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One-, two-, and three-channel Kondo effects for a model Ce31 impurity in a metal

Tae-Suk Kim and D. L. Cox
Department of Physics, Ohio State University, Columbus, Ohio 43210

~Received 24 August 1995; revised manuscript received 26 November 1996!

We present studies of a simple Anderson model Hamiltonian for Ce31 ions in cubic symmetry with three
configurations (f 0,f 1,f 2). In different parameter regimes, our model Hamiltonian maps to the one-, two-, and
three-channel spin-1/2 Kondo models. Using third-order scaling~perturbative renormalization group! analysis,
we study the stability of the non-Fermi-liquid fixed point of the two-channel Kondo model for Ce31 ions in
cubic symmetry against the one-channel Kondo interaction. Using the noncrossing approximation~NCA!, we
also report detailed studies for our simplified model of the competition between the Fermi-liquid fixed point of
the one-channel Kondo model and the non-Fermi fixed points of the two- and three-channel Kondo models.
We provide the phase diagram in the model parameter space and study the thermodynamics and the transport
properties of our simplified model Hamiltonian. Thermodynamics and transport coefficients show distinct
behaviors for different numbers of channels. We confirm in detail that the NCA is a valid numerical method for
the overcompensated multichannelSI51/2 Anderson models. Our model study might be relevant to the
non-Fermi-liquid alloy Ce12xLaxCu2.2Si2. @S0163-1829~97!02313-8#
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I. INTRODUCTION

The Kondo effect1 has been of great interest in condens
matter physics since its observation. The proposed mo
Hamiltonian, a magneticSI51/2 local moment interacting
with the conduction electron gas, looked very simple but w
nontrivial due to the many-body nature of the problem. E
since, many generalized models have been studied to ex
our understanding and to relate to real materials. The s
plestSI51/2 orbitally nondegenerate Anderson model2 and
s-d exchange model are now well understood for a sing
impurity case using several techniques. The numerical re
malization group~NRG! ~Ref. 3! method was able to provid
complete information about the crossover from the hig
temperature fixed point to the low-temperature Fermi-liq
fixed point for these models. Subsequently, the exact dia
nalization of these models was realized by the Bethe an
~BA!,4 which also gives an exact solution for the thermod
namics of these models. However, it has not proved poss
to compute dynamical properties with the BA. Through t
noncrossing approximation~NCA!,5 dynamics as well as
thermodynamics6 have been extensively studied for the in
nite on-site Coulomb interaction models. The quant
Monte Carlo method~QMC! ~Ref. 7! has also been applie
to study statics and dynamics for the simpleSI51/2 models.
Recently conformal field theory~CFT! ~Refs. 8 and 9! has
been used to study all properties asymptotically close to
low-temperature fixed points.

However, we are still far from a complete understand
for realistic models which, for example, include the stro
spin-orbit coupling, crystalline electric field~CEF! effects,
and multiple~more than two! configurations. In this paper
we study a realistic extension of the conventional sim
approach to the Kondo effect for Ce31 ions, including strong
spin-orbit coupling, crystalline electric field effects, and m
tiple configurations.

In generalizing the Kondo model, Nozie`res and Blandin10

introduced the multichannel Kondo model. This model co
550163-1829/97/55~18!/12594~26!/$10.00
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sists ofM bands ofSc51/2 conduction electrons coupled t
a spinSI impurity through an antiferromagnetic Heisenbe
exchange interaction. There are three regimes of the mo
~i! Compensated. Here M52SI so that there is precisely
enough conduction spin to quench the impurity. In this ca
the impurity moment vanishes at low temperatures as in
conventional Kondo effect (M5152SI for SI51/2). It is
widely believed that this model describes the Kondo eff
for Mn ions in metallic hosts, since the Mn has a half-fille
d shell with a ‘‘pure spin’’ ground state and, hence, neg
gible crystal field and spin-orbit effects~here M55 and
SI55/2). ~ii ! Undercompensated. HereM,2SI so that there
is not enough conduction spin to quench the impurity, and
Nozières and Blandin10 argued, this will lead to a ground
state impurity moment ofSI2M /2 with residual ferromag-
netic coupling to the conduction electrons.~iii ! Overcompen-
sated. In this case,M.2SI , and so there is more conductio
spin than needed to quench the impurity. Nozie`res and
Blandin10 argued that this will give rise to a nontrivial fixe
point with a non-Fermi-liquid excitation spectrum and cri
cal behavior in thermodynamic and dynamic quantities.

The possibility of the experimental realization of the mo
interesting overcompensated fixed point has been contro
sial since its inception, when, in the context ofd ions, No-
zières and Blandin10 argued that it would likely never be
observed. On the theoretical side, the multichannel Kon
model is well understood8,11–13 irrespective of the experi-
mental situation. For example, the spin susceptibilityx(T)
and specific heat coefficientC(T)/T for the two-channel
SI51/2 magnetic Kondo model are proportional
ln(TK /T) at low temperatures,8,9,11–13whereTK is the Kondo
energy scale separating the high-temperature perturbativ
gime from the low-temperature nonperturbative regime. T
dynamic susceptibility shows marginal Fermi-liqu
behavior.14 The resistivity increases logarithmically up t
TK as the temperature is lowered and saturates to a con
belowTK , with r(T)'r(0)@12aAT/TK# asT→08. On the
12 594 © 1997 The American Physical Society
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55 12 595ONE-, TWO-, AND THREE-CHANNEL KONDO EFFECTS . . .
other hand, the one-channelSI51/2 Kondo model leads to
the Fermi-liquid ground state. In that case, the magnetic
ceptibility x(T) and specific heat coefficientC(T)/T saturate
to constants of order 1/TK .

3,4 The resistivity increases loga
rithmically asT is lowered toTK and saturates to a consta
belowTK with r(T)'r(0)@12a(T/TK)

2# for T→0.15

In this paper we study a model Hamiltonian for Ce31 ions
in cubic metals with three configurations (f 0, f 1, f 2). The
nominal ground configurationf 1 can fluctuate tof 0 and f 2

configurations by hybridizing with the conduction electron
A one-channel Anderson hybridization interaction is pres
betweenf 0 and f 1 configurations. A two-channel Anderso
hybridization interaction is present betweenf 1 and f 2 con-
figurations. We report detailed studies of our simplifi
Hamiltonian using the NCA. This simple model is quite i
triguing in that we can study the competition between
two different Kondo effects, that is, the Fermi-liquid fixe
point of theM51, SI51/2 model and the non-Fermi-liqui
fixed points of theM52,3, SI51/2 models. The distinc
ground-state physics for different numbers of channels
classified using the zero-temperature analysis of NCA in
gral equations and third-order scaling~perturbative renor-
malization group! theory. We calculate the thermodynami
and dynamics of this simple model and find that all the c
culated physical quantities show a behavior correspondin
different channel numbers in the appropriate parameter
gimes. The static magnetic susceptibility displays a sca
behavior in excellent agreement with the exact Bethe an
results in the two- and three-channel cases. The NCA ca
lation of the entropy and specific heat is also compared w
the Bethe ansatz results. The resistivity shows the cor
temperature dependence near zero temperature, agr
with the conformal field theory results in the two- and thre
channel cases. The sign and magnitude of the thermopo
are dependent sensitively on the relevant channel numb
The peak position in the dynamic magnetic susceptibility
almost linear in temperature in the overscreened case
short paper which presents some of these results has
peared elsewhere.16

Our study is motivated in part by a recent discovery of
non-Fermi-liquid system CexLa12xCu2.2Si2 (x50.1).17

Here, we briefly summarize the experimental findings of t
alloy system. The logarithmic divergence in both the ma
netic susceptibilityx(T) and the specific heat linear coeffi
cient g(T) has been observed for CexLa12xCu2.2Si2
(x50.1). The two-channelSI51/2 magnetic Kondo
physics8,9,11–13provides a theoretical framework to expla
the thermodynamics of this system at low temperatu
g(T) initially increases in the presence of the magnetic fie
which qualitatively agrees with the two-channel Kondo
fect coming from the lifting of residual entropy.13 In the
one-channel Kondo effect, the Sommerfeld coefficient
creases in the magnetic field due to the destruction of
Kondo effect. The Wilson ratio is estimated to beR'2.7
from the slopes of two curves@x(T) andg(T)#, which com-
pares well with the theoretical value 8/3 for the two-chan
magneticSI51/2 Kondo model.9 The good agreement be
tween the theoretical and the experimental Wilson ratios s
ports our crystalline electric field energy scheme descri
below. This system is pseudocubic~i.e., the crystal field
scheme on the Ce31 site appears cubic!. The best supercon
s-
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ducting system with excess Cu shows almost isotropic m
netic susceptibility.18 That the pseudocubicG7 magnetic
doublet in f 1 lies lowest is inferred from neutron scatterin
experiments.19 The thermopower for CeCu2Si2 changes sign
near 70 K and stays negative below with a large extrem
(220 to 230mV/K !,18 suggesting the presence of stron
hole resonance scattering. As we will show below, the
thermopower results also support our interpretation of
two-channel magnetic Kondo physics. Though other exp
ments~e.g., specific heat and magnetic susceptibility! sup-
port the interpretation of them in terms of the two-chann
Kondo effect, the linear temperature dependence in the re
tivity remains as a puzzle. TheAT behavior in the resistivity
is predicted from a conformal field theory treatment of tw
channel Kondo models.8,9 In Fig. 1, we present our numeri
cal calculation of the resistivity and experimental resu
measured in the alloy system CexLa12xCu2.2Si2
(x50.1).17 It can be seen that the data curve downwards
lower temperature, which may indicate a crossover to a n
fixed point. From all these experimental findings, we belie
that the alloy system CexLa12xCu2.2Si2 (x50.1) is a strong
candidate for a two-channelSI51/2 magnetic Kondo sys
tem. However, we do note that the experimental th
mopower of the dilute system is positive,20 which may miti-
gate the relevance of the two-channel model to this alloy

In addition, the two-channel,SI51/2 Kondo effect may
be realized in other materials, notably through the tw
channel quadrupolar Kondo effect21 in some U alloys and the
two-level system Kondo effect22 in metallic point contacts.
Candidate U alloy systems include U0.2Y 0.8Pd3,

23

U xTh12xRu2Si2,
24 UCu3.5Pd1.5,

25 U0.1Th0.9Ni 2Al 3,
26

U0.1Pr0.9Ni 2Al 3,
26 U xSc12xPd3,

27 U0.9Th0.1Be13,
28 and

U xTh12xPd2Al 3.
29 All the above systems show a logarith

mic divergence at low temperature in the linear specific h
coefficient and a different temperature dependence to
static magnetic susceptibility, compatible with a quadrupo
Kondo effect. UxTh12xRu2Si2 ~Ref. 24! ~together, possibly,
with U0.1Th0.9Ni 2Al 3, U0.1Pr0.9Ni 2Al 3, and

FIG. 1. Comparison of experimental resistivity with our nume
cal calculation. Our numerical calculation shows aT1/2 behavior at
low temperatures. The experimental resistivity~points with
T0510 K! from Ref. 17 is compared with our numerical resul
The three different symbols refer to three sets of model parame
(h for model set 1,s for model set 2,n for model set 3!. The
low-temperature deviation suggests a possible crossover to a
fixed point.
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12 596 55TAE-SUK KIM AND D. L. COX
U xTh12xPd2Al 3) is an exception, showing a logarithm
cally divergent magnetic susceptibility. The two-chann
quadrupolar Kondo physics has been invoked to explain
non-Fermi-liquid behavior in the thermodynamic and tra
port properties of UxY 12xPd3 for x50.2 ~Ref. 23! and other
U alloy systems. Recently, the resistivity in a metallic co
striction was observed to obeyAT behavior and was inter
preted as due to two-channel Kondo scattering from ato
two-level tunneling systems.30,31

Our paper is organized as follows. In Sec. II, we introdu
our simple model Hamiltonian and analyze this model us
third-order scaling ~perturbative renormalization group!
theory. We briefly introduce the NCA in Sec. III. A zero
temperature analysis of NCA integral equations follows
Sec. IV. In Sec. V, we present detailed numerical analysi
our simple model Hamiltonian using the NCA. We conclu
and discuss possible research directions in Sec. VI.

II. MODEL HAMILTONIAN

The single-impurity one-channel Anderson model2 has
been very successful6 in describing Kondo systems~meaning
magnetic transition metal elements embedded in normal m
als and dilute rare earth or actinide alloys!. The thermody-
namics is rather well explained by the single-impurity pro
erties for even highly concentrated Ce alloys.6,32 Coherence
effects, arising from the lattice of Anderson or Kondo ions
low temperatures, do not play an important role in therm
dynamics. Transport properties also are well explained
the single-impurity model except for the low-temperature
gime where coherent Bloch state formation leads to a v
ishing resistivity at zero temperature~the residual resistivity
is larger than the room-temperature value in the dilute im
rity limit !. This one-channel Anderson model can explain
complete screening of the magnetic moment at the local
ment sites, leading to the local Fermi-liquid ground st
discussed in the Introduction.

