular harmoni¢which multiplies pg,) is not
positive definite and we cannot straightforwardly carry over
the low-T NCA analysis to an understanding of the low-
temperature resistivity as the angular average can modify the
ign of the lowT coefficients. However, since th€—0
hysics must be Fermi-liquid-like favl = 1, which the NCA
annot correctly produce, this difficulty is rendered practi-
cally academic.

We summarize the low-temperature properties as follows.

(i) The atomic spectral functiop,, is peaked right at the

A — _
Ao(©)= 7 B0~ Eo)[| QY2+ 0(1QPD], (74

1 ~ ~
Avw)= - do—El|Q"+O(01™)], - (79

Ag(w)=—% : 1 00—EQ[|Q] +0(0")). (78

As expectedAy(w) vanishes at the threshold energy and

does not develop any divergent behavior. On the other han
A;(w) and A,(w) diverge at the threshold energy. Finally c

the physical spectral functions in the asymptotic limit

w—0 are given by

por(@>0)= 55— B— %53/4 } (77 Fermi level, independent of the occupancy, whilg van-
2| 2| 3m ishes atw=0 and is depleted near the Fermi level.
A (i) The dynamic magnetic susceptibility is step-function-
~ A like at zero frequency.
por@<0)= 3¢ |2[| - _|w|3/2+ (78) (i) The ?esistizl/ity obeys the scaling behavior
p(T)=p(0)[1—-ayT/Ty] near zero temperature.
1 2x1 All these results are consistent with numerical NCA cal-
p1Aw>0)= 741 \/_+ (79 culations at finite temperatures.
(3) Three-channel casg.=0 or €,=0. In this case, the
1 ox 9 and f2? configurations produce asymptotically equivalent
pr 0<0)= { 2,/ [+ - (80) spectra that give rise to a three-channel Kondo model ground
16A state. The integration constant and the Kondo temperature
are
signw 2X
Y (@)= 22;) 1—71\/|a|+--- , (81) o1 (9ol [
T_OZ[K eXF{f(go_gl)} (85)
w
T=4. (82 I 132 e
0 TowD[ﬁ EX[{T . (86)

poi(w) vanishes ato=0 and increases linearly jw| away

from the Fermi level. This spectral depletion at the FermiSee Appendix B for a detailed derivation of the asymptotic
level is also confirmed in the finite-temperature NCA calcu-behavior. This model case is not different from the analysis
lation. p;, is peaked right at the Fermi level and has moreof the general overcompensated models. We simply list the
spectral weight below than above the Fermi level sinceasymptotic behavior here as

X,<X; for To<<A. The finite-temperature NCA results also

confirm this observation. The spectral functions become go(@)=0z(w), (87
nonanalytic at the Fermi level at zero temperature. Note that 9u()
the dynamic magnetic susceptibility is step function like at 91(w) — 0351+ Qz/s+d 0354 .. 88
=0, which is none other than marginal Fermi liquid TO 1 €1 1 (88)
behavior**
From the asymptotic form of the zero-temperature spec- 0s(w)
tral functions, we can infer the finite-temperature dependence A =02 1+c,025+d,0%5+ -], (89)
of the resistivity using the Kubo formula
~ Ej—w
1 ne of =5 (90)
- - - T,
o) m dwr(w)( &w)' (83 0
For o, T<T, the relaxation rate for the conduction electron _E _ E _ E _E
. ) ci==, d; , Cy , d . (91
is approximately 7 8A 7 4A
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The negative-frequency spectral functions are given by

1~ ~ ~ ~
aj(0)= =03 1-x, 0%~y 035+ ... 16(Q),

5T,
(92
1~ ~ _ -
a(w)= S—AQ_%[l—XzQZ/S— Y20+ 16(Q),
(93
4 To
x1=201=7, y1=0, X,=0, y2=2d2=ﬂ, (99

and the pseudoparticle spectral functions are

Aq(w)= %T:/S)KM “¥1—x,c0827/5)| Q75+ - -]
X 0(—Q), 95)

Az(w)= W@I’Z’Tl—yzcoszw/5)|ﬁ|3/5+ ]
X 0(— Q). 96)

From the pseudoparticle spectral functions, we can find the
physical spectral functions in the asymptotic limit of

w—Eg, and they are given by

por @) =piA —w), (97)
in(2
pro@>0)= SW;5—7:TA/5)[B(2/5,3/5 —x,B(3/5,4/5|®|?®

—y,c08 2m/5)B(2/5,6/5 ||+ - - -],

(98)
<0)= BT s 3/
prw )_W[ (2/5,3/9
—x,c0427/5)B(3/5,4/5|®|*°
—y,B(2/5,6/5|3|%%+---1, (99
_ sin(37/5) 1
X (w)—5|gr(w)ﬁ{8(2/5,2/5|w|
—xq[1+ cog27/5)]1B(2/5,4/9|®|Y°+ - - -},
(100
=5 10
w= T_O ( 1)
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The low-temperature properties are summarized as fol-
lows.

(i) The atomic spectral function is peaked right at the
Fermi level, independent of the occupancy.

(i) The dynamic magnetic susceptibility diverges as
o~ 1% at zero frequency.

(i) The resistivity obeys the scaling behavior
p(T)=p(0)[1—a(T/Ty) %] near zero temperature, which is
consistent with numerical NCA calculations at finite

B. Crossover physics

We expect a smooth crossover from the high-temperature
regime to the low-temperature regime where the calculation
will settle to the fixed point for one oM =1,2,3 channels.

We can estimate the crossover temperature in the one- and
two-channel model parameter regime using the zero-
temperature analysis. This follows from the fact that in the
asymptotic analysis we hawg<<e, for the one-channel re-
gime andg,<|e,| for the two-channel regimésee the inte-
gration constant In the one-channel case, the integration
constant can be rewritten as

S/Zex m(Jo—91)
2T '

J1

Yo

A

€2

Jdo

=|1+ (102

We can see that the relative magnitudeggfand e, deter-
mines the fixed-point behavior. The crossover energy scale
between high temperaturdthree channe)sand low tem-
peratures(one channgl can be defined by the relation
Jo=¢€,. The crossover temperature is found in the one-
channel case to be

€ 3/2

-
(1v__0
T A

O=3 (103

In the two-channel case, using similar reasoning, we find the
crossover temperature to be

2
€&

A

(2) — E

X 7 (104

Substituting the Kondo energy scale into the above expres-
sions, we can see that the crossover energy scales are given

by
17,152 [ T 132 e
(MH_ |22 _ 5
T, 3 DLTD ex;{ 21“}' (105
1 |€2| 512 r ]32 (€1~ €)
(2 — |14 - - e
T 7l A D s ex 5T . (106