Our primary interest in this paper is to examine, in o
simplified model, the conditions under which a Ce31 ion in
a metal can undergo a two- or three-channel Kondo effec
general, the stability of the two- or three-channel grou
state can be tricky to realize since realistic perturbations
destabilize the fixed point. For example, even for a sin
two-channel orbital Kondo impurity~quadrupolar or two-
level system! the channel symmetry is guaranteed by tim
reversal symmetry, but the ground-state degeneracy ma
lifted by the Jahn-Teller effect.33 In general, the orbital
Kondo model has exchange anisotropy. It has been sh
that exchange anisotropy is irrelevant for two-chan
SI51/2 Kondo models.34 As shown in another publication,35

the two-channel magnetic Kondo fixed point for Ce31 is
unstable to the perturbation of channel asymmetry due to
orbital nature of the channel degrees of freedom;10 one such
term arises naturally in the Schrieffer-Wolff transformati
integrating out virtualf 1-f 2 fluctuations.35,36 However, the
same Schrieffer-Wolff transformation generates the chan
mixing Kondo interaction that restores the stability of t
two-channel fixed point.35 We direct the reader to this latte
reference for more details on this surprising result.

A common assumption in modeling Ce31 impurities is to
take the simplifying limit of infinite on-site Coulomb inter
l
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actions, which removes thef 2 configuration from
consideration6, and, as a result, has no chance to get
two-channel Kondo effect, which we shall explain belo
When we relax the assumption about infinite on-site C
lomb interactions and we include detailed atomic ene
structure, we can develop a variety of model Hamiltonians35

In the simplest model, which we study in this paper, w
assume that the magneticf 1J55/2G7 CEF doublet lies low-
est in the f 1 configuration, and we keep two excite
states—a singlet from thef 0 configuration and the nonmag
netic f 2G3 CEF doublet. We find the one-channel Anders
model in mixing betweenf 0 and f 1 configurations and the
two-channel Anderson model in mixing betweenf 1 and f 2

configurations.37 Other interesting Kondo interactions35 arise
when the excited triplets in thef 2 configuration are included

According to group theoretic analysis, the hybridization
mediated only by the cubicG8 conduction electrons betwee
f 1 and f 2 (G3^ G75G8) and byG7 betweenf

0 and f 1 for the
mixing potential allowed in the cubic crystal. CEF states a
schematically drawn in Fig. 2 for this simple model. To s
the essential physics, we restrict our attention to the sim
case of isotropic hybridization and a free conduction ba
with Lorentzian-Gaussian density of states~DOS!. In this
simple case, two components of the conduction partial wa
l c53, j c55/2,7/2, can mix with the atomic orbitals. Th
dominant hybridization is expected to be in thel c53 channel
due to the primaryf character of the Ce31 states. In this
paper we will consider only thel c53, j c55/2 partial waves
of the conduction band for our model study. Under the act
of the crystal field, these partial waves will be split into
G7 doublet andG8 quartet. The former couples thef 0 and
f 1 configurations exclusively, and comes in effectively as
single S51/2 conduction band in our model. The quart
couples thef 1 and f 2 configurations together and may b
viewed as twoS51/2 bands, given that the irreducible re
resentation may be written as a tensor product of ‘‘spi
(G7) and ‘‘orbital’’ ( G3) states through the identity
G85G7^ G3. The effects of relaxing the assumption
j c55/2 partial waves is studied extensively in Ref. 35.
With the above assumptions, our model Hamiltonian i

H5Hcb1Hat1H1 , ~1!

FIG. 2. Crystal electric field energy level scheme forf 0, f 1, f 2

configurations. The one-channel and two-channel Anderson m
Hamiltonians are developed from these CEF energy states. The
channel Kondo model derives from thef 0 singlet and the magnetic
f 1G7 doublet which mix through hybridization with theG7 conduc-
tion electrons. The two-channel Kondo model derives from
magnetic f 1G7 doublet and the nonmagneticf 2G3 doublet which
mix through hybridization with theG8 conduction electrons.
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Hcb5(
ea

eceG7a
† ceG7a1(

ena
eceG8na

† ceG8na , ~2!

Hat5e0u f 0&^ f 0u1e1(
a

u f 1G7a&^ f 1G7au

1e2(
n

u f 2G3n&^ f 2G3nu, ~3!

H15V01(
ea

ceG7a
† u f 0&^ f 1G7au1H.c.

1V12(
ena

~21!a11/2ceG8na
† u f 1G7ā&^ f 2G3nu1H.c.,

~4!

whereceG7a (ceG7a
† ) andceG8na (ceG8na

† ) are the annihilation

~creation! operators for conduction electrons ofG7 andG8,
respectively. The labela5↑,↓ denotes the time-reversal pa
of states in theG7 irreducible representation, andn56 is
the quadrupolar index for theG3 irreducible representation
which acts here as the channel index. The conduction e
trons are assumed to be described by an uncorrel
Lorentzian-Gaussian density of states with bandwidthD53
eV. Heree0,1,2 are the configuration energies for the emp
(e050), singly occupied, and doubly occupied configu
tions, respectively. We have lumped all Clebsch-Gordon
efficients into the hybridization constantsV01 andV12, ex-
cept for the phase dependence on the cubic degene
indices. The phase dependence on the Kramers doublet i
arises from proper consideration of time-reversal symme
We will consider these two hybridization constants to
independent of each other in this study in order to probe
competition between the one-channel and two-chan
Kondo physics.

We note that in the language of the single-channel And
son model,e1 corresponds toe f and e2 corresponds to
2e f1Uf f . For real Ce

31 ions, e f'22 eV andUf f'5–6
eV,38 and so one would expecte2'1–2 eV. However, in
this simple model we shall consider situations in whiche2 is
zero or negative. This unrealistic choice is a limitation of t
simplicity of our model, in which we try to represent thenine
G3 doublets of thef

2 configuration by a single state. Indee
it may be seen that a generalized NCA including all nine
these doublets leads to a correctly enhanced Kondo scal
the two-channel coupling which sums the effective excha
integrals of all the doublets,39 which we discuss later in this
section and in Appendix A.

When the real charge fluctuations are removed from
model system in the Kondo limit, we have to construct ten
operators representing each CEF state for thef 1 configura-
tion and couple these to tensor operators from the pa
wave and CEF projected conduction electron CEF states
this paper, the relevant tensor operators are forG7,8 CEF
states. We can show using the standard means of char
table decomposition of tensor products of irreducib
representations40 that

G7^ G75G1% G4 , ~5!
c-
ed

-
-

cy
ex
y.

e
el

r-

f
for
e

e
r

al
In

ter

G8^ G85G1% G2% G3%2G4%2G5 . ~6!

In the direct product, the first CEF states are written as
and the second as bra. TheG7 tensor operator produc
(232 tensor! decomposes into the direct sum of a char
operator (G1) and a trio of spin operators (G4). Indeed, the
Schrieffer-Wolff transformation leads to two interactio
terms: the spin exchange interaction and the pure pote
scattering term. The relevant terms ofG8 tensor operators are
the 2G4 irreps in our model; these are spin operators wh
may be formed from thej c55/2,G8 partial waves. In the
conduction electronG8 tensor space, one of the twoG4’s
gives rise to the ordinarySc51/2 spin operators with two
degenerate orbital channels and the other to one chann
Sc53/2 spin operators.35

We note that the other operators in theG8^ G8 tensor
space are not relevant here as they cannot couple to the
purity tensors. One set of theG5 irrep tensors is~dominantly!
quadrupolar tensors ofxz,yz,xy character. TheG2% G3 irrep
tensors are, respectively, a predominantly magnetic octu
operator (;JxJyJz) and an irreducible representation pair
predominantly quadrupolar@;Jx

22Jy
2,3Jz

22J(J11)# opera-
tors. They are responsible for the two-channel quadrup
Kondo coupling to aG3 ground doublet for U41 and
Pr31 ions in cubic symmetry.21,37

Hence, there are three distinct channel labels for cond
tion electron partial wave states about the Ce impurity in t
simple model. One channel is just theG7 doublet. The other
two are theG36 ‘‘orbital’’ states of theG8 quartet. Each
G36 orbital has aG7 ‘‘spin’’ doublet ~recall G85G7^ G3.!
As shown in Fig. 3 forJ55/2 conduction partial waves, th
1 orbital is ‘‘stretched’’ along the quantized axis~one of the
three principal cubic axes, taken to beẑ here for definite-
ness.! The ‘‘2 ’’ orbital is ‘‘squashed’’ in thexy plane. We
note that the simplest example of aG8 partial wave quartet

FIG. 3. Schematic diagrams of two channel degrees of freed
The upper figure is forG81 and the lower figure forG82 of
J55/2 conduction electron partial waves. Each orbital shape m
sures a channel label.
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12 598 55TAE-SUK KIM AND D. L. COX
is, for zero spin-orbit coupling,d-wave states with
1→3z22r 2 and2→x22y2. The ‘‘spin’’ index is then real
spin of the electrons.

In the Kondo limit with a stablef 1 configuration, we may
remove thef 0–f 1, f 1-f 2 charge fluctuations from the Hami
tonian of Eq.~4! using the Schrieffer-Wolff transformation41

to find the effective Hamiltonian.

H̃15J1SW cG7
~0!•SW G7

1J2 (
n56

SW cG8n
~0!•SW G7

, ~7!

J15
2uV01u2

2e1
, J25

2uV12u2

e22e1
, ~8!

SW G7
5
1

2(ab
u f 1;G7a&sW ab^ f 1;G7bu. ~9!

SW G7
is the f 1 pseudospin.SW cG7

(0) andSW cG86(0) are the con-
duction electron pseudospin densities at the impurity site
symmetryG7 andG8, respectively. When thef 1 configura-
tion is stable, its pseudospin is coupled to the conduc
band in a one-channel viaf 0 configuration and in a two-
channel viaf 2 configuration. Both couplings are antiferro
magnetic. The unique feature of our Hamiltonian is tha
can generate one-, two-, and three-channel ground state
pending on the model parameters. The competition betw
the Fermi-liquid fixed point and the non-Fermi-liquid fixe
points can thus be investigated using this model Ham
tonian.

We first analyze our simple model Hamiltonian usi
third-order scaling arguments, i.e., the perturbative renorm
ization group~RG!.10,42 At a given temperatureT, only the
thermally excited conduction electrons within an effecti
bandwidth of orderT about the Fermi level play an impor
tant role in determining physical properties. Thus we c
integrate out the band edge states~virtually excited states! to
find the effective Hamiltonian. Though the following anal
sis is restricted to energiesuvu,T!D and the perturbative
regime ~weak-coupling limit!, we can obtain qualitatively
correct results from this study. For quantitative results, a
numerical renormalization group~NRG! study is required.

It can be deduced from the scaling theory that the lo
temperature and low-energy physics is dominated by
one-channel or two-channel Kondo effect depending on
relative magnitude of the antiferromagnetic couplings.
see this, we introduce an exchange coupling matrix in
channel space which is convenient for the derivation of
scaling equations. We can thus rewrite the one-channel
two-channel Kondo models in the form35

H̃15J^SW c~0!•SW I , ~10!

J5S J1 0 0

0 J2 0

0 0 J2
D . ~11!

HereSW c andSW I areS51/2 operators. The scaling equatio
of our simple model Hamiltonian up to the third-order di
grams of Fig. 4 are
f

n

t
de-
en

l-

l-

n

ll

-
e
ts
o
e
e
nd

]g

]x
5g22

1

2
gTr@g2#, ~12!

g5N~0!J. ~13!

The scaling equations in components are

]g1
]x

5g1
22

1

2
g1@g1

212g2
2#, g15N~0!J1.0, ~14!

]g2
]x

5g2
22

1

2
g2@g1

212g2
2#, g25N~0!J2.0. ~15!

Herex5 ln(D/T). We can identify three fixed points relate
to one-, two-, and three-channel Kondo physics. The o
channel, strong-coupling fixed point (g1* ,g2* )5(`,0) is
stable, leading to the Fermi-liquid ground state.42 The three-
channel fixed point (2/3,2/3) is stable along the li
g15g2 in theg1-g2 plane, but unstable for any small pertu
bation from g15g2. Finally, the two-channel fixed poin
(0,1) is stable, leading to the logarithmically divergent th
modynamic properties at zero temperature. From the sca
analysis, we can infer the ground-state physics: one cha
for J1.J2, two channel forJ1,J2, and three channel fo
J15J2. As will be shown in Sec. IV, a zero-temperatu
analysis of the NCA equations leads to the same conclus

We now discuss the neglectedG3 irreps in the f 2

configuration.35 The nineG3 CEF states all contribute to th
enhancement of the two-channel exchange coupling betw
f 1G7 spin and theG8 conduction electron spins:

H15(
e

(
ina

~21!a11/2V12
i ceG8na

† u f 1G7ā&^ f 2G3
i nu1H.c.