Here B(p,q) is the B function. The spectral functions be- Note that each crossover temperature vanishés, &% with
come nonanalytic at the Fermi level at zero temperature. One,— 0. We intentionally write the crossover temperature as
important observation is that the power laws agree with thoséhe prefactor times the corresponding three-channel Kondo
obtained from conformal field theory treatments for the overtemperature. If this prefactor is greater than 1, the system
compensated three-chanrgl=1/2 models. Sincepy; and  will not display three-channel behavior with decreasing tem-
p1o @re equivalent in the asymptotic limit, the angular func-peratures but will flow directly to the one- or two-channel
tions are factored out in the conduction electron scatterindixed point. When this prefactor is less than 1, the system
time. Thus we can read off the power law of the resistivity,will display three-channel behavior before finally flowing to
a=2/5. the lower-temperature fixed point.
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TABLE I. Model parameters for the Ce impurity. This set of model parameters covers the single, three-,
and two-channel Kondo regimé8=Ty,=T", is the hybridization strength for bot?-f* andf*-f2 mixing,
respectively. We scan the channel numbk+ 1,2,3 according to whether,>0,<0,=0. The Kondo scale
T, is estimated as described in the text.
Set M F/D fllD 62/D kBTolD
1 2 0.2 -0.4 -0.1 1.908% 103
2 2 0.2 -0.37 -0.07 1.5964 103
3 2 0.2 —-0.35 —0.05 1.349x 103
4 3 0.2 -0.3 0.0 1.522%10°3
5 3 0.2 -0.4 0.0 6.941% 103
6 1 0.2 -0.3 0.05 1.195% 103
7 1 0.2 -0.3 0.07 1.674810°3
8 1 0.2 -0.3 0.10 2.391%10°®
C. General asymmetric hybridization case ol 1
Though the Kondo energy scale cannot be estimated anal_-wgl(w): —1- T Jo(w)
lytically for the general cas€y;#I"1,, the asymptotic be-
havior (w— Eg) can be still be sorted out. Since the physics 4 2
is the same as in the above analysis, we shall just write the go(w)+(1-T /T 1)) (w—Egp)|’ (117
asymptotic properties of Green’s functions for the three rel- DY=D
evant cases. 91(=D)=D+e;.
(1) y.>0: Then the asymptotic form follows:
FOl Eo_ w @0 1“ E —w ag
Jo(w)~ —[3 : (107 1o Fo 118
7 2 T go(w)~ |5 - (118
Eo— w 1 E ay
~ 0o W
%) TO[S' T } ’ (108 gl(w)%To[S T } , (119
I'yp I'1p _2 _3
gz(w)zr_mgo(w)"‘ F_01_1 (0—=Ep)+ vl 12, ®~s5 @175 (120
(109  Though the Kondo energy scale cannot be evaluated analyti-
cally, it can be estimated from the numerical NCA calcula-
ap=3%, a;=3. (110  tion of, e.g., the magnetic susceptibility and by then perform-
ing a scaling analysis over a set of parameter values.
(2) y.<0:
Ty Ty V. NUMERICAL ANALYSIS
== +=——1{(0—Ep) + |l 01, . . ,
Go(@) Flng(w) T, (0=Eo)+|¥ellox In this section we present results from our full numerical
(111 study at finite temperatures. We studied the model for the
" parameters listed in Table I. This covers the one-, two-, and
gu(@)~T 4Eo—w ! 112 three-channel Kondo regimes. For simplicity, we have cho-
! 0" T, ’ sen the same hybridization strength in tHef! and f!-f2
sectors. The relevant physics associated withNhe 1,2,3
_ P 4E0_ w|“? 113 channel fixed points can then be studied by varying the rela-
G2(@)~— T, |’ (113 {ive position of thef® and f2 configuration energies. This
simple choice of the hybridization further makes it possible
=3, a,=3. (1149 to find the characteristic Kondo energy scales analytically, as

(3) y.=0: In this casef® and f? are equivalent asymp-

totically asw— E,,

we described in the previous section in detail.

Our main results are the following.

(1) The magnetic susceptibility shows a scaling behavior
and agrees well with exact Bethe ansatz results in the two-

go(w)= F_ngo(w)+ F_12_1 (0—Ey), (115 and three-channel parameter regimes.
Loy [oq (2) The NCA results for the residual entropy in the two-
and three-channel models agree with the exact ones to within
i -1 £01 _D)=D about 5%, consistent with the expected ordeN@}/correc-
dng(w)_ 7 gi(w)’ 9ol )=D, tions. The Kondo anomaly peak in the specific heat also
(116 agrees with the exact one in its magnitude.
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(3) The thermopower is a diagnostic to display the ground
states for different numbers of relevant channels for our

model—this data has already been presented in Ref. 16 and 8‘2 L (a) M=1 . al
will be only briefly discussed here. P o &, oa °
(4) The dynamic magnetic susceptibility varies signifi- g 04 r o on O° ’
cantly between the compensated one-channel limit of our 03 8% 7
model and the overcompensatéwvo- and three-channgel ) 0.2 r 1

limit of our model.

(5) Due to the simplifying features of our model, the re-
sistivity shows a bendover at low temperatures in the one-
channel parameter regime. The resistivity in the two- and
three-channel parameter regimes shows temperature depen-
dences nealT=0 K in agreement with conformal field
theory results.

(6) We have confirmed in detail that the NCA is a valid
numerical self-consistent nonperturbative method in studying
the overcompensated multichani@k 1/2 Anderson model
atT7>0.

“m
-
A. Entropy and specific heat -

The entropy and specific heat due to the magnetic impu- 0z r il
rity can be calculated from the free energy obtained in the 0.0 L v
NCA through numerical differentiation. These thermody- 0.01 0.1 1 10 100
namic quantities include very important information about T/To

the nature of the ground state. We can estimate the charac-

teristic energy scales in the Kondo models from the tempera-
FIG. 6. Channel dependence of the entropy. The NCA calcula-

ture variation of the entropy. In general, the entropy will . X )
increase with increasing temperatures, until the frozen impulio" Of entropy clearly shows the right magnitude of residual en-

rity degrees of freedom are released. Our model Hamiltoniaf{°PY depending on the relevant channel numbers. Solid lines are
. . Bethe ansatz curves. Note that the temperature scale is linear for
is expected to.have en-tropS'— k.BIn5 a.t high enough tem M=1. Referring to Table I{a) M=1 case,[] for model set 8;
peratures, an intermediate regime with entrd@yn2 once

. . . O for model set 7A for model set 6(b) M=2 case[] for model
0 2

the f~ and f* configurations are frozen out, and a residualg,, 1:0 for model set 2:A for model set 3(c) M=3 case[] for
entropy for theM = 2,3 limits of the model.

o . N model set 40 for model set 5.
The entropy and the specific heat are displayed in Figs. 6

and 7 for the model parameter sets studied here. In the one- B. Static magnetic susceptibility

channel case, the Kondo anomaly peak is well separated . . o ) o

from the Schottky anomaly peak coming from the intercon- The static magnetic susceptibility is a dlrgct indicator of
figuration excitations. The Kondo anomaly peak has a magth® nature of the ground state for the magnetic Kondo model.
nitude comparing well with the exact restféor the Kondo  AS |slwell_ documented, the magnetic susceptibility diverges
exchange model. No residual entropy remains With0. In  logarithmically, - x(T)=In(To/T), for the two-channel
the two-channel case, the Kondo anomaly peak is not clearly = 1/2 magnetic Kondo model &@-0, and diverges alge-
separated from the charge fluctuation peak for most of ouPraically for the three, viz., or thi! ?_22,A5| = 1/2 multichan-
model parameters. The residual entropy agrees within 509€! Kondo model (x(T)>[To/T] 8014 Ap=2/(n+2),
with the exact on® and the discrepancy can be explained byWheren is the channel numbe&(3) ).”>**The one-channel
the O(1/N?) and higher-order corrections. To see this, wekKondo model has a constant magnetic susceptlb_lllty at zero
note that the entropy for spin-1/2 conduction electrons has af¢mperature [x(0)~1/To]. From the NCA, using the
explicit dependence on the impurity spin degenefity. Ieadmg—ordfr_ bubb_Ie _dlagra?nthe magnetic susceptibility
Strictly speaking, the NCA results are valid fhi~fold im- for one CE" impurity is given by

purity spin andM-fold channel degeneracies Bs—o with 1 2~ 2 75 2

N/M fixed. Hence it is natural to expe€X( 1/N?) corrections XM= 3uex(T), per= a5, (12

to the entropy through the neglected vertex corrections. In 4

the three-channel case, the Kondo anomaly peak is reduced Y (T)=- Z—f d{a;(¢, T)ReG,(L,T). (122
further due to the increased residual entropy and is almost f

merged with the charge fluctuation contribution for modelHere wg is the Bohr magneton.

set 4. For model set 5, we can see a weak indication of Our numerical results fog(T) clearly show the right ten-
separation. The residual entropy is increased compared tbency for each possible low-fixed point. The magnetic
that of the two-channel case and its magnitude is again ausceptibility in the one-channel regime, for model param-
little bit smaller than the exact ofedue to the neglect of the eter sets 6, 7, and 8, shows approximate scaling behavior and
higher-order contribution in the I/ expansion. clearly has negative curvature at low temperatures, indicat-
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a
. 0.08 I (c) M=3 R FIG. 8. The scaling behavior of the static magnetic susceptibil-
D 6os b 0° Ooo 4 ity. The static magnetic susceptibility obeys a scaling behavior for
\% 755009° each parameter regime, leading to te=1,2,3 fixed points. The
o 0.04 1 agreement with the Bethe ansatz res(8tdid lines is good for the
002 F & ] overscreened caseM(E2,3). Tp=T/0.3 forM =2, T from Ref.
0.00 0% 13.M=1 case,¢ for model set 8x for model set 7; * for model

set 6.M =2 case,[] for model set 1,0 for model set 2;A for
! model set 3M =3 case+ for model set 4 X for model set 5. The
T/TO ground-state phase diagram for the model in exchange coupling
constant parameter space is drawn in the inset, where
FIG. 7. Channel dependence of the specific heat. Solid lines ardi =N(0)Ji, N(0) being the conduction band density of states at
Bethe ansatz results. The comparison to the Bethe ansatz is compift® Fermi energy. The solid diagonal line is fdr=3.

cated by the background derived from the interconfiguration peak. o
In theM=1 cases, the Kondo temperatures are adjusted such thgHsceptibility in the three-channel model also shows a scal-

the NCA numerical results fall on the exact Bethe ansatz onelnd behavior. Since the three-channel case lies exactly on the
Thoughout all the figures presented in this paper the estimate@oundary between the one-channel and two-channel regimes,
Kondo temperatures in the one-channel models are used except fot€ probed the three-channel case by varying the position of
the magnetic susceptibility curvésee Fig. 8 Symbols have the the baref! configuration energy while the two excited con-
same meaning as in Fig. 6. figurationsf®,f2 energies are kept equal. The fitting of the
susceptibility to the exact results is quite good. The Kondo

ing an approach to the Fermi-liquid ground state. The deviaS"¢"9Y sc_alé’o es_timated from the zero-temperature analysis
g PP quie g grees with that in the exact Bethe ansafz 6f Ref. 13.

tion of the scaling behavior at low temperatures seems t&'
come from the pathological behavior of the NCA in this _
one-channel cass. C. Spectral functions

Thex(T) curves in the two-channel regime, for the model  The interconfiguration spectral functions show a distinct
parameter sets 1, 2, and 3, also show scaling behavior angkhavior for theM = 1,2,3 fixed points in the energy region
diverge logarithmically at low temperaturésig. 8. Our re-  close to the Fermi level ¢=0) depending on the model
sults are compared with those of Ref. 13. The fitting to theparameters. In our simple model, we have two atomic spec-
exact Bethe ansatz numerical restitis quite good. We be-  tral functions for localf-creation operators of symmetfy,

lieve that the high-temperatur-e deviati_on comes from. theand T, Pr7(w):P01(w) and Prg(w):mz(w), which are
M =3 to M =2 crossover physics described in the Previousgiven by
section. Note that Bethe ansatz results are for the pure two-
channels-d exchange model. To get the fitting to the Bethe 1+e A Bt
ansatz, we slide the temperature axis to fifig=0.3T, Pm(w)zz—ff dge P Ao(HA({+w), (123
(Tk from the Bethe ansatzHere T, is the Kondo energy
scale estimated from the zero-temperature analysis. 1+e Pe iy

At high temperatures we cannot distinguish between the Pl @)= Z—ff die” "A (DA {+w). (129
different possible fixed points so readily as in the low-
temperature case. Note that distinct physics of the In the one-channel model parameter regifsee Fig. 9,
M =1,2,3 channel fixed points shows up at low temperaturepg:(w) develops the Kondo resonance peak just above the
below the crossover temperature which was estimated in theermi level andp,,(w) is depleted neaw=0 and tends to
previous section. This observation is supported by resultgero withT—0 atw=0. This confirms our zero-temperature
from the three-channel model parameter sets. The highanalysis in Sec. IV. For comparison, note that the Kondo
temperature deviation from scaling is very weak in this caseesonance amplitude is large compared to the two-channel or
which will not show the crossover physics. The magneticthree-channel case.

0.01 0.1
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FIG. 9. Atomic spectral functions in the one-channel regime.
po1 is the interconfiguration spectral function which is obtained
from the convolution betweef® and fI'; states.p;, is the inter-
configuration spectral function which is obtained from the convolu-
tion betweenf!I'; and f?I'; states. The one-channel Kondo effect
leads to the Kondo resonance developmenpdp just above the In the three-channel parameter regifisee Fig. 1}, the
Fermi level and the spectral depletiongdn, right atw=0. Spectral  two spectral functions are equivalent asymptotically when
functions are displayed for model set 8. In ascending order of théhe ow— — @ transformation is accounted for. The peak posi-
low-energy curves, the temperatures of the calculations argon of the resonance tends to zero with decreasing tempera-
T/D=3.678<1072, 1.077x10°2, 3.155<107%, 9.23%x10°%  tyre.
2.706<10 4, 7.924<10"°. As mentioned above, the positions of the Kondo reso-

nance peaksee Fig. 12show a distinct behavior for differ-

In the two-channel regimésee Fig. 10 p;,(w) is peaked entT—0 fix_ed points. The peak position_ saturates to a con-
below w=0 and its peak position tends to=0 with de-  Stant value in the one-channel case while it vanishes in the
creasing temperature. Note that the Kondo resonance ampfi/o- and three-channel cases with decreasing temperature. In
tude is reduced compared to the one-channel Kondo res@ddition, the detailed functional form of the Kondo reso-

litude. On the other h is depleted nance peak varies with the fixed-point channel number. In
:)a:n(c)e amplitude. On the other hapdy(w) is depleted near the overscreened caseM €2,3), the peak structure be-

comes nonanalytic with decreasing temperature as shown in
the zero-temperature analysis of the NCA integral equations.

FIG. 11. Atomic spectral functions in the three-channel regime.
For this parameter regime@nodel set 4, two spectral functions are
equivalent in the asymptotic limit after a particle-hole transforma-
tion. The temperature set is the same as in Fig. 9.