~16!

The NCA can treat this problem with the extension that n
the f 2G3 Green’s function becomes a 939 matrix. See Ap-
pendix A for more details. The Schrieffer-Wolff transform
tion leads to

FIG. 4. Scaling diagrams of one-channel and two-chan
Anderson model up to third order. Dashed lines are for the Ce31

impurity G7 pseudospins and the solid lines are for theG7 or G8n

conduction electrons. The diagrams labeled as above lead to
scaling equation for the one-channel exchange couplingJ1. To ob-
tain the scaling equations for the two-channel exchange coup
J2, the labelsG7 for the external conduction electrons~solid lines!
should be replaced byG8n .
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H̃15J (
n56

SW cG8n
~0!•SW G7

, ~17!

J5(
i51

11 2uV12
i u2

e2
i 2e1

. ~18!

Here e2
i is the energy level for thei th f 2G3 state. Hence

multipleG3 states in thef
2 configuration lead to an enhanc

ment of the two-channel exchange coupling.
Particle-hole asymmetry in the conduction band den

of states~DOS! is also important in determining the groun
state weights of the one-channel (f 0-f 1) and the two-channe
( f 1-f 2) contributions. In our scaling approach, the partic
hole asymmetry is completely neglected, though it is in pr
ciple possible to include. However, the NCA can take in
account this particle-hole asymmetry. The occupied cond
tion electron states~holes! contribute to thef 0 self-energy
~see Sec. III!, while the unoccupied states~particles! contrib-
ute to the f 2 self-energy. Hence increased weight on t
particle side can enhance the effective hybridization stren
betweenf 1 and f 2 configurations. Alternatively, a conduc
tion band DOS with dominant particle weight will lead to th
enhancement of the two-channel exchange coupling.

III. NONCROSSING APPROXIMATION

We now apply the noncrossing approximation~NCA!
~Ref. 5! to study our simple model system. This model
highly simplified as compared with the full model35 which
can have stable one-, two-, and three-channel fixed po
together with an infinite number of unstable fixed poin
However, we can use this simple model Hamiltonian
study the properties of the competingM51,2,3 fixed points
of the full Hamiltonian.

In the NCA, our starting basis is the conduction band p
the atomic Hamiltonian projected to the atomic electr
Fock space with the hybridization between the conduct
band and the atomic orbital treated as a perturbation.
strength of this approach is that the strong on-site Coulo
interaction for atomic electrons is treated accurately at
outset. Pseudoparticle Green’s functions are introduced
each atomic electron occupation state. The price we pa
that we cannot apply conventional Feynmann diagram te
niques to this strongly correlated problem. Thus spe
Green’s function techniques have been developed by m
investigators.5,6,43–46 This approach may be justified as
self-consistent expansion in the inverse of the ground-s
degeneracy, 1/N, which reorders the diagrams by treatin
NV2 asO(1). In theNCA, pseudoparticle self-energy dia
grams include only the leading-order skeleton~noncrossing!
diagrams and they are solved self-consistently. For the o
channel models, this theory includes all the diagrams up
O(1/N) order together with an infinite-order subset
higher-order diagrams. Vertex corrections, of order (1/N2),
are not included. This approach has been shown to b
conserving approximation.44 For the overscreened mult
channel Anderson models, it has been shown14 that the 1/N
approach becomes exact in the limitM ,N→` with fixed
M /N ratio (M is the number of channels!.

When we study the most general three-configurat
y
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ts
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n
e
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e
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is
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te

e-
to

a

n

model, the same symmetry conduction electron can be
volved in the two mixing processes, e.g.,f 0-f 1 and f 1-f 2 for
Ce31 atoms. Generally, a specific vertex correction is
quired to get the right Kondo energy scales in this ca
Recently, such vertex corrections were included in the st
of the finite-U spin-1/2 Anderson model.47 A nice feature of
our model Hamiltonian is that this leading vertex correcti
vanishes, since two different symmetry conduction electr
are involved in the hybridizationsf 0-f 1 (G7) and f 1-f 2

(G8). This feature greatly simplifies the numerical work a
formalism.

From the leading-order skeleton diagrams of Fig. 5,
find the self-consistent NCA integral equations

S0~z!5
G01

p (
a

E deÑ~e! f ~e!G1~z1e!, ~19!

S1~z!5
G01

p E deÑ~e! f ~2e!G0~z2e!

1
G12

p (
n
E deÑ~e! f ~e!G2~z1e!, ~20!

S2~z!5
G12

p (
a

E deÑ~e! f ~2e!G1~z2e!, ~21!

GN~z!5
1

z2eN2SN~z!
, G i j[pN~0!uVi j u2. ~22!

Here Ñ(e) is the conduction band DOS at the Fermi lev
normalized so thatÑ(0)51. HereS0,1,2(z) andG0,1,2(z) are
the self-energy equations and Green’s functions forf 0,
f 1G7, and f 2G3 atomic states, respectively.f (e) is the
Fermi-Dirac distribution function.G i j5pN(0)Vi j

2 is the hy-
bridization strength characterizing the width of the renorm

FIG. 5. Leading skeleton self-energy diagrams from the NC
Since two different symmetry conduction electrons are involved
the hybridizations off 0-f 1 and f 1-f 2, our NCA self-energy dia-
grams become simplified. The diagram~a! is the self-energy for the
f 0 atomic state~wiggly line!. Diagrams~b! are for thef 1G7 atomic
state~dashed line!. Diagram~c! is for the f 2G3 atomic state~dotted
line!. The solid line is the conduction electron propagator: The fi
two are for theG7 and the second two are for theG8 conduction
electrons.
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12 600 55TAE-SUK KIM AND D. L. COX
ized atomic electron spectral function peak. One of
strong points of the NCA approach is that we can ea
study any form of the conduction band DOS, as opposed
e.g., Bethe ansatz or conformal field theory methods.
simplicity here, however, we use structureless Lorentz
Gaussian DOS to get at the low-energy many-body phys
We will solve the above coupled integral equations num
cally and analytically~in the low-temperature limit! to study
the thermodynamics and dynamics of the model Ham
tonian.

Note that pseudoparticle Green’s functions are not
rectly measurable. All the physically measurable quanti
are given by suitable convolutions of the pseudopart
Green’s functions. Now it is convenient to introduce t
spectral function@AN(v)# for each pseudoparticle Green
function and its corresponding ‘‘negative-frequency’’ spe
tral function @aN(v)#. These are defined by

AN~v![2
1

p
Im

1

v2eN2SN~v!
, ~23!

aN~v![e2bvAN~v!. ~24!

The negative-frequency spectra play the role of general
Boltzmann weight factors, accounting for the modification
the discrete atomic states into continua through hybridiza
processes. We will see that theaN(v) functions always ap-
pear in combination with the impurity partition functionZf in
any measurable quantity, and thus there is an arbitrarine
the overall scale of the negative-frequency spectral functi
in its definition. Note that the above NCA integral equatio
do not haveaN(v) in them @a separate set of integral equ
tions must be introduced for theaN ~Refs. 5, 6, and 43–46!#.
In the numerical work, we calculateaN(v)’s self-
consistently.

The impurity partition function for our simple model i
defined by

Zf[E dv@a0~v!12a1~v!12a2~v!#. ~25!

This partition function includes the many-body effects of t
interaction between the impurity and conduction band an
exact in form. We shall evaluateZf approximately with our
solutions to the NCA integral equations.

In our simple model, only two kinds of conduction ele
tron states are present:G7 andG8. Hybridization will mix the
corresponding creation~destruction! operators with operator
that create~destroy! f states of the same symmetry. The fu
measurable spectral functions of thesef states are defined a
a convolution of two neighboring configuration spect
functions, since to add or remove anf electron requires a
change of configuration. It can be shown5,6,43–46 that these
measurablef -state spectral functions are given by

rG7
~v!5

11e2bv

Zf
E dza0~z!A1~z1v!5r01~v!, ~26!

rG8
~v!5

11e2bv

Zf
E dza1~z!A2~z1v!5r12~v!, ~27!
e
y
o,
r
n,
s.
i-

l-

i-
s
e

-

d
f
n

to
s
s

is

l

in this conserving approximation.44 From now on, we will
use the notationr01,r12 in favor of rG7

,rG8
. This approxi-

mation does not include any vertex corrections.
From the leading bubble diagram,6 the static magnetic

susceptibility per Ce31 impurity is

x~T!5
1

3
meff
2 x̃ f~T!, meff

2 5
75

49
mB
2, ~28!

x̃~T!52
4

Zf
E dza1~z,T!ReG1~z,T!. ~29!

HeremB is the Bohr magneton. The reduced dynamic ma
netic susceptibility is

x̃9~v,T!5
12e2bv

Zf
E dza1~z,T!A1~z1v,T!. ~30!

Note thatx is a self-convolution within thef 1 G7 sector of
states. This makes sense since any magnetic excitation
involve a change of state within that sector.

IV. ZERO-TEMPERATURE ANALYSIS

At zero temperature, it is possible to analyze the NC
integral equations analytically14,48 to obtain a qualitative un-
derstanding of our model system. In particular, this may
used to compare with the conformal field theory approa8

which calculated the operator scaling dimensions and crit
behavior of physical properties in an asymptotically ex
way (T→0) for the multichannel Kondo exchange mode
with any size of impurity spin. In Ref. 14, an evaluation
given of the operator scaling dimensions and physical pr
erties for the SU(M )3SU(N) multichannel Anderson,
Coqblin-Schrieffer models using the functional integral fo
mulation. The saddle point conditions for the model yield t
NCA self-consistent integral equations. The simple excha
models become congruent with the SU(M )3SU(N) models
when the impurity spin isSI51/2 (N52).

The main results of the zero-temperature analysis of
NCA integral equations for our model are as follows.

~1! We can find a criterion to assess whether the grou
state will be that of the one-, two-, or three-channel mod

~2! The Kondo energy scale (T0) can be estimated ana
lytically for the caseG015G12. Here T0 in the one- and
two-channel model parameter regimes is shown to vanis
the f 2G3 energy level approaches that of thef 0 configura-
tion.

~3! We obtain the correct scaling dimensions for the ov
compensated cases which agree with the conformal fi
theory results.9

~4! The crossover physics between the parameter regi
for different numbers of channels can be fully characteriz

The self-consistent NCA integral equations can be tra
formed into differential equations for the flat conductio
band in the wideband limit:D@ue1,2u. We analyze the zero
temperature NCA equations in the asymptotic lim
uv2E0u!T0. HereE0 is the threshold~ground-state! energy
below which the pseudoparticle Green’s functions beco
purely real. We introduce the inverse Green’s functions a
transform the self-energy equations at zero temperature
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55 12 601ONE-, TWO-, AND THREE-CHANNEL KONDO EFFECTS . . .
coupled nonlinear differential equations,48 given by

g0~v![21/G0~v!, g1~v![21/G1~v!,
~31!

g2~v![21/G2~v!,

d

dv
g0~v!5212

2G01

p

1

g1~v!
, g0~2D !5D, ~32!

d

dv
g1~v!5212

G01

p

1

g0~v!
2
2G12

p

1

g2~v!
,

~33!

g1~2D !5D1e1 ,

d

dv
g2~v!5212

2G12

p

1

g1~v!
, g2~2D !5D1e2 .

~34!

Note that we have included appropriate boundary conditi
for these equations. Theng0 and g2 can be shown to be
related by

g2
G12

5
g0
G01

1F 1

G01
2

1

G12
G~v2E0!1gc , ~35!

gc5
e22E0

G12
1

E0

G01
. ~36!

In the zero-temperature analysis, it is more convenien
define the ‘‘negative-frequency’’ spectral functions b
ai(v)[e2bvAi(v)/Zf . These spectral functions vanis
above the threshold energyE0 and satisfy

d

dv
@a0~v!ug0~v!u2#52

2G01

p
a1~v!, ~37!

d

dv
@a1~v!ug1~v!u2#52

G01

p
a0~v!2

2G12

p
a2~v!,

~38!

d

dv
@a2~v!ug2~v!u2#52

2G12

p
a1~v!. ~39!

It can be shown from the above relations that

d

dv
@a0~v!g0~v!12a1~v!g1~v!12a2~v!g2~v!#

~40!

5a0~v!12a1~v!12a2~v!.

By integrating this equation fromv52` to v5E0, we find
the additional relation

@a0~v!g0~v!12a1~v!g1~v!12a2~v!g2~v!#v5E0
51.

~41!

This identity will be useful in finding the asymptotic beha
ior of the ‘‘negative-frequency’’ spectral functions. As a co
ollary, we have another identity in thev→E0 limit,

a0~v!ug0~v!u2

G01
5
a2~v!ug2~v!u2

G12
. ~42!
s

to

This relation can be proved by using the boundary condit
at v5E0. We calculate the physical atomic spectral fun
tions and the dynamic magnetic susceptibility defined in S
IV using

r01~v!5E de@a0~e!A1~e1v!1A0~e!a1~e1v!#,

~43!

r12~v!5E de@a1~e!A2~e1v!1A1~e!a2~e1v!#,

~44!

x̃9~v!5E de@a1~e!A1~e1v!2A1~e!a1~e1v!#.