0.8 . . . A finite temperature washes out this nonanalytic behavior at
. the Kondo resonance peak. In the one-channel case, exact
e 06 . results show that the correct atomic spectral functions must
3 o L | remain analytic down to zero temperature.
’ Since we are not considering all the atomic energy levels,
s oo L | the full atomic spectral functiongneasured from the photo-
a emission experimenkscannot be defined in our simple
0.0 ' ' ' model. Although the high-energy physics of real systems
3.6 ' ' ' cannot be properly treated within our simple model Hamil-
—~ 30 tonian, the low-energy or low-temperature properties can be
24 studied using the restricted spectral functions. Note that low-
3 1.8 temperature and low-energy physics is governed by the
Q1o Kondo_ resonance peak in. the spt_ectra._Though a spectral
3 os | d_epletlon is found in the mterconflguratl_on_ spectral func-
00 . . 1 tions, we do not expect that the photoemission spectroscopy

can observe this feature unless it can distinguish the atomic

—0.010 -0.005 0.000 0.005 0.010 electron symmetry. Also, it is not clear that this feature is
w/D realistic for the single-channel model. Measurable atomic

spectral functions are shown in Fig. 13 for parameters yield-

FIG. 10. Atomic spectral functions in the two-channel regime.Ing theM=1,2,3 fixed points.

The two-channel Kondo effect leads to the Kondo resonance devel-
opment inp4, at the Fermi level T=0) and the spectral depletion

in po, right at w=0. Spectral functions are displayed for model set The dynamic magnetic susceptibility measures the mag-
1. The temperature set is the same as in Fig. 9. netic excitation structure. Since the properties of the mag-

D. Dynamic magnetic susceptibility
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FIG. 13. Total atomic spectral function. The high-energy struc-
FIG. 12. Temperature dependence of the Kondo resonance peakire (insets essentially does not depend on the temperature. On the
The Kondo resonance peak position,) shows a different tem- other hand, the temperature and relevant channel number depen-
perature dependence for different numbers of chanrigisOne-  dence show up in the Kondo resonance structi@eOne-channel
channel casegp;): wx decreases and saturates to a constant witlcase(model set 8 (b) Two-channel casémodel set L (c) Three-
decreasing temperaturén) Two-channel casep(,;) and(c) three-  channel cas¢émodel set 4 The temperature set is the same as in
channel caseq(;,): wi decreases and tends to zero with decreasingFig. 9.
temperature. Symbols have the same meaning as in Fiyl 63,
solid square for model set 4; solid circle for model sgtMote the ~ The neutron scattering experiments measure the structure
different temperature ranges betweei=1 case (top) and  function S(w,T)*[b(w)+1]x"(w,T).
M =2,3 casegbottom). The dynamic susceptibility can be quantitatively charac-
terized by its “linewidth” dependence on temperature in ad-
netic excitations are related to the interaction of the locabition to its overall functional shape. We may define the
magnetic moment with the conduction electrons, the channdinewidth I'(T) by the peak position of”(w,T), which can
number at the fixed point will determine the nature of thebe measured directly in inelastic neutron scattering experi-
magnetic excitations. The dynamic magnetic susceptibility isnents.

0.1 L
’IO ; T T T vrorem

pt (,T)

—OJK/TO
=
Il
N

0.1 F o

pt (@,T)

expected to be strongly dependent upon the valud oWe The variation ofy”(w,T) andI'(T) with temperature is
have already seen this channel number dependence in tléplayed in Figs. 14 and 15. For the dynamic magnetic sus-
static magnetic susceptibility. ceptibility, we displayy”(w,T) as a function ofw/T, and

The dynamic magnetic susceptibility is defined as thethe reduced formy”(w,T)/x"(I'(T),T) (insed as a function
spin-spin correlation function and can be measured directlpf w/T'(T) in Fig. 14. A distinct behavior for the different
from neutron scattering experiments. From the leadindixed points is clearly evidenced: In the one-channel regime,
bubble diagram, the reduced dynamic magnetic susceptibilitthe y”(w,T) curves converge with decreasing temperatures.
is estimated agneglecting conduction electron only and This is clearly supported by the saturationIofT) at low
mixed conductior- contributions which are expected to be temperatures. In the two- and three-channel regiés)
down by at least IB/D) vanishes algebraicalliclose to linearand the dynamic mag-

netic susceptibility does not converge in contrast to the one-
_ —e"he channel case, but instead develops nonanalytic behavior at
X (“"T):Z—ff déai (A +wT). (129 0 The reduced dynamic magnetic susceptibilitide-
fined above; see inset in Fig. ldhow an approximate scal-
ing behavior between two extrema.
Our reduced static magnetic susceptibility is related to the The physics of the magnetic linewidth is quite important
above magnetic response function by the Kramer-Kronig rem understanding the nature of the magnetic spin screening.
lation Below T,, changing the number of channels gives very dif-
_ ferent behavior. The impurity spin-flipping time) due to
do x"(«,T) the hybridization will be given by the inverse of the line-

x(M=2 T o (126 width, 7:~1M'(T). On the other hand, thermally excited
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FIG. 14. Variation ofy”"(w) with temperature. The dynamic
magnetic susceptibilityy”(w,T) is displayed as a function of
wl/Ty. The reduced oneg”(w,T)/x"(I'(T),T) are displayed in the

insets as a function ab/1'(T) and show a rough scaling behavior tibility. The temperature variation df(T) depends on the relevant

betweef‘ two exre_m_a}"(T) is the peak position of the dyna.mlc channel numbers. In the one-channel césel (T) approaches a
magnetic susceptibility. One-channel case, model set 8; two'onstant value a8 —0. In the two- or three-channel casés and
channel case, model set 1; three-channel case, model set 4. Tﬁ .

- - c), I'(T—0)—0 which is none other than marginal Fermi-liquid
temperature variations are the same as in Fig. 9 except for an addi- . . R
tional low temperaturd =2.321x 10°5. ehavior. Symbols have the same meaning as in Fig. 6. Note the

different temperature ranges between fe=1 case(top) and

. . . . ) M =2,3 casegbottom).
conduction electrons close to the impurity site will pass

through it in a timer, of the order of IT from the uncer- 1 1
tainty principle. At high temperatures above the Kondo tem- @ (52 (f)= — 16— d(k)],0? (k)= —[6+ D (K)],
perature, ;> 7.. Thus the impurity spin rarely flips while 707 16,1 (01,0570 = 15,1 (]

FIG. 15. Peak positiofl'(T)] of the dynamic magnetic suscep-

conduction electrons pass by the impurity site. Hence Curie- (128
law behavior is expected in the magnetic susceptibility. At
low temperatures, in the one-channel regimgg 7., and <D(R)=1500§0— 10cog6+1+5sirfgcog2¢. (129

the impurity spin flips frequently, so that the average spin

moment of the impurity is zero, leading to a Pauli behaviorHere nj,,, is the impurity concentration.

in the susceptibility. In the two- and three-channel regimes, The transport coefficients are calculated using the Kubo
Ti~ 7, and spin screening is not complete, leading to theformula under the assumption of dominant scattering in the
non-Fermi-liquid ground state. This interpretation agreed=3 channel. Our results are defined in terms of transport
with the diverging low-temperature behavior of the magneticintegralsl,, given by the equations

susceptibility.

In(T)=f doo"r(w,T) (130

E. Transport coefficients Jw

&f(w)}

Using the Kubo formul&in a dilute impurity limit, where
the interimpurity correlation can be neglected, we have cal- .
culated the resistivity and thermopower. The anisotropic T(va)EfET(k:w’T)- (13D
conduction electron scattering rate is
Heref(w) is the Fermi function. In particular, the resistivity
87 Nimp is calculated using the equation

N(O)

7 Y(k,w)= [T61072(K) poy @)

n
110572 (K)pad )], (127 o = m oM (132
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power laws are found asymptotically for the finite temperature
NCA calculation in the two- and three-channel cases. A power law
FIG. 16. Angle-averaged scattering rata) One-channel case of TY3(T29) s expected foM = 2(M =3). Symbols have the same
(model set & electron scattering is dominant. The cusp feature fOfmeaning as in Fig. 6. The upper bound on the range for the
the M=1 case right at the Fermi level derives from the spectralTV(T25) power law isT,~0.06T(0.18T) for M=2(3).
depletion ofp, and zeros of the crystal harmor@>? (k) which
is defined in the text(b) Two-channel casémodel set I hole  logarithmically throughT, and then saturates with a power
scattering is dominantc) Three-channel casgnodel set 4 weak  law to a constant with further decreasing temperatures. The
hole scattering dominance over the electron scattering comes frofiesistivity near zero temperature obeys a scaling behavior as
the degeneracy imbalance between fthsinglet andfI'; doublet.  shown in Fig. 17, confirming our zero-temperature analysis
The temperature set is the same as in Fig. 9. with the scaling dimensions,=1/2, A;=2/5. These results
agree with the conformal field theory analy®i,viz.,
Note that the conduction electron scattering rate contain§(-|-):p(o)[l_a[T/To]An] for T<0.06T,, A,=2/(n+2)
the hybridization since interconfiguration spectral functionsigr the overcompensated multichannel Kondo modetste
are involved. The crystal harmonics are normalized such thahat the power law exponent is independent of the impurity
the integration of f[dk®@P?(k)=1 and [dk®{P(k)=2.  spin siz@. We note that the region where striet behavior
Note that the crystal harmoni®®?(k) vanishes at “hot holds is below about 0.0%. A fit to the resistivity of
spot” angles of @,9)=(0,—), (m—), (w/2,0), Cexla;_«Cu,:Si, (see Fig. 1is good until low tempera-
(w12,712), (wl2,m), (ml2,37/2), whilegS’z)(R) is positive tures where the Qata break below that given by the_ory. T_hls
definite. This feature, combined with the near-Fermi-levelSU99€StS 2 possible crossover to a new fixed point which
“dip” in the interconfiguration spectral function fof!-f2 could be set by intersite interactiofsroducing a spin mo-

excitations[pps(w)], leads to a reduction in the resistivity at :gﬁglar field or a weak noncubic symmetry for the e

low temperatures in the one-channel parameter regime The thermopowerQ(T) is a sensitive measure of the

within our simplified mo_del. We believe that this feature will asymmetry in the scattering rate and the density of states
go away in more reahs’qc models. For gxample, another CONDOS) near the Fermi level. Since we are assuming a
tribution to thel's atomic spectral function comes from the yarticle-hole-symmetric Lorentzian or Gaussian DOS for the
convolution betweeri® and f'J=5/2I"s. This spectral func-  ¢onduction band, the sign of the thermopower is determined

tion will not be depleted at the Fermi level, but instead will by the asymmetry in the scattering rate. Our expression for
build up its spectral weight due to the weak Kondo resope thermopowef)(T) is

nance structure just above=0.

This reduction of the resistivity does not occur in the two- 1 14(T)
and three-channel regimes. Instead, a Kondo-resonance- QM =-7i ik (133
related peak develops near the Fermi energy, whose position 0
with respect to the Fermi level depends on whether thédur full results for the thermopower are displayed and dis-
model is in the two- or three-channel regime. Details arecussed in Ref. 16 and will not be repeated here. Instead, we
displayed in Fig. 16. In the two-channel and three-channejust briefly summarize the results below. There we showed
model parameter regimes, the resistivity initially increaseghat at low temperatures the thermopower is positive in the
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one-channel regime, negative in the two-channel regime, anithree-channel regime, although hole scattering is reduced
weakly negative in the three-channel regime. The reason isompared to the two-channel case, electrons are still the
that a strong hybridization betweei! and f! affects the main carriers due to the degeneracy imbalance between the
dominant scattering of electrons from the enhanced spectr@ing|etf° and the doublef2J=4F3. The thermopower re-
Weight above the Fermi level. Since particle Scattering domimains negative but very small. We note that our ther-
nates, holes are the main carriers in the one-channel cas@opower calculations omit the contributions of excited crys-
and a positive thermopower arises. On the other hand, g field levels and so may not compare quantitatively with
negative thermopower arises when the hybridization is stronzaqits on CeCi5i, and its alloys.

gest in thef -2 sector. In this case, more spectral weight e calculated the dynamic magnetic susceptibility and
arises below the Fermi energy, so that holes are Scatterec‘ii]aracterized it in terms of the peak positiph(T)] as a
more strongly and electrons carry thermal current, leading tﬁ’unction of temperature. We see a clear difference between

a negative thermopowe_r. In the three-channel regime, energy . one-channel and overcompensated cases. WMl de-
structures are symmetric. However, the double degeneracy in '

the f2 configuration leads to weakly dominant hole Scatter_greases_and saturates to a <r:]onstant r\]/ alue |0f dgemth
ing, resulting in a negative thermopower at low tempera.decreasing temperatures in the one-channel dgse), goes
tures. The overall magnitude of the thermopower is slightlyto zero almost linearly with decreasing temperatures in the

reduced when anisotropy at the cubic sites is included.  WO- and three-channel cases.
We now discuss the experimental relevance of our model

study to the Ce_,La,Cu,,Si, alloy!’” We have already
V1. DISCUSSION AND CONCLUSION stressed the experimental evidences supporting the two-

We have introduced and studied a realistic model Hamil-channel Kondo effect in this alloy system in Sec. I. The
tonian for CE* impurities with three configurationsf}, ~ thermopower for CeCySi, changes sign around 70 K and is

1 £2), which are embedded in cubic normal metals. Thisnegative and large beloW:*° As our numerical calculation
simple model shows competition between the Fermi-liquigShows, the thermopower is negative and large in the two-

fixed point of the one-chann&= 1/2 Kondo model and the channel regime. This result compares well with the experi-
non-Fermi-liquid fixed point of the two-channe&=1/2  mental findings for the stoichiometric system with 1. We

Kondo model. believe the sign change comes from the Kondo resonance of
We studied this simplified Anderson model using thef® and f'I'g, which lies above the Fermi level. Further ex-
NCA. This simple model covers one-, two-, and three-periments are required for the alloy system with excess Cu.