~45!

From the v dependence of the spectral functions ne
v50, we can infer the finite-temperature dependence
transport coefficients as will be discussed below.

We now discuss the phase diagram in the model par
eter space using the zero-temperature analysis. The pa
etergc decides the low-energy and low-temperature beh
iors of our model Hamiltonian.gc measures the relative
magnitude of the antiferromagnetic coupling strengths wh
the charge fluctuation is removed in the model Hamiltoni
Noting thatE0'e11O(V01

2 ,V12
2 ), we find

gc'
2

pN~0!F 1J2 2
1

J1
G , ~46!

which illustrates the correspondence to the scaling analy
If gc is greater than zero, divergent behavior shows up in
f 0 Green’s function, and not in thef 2 Green’s function.
Hence the system will be dominated by thef 0 and f 1 sector,
leading to the one-channel Kondo effect. Whengc is less
than zero, divergent behavior shows up in thef 2 Green’s
function, and not in thef 0 Green’s function. In this case th
f 1 and f 2 sector~two-channel Kondo physics! determines the
low-temperature behavior of the system. Whengc50, f 0

and f 2 become equivalent asymptotically (uv2E0u!T0).
Both Green’s functions develop singular behaviors at
ground-state energy. In this model parameter regime,
three-channel Kondo model fixed point is realized atT→0.

The characteristic Kondo energy scaleT0 is found from
an integration constant which connects the low- and hi
energy states. We can obtain the integration constant for
caseG125G01(5G). We will analyze this case in detail an
indicate subsequently how to extend the zero-tempera
analysis to the case of arbitrary relative hybridizati
strength.

A. Symmetric hybridization limit G125G01„5G…

When we take the symmetric hybridization lim
G125G01(5G), theT50 NCA equations are simplified. In
particular,

gc5
e2
G
, ~47!

g25g01e2 , ~48!
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a0g0
25a2g2

2 . ~49!

The last two relations hold true in the asymptotic lim
uv2E0u!T0. The ground state is determined solely by t
sign of thef 2 configuration energy relative to thef 0 configu-
ration energy. Removing the variablev, we can find the
differential equations between the inverse Green’s functio
Integrating from the values atv52D to those atv, we find
the integration constant

expF p

2G
@g02g11e1#G5Fg1D GFg0D G21/2Fg01e2

D G21

.

~50!

This expression is valid in the wide conduction band lim
D@ue1,2u. We identify three cases for evaluatingT0.

~1! One-channel casegc.0 or e2.0. In this case the
f 0 Green’s function develops a divergent behavior at
threshold energy, while thef 2 Green’s function does not
Thus the ground-state physics is dominated by the se
f 0-f 1, leading to the one-channel Kondo effect. The integ
tion constant and the Kondo temperature are

g1
T0

5Fg0D G1/2F11
g0
e2

GexpFp~g02g1!

2G G , ~51!

T05DFe2D GF G

pDG1/2expFpe1
2G G . ~52!

HereD[G/p. We can find the asymptotic behavior of th
Green’s functions for each atomic state as

g0~v!

D
'Ṽa0, ~53!

g1~v!

T0
'Ṽa1, ~54!

g2~v!5g0~v!1e2 , ~55!

Ṽ53
E02v

T0
, ~56!

a05
2
3 , a15

1
3 . ~57!

Although the scaling dimension is not correct~it leads to
non-Fermi-liquid behavior in this single-channel model!, the
estimated Kondo temperature is correct within order un
andx(0);1/T0 as expected for the one-channel model.
interesting observation is that the Kondo temperature v
ishes ase2 tends to zero, i.e., as we approach the thr
channel parameter regime~see the discussion below!.

A detailed derivation of the asymptotic behavior is n
included in this case since the NCA does not produc
Fermi-liquid fixed point in the one-channel model. We ju
give a brief summary of the zero-temperature analysis wh
is relevant to our study:A2(v) vanishes asṼ

2/3 at the thresh-
old energy, whileA0 (A1) diverges asṼ22/3 (Ṽ21/3) as
v→E0. Thus, the physical spectral functionr12 vanishes as
uvu4/3 at the Fermi energy, whiler01 is finite.

~2! Two-channel casegc,0 or e2,0. In contrast to the
one-channel case, thef 2 spectral function has a divergen
s.

t

e

or
-

y

n-
-

t
a
t
h

behavior at the threshold, leading to the two-channel gro
state. The integration constant and the Kondo tempera
are

g1
T0

5expFp~g22g1!

2G GF11
g2

ue2u
G1/2g2D

, ~58!

T05DF ue2uD G1/2F G

pDGexpFp~e12e2!

2G G . ~59!

Note that the Kondo temperature vanishes withe2→0. We
can find the asymptotic behavior following the standa
zero-temperature analysis as

g0~v!5g2~v!1ue2u, ~60!

g1~v!

T0
5Ṽ1/2@11c1Ṽ

1/21O~Ṽ!#, ~61!

g2~v!

D
5Ṽ1/2@11c2Ṽ

1/21O~Ṽ!#, ~62!

Ṽ54
E02v

T0
, ~63!

c15
1

6 F2S 11
D

ue2u
D2

T0
D G ,c252

1

6 F S 11
D

ue2u
D22

T0
D G .

~64!

The asymptotic behavior above the ground-state energyE0
can be obtained from the expressions belowE0 by analytic
continuation. Furthermore, we find for the ‘‘negativ
frequency’’ spectra that

d

dṼ
a0g0

25
T0D

2
a1 , ~65!

d

dṼ
a1g1

25
T0D

2
@ 1
2 a01a2#, ~66!

d

dṼ
a2g2

25
T0D

2
a1 , ~67!

which implies foruv2E0u!T0 that

a05
D

4ue2u2
Ṽ1/2@12x0Ṽ

1/21O~Ṽ!#, ~68!

a15
1

4T0
Ṽ21/2@12x1Ṽ

1/21O~Ṽ!#, ~69!

a25
1

4D
Ṽ21/2@12x2Ṽ

1/21O~Ṽ!#, ~70!

x05
2

3
~2c11c2!12

D

ue2u
5
1

3 S 11
7D

ue2u
D , ~71!

x15
4

3
~2c11c2!5

2

3 S 11
D

ue2u
D , ~72!
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x25
4

3
~c112c2!5

2

3

T0
D
. ~73!

Note thatx0,1,2.0. Now we can find the asymptotic behavi
of the pseudoparticle spectral functions as

A0~v!5
D

pue2u2
u~v2E0!@ uṼu1/21O~ uṼu3/2!#, ~74!

A1~v!5
1

pT0
u~v2E0!@ uṼu21/21O~ uṼu1/2!#, ~75!

A2~v!5
1

pD
u~v2E0!@ uṼu21/21O~ uṼu1/2!#. ~76!

As expected,A0(v) vanishes at the threshold energy a
does not develop any divergent behavior. On the other h
A1(v) andA2(v) diverge at the threshold energy. Final
the physical spectral functions in the asymptotic lim
v→0 are given by

r01~v.0!5
D

32ue2u2
F ṽ2

8x0
3p

ṽ3/21••• G , ~77!

r01~v,0!5
D

32ue2u2
F uṽu2

4x1
3p

uṽu3/21••• G , ~78!

r12~v.0!5
1

16DF12
2x1
p

Aṽ1••• G , ~79!

r12~v,0!5
1

16DF12
2x2
p

Auṽu1••• G , ~80!

x9~v!5
sign~v!

16D F12
2x1
p

Auṽu1••• G , ~81!

ṽ54
v

T0
. ~82!

r01(v) vanishes atv50 and increases linearly inuvu away
from the Fermi level. This spectral depletion at the Fer
level is also confirmed in the finite-temperature NCA calc
lation. r12 is peaked right at the Fermi level and has mo
spectral weight below than above the Fermi level sin
x2,x1 for T0,D. The finite-temperature NCA results als
confirm this observation. The spectral functions beco
nonanalytic at the Fermi level at zero temperature. Note
the dynamic magnetic susceptibility is step function like
v50, which is none other than marginal Fermi liqu
behavior.14

From the asymptotic form of the zero-temperature sp
tral functions, we can infer the finite-temperature depende
of the resistivity using the Kubo formula

1

r~T!
5
ne2

m E dvt~v!S 2
] f

]v D . ~83!

For v,T!T0, the relaxation rate for the conduction electr
is approximately
d,

i
-

e

e
at
t

-
ce

1

t~v!
}r12~v,T!. ~84!

Near zero temperature, we may replacer12(v,T) by our
zero-temperature one and find theAT temperature depen
dence. A complication arises here due to angular averag
Since the angular harmonic conjugate tor12 is positive defi-
nite, still the above simple argument applies; that is, the
isotropy will not affect the conclusion of the low
temperature NCA analysis. Hence, we expect, forM52,3,
that the calculated scaling dimensions will agree with tho
obtained from conformal theory. In the one-channel case,
important angular harmonic~which multiplies r01) is not
positive definite and we cannot straightforwardly carry ov
the low-T NCA analysis to an understanding of the low
temperature resistivity as the angular average can modify
sign of the low-T coefficients. However, since theT→0
physics must be Fermi-liquid-like forM51, which the NCA
cannot correctly produce, this difficulty is rendered prac
cally academic.

We summarize the low-temperature properties as follo
~i! The atomic spectral functionr12 is peaked right at the

Fermi level, independent of the occupancy, whiler01 van-
ishes atv50 and is depleted near the Fermi level.

~ii ! The dynamic magnetic susceptibility is step-functio
like at zero frequency.

~iii ! The resistivity obeys the scaling behavi
r(T)5r(0)@12aAT/T0# near zero temperature.

All these results are consistent with numerical NCA c
culations at finite temperatures.

~3! Three-channel casegc50 or e250. In this case, the
f 0 and f 2 configurations produce asymptotically equivale
spectra that give rise to a three-channel Kondo model gro
state. The integration constant and the Kondo tempera
are

g1
T0

5Fg0D G3/2expF p

2G
~g02g1!G , ~85!

T0'DF G

pDG3/2expFpe1
2G G . ~86!

See Appendix B for a detailed derivation of the asympto
behavior. This model case is not different from the analy
of the general overcompensated models. We simply list
asymptotic behavior here as

g0~v!5g2~v!, ~87!

g1~v!

T0
5Ṽ3/5@11c1Ṽ

2/51d1Ṽ
3/51•••#, ~88!

g2~v!

D
5Ṽ2/5@11c2Ṽ

2/51d2Ṽ
3/51•••#, ~89!

Ṽ55
E02v

T0
, ~90!

c15
2

7
, d152

T0
8D

, c252
1

7
, d25

T0
4D

. ~91!
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The negative-frequency spectral functions are given by

a1~v!5
1

5T0
Ṽ23/5@12x1Ṽ

2/52y1Ṽ
3/51•••#u~Ṽ!,

~92!

a2~v!5
1

5D
Ṽ22/5@12x2Ṽ

2/52y2Ṽ
3/51•••#u~Ṽ!,

~93!

x152c15
4

7
, y150, x250, y252d25

T0
2D

, ~94!

and the pseudoparticle spectral functions are

A1~v!5
sin~3p/5!

pT0
uṼu23/5@12x1cos~2p/5!uṼu2/51•••#

3u~2Ṽ!, ~95!

A2~v!5
sin~2p/5!

pD
uṼu22/5@12y2cos~2p/5!uṼu3/51•••#

3u~2Ṽ!. ~96!

From the pseudoparticle spectral functions, we can find
physical spectral functions in the asymptotic limit
v→E0, and they are given by

r01~v!5r12~2v!, ~97!

r12~v.0!5
sin~2p/5!

25pD
@B~2/5,3/5!2x1B~3/5,4/5!uṽu2/5

2y2cos~2p/5!B~2/5,6/5!uṽu3/51•••],
~98!

r12~v,0!5
sin~3p/5!

25pD
@B~2/5,3/5!

2x1cos~2p/5!B~3/5,4/5!uṽu2/5

2y2B~2/5,6/5!uṽu3/51•••], ~99!

x̃9~v!5sign~v!
sin~3p/5!

25pT0
$B~2/5,2/5!uṽu21/5

2x1@11cos~2p/5!#B~2/5,4/5!uṽu1/51•••%,
~100!

ṽ55
v

T0
. ~101!

HereB(p,q) is the b function. The spectral functions be
come nonanalytic at the Fermi level at zero temperature.
important observation is that the power laws agree with th
obtained from conformal field theory treatments for the ov
compensated three-channelSI51/2 models. Sincer01 and
r12 are equivalent in the asymptotic limit, the angular fun
tions are factored out in the conduction electron scatte
time. Thus we can read off the power law of the resistivi
a52/5.
e

ne
e
-

-
g
,

The low-temperature properties are summarized as
lows.