channel Kondo physics depending on the model parameterBor comparison, we note that CeAbr CeAl; (Ref. 49 has
All the calculated physical quantities show the signatures ok positive thermopower large compared to transition metals
the Kondo effect appropriate to the different numbers of rel-at high temperatures and has a sign change at low tempera-
evant channels. The static magnetic susceptibility agreegire which is still larger than the Kondo temperature. Our
with the exact Bethe ansatz and conformal field theory rethermopower calculation and the thermopower dependence
sults for the two- and three-channel model parameter repn the unit cell volum® suggests that the alloy system
gimes. Entropy and specific heat calculations for the twoCe, _,La,Cu,,Si, can go through the three-channel model
and three-channel regimes are also in agreement with thgarameter regime with external pressure. Renormalized atom
Bethe ansatz results, with a discrepancy of the order of a fewa|culations further suggest a destabilizatiorf ofelative to
percent in the estimated residual entropy attributable tqo \yith initial increasing pressuré.We note that measure-
O(1/N?) corrections to the theorfvertex corrections ments of thex=0.1 samples give a low-temperature positive
Our new results are for transport coefficients and dynamithermopowef%2 If the two-channel fixed-point interpreta-
cal spectra. Conformal theory is only able to predict the low+jon is correct for this alloy, the only clear way this may be
temperature and low-frequency behavior of the dynamicateconciled with our results is through a calculation which
spectra and transport coefficients and not the quantitativgroperly includes the excited crystal field levels, which in
crossover from high to low temperatures. In the one—channq;rincime can render the thermopower positive.
regime, the model yields a nonmonotonic resistivity which |5 aqdition to the thermopower, neutron scattering experi-
we believe to be spurious. In the two- and three-channehents for the Ce_,La,Cu,,Si, alloy can search for the
regimes, the resistivity increases logarithmically and satuynysual temperature dependencd ¢T) (the peak position
rates as + (T/To)*™ with decreasing temperaturéshere  of the dynamic magnetic susceptibilitio see if it is consis-

M =23 is the channel numbefThe low-temperature behav- tent with our interpretation in terms of the two-channel limit
ior power law saturation is in agreement with the conformalpf the model presented herein.

field theory results.

Since the thermopower is very sensitive to the density of
states'stru.cture anq the sca'ltterlng.mechamsm near the Fermi ACKNOWLEDGMENTS
level, its sign and its magnitude give a measure of the low-
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are strongly scattered due to the Kondo resonance above tleepartment of Energy, Office of Basic Energy Sciences, Di-
Fermi level and the thermopower remains positive definitevision of Materials Research. We thank Eunsik Kim for her
and large. In the two-channel case, holes are scattered off tlwareful reading of this paper and thank L. N. Oliveira and
impurity sites stronger than electrons. Thus electrons are th&W. Wilkins for stimulating interactions, and F. Steglich for
main carriers, leading to a negative thermopower. In thesharing the data of Ref. 51 prior to publication.
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APPENDIX A: NCA SELF-ENERGY IN THE PRESENCE APPENDIX B: ZERO-TEMPERATURE ANALYSIS:
OF MULTIPLE IRREPS WITH THE SAME LABEL OVERCOMPENSATED MULTICHANNEL

. . . . . ANDERSON MODEL
In the f2 configuration, there are nine irreducible repre-

sentationgirreps of I'; in a cubic symmetry. All contribute We discuss the following NCA integral equations at zero
to the effective Schrieffer-Wolff exchange interactions, andtemperature.
the NCA should capture this physics in the leading-order

diagrams. Accordingly, the NCA formalism should be appro- _ 1
priately generalized to get the right Kondo energy scale. As Gy(2)= Z—€4—34(2)’
an example, we may consider the mixing process between r (BY)
17— 2 i i N -
;ri 5/2I'; and fI";. The relevant NCA integral equations S4(2)= %J' deN(— €)f(€)Gy(z+ €),
2 ~
E(w)zggj \/rirjf def(e)N(e)Djj(e+w), (AL)
GCy(2)= —<—,
«2) Z—e,—24(2) (B2)

2 ~
3,(2)= Lf deN(e)f(€)Gy(z+e).
Only the conduction electrons of onlyg symmetry are in- m
volved in the mixing process. Th&T'; Green’s function HereN(e) is the normalized DOS such thgl(0)=1. For

now becomes a8 9 matrix. This generalization can be seen definiteness, we assume that the excited state has one less

?;?‘SESC?ﬁéhi/nct;ymilggllfmgoi ntgten;:g_; ns;g%edslzgnzzrgz tﬁ:;electron than the ground state. Before diving into the zero-
32 3

. . . ) . temperature analysis, we point out the applicability of the
?zurt‘g,cgngl“g,. This leads to the matrix Green’s function for NCA approach to the Anderson impurity model. Whenever
3 .

According to the Schrieffer-Wolff transformation, the ef- the ground _and excited states have degenergmeg @ind
. O N, , respectively, the above form of the NCA integral equa-
fective Hamiltonian is . : . . :
tions is obtained. The above NCA integral equations also

9 Hlyi 2 derive from theN,-channel,§;=(Ng—1)/2 models. This is
Hy=3> §-§.,(0), J=> =2 (A3)  an artifact of the NCA approach. The NCA cannot distin-
n =1 €7 €1 guish between these two different models. Note that not all

éAnderson models with degeneraciesNyf (the ground stade

nd N, (the excited staje map into the N,-channel,
S=(Ngy—1)/2 models. The Schrieffer-Wolff transformation
is essential to see this connection clearly. As an example, the
excited triplets in th6?J=4 in our Ce* model lead to the
one-channel exchange interaction of the impuffty/, pseu-
(A4)  dospinS,=1/2 coupled to th&,=3/2 conduction electroris

instead of three-channel Kondo model. With this restriction

With this replacement, thE; self-energy matrix becomes  in mind, we now study the zero-temperature analysis of the
above NCA integral equatiorté:*®

The dynamical quantities we are interested in are

Now we can show that the above NCA integral equation
lead to the right Kondo energy scale to leading order. At thi
order, no self-energy needs to be inserted intofthpropa-
gators, and so we take

G(w)_) w_€1+i5'

2
Hij(a))z ;\/Fif‘jln

for a symmetric flat conduction band DOS with a half width p(w)= f de[a,(e)Ag(et+ ) TA(€)ag(et w)], (BI)
D. Now the Kondo energy scale is determined by

w— €7 A5
P (A5)

def (- €5) 3 —Ijj()]=0. ne) ‘f ; N, N &0

With the substitutionrw=€;—T,, we can find Xglw)= cLag( At @)= Ag(agler ]
To | 1 =e*ﬁ‘”A =e*ﬁ‘*’A BS
In Dt T, _W' (A7) ag(w)—z_f g(w)’ aX(w)_Z_f x(w)- (B5)

5 9 _ We can show that
N(0)I=— 21 g (A8) N[ -
_ ay(w)|Gy(w)| 2= fdeN(—e)f(—e)aX(w+e), (B6)
HereT;= wN(0)| V1,2 ™

In conclusion, we have shown that the inclusion of all the NT
I'y’s in the f2 configuration leads to an enhanced two- —2_"9 f N _ n
channel exchange coupling. a(@)|Gy( )] T deN()f(—e)ag(wte). (B
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At zero temperature, the Fermi function is reduced to aDue to the sharpness of the Fermi function at the Fermi

step function. Thus, the self-energy equations are simplifie
to

NI (o~
EQ(Z)ZTJ_ deN(—€)Gy(z+e), (B8)
NgI' (0~
Ex(z)zTL deN(e)Gy(z+ ), (B9)
-2 XF * -~
ag(0)|Gg(w)| 2 == fodeN(—e)ax(ere), (B10)

N

a(w)|Gy(w)| 2 ;Ff:deﬁ(e)ag(w-i- €). (B11

For a flat conduction band with a cutoff,-D,D], we can

reduce the above equations to the differential equations
gg(w)=—1/Gy(w), gy(w)=—-1/G\(w), (B12
d g N D)=D B13
Jado(@)=—1-— a@)’ gg(—D)=D+¢4, (B13
d P ) D)=D B14
G @="1- =75, 6(-D)=D+e, (B19
d ) N,I"
%[ag(wﬂgg(a))l ]=—Tax(w), (B15)
d 5 NgI'
dola@lgle)P]=——Tayw).  (B16)

Removing thew dependence, we find the relationship be-
tweenggy andgy, in terms of the integration constant which

tevel, the spectral functions have a sharp cutoff at the thresh-
old energyE,. SinceA,(w) vanishes below this cutoff en-
ergy, 2,(w) is purely real andy,(w) does not vanish or
cross the frequency axis below the threshold en&gyThat

is, g,(w) is positive definite below the threshold energy

1. Leading asymptotic behavior

We can derive the asymptotic behavior near the cutoff
energy. Sinceag(w) and gy(w) vanish atw=E,, we can
approximate the above equations:

connects the low-energy and high-energy states, given

through the equation

o

m(€g— €y) Nx/Ng

Ngl

9g
D+€g

~ m(9g— 9y
NgT

Ox
D+ ey

o

(B17)

E—w:fgxd %y 1 ngd (y), (822
T Jo Vagy)+NgA T NgA Jo YEYD
9g ax(y) 1 (9
Eo—w= d ~ d , B23
070 o VoA TNA ), Ve (29
N, /N
9g [9x| ™9
7,73 (B24)
Here A=TI'/#. From the above, we can find
9L _ |G, (825)
To
gx(w) P
A ~| Q) *, (B26)
APMMNe  Tor(eg—€y)
T0=D[5 EX[{T ) (827)
_ M ~ M B28
PITNG TN, T NG+ N, (B28)
~ Eo_w
QE(Ng+NX)T—O. (B29)

Since the zero-temperature analysis is based upon the as-
sumption|e,| <D, the realistic Kondo energy scale is given
by the replacement dd + ¢,— D. The asymptotic behavior

Since the zero-temperature analysis is meaningful only wheright above the cutofE, can be found from the expressions

D> ¢4 ., we will replaceD + ¢, , by D. That is,

95 [ m(gg— ][ gx|"Ne
T, —ex;{ TNGE A : (B18)
A Nx/Ng m(€g— €)
TOZD 5 eXF{T , (Blg)
r
A=—, (B20)
o
and
d
a[Ngag(w)gg(a’)"'Nxax(w)gx(w)]
=Ngag(@)+N,ay(w). (B21)

below E, by the analytic continuation

+id L~
%o)“eﬂ (B30)

+id L~
wme—'axm“x, (B31)

1 ~
Ag(w)~W—Tosin(agﬂ')|ﬂ|7“96(w—Eo), (B32)

1 -
Alw)~ Esin( a,m)| Q" %0(w—Eyp). (B33
Here the phase was determined such that the spectral func-
tion is positive definite above the threshold energy. Since
[Ngaq9q+ Nxaxgx]w:Eoz 1, we can deduce that
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ag(w)~ WQ_ 90( EO_ w), (834)
a,(w)=~ (|\|g+—NX)A07 x(Eqg— w). (B35)
From the above asymptotic expressions, we find
1 sin(agm) 6( w)
”(‘")NF(NgnLNX)ZB(‘“X’“@J)>< Sin(a,m) 6( — w)
1 ! B36
AN (539
” 1 sin(aqm) i
Xg(0) = e (N, TN 2 B @ a0 SOr) @[5
(B37)
F=(Ng+ N, ) (B39)
w=(Ng X T,

HereB(p,q) is the 8 function.

2. Next leading asymptotic behavior

From the above analysis, we can see that it is more ap- 29~ [Ng +Nx]To
propriate to use dimensionless quantities. Here we collect all

the relevant formulas from the above:

SO T D)=D+ B39
T, N, Tg, %(TD)TDre. (B39
d gy To To _
aﬁx aX@Jrg_g’ g«(—D)=D+¢,, (B40)
d 2
aa[ag(w”gg(w” ]:agATOax(w)y (B41)
d 2
aa[ax(w”gx(w” ]:a’xATOag(w)' (B42)
9 gg(y)
Eo— :f dy————, B43
0 Go(y) + Ngh (B43
99 gx(y)
Eo—w=| dy——r, B44
o= | vt (549
95 _ [ m(gg—g)][gx]™ Mo
To—exp[ TN LA . (B45)
Expanding the last relation, we get
Gy [0l || G To g™
To |A NgA  NgA| A
(B46)
Then it is straightforward to show that
gg ~a NO( NO(
= =0%[1-0g;,0%+209,0%+ - - -], (B47)
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gX ~£1/ ~a ~a
K:Q [1+29,0Q%—g,0%+ -], (B48)
__t T = B49
0N, N, A0 2NN, (BA9
Furthermore, writing in a Taylor expansion form,
=0 % 1+a;0%+a,Q%+ - - - 16(Q ,
9 [Ng+ Nx]TO [ 1 2 ] ( )
(B50)
aX:W—N)JAQ {1+b1 Q%+ b, QA%+ ---76(Q),
(B51)
we can find the relations
b1:2a1_4gly agb2232+4gz, (B52)
axa1=b1+4gl, 32:2b2_492. (B53)
Finally we find
“ag[ 1+ 00%—4g,Q%+ - - -16(Q),
(B54)
aX:[Nng—NX]AQ [1-49.Q%+0Q%+---16(Q).
(B55)

In this limit, the pseudoparticle spectral functions are

1 ~ . - O
Ag= - |01 “s{sin(agm) ~ 2g;inl (ag — a) | 0]

+...10(—Q)
S
'n;ag )|Q| “9{1+ 4g,coq agm)| Q%
+. 10—, (B56)
AX_MKM “{1— 49,008 agm)| Q| %o+ - --}6(— Q).
(B57)

The scaling dimensions found here all agree with those
found in the conformal field theory for the overcompensated

cases.

3. Physical quantities

Using the above results, we can find the dynamic suscep-

tibilities for the ground and excited configurations

sin(a g77)

Xg(@)=sgn( w)(N'f'N—)Z{B( ay, )| @[t

—4g,[1—cod aym)]

X B(ay,2a,)|@|2 3%+ ...}, (B58)
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ToSin(aym) - state for an isotropic hybridization. In this simplified model,
Xy(w)=sgn w) Wz—z{B(ag 1ag)|w| x the transport scattering rate is proportional to the imaginary
part of the conduction electron self-energy.
—4g4[1—cog aym)] The conduction electron scattering time is given by the
—i2-3 angular average of the anisotropic one:
X B(ag,2aq)|@[° 3%+ - -}, (B59)
imagi i ) dk. .