~i! The atomic spectral function is peaked right at t
Fermi level, independent of the occupancy.

~ii ! The dynamic magnetic susceptibility diverges
v21/5 at zero frequency.

~iii ! The resistivity obeys the scaling behavi
r(T)5r(0)@12a(T/T0)

0.4# near zero temperature, which
consistent with numerical NCA calculations at finiteT.

B. Crossover physics

We expect a smooth crossover from the high-tempera
regime to the low-temperature regime where the calcula
will settle to the fixed point for one ofM51,2,3 channels.
We can estimate the crossover temperature in the one-
two-channel model parameter regime using the ze
temperature analysis. This follows from the fact that in t
asymptotic analysis we haveg0!e2 for the one-channel re
gime andg2!ue2u for the two-channel regime~see the inte-
gration constant!. In the one-channel case, the integrati
constant can be rewritten as

g1
T0

~3! 5F11
e2
g0

GFg0D G3/2expFp~g02g1!

2G G . ~102!

We can see that the relative magnitude ofg0 and e2 deter-
mines the fixed-point behavior. The crossover energy sc
between high temperatures~three channels! and low tem-
peratures~one channel! can be defined by the relatio
g05e2. The crossover temperature is found in the on
channel case to be

Tx
~1!5

T0
3 Fe2D G3/2. ~103!

In the two-channel case, using similar reasoning, we find
crossover temperature to be

Tx
~2!5

T0
4 F ue2uD G2. ~104!

Substituting the Kondo energy scale into the above exp
sions, we can see that the crossover energy scales are
by

Tx
~1!5

1

3 Fe2D G5/2DF G

pDG3/2expFpe1
2G G , ~105!

Tx
~2!5

1

4 F ue2uD G5/2DF G

pDG3/2expFp~e12e2!

2G G . ~106!

Note that each crossover temperature vanishes asue2u5/2 with
e2→0. We intentionally write the crossover temperature
the prefactor times the corresponding three-channel Ko
temperature. If this prefactor is greater than 1, the sys
will not display three-channel behavior with decreasing te
peratures but will flow directly to the one- or two-chann
fixed point. When this prefactor is less than 1, the syst
will display three-channel behavior before finally flowing
the lower-temperature fixed point.
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TABLE I. Model parameters for the Ce impurity. This set of model parameters covers the single, t
and two-channel Kondo regimes.G5G015G12 is the hybridization strength for bothf

0-f 1 and f 1-f 2 mixing,
respectively. We scan the channel numberM51,2,3 according to whethere2.0,,0,50. The Kondo scale
T0 is estimated as described in the text.

Set M G/D e1 /D e2 /D kBT0 /D

1 2 0.2 20.4 20.1 1.908131023

2 2 0.2 20.37 20.07 1.596431023

3 2 0.2 20.35 20.05 1.349231023

4 3 0.2 20.3 0.0 1.522431023

5 3 0.2 20.4 0.0 6.941331023

6 1 0.2 20.3 0.05 1.195731023

7 1 0.2 20.3 0.07 1.674031023

8 1 0.2 20.3 0.10 2.391431023
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C. General asymmetric hybridization case

Though the Kondo energy scale cannot be estimated
lytically for the general caseG01ÞG12, the asymptotic be-
havior (v→E0) can be still be sorted out. Since the phys
is the same as in the above analysis, we shall just write
asymptotic properties of Green’s functions for the three
evant cases.

~1! gc.0:

g0~v!'
G01

p F3E02v

T0
Ga0

, ~107!

g1~v!'T0F3E02v

T0
Ga1

, ~108!

g2~v!5
G12

G01
g0~v!1FG12

G01
21G~v2E0!1gcG12,

~109!

a05
2
3 , a15

1
3 . ~110!

~2! gc,0:

g0~v!5
G01

G12
g2~v!1FG01

G12
21G~v2E0!1ugcuG01,

~111!

g1~v!'T0F4E02v

T0
Ga1

, ~112!

g2~v!'
G12

p F4E02v

T0
Ga2

, ~113!

a15
1
2 , a25

1
2 . ~114!

~3! gc50: In this case,f 0 and f 2 are equivalent asymp
totically asv→E0,

g2~v!5
G12

G01
g0~v!1FG12

G01
21G~v2E0!, ~115!

d

dv
g0~v!5212

2G01

p

1

g1~v!
, g0~2D !5D,

~116!
a-

e
l-

d

dv
g1~v!5212

G01

p F 1

g0~v!

1
2

g0~v!1~12G01/G12!~v2E0!
G ,

g1~2D !5D1e1 .
~117!

Then the asymptotic form follows:

g0~v!'
G01

p F5E02v

T0
Ga0

, ~118!

g1~v!'T0F5E02v

T0
Ga1

, ~119!

a05
2
5 , a15

3
5 . ~120!

Though the Kondo energy scale cannot be evaluated ana
cally, it can be estimated from the numerical NCA calcu
tion of, e.g., the magnetic susceptibility and by then perfor
ing a scaling analysis over a set of parameter values.

V. NUMERICAL ANALYSIS

In this section we present results from our full numeric
study at finite temperatures. We studied the model for
parameters listed in Table I. This covers the one-, two-, a
three-channel Kondo regimes. For simplicity, we have c
sen the same hybridization strength in thef 0-f 1 and f 1-f 2

sectors. The relevant physics associated with theM51,2,3
channel fixed points can then be studied by varying the r
tive position of thef 0 and f 2 configuration energies. This
simple choice of the hybridization further makes it possib
to find the characteristic Kondo energy scales analytically
we described in the previous section in detail.

Our main results are the following.
~1! The magnetic susceptibility shows a scaling behav

and agrees well with exact Bethe ansatz results in the t
and three-channel parameter regimes.

~2! The NCA results for the residual entropy in the tw
and three-channel models agree with the exact ones to w
about 5%, consistent with the expected order-(1/N2) correc-
tions. The Kondo anomaly peak in the specific heat a
agrees with the exact one in its magnitude.
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~3! The thermopower is a diagnostic to display the grou
states for different numbers of relevant channels for
model—this data has already been presented in Ref. 16
will be only briefly discussed here.

~4! The dynamic magnetic susceptibility varies signi
cantly between the compensated one-channel limit of
model and the overcompensated~two- and three-channel!
limit of our model.

~5! Due to the simplifying features of our model, the r
sistivity shows a bendover at low temperatures in the o
channel parameter regime. The resistivity in the two- a
three-channel parameter regimes shows temperature de
dences nearT50 K in agreement with conformal field
theory results.

~6! We have confirmed in detail that the NCA is a val
numerical self-consistent nonperturbative method in study
the overcompensated multichannelSI51/2 Anderson mode
at T.0.

A. Entropy and specific heat

The entropy and specific heat due to the magnetic im
rity can be calculated from the free energy obtained in
NCA through numerical differentiation. These thermod
namic quantities include very important information abo
the nature of the ground state. We can estimate the cha
teristic energy scales in the Kondo models from the temp
ture variation of the entropy. In general, the entropy w
increase with increasing temperatures, until the frozen im
rity degrees of freedom are released. Our model Hamilton
is expected to have entropyS5kBln5 at high enough tem
peratures, an intermediate regime with entropykBln2 once
the f 0 and f 2 configurations are frozen out, and a residu
entropy for theM52,3 limits of the model.

The entropy and the specific heat are displayed in Fig
and 7 for the model parameter sets studied here. In the
channel case, the Kondo anomaly peak is well separ
from the Schottky anomaly peak coming from the interco
figuration excitations. The Kondo anomaly peak has a m
nitude comparing well with the exact results13 for the Kondo
exchange model. No residual entropy remains withT→0. In
the two-channel case, the Kondo anomaly peak is not cle
separated from the charge fluctuation peak for most of
model parameters. The residual entropy agrees within
with the exact one13 and the discrepancy can be explained
the O(1/N2) and higher-order corrections. To see this,
note that the entropy for spin-1/2 conduction electrons ha
explicit dependence on the impurity spin degeneracy8,9

Strictly speaking, the NCA results are valid forN-fold im-
purity spin andM -fold channel degeneracies asN→` with
N/M fixed. Hence it is natural to expectO(1/N2) corrections
to the entropy through the neglected vertex corrections
the three-channel case, the Kondo anomaly peak is red
further due to the increased residual entropy and is alm
merged with the charge fluctuation contribution for mod
set 4. For model set 5, we can see a weak indication
separation. The residual entropy is increased compare
that of the two-channel case and its magnitude is aga
little bit smaller than the exact one13 due to the neglect of the
higher-order contribution in the 1/N expansion.
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B. Static magnetic susceptibility

The static magnetic susceptibility is a direct indicator
the nature of the ground state for the magnetic Kondo mo
As is well documented, the magnetic susceptibility diverg
logarithmically, x(T)} ln(T0 /T), for the two-channel
SI51/2 magnetic Kondo model asT→0, and diverges alge
braically for the three, viz., or theM.2, SI51/2 multichan-
nel Kondo model „x(T)}@T0 /T#122Dn; Dn52/(n12),
wheren is the channel number (>3) ….8,9,13The one-channe
Kondo model has a constant magnetic susceptibility at z
temperature @x(0);1/T0#. From the NCA, using the
leading-order bubble diagram,6 the magnetic susceptibility
for one Ce31 impurity is given by

x~T!5 1
3meff

2 x̃~T!, meff
2 5 75

49mB
2, ~121!

x̃~T!52
4

Zf
E dza1~z,T!ReG1~z,T!. ~122!

HeremB is the Bohr magneton.
Our numerical results forx̃(T) clearly show the right ten-

dency for each possible low-T fixed point. The magnetic
susceptibility in the one-channel regime, for model para
eter sets 6, 7, and 8, shows approximate scaling behavior
clearly has negative curvature at low temperatures, indi

FIG. 6. Channel dependence of the entropy. The NCA calcu
tion of entropy clearly shows the right magnitude of residual e
tropy depending on the relevant channel numbers. Solid lines
Bethe ansatz curves. Note that the temperature scale is linea
M51. Referring to Table I:~a! M51 case,h for model set 8;
s for model set 7;n for model set 6.~b! M52 case,h for model
set 1;s for model set 2;n for model set 3.~c! M53 case,h for
model set 4;s for model set 5.
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ing an approach to the Fermi-liquid ground state. The de
tion of the scaling behavior at low temperatures seems
come from the pathological behavior of the NCA in th
one-channel case.48

The x̃(T) curves in the two-channel regime, for the mod
parameter sets 1, 2, and 3, also show scaling behavior
diverge logarithmically at low temperatures~Fig. 8!. Our re-
sults are compared with those of Ref. 13. The fitting to
exact Bethe ansatz numerical results13 is quite good. We be-
lieve that the high-temperature deviation comes from
M53 to M52 crossover physics described in the previo
section. Note that Bethe ansatz results are for the pure
channels-d exchange model. To get the fitting to the Bet
ansatz, we slide the temperature axis to findTK50.3T0
(TK from the Bethe ansatz!. HereT0 is the Kondo energy
scale estimated from the zero-temperature analysis.

At high temperatures we cannot distinguish between
different possible fixed points so readily as in the lo
temperature case. Note that distinct physics of
M51,2,3 channel fixed points shows up at low temperatu
below the crossover temperature which was estimated in
previous section. This observation is supported by res
from the three-channel model parameter sets. The h
temperature deviation from scaling is very weak in this c
which will not show the crossover physics. The magne

FIG. 7. Channel dependence of the specific heat. Solid lines
Bethe ansatz results. The comparison to the Bethe ansatz is co
cated by the background derived from the interconfiguration pe
In theM51 cases, the Kondo temperatures are adjusted such
the NCA numerical results fall on the exact Bethe ansatz o
Thoughout all the figures presented in this paper the estim
Kondo temperatures in the one-channel models are used exce
the magnetic susceptibility curves~see Fig. 8!. Symbols have the
same meaning as in Fig. 6.
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susceptibility in the three-channel model also shows a s
ing behavior. Since the three-channel case lies exactly on
boundary between the one-channel and two-channel regim
we probed the three-channel case by varying the positio
the baref 1 configuration energy while the two excited co
figurations f 0, f 2 energies are kept equal. The fitting of th
susceptibility to the exact results is quite good. The Kon
energy scaleT0 estimated from the zero-temperature analy
agrees with that in the exact Bethe ansatz (TK of Ref. 13!.

C. Spectral functions

The interconfiguration spectral functions show a distin
behavior for theM51,2,3 fixed points in the energy regio
close to the Fermi level (v50) depending on the mode
parameters. In our simple model, we have two atomic sp
tral functions for localf -creation operators of symmetryG7
and G8, rG7

(v)5r01(v) and rG8
(v)5r12(v), which are

given by

r01~v!5
11e2bv

Zf
E dze2bzA0~z!A1~z1v!, ~123!

r12~v!5
11e2bv

Zf
E dze2bzA1~z!A2~z1v!. ~124!