Thes_e are the imaginary _parts of the correspondlng full dy (w)=3f Rk (k, ). (C1)
namic susceptibility functions. The functional forms are of "

marginal Fermi-liquid type for the overcompensated case

Ng=N,. The local electron spectral functions are Since 7,,,(—k,w)=17,,(k,®) in the Anderson model, the
scatterlng time matrix becomes diagonal. Thus we have

sin(ag)
(Ng+N,)*7A (“’):J dk

~la 477
X{B(axvag)_4ng(a><12ag)|w| 9

pi(w>0)=
T(k ). (C2

—ta In the dilute Anderson impurity limit, the conduction elec-
+402c08 agm)B(ag,2ay) @]+ - -}, tron self-energy can be approximated by

(B60)
3 (ke iw)=Nimp 2 [(ke|V|D)|2Gi(iw),  (C3

Sin( ay )
Pl@<0)=(§ TN ZmA
X {B( ey, arg) + 491008 a,m)B(ay, 2ag)| @] %0 T_l(Ea:w)ZZWNimpEi [(ka|V[i)|?pi(w). (C4
—49,B(ag,2a,)|3| %+ - - -} (B61)

Here the index is the atomic electron’s good quantum num-
One important observation is that the scaling dimensionder. We can write the self-energy as follows.
agree with those obtained from conformal field theory treat- (1) With LS coupling, but without the CEF,
ments for overcompensated multichanr& 1/2 models.
From this result, we can argue that the local electron spectral PR - SN2 (e
function is peaked right at the Fermi levékondo reso- 3 (ki) =Nimp2, [(Kal VIm)[*Gr(jiiw),  (CH
nance for overcompensated models. This result seems to be
independent of the occupancy of the ground level. In fact, Gi(j:7m)= _<Trfjm(T)ijm(0)>1 (C6)
numerical results with the NCA confirm this conclusion.
Hence we conclude that the Kondo resonance peak in the R .
overcompensated models sits right at the Fermi level irre- (ka|V]jm)y= > (Ka|V|msB)(3ms; 3 Blim). (C7)
spective of any model parameters. In the single-channel mah
Anderson model, the position of the Kondo resonance peafkhe total angular momentum is a good quantum number in
is adjusted by the Friedel sum rul&ermi-liquid ground this case.
statg. That is, the occupancy of the ground configuration (2) with both LS coupling and the CEF,
determines the Kondo resonance peak position.
We can also generate the low-temperature dependence of - )
some physical quantities. Resistivity and thermopower car (Ka:1®)= Nlmp2 [(ka|VIT{de)|?Go(Tiw),  (CB)
be evaluated using the Kubo formula.

G ;7)=—(T,frong ( T)f;(cpdc(o», (C9)

TV .
p(T)=p(0)(1—c T, ) v=min(ag,a,), (B62)
T (Ka|V[TPde) =2 (Ka|V|jm)(jm[T{dc). (C10
Q)= {T } (B63) "
0 The CEF irreps are good quantum numbers.

In the above, two successive unitary transformations have
APPENDIX C: CONDUCTION ELECTRON been used' Specified by

SCATTERING RATE

Here we derive the conduction electron scattering time in frna= > (3Mg; 3 aljmyfin, (C1)
the presence of Anderson magnetic impurities. In general, * m

the conduction electron scattering ratbe inverse of the

conduction electron lifetimeis different from the transport 2= (jmrY
scattering rate. This difference derives from the vertex cor- Im J
rection when we calculate the current-current response func-

tion. The simplifying feature of the Anderson model is that For isotropic, spin-independent hybridization and a free
only one partial wave state is coupled to the atomic electroelectron conduction band, the mixing matrix is given by

)dc>fr<cj>dc. (C12
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. A R tation components. Hence the conduction electron self-
(ka|VImyB) = EV(k)Yms(k)a&ﬁ, (C13)  energy in the dilute impurity limit is

V<k>=JE<—i>3fdr (2j5(knV(DRy(), (C14
. . 4 L
(ka|V|jm)= \/ﬁv(kxkallm). (C15
(kaljmy=2 Yam (k)(3my; 3 aljm),  (C16)
m3
_ ' 4ar R )
(ka|VITPde) = \/ 5 V(K)(ka|TP'd), (€17

<ka|rf:j)dc> = mEm Y3m3(R)<3m3;% aljm)(] m|rf:j)dc>-
3
(C19

3 (ka,iw)=4mning V(K)[22 O () G(T'Yiw),
jc
(C29

Oil)(=2. [(ka|I'ddo)|* (C26)

Here @92(%) are crystal harmonics. The anisotropic relax-
ation rate is

7 Y(Ka,0) =872 V(K)|22 O (K)py(TY ;s 0).
c
(C27)

Here p¢(I'\; w) is the measurable spectral function for the

Here () is the volume of the system arRi(r) is the radial atomicf electron ofl') symmetry. This spectral function is
part of atomic wave function. Hence the conduction electrorgiven by the convolution of two neighboring configuration
self-energy in the isotropic hybridization can be written as Green'’s functions.

In the cubic crystal symmetry, the relevant crystal har-

3 (Ka,i ) = 4amim| V(K) |22 [(ker|jm)|2Gy(j;iw) (C19 monics are
jm

=4 V(K)[* X [(ka|Tdo) PGH(T i w).
jede
(C20
Here only the diagonal elements of the Green’s function are
nonvanishing.

1. Without the CEF

When the CEF is neglected, the conduction electron self-
energy in a dilute impurity limit reads

3 (Ka,i ) = 47| V(K) |22 ©9(K)Gy(jiw), (C21)
J
7 Y ka,0) =87 N V(K)[2Y D (K)p(jiw),  (C22
J

0D(=2 |(kaljm)|* (€23

pi(j;w) is the measurable spectral function for the atomic
electrons with the total angular momentym

The relevant angular functions defined above are, in fact,
constants:

R . o 2j+1
D(ky= i 2_ () 2 =
00(k)=2 (kaljm)| MZdMKkaIF,L d)l*=—5—

(C24

2. With the CEF

In the presence of the CEF, the CEF irreducible represen-
tations are good quantum numbers. The atofr&ectron
operator can be decomposed into CEF irreducible represen-

O (k) =2 [(ki/ 1|2 a)®

1
=— E[%coé‘e— 30cog6—-5

+5sirf 6 cosde], (C29
052 (k) =2 |(k1/1|T§™;na)|?

! 35c0é0—30co$6+19
_E[ cosé cos 6+

+ 5sirf'6 cosde], (C29

and

05" (k=2 (k1/1|T§"™; )|
= 555150 co$6—30coéH—10coge

+ 322 —10sirf (5 cog6—1) cosde],
(C30

05"k =2 [(k1/ 115" )|

15
= Esmza[ —14co6+28cog+2

—2sirf(7 co0+1) cosdp], (C31
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02 (k)= (k1/]|T"?;na)|?
Na

1
= —[—70co86+105coéH—40cogh+ 3
327

+5sirf@(14 cog0— 1)cosde]. (C32

Note that the above crystal harmonics are normalized and

satisfy the sum rules

fdk(ag{;(k):l, Jdke)g)(k):z, (C33

TAE-SUK KIM AND D. L. COX

. 2j+1
2 0 (k=—5—. (C34
o

Furthermore, the crystal harmonics foja5/2 multiplet can

be rewritten as

1 1
(5/2) (1) — _ I (512 (1) — T
02 (=716~ (K], 05 ()=—6+ (K],

(C39

®(k)=15c046—10cog6+ 1+5sirfocoL2¢.
(C36)
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