In the one-channel model parameter regime~see Fig. 9!,
r01(v) develops the Kondo resonance peak just above
Fermi level andr12(v) is depleted nearv50 and tends to
zero withT→0 atv50. This confirms our zero-temperatur
analysis in Sec. IV. For comparison, note that the Kon
resonance amplitude is large compared to the two-chann
three-channel case.

re
pli-
k.
at
e.
ed
for

FIG. 8. The scaling behavior of the static magnetic suscepti
ity. The static magnetic susceptibility obeys a scaling behavior
each parameter regime, leading to theM51,2,3 fixed points. The
agreement with the Bethe ansatz results~solid lines! is good for the
overscreened cases (M52,3).T05TK/0.3 forM52, TK from Ref.
13.M51 case,L for model set 8;! for model set 7; * for model
set 6.M52 case,h for model set 1;s for model set 2;n for
model set 3.M53 case,1 for model set 4;3 for model set 5. The
ground-state phase diagram for the model in exchange coup
constant parameter space is drawn in the inset, wh
gi5N(0)Ji , N(0) being the conduction band density of states
the Fermi energy. The solid diagonal line is forM53.
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12 608 55TAE-SUK KIM AND D. L. COX
In the two-channel regime~see Fig. 10!, r12(v) is peaked
below v50 and its peak position tends tov50 with de-
creasing temperature. Note that the Kondo resonance am
tude is reduced compared to the one-channel Kondo r
nance amplitude. On the other hand,r01(v) is depleted near
v50.

FIG. 9. Atomic spectral functions in the one-channel regim
r01 is the interconfiguration spectral function which is obtain
from the convolution betweenf 0 and f 1G7 states.r12 is the inter-
configuration spectral function which is obtained from the convo
tion betweenf 1G7 and f

2G3 states. The one-channel Kondo effe
leads to the Kondo resonance development inr01 just above the
Fermi level and the spectral depletion inr12 right atv50. Spectral
functions are displayed for model set 8. In ascending order of
low-energy curves, the temperatures of the calculations
T/D53.67831022, 1.07731022, 3.15531023, 9.23931024,
2.70631024, 7.92431025.

FIG. 10. Atomic spectral functions in the two-channel regim
The two-channel Kondo effect leads to the Kondo resonance de
opment inr12 at the Fermi level (T50) and the spectral depletio
in r01 right atv50. Spectral functions are displayed for model s
1. The temperature set is the same as in Fig. 9.
li-
o-

In the three-channel parameter regime~see Fig. 11!, the
two spectral functions are equivalent asymptotically wh
thev→2v transformation is accounted for. The peak po
tion of the resonance tends to zero with decreasing temp
ture.

As mentioned above, the positions of the Kondo re
nance peak~see Fig. 12! show a distinct behavior for differ-
entT→0 fixed points. The peak position saturates to a c
stant value in the one-channel case while it vanishes in
two- and three-channel cases with decreasing temperatur
addition, the detailed functional form of the Kondo res
nance peak varies with the fixed-point channel number
the overscreened cases (M52,3), the peak structure be
comes nonanalytic with decreasing temperature as show
the zero-temperature analysis of the NCA integral equatio
A finite temperature washes out this nonanalytic behavio
the Kondo resonance peak. In the one-channel case, e
results show that the correct atomic spectral functions m
remain analytic down to zero temperature.

Since we are not considering all the atomic energy lev
the full atomic spectral functions~measured from the photo
emission experiments! cannot be defined in our simpl
model. Although the high-energy physics of real syste
cannot be properly treated within our simple model Ham
tonian, the low-energy or low-temperature properties can
studied using the restricted spectral functions. Note that lo
temperature and low-energy physics is governed by
Kondo resonance peak in the spectra. Though a spe
depletion is found in the interconfiguration spectral fun
tions, we do not expect that the photoemission spectrosc
can observe this feature unless it can distinguish the ato
electron symmetry. Also, it is not clear that this feature
realistic for the single-channel model. Measurable atom
spectral functions are shown in Fig. 13 for parameters yie
ing theM51,2,3 fixed points.

D. Dynamic magnetic susceptibility

The dynamic magnetic susceptibility measures the m
netic excitation structure. Since the properties of the m

.
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.
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FIG. 11. Atomic spectral functions in the three-channel regim
For this parameter regime~model set 4!, two spectral functions are
equivalent in the asymptotic limit after a particle-hole transform
tion. The temperature set is the same as in Fig. 9.
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netic excitations are related to the interaction of the lo
magnetic moment with the conduction electrons, the chan
number at the fixed point will determine the nature of t
magnetic excitations. The dynamic magnetic susceptibilit
expected to be strongly dependent upon the value ofM . We
have already seen this channel number dependence in
static magnetic susceptibility.

The dynamic magnetic susceptibility is defined as
spin-spin correlation function and can be measured dire
from neutron scattering experiments. From the lead
bubble diagram, the reduced dynamic magnetic susceptib
is estimated as~neglecting conduction electron only an
mixed conduction-f contributions which are expected to b
down by at least lnD/D)

x̃9~v,T!5
12e2bv

Zf
E dza1~z,T!A1~z1v,T!. ~125!

Our reduced static magnetic susceptibility is related to
above magnetic response function by the Kramer-Kronig
lation

x̃~T!52E dv

p

x̃9~v,T!

v
. ~126!

FIG. 12. Temperature dependence of the Kondo resonance p
The Kondo resonance peak position (vK) shows a different tem-
perature dependence for different numbers of channels.~a! One-
channel case (r01): vK decreases and saturates to a constant w
decreasing temperature.~b! Two-channel case (r12) and ~c! three-
channel case (r12): vK decreases and tends to zero with decreas
temperature. Symbols have the same meaning as in Fig. 6 (M53,
solid square for model set 4; solid circle for model set 5!. Note the
different temperature ranges betweenM51 case ~top! and
M52,3 cases~bottom!.
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The neutron scattering experiments measure the struc
functionS(v,T)}@b(v)11#x9(v,T).

The dynamic susceptibility can be quantitatively chara
terized by its ‘‘linewidth’’ dependence on temperature in a
dition to its overall functional shape. We may define t
linewidth G(T) by the peak position ofx9(v,T), which can
be measured directly in inelastic neutron scattering exp
ments.

The variation ofx̃9(v,T) andG(T) with temperature is
displayed in Figs. 14 and 15. For the dynamic magnetic s
ceptibility, we displayx̃9(v,T) as a function ofv/T0 and
the reduced formx̃9(v,T)/x̃9„G(T),T… ~inset! as a function
of v/G(T) in Fig. 14. A distinct behavior for the differen
fixed points is clearly evidenced: In the one-channel regim
the x̃9(v,T) curves converge with decreasing temperatur
This is clearly supported by the saturation ofG(T) at low
temperatures. In the two- and three-channel regimes,G(T)
vanishes algebraically~close to linear! and the dynamic mag
netic susceptibility does not converge in contrast to the o
channel case, but instead develops nonanalytic behavio
v50. The reduced dynamic magnetic susceptibilities~de-
fined above; see inset in Fig. 14! show an approximate sca
ing behavior between two extrema.

The physics of the magnetic linewidth is quite importa
in understanding the nature of the magnetic spin screen
Below T0, changing the number of channels gives very d
ferent behavior. The impurity spin-flipping time (t f) due to
the hybridization will be given by the inverse of the line
width, t f;1/G(T). On the other hand, thermally excite

ak.

h

g

FIG. 13. Total atomic spectral function. The high-energy stru
ture ~insets! essentially does not depend on the temperature. On
other hand, the temperature and relevant channel number de
dence show up in the Kondo resonance structure.~a! One-channel
case~model set 8!. ~b! Two-channel case~model set 1!. ~c! Three-
channel case~model set 4!. The temperature set is the same as
Fig. 9.
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12 610 55TAE-SUK KIM AND D. L. COX
conduction electrons close to the impurity site will pa
through it in a timetc of the order of 1/T from the uncer-
tainty principle. At high temperatures above the Kondo te
perature,t f@tc . Thus the impurity spin rarely flips while
conduction electrons pass by the impurity site. Hence Cu
law behavior is expected in the magnetic susceptibility.
low temperatures, in the one-channel regime,t f!tc , and
the impurity spin flips frequently, so that the average s
moment of the impurity is zero, leading to a Pauli behav
in the susceptibility. In the two- and three-channel regim
t f'tc and spin screening is not complete, leading to
non-Fermi-liquid ground state. This interpretation agre
with the diverging low-temperature behavior of the magne
susceptibility.

E. Transport coefficients

Using the Kubo formula6 in a dilute impurity limit, where
the interimpurity correlation can be neglected, we have c
culated the resistivity and thermopower. The anisotro
conduction electron scattering rate is

t21~ k̂,v!5
8pnimp
N~0!

@G01Q7
~5/2!~ k̂!r01~v!

1G12Q8
~5/2!~ k̂!r12~v!#, ~127!

FIG. 14. Variation ofx9(v) with temperature. The dynami
magnetic susceptibilityx9(v,T) is displayed as a function o
v/T0. The reduced onesx9(v,T)/x9„G(T),T… are displayed in the
insets as a function ofv/G(T) and show a rough scaling behavio
between two exrema.G(T) is the peak position of the dynami
magnetic susceptibility. One-channel case, model set 8; t
channel case, model set 1; three-channel case, model set 4
temperature variations are the same as in Fig. 9 except for an a
tional low temperatureT52.32131025.
-

e-
t

n
r
,
e
s
c

l-
c

Q7
~5/2!~ k̂!5

1

16p
@62F~ k̂!#,Q8

~5/2!~ k̂!5
1

16p
@61F~ k̂!#,

~128!

F~ k̂!515cos4u210cos2u1115sin4ucos22w. ~129!

Herenimp is the impurity concentration.
The transport coefficients are calculated using the Ku

formula under the assumption of dominant scattering in
l53 channel. Our results are defined in terms of transp
integralsI n given by the equations

I n~T!5E dvvnt~v,T!F2
] f ~v!

]v G , ~130!

t~v,T![E dk̂

4p
t~ k̂,v,T!. ~131!

Here f (v) is the Fermi function. In particular, the resistivit
is calculated using the equation

1

r~T!
5
ne2

m
I 0~T!. ~132!

o-
he
di-

FIG. 15. Peak position@G(T)# of the dynamic magnetic suscep
tibility. The temperature variation ofG(T) depends on the relevan
channel numbers. In the one-channel case~a!, G(T) approaches a
constant value asT→0. In the two- or three-channel cases~b! and
~c!, G(T→0)→0 which is none other than marginal Fermi-liqu
behavior. Symbols have the same meaning as in Fig. 6. Note
different temperature ranges between theM51 case ~top! and
M52,3 cases~bottom!.
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Note that the conduction electron scattering rate conta
the hybridization since interconfiguration spectral functio
are involved. The crystal harmonics are normalized such
the integration of*dk̂Q7

(5/2)( k̂)51 and *dk̂Q8
(5/2)( k̂)52.

Note that the crystal harmonicQ7
(5/2)( k̂) vanishes at ‘‘hot

spot’’ angles of (u,w)5(0,2), (p,2), (p/2,0),
(p/2,p/2), (p/2,p), (p/2,3p/2), whileQ8

(5/2)( k̂) is positive
definite. This feature, combined with the near-Fermi-le
‘‘dip’’ in the interconfiguration spectral function forf 1-f 2

excitations@rG8
(v)#, leads to a reduction in the resistivity a

low temperatures in the one-channel parameter reg
within our simplified model. We believe that this feature w
go away in more realistic models. For example, another c
tribution to theG8 atomic spectral function comes from th
convolution betweenf 0 and f 1J55/2G8. This spectral func-
tion will not be depleted at the Fermi level, but instead w
build up its spectral weight due to the weak Kondo re
nance structure just abovev50.

This reduction of the resistivity does not occur in the tw
and three-channel regimes. Instead, a Kondo-resona
related peak develops near the Fermi energy, whose pos
with respect to the Fermi level depends on whether
model is in the two- or three-channel regime. Details
displayed in Fig. 16. In the two-channel and three-chan
model parameter regimes, the resistivity initially increas

FIG. 16. Angle-averaged scattering rate.~a! One-channel case
~model set 8!: electron scattering is dominant. The cusp feature
the M51 case right at the Fermi level derives from the spec

depletion ofr12 and zeros of the crystal harmonicQ7
(5/2)( k̂) which

is defined in the text.~b! Two-channel case~model set 1!: hole
scattering is dominant.~c! Three-channel case~model set 4!: weak
hole scattering dominance over the electron scattering comes
the degeneracy imbalance between thef 0 singlet andf 2G3 doublet.
The temperature set is the same as in Fig. 9.
s
s
at

l

e

n-

l
-

-
e-
on
e
e
el
s

logarithmically throughT0 and then saturates with a powe
law to a constant with further decreasing temperatures.
resistivity near zero temperature obeys a scaling behavio
shown in Fig. 17, confirming our zero-temperature analy
with the scaling dimensionsD251/2, D352/5. These results
agree with the conformal field theory analysis,8,9 viz.,
r(T)5r(0)@12a@T/T0#

Dn# for T<0.06T0, Dn52/(n12)
for the overcompensated multichannel Kondo models~note
that the power law exponent is independent of the impu
spin size!. We note that the region where strictTDn behavior
holds is below about 0.05T0. A fit to the resistivity of
CexLa12xCu2.2Si2 ~see Fig. 1! is good until low tempera-
tures where the data break below that given by theory. T
suggests a possible crossover to a new fixed point wh
could be set by intersite interactions~producing a spin mo-
lecular field! or a weak noncubic symmetry for the Ce31

ions.
The thermopowerQ(T) is a sensitive measure of th

asymmetry in the scattering rate and the density of sta
~DOS! near the Fermi level. Since we are assuming
particle-hole-symmetric Lorentzian or Gaussian DOS for
conduction band, the sign of the thermopower is determi
by the asymmetry in the scattering rate. Our expression
the thermopowerQ(T) is

Q~T!52
1

eT

I 1~T!

I 0~T!
. ~133!

Our full results for the thermopower are displayed and d
cussed in Ref. 16 and will not be repeated here. Instead
just briefly summarize the results below. There we show
that at low temperatures the thermopower is positive in

r
l

m

FIG. 17. Low-temperature dependence of resistivity. Corr
power laws are found asymptotically for the finite temperatu
NCA calculation in the two- and three-channel cases. A power
of T1/2(T2/5) is expected forM52(M53). Symbols have the sam
meaning as in Fig. 6. The upper bound on the range for
T1/2(T2/5) power law isTmax'0.06T0(0.18T0) for M52(3).
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12 612 55TAE-SUK KIM AND D. L. COX
one-channel regime, negative in the two-channel regime,
weakly negative in the three-channel regime. The reaso
that a strong hybridization betweenf 0 and f 1 affects the
dominant scattering of electrons from the enhanced spe
weight above the Fermi level. Since particle scattering do
nates, holes are the main carriers in the one-channel c
and a positive thermopower arises. On the other han
negative thermopower arises when the hybridization is str
gest in thef 1-f 2 sector. In this case, more spectral weig
arises below the Fermi energy, so that holes are scatt
more strongly and electrons carry thermal current, leadin
a negative thermopower. In the three-channel regime, en
structures are symmetric. However, the double degenerac
the f 2 configuration leads to weakly dominant hole scatt
ing, resulting in a negative thermopower at low tempe
tures. The overall magnitude of the thermopower is sligh
reduced when anisotropy at the cubic sites is included.

VI. DISCUSSION AND CONCLUSION

We have introduced and studied a realistic model Ham
tonian for Ce31 impurities with three configurations (f 0,
f 1, f 2), which are embedded in cubic normal metals. T
simple model shows competition between the Fermi-liq
fixed point of the one-channelS51/2 Kondo model and the
non-Fermi-liquid fixed point of the two-channelS51/2
Kondo model.

We studied this simplified Anderson model using t
NCA. This simple model covers one-, two-, and thre
channel Kondo physics depending on the model parame
All the calculated physical quantities show the signatures
the Kondo effect appropriate to the different numbers of r
evant channels. The static magnetic susceptibility agr
with the exact Bethe ansatz and conformal field theory
sults for the two- and three-channel model parameter
gimes. Entropy and specific heat calculations for the tw
and three-channel regimes are also in agreement with
Bethe ansatz results, with a discrepancy of the order of a
percent in the estimated residual entropy attributable
O(1/N2) corrections to the theory~vertex corrections!.

Our new results are for transport coefficients and dyna
cal spectra. Conformal theory is only able to predict the lo
temperature and low-frequency behavior of the dynam
spectra and transport coefficients and not the quantita
crossover from high to low temperatures. In the one-chan
regime, the model yields a nonmonotonic resistivity whi
we believe to be spurious. In the two- and three-chan
regimes, the resistivity increases logarithmically and sa
rates as 12(T/T0)

a(M ) with decreasing temperatures~where
M52,3 is the channel number!. The low-temperature behav
ior power law saturation is in agreement with the conform
field theory results.

Since the thermopower is very sensitive to the density
states structure and the scattering mechanism near the F
level, its sign and its magnitude give a measure of the lo
temperature fixed point. In the one-channel regime, electr
are strongly scattered due to the Kondo resonance abov
Fermi level and the thermopower remains positive defin
and large. In the two-channel case, holes are scattered of
impurity sites stronger than electrons. Thus electrons are
main carriers, leading to a negative thermopower. In
nd
is
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three-channel regime, although hole scattering is redu
compared to the two-channel case, electrons are still
main carriers due to the degeneracy imbalance between
singlet f 0 and the doubletf 2J54G3. The thermopower re-
mains negative but very small. We note that our th
mopower calculations omit the contributions of excited cry
tal field levels and so may not compare quantitatively w
results on CeCu2Si2 and its alloys.

We calculated the dynamic magnetic susceptibility a
characterized it in terms of the peak position@G(T)# as a
function of temperature. We see a clear difference betw
the one-channel and overcompensated cases. WhileG(T) de-
creases and saturates to a constant value of orderTK with
decreasing temperatures in the one-channel case,G(T) goes
to zero almost linearly with decreasing temperatures in
two- and three-channel cases.

We now discuss the experimental relevance of our mo
study to the Ce12xLaxCu2.2Si2 alloy.17 We have already
stressed the experimental evidences supporting the
channel Kondo effect in this alloy system in Sec. I. T
thermopower for CeCu2Si2 changes sign around 70 K and
negative and large below.18,49 As our numerical calculation
shows, the thermopower is negative and large in the tw
channel regime. This result compares well with the expe
mental findings for the stoichiometric system withx51. We
believe the sign change comes from the Kondo resonanc
f 0 and f 1G8, which lies above the Fermi level. Further e
periments are required for the alloy system with excess
For comparison, we note that CeAl2 or CeAl3 ~Ref. 49! has
a positive thermopower large compared to transition me
at high temperatures and has a sign change at low temp
ture which is still larger than the Kondo temperature. O
thermopower calculation and the thermopower depende
on the unit cell volume50 suggests that the alloy syste
Ce12xLaxCu2.2Si2 can go through the three-channel mod
parameter regime with external pressure. Renormalized a
calculations further suggest a destabilization off 2 relative to
f 0 with initial increasing pressure.38 We note that measure
ments of thex50.1 samples give a low-temperature positi
thermopower.51,52 If the two-channel fixed-point interpreta
tion is correct for this alloy, the only clear way this may b
reconciled with our results is through a calculation whi
properly includes the excited crystal field levels, which
principle can render the thermopower positive.

In addition to the thermopower, neutron scattering expe
ments for the Ce12xLaxCu2.2Si2 alloy can search for the
unusual temperature dependence ofG(T) ~the peak position
of the dynamic magnetic susceptibility! to see if it is consis-
tent with our interpretation in terms of the two-channel lim
of the model presented herein.
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APPENDIX A: NCA SELF-ENERGY IN THE PRESENCE
OF MULTIPLE IRREPS WITH THE SAME LABEL

In the f 2 configuration, there are nine irreducible repr
sentations~irreps! of G3 in a cubic symmetry. All contribute
to the effective Schrieffer-Wolff exchange interactions, a
the NCA should capture this physics in the leading-or
diagrams. Accordingly, the NCA formalism should be app
priately generalized to get the right Kondo energy scale.
an example, we may consider the mixing process betw
f 1J55/2G7 and f

2G3. The relevant NCA integral equation
are

S~v!5
2

p(
i j

AG iG jE de f ~e!Ñ~e!Di j ~e1v!, ~A1!

P i j ~v!5
2

p
AG iG jE de f ~2e!Ñ~e!G~e1v!. ~A2!

Only the conduction electrons of onlyG8 symmetry are in-
volved in the mixing process. Thef 2G3 Green’s function
now becomes a 939 matrix. This generalization can be se
most clearly by looking at the self-energy diagrams
f 2G3’s. The incomingG3 does not need to be the same as
outgoingG3. This leads to the matrix Green’s function fo
f 2G3’s.
According to the Schrieffer-Wolff transformation, the e

fective Hamiltonian is

H15J(
n

SW I•SW cn~0!, J5(
i51

9 2uV12
i u2

e2
i 2e1

. ~A3!

Now we can show that the above NCA integral equatio
lead to the right Kondo energy scale to leading order. At t
order, no self-energy needs to be inserted into thef 1 propa-
gators, and so we take

G~v!→
1

v2e11 id
. ~A4!

With this replacement, theG3 self-energy matrix becomes

P i j ~v!5
2

p
AG iG j lnU v2e1

v2D2e1
U ~A5!

for a symmetric flat conduction band DOS with a half wid
D. Now the Kondo energy scale is determined by

det@~v2e2
i !d i j2P i j ~v!#50. ~A6!

With the substitutionv5e12T0, we can find

lnU T0
D1T0

U5 1

N~0!J
, ~A7!

N~0!J5
2

p (
i51

9
G i

e2
i 2e1

. ~A8!

HereG i5pN(0)uV12
i u2.

In conclusion, we have shown that the inclusion of all t
G3’s in the f 2 configuration leads to an enhanced tw
channel exchange coupling.
-
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r
-
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APPENDIX B: ZERO-TEMPERATURE ANALYSIS:
OVERCOMPENSATED MULTICHANNEL

ANDERSON MODEL

We discuss the following NCA integral equations at ze
temperature.

Gg~z!5
1

z2eg2Sg~z!
,

Sg~z!5
NxG

p E deÑ~2e! f ~e!Gx~z1e!,

~B1!

Gx~z!5
1

z2ex2Sx~z!
,

Sx~z!5
NgG

p E deÑ~e! f ~e!Gg~z1e!.

~B2!

Here Ñ(e) is the normalized DOS such thatÑ(0)51. For
definiteness, we assume that the excited state has one
electron than the ground state. Before diving into the ze
temperature analysis, we point out the applicability of t
NCA approach to the Anderson impurity model. Whenev
the ground and excited states have degeneracies ofNg and
Nx , respectively, the above form of the NCA integral equ
tions is obtained. The above NCA integral equations a
derive from theNx-channel,SI5(Ng21)/2 models. This is
an artifact of the NCA approach. The NCA cannot disti
guish between these two different models. Note that not
Anderson models with degeneracies ofNg ~the ground state!
and Nx ~the excited state! map into the Nx-channel,
SI5(Ng21)/2 models. The Schrieffer-Wolff transformatio
is essential to see this connection clearly. As an example
excited triplets in thef 2J54 in our Ce31 model lead to the
one-channel exchange interaction of the impurityf 1G7 pseu-
dospinSI51/2 coupled to theSc53/2 conduction electrons35

instead of three-channel Kondo model. With this restricti
in mind, we now study the zero-temperature analysis of
above NCA integral equations.14,48

The dynamical quantities we are interested in are

r~v!5E de@ax~e!Ag~e1v!1Ax~e!ag~e1v!#, ~B3!

xg9~v!5E de@ag~e!Ag~e1v!2Ag~e!ag~e1v!#, ~B4!

ag~v![
e2bv

Zf
Ag~v!, ax~v![

e2bv

Zf
Ax~v!. ~B5!

We can show that

ag~v!uGg~v!u225
NxG

p E deÑ~2e! f ~2e!ax~v1e!, ~B6!

ax~v!uGx~v!u225
NgG

p E deÑ~e! f ~2e!ag~v1e!. ~B7!
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At zero temperature, the Fermi function is reduced to
step function. Thus, the self-energy equations are simpli
to

Sg~z!5
NxG

p E
2`

0

deÑ~2e!Gx~z1e!, ~B8!

Sx~z!5
NgG

p E
2`

0

deÑ~e!Gg~z1e!, ~B9!

ag~v!uGg~v!u225
NxG

p E
0

`

deÑ~2e!ax~v1e!, ~B10!

ax~v!uGx~v!u225
NgG

p E
0

`

deÑ~e!ag~v1e!. ~B11!

For a flat conduction band with a cutoff,@2D,D#, we can
reduce the above equations to the differential equations

gg~v!521/Gg~v!, gx~v!521/Gx~v!, ~B12!

d

dv
gg~v!5212

NxG

p

1

gx~v!
, gg~2D !5D1eg , ~B13!

d

dv
gx~v!5212

NgG

p

1

gg~v!
, gx~2D !5D1ex , ~B14!

d

dv
@ag~v!ugg~v!u2#52

NxG

p
ax~v!, ~B15!

d

dv
@ax~v!ugx~v!u2#52

NgG

p
ag~v!. ~B16!

Removing thev dependence, we find the relationship b
tweengg andgx , in terms of the integration constant whic
connects the low-energy and high-energy states, gi
through the equation

gg
D1eg

5expFp~eg2ex!

NgG
GexpF2

p~gg2gx!

NgG
GF gx
D1ex

GNx /Ng.
~B17!

Since the zero-temperature analysis is meaningful only w
D@eg, x , we will replaceD1eg, x by D. That is,

gg
T0

5expF2
p~gg2gx!

NgG
GFgxD GNx /Ng, ~B18!

T05DFD

DGNx /NgexpFp~eg2ex!

NgG
G , ~B19!

D5
G

p
, ~B20!

and

d

dv
@Ngag~v!gg~v!1Nxax~v!gx~v!#

5Ngag~v!1Nxax~v!. ~B21!
a
d

-

n

n

Due to the sharpness of the Fermi function at the Fe
level, the spectral functions have a sharp cutoff at the thre
old energyE0. SinceAn(v) vanishes below this cutoff en
ergy, Sn(v) is purely real andgn(v) does not vanish or
cross the frequency axis below the threshold energyE0. That
is, gn(v) is positive definite below the threshold energ
E0.

1. Leading asymptotic behavior

We can derive the asymptotic behavior near the cu
energy. Sinceag(v) and gx(v) vanish atv5E0, we can
approximate the above equations:

E02v5E
0

gx
dy

gg~y!

gg~y!1NgD
'

1

NgD
E
0

gx
dygg~y!, ~B22!

E02v5E
0

gg
dy

gx~y!

gx~y!1NxD
'

1

NxD
E
0

gg
dygx~y!, ~B23!

gg
T0

'FgxD GNx /N g

. ~B24!

HereD5G/p. From the above, we can find

gg~v!

T0
'uṼuag, ~B25!

gx~v!

D
'uṼuax, ~B26!

T05DFD

DGNx /NgexpFp~eg2ex!

NgG
G , ~B27!

ag5
Nx

Ng1Nx
, ax5

Ng

Ng1Nx
, ~B28!

Ṽ[~Ng1Nx!
E02v

T0
. ~B29!

Since the zero-temperature analysis is based upon the
sumptionuenu!D, the realistic Kondo energy scale is give
by the replacement ofD1en→D. The asymptotic behavio
right above the cutoffE0 can be found from the expression
belowE0 by the analytic continuation

gg~v1 id!

T0
'e2 iagpṼag, ~B30!

gx~v1 id!

D
'e2 iaxpṼax, ~B31!

Ag~v!'
1

pT0
sin~agp!uṼu2agu~v2E0!, ~B32!

Ax~v!'
1

pD
sin~axp!uṼu2axu~v2E0!. ~B33!

Here the phase was determined such that the spectral f
tion is positive definite above the threshold energy. Sin
@Ngaggg1Nxaxgx#v5E0

51, we can deduce that
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ag~v!'
1

~Ng1Nx!T0
Ṽ2agu~E02v!, ~B34!

ax~v!'
1

~Ng1Nx!D
Ṽ2axu~E02v!. ~B35!

From the above asymptotic expressions, we find

r~v!'
1

G

1

~Ng1Nx!
2B~ax ,ag!3H sin~agp!u~v!

sin~axp!u~2v!

5
1

D

1

@Ng1Nx#
2 , ~B36!

xg9~v!'
1

pT0

sin~agp!

~Ng1Nx!
2B~ax ,ax!sgn~v!uṽu122ag,

~B37!

ṽ[~Ng1Nx!
v

T0
. ~B38!

HereB(p,q) is theb function.

2. Next leading asymptotic behavior

From the above analysis, we can see that it is more
propriate to use dimensionless quantities. Here we collec
the relevant formulas from the above:

d

dṼ

gg
T0

5agF 1Nx
1

D

gx
G , gg~2D !5D1eg , ~B39!

d

dṼ

gx
D

5axF T0
NgD

1
T0
gg

G , gx~2D !5D1ex , ~B40!

d

dṼ
@ag~v!ugg~v!u2#5agDT0ax~v!, ~B41!

d

dṼ
@ax~v!ugx~v!u2#5axDT0ag~v!, ~B42!

E02v5E
0

gx
dy

gg~y!

gg~y!1NgD
, ~B43!

E02v5E
0

gg
dy

gx~y!

gx~y!1NxD
, ~B44!

gg
T0

5expF2
p~gg2gx!

NgG
GFgxD GNx /Ng. ~B45!

Expanding the last relation, we get

gg
T0

5FgxD GNx /NgS 11
gx
NgD

2
T0
NgD

FgxD GNx /Ng1••• D .
~B46!

Then it is straightforward to show that

gg
T0

5Ṽag@12g1Ṽ
ag12g2Ṽ

ax1•••#, ~B47!
p-
ll

gx
D

5Ṽax@112g1Ṽ
ag2g2Ṽ

ax1•••#, ~B48!

g15
1

Ng12Nx

T0
D
, g25

1

2Ng1Nx
. ~B49!

Furthermore, writing in a Taylor expansion form,

ag5
1

@Ng1Nx#T0
Ṽ2ag@11a1Ṽ

ag1a2Ṽ
ax1•••#u~Ṽ!,

~B50!

ax5
1

@Ng1Nx#D
Ṽ2ax@11b1Ṽ

ag1b2Ṽ
ax1•••#u~Ṽ!,

~B51!

we can find the relations

b152a124g1 , agb25a214g2 , ~B52!

axa15b114g1 , a252b224g2 . ~B53!

Finally we find

ag5
1

@Ng1Nx#T0
Ṽ2ag@110Ṽag24g2Ṽ

ax1•••#u~Ṽ!,

~B54!

ax5
1

@Ng1Nx#D
Ṽ2ax@124g1Ṽ

ag10Ṽax1•••#u~Ṽ!.

~B55!

In this limit, the pseudoparticle spectral functions are

Ag5
1

pT0
uṼu2ag$sin~agp!22g2sin@~ag2ax!p#uṼuax

1•••%u~2Ṽ!

5
sin~agp!

pT0
uṼu2ag$114g2cos~agp!uṼuax

1•••%u~2Ṽ!, ~B56!

Ax5
sin~agp!

pD
uṼu2ax$124g1cos~agp!uṼuag1•••%u~2Ṽ!.

~B57!

The scaling dimensions found here all agree with tho
found in the conformal field theory for the overcompensa
cases.

3. Physical quantities

Using the above results, we can find the dynamic susc
tibilities for the ground and excited configurations

xg9~v!5sgn~v!
sin~agp!

~Ng1Nx!
2pT0

$B~ax ,ax!uṽu122ag

24g2@12cos~agp!#

3B~ax ,2ax!uṽu223ag1•••%, ~B58!
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xx9~v!5sgn~v!
T0sin~axp!

~Ng1Nx!
2pD2$B~ag ,ag!uṽu122ax

24g1@12cos~axp!#

3B~ag ,2ag!uṽu223ax1•••%. ~B59!

These are the imaginary parts of the corresponding full
namic susceptibility functions. The functional forms are
marginal Fermi-liquid type for the overcompensated c
Ng5Nx . The local electron spectral functions are

r f~v.0!5
sin~agp!

~Ng1Nx!
2pD

3$B~ax ,ag!24g1B~ax ,2ag!uṽuag

14g2cos~agp!B~ag ,2ax!uṽuax1•••%,

~B60!

r f~v,0!5
sin~axp!

~Ng1Nx!
2pD

3$B~ax ,ag!14g1cos~axp!B~ax ,2ag!uṽuag

24g2B~ag ,2ax!uṽuax1•••%. ~B61!

One important observation is that the scaling dimensi
agree with those obtained from conformal field theory tre
ments for overcompensated multichannelS51/2 models.
From this result, we can argue that the local electron spec
function is peaked right at the Fermi level~Kondo reso-
nance! for overcompensated models. This result seems to
independent of the occupancy of the ground level. In fa
numerical results with the NCA confirm this conclusio
Hence we conclude that the Kondo resonance peak in
overcompensated models sits right at the Fermi level i
spective of any model parameters. In the single-chan
Anderson model, the position of the Kondo resonance p
is adjusted by the Friedel sum rule~Fermi-liquid ground
state!. That is, the occupancy of the ground configurati
determines the Kondo resonance peak position.

We can also generate the low-temperature dependenc
some physical quantities. Resistivity and thermopower
be evaluated using the Kubo formula.

r~T!5r~0!S 12cF TT0G
nD , n5min~ag ,ax!, ~B62!

Q~T!}F TT0G
n

. ~B63!

APPENDIX C: CONDUCTION ELECTRON
SCATTERING RATE

Here we derive the conduction electron scattering time
the presence of Anderson magnetic impurities. In gene
the conduction electron scattering rate~the inverse of the
conduction electron lifetime! is different from the transpor
scattering rate. This difference derives from the vertex c
rection when we calculate the current-current response fu
tion. The simplifying feature of the Anderson model is th
only one partial wave state is coupled to the atomic elect
-
f
e

s
t-

al

e
t,

he
-
el
k

of
n

n
l,

r-
c-
t
n

state for an isotropic hybridization. In this simplified mode
the transport scattering rate is proportional to the imagin
part of the conduction electron self-energy.

The conduction electron scattering time is given by t
angular average of the anisotropic one:

tmn~v!53E dk̂

4p
k̂mk̂ntmn~ k̂,v!. ~C1!

Since tmn(2 k̂,v)5tmn( k̂,v) in the Anderson model, the
scattering time matrix becomes diagonal. Thus we have

tmm~v!5E dk̂

4p
k̂mk̂mt~ k̂,v!. ~C2!

In the dilute Anderson impurity limit, the conduction ele
tron self-energy can be approximated by6

S~kWa,iv!5Nimp(
i

u^kWauVu i &u2Gi~ iv!, ~C3!

t21~kWa,v!52pNimp(
i

u^kWauVu i &u2r i~v!. ~C4!

Here the indexi is the atomic electron’s good quantum num
ber. We can write the self-energy as follows.

~1! With LS coupling, but without the CEF,

S~kWa,iv!5Nimp(
jm

u^kWauVu jm&u2Gf~ j ; iv!, ~C5!

Gf~ j ;t!52^Tt f jm~t! f jm
† ~0!&, ~C6!

^kWauVu jm&5(
m3b

^kWauVum3b&^3m3 ;
1
2 bu jm&. ~C7!

The total angular momentum is a good quantum numbe
this case.

~2! With bothLS coupling and the CEF,

S~kWa,iv!5Nimp(
jcdc

u^kWauVuGc
~ j !dc&u2Gf~Gc

~ j ! ; iv!, ~C8!

Gf~Gc
~ j ! ;t!52^Tt f G

c
~ j !dc

~t! f
G
c
~ j !dc

†
~0!&, ~C9!

^kWauVuGc
~ j !dc&5(

m
^kWauVu jm&^ jmuGc

~ j !dc&. ~C10!

The CEF irreps are good quantum numbers.
In the above, two successive unitary transformations h

been used, specified by

f m3a5(
jm

^3m3 ;
1
2 au jm& f jm , ~C11!

f jm5(
cdc

^ jmuGc
~ j !dc& f G

c
~ j !dc

. ~C12!

For isotropic, spin-independent hybridization and a fr
electron conduction band, the mixing matrix is given by



ro
s

ar

e

i

ac

e

se

elf-

x-

e
s
n

ar-

55 12 617ONE-, TWO-, AND THREE-CHANNEL KONDO EFFECTS . . .
^kWauVum3b&5A4p

V
V~k!Y3m3

~ k̂!dab , ~C13!

V~k!5A4p~2 i !3E dr r 2 j 3~kr !V~r !Rf~r !, ~C14!

^kWauVu jm&5A4p

V
V~k!^k̂au jm&, ~C15!

^k̂au jm&5(
m3

Y3m3
~ k̂!^3m3 ;

1
2 au jm&, ~C16!

^kWauVuGc
~ j !dc&5A4p

V
V~k!^k̂auGc

~ j !dc&, ~C17!

^k̂auGc
~ j !dc&5 (

m3m
Y3m3

~ k̂!^3m3 ;
1
2 au jm&^ jmuGc

~ j !dc&.

~C18!

HereV is the volume of the system andRf(r ) is the radial
part of atomic wave function. Hence the conduction elect
self-energy in the isotropic hybridization can be written a

S~kWa,iv!54pnimpuV~k!u2(
jm

u^k̂au jm&u2Gf~ j ; iv! ~C19!

54pnimpuV~k!u2(
jcdc

u^k̂auGc
~ j !dc&u2Gf~Gc

~ j ! ; iv!.

~C20!

Here only the diagonal elements of the Green’s function
nonvanishing.

1. Without the CEF

When the CEF is neglected, the conduction electron s
energy in a dilute impurity limit reads

S~kWa,iv!54pnimpuV~k!u2(
j

Q~ j !~ k̂!Gf~ j ; iv!, ~C21!

t21~kWa,v!58p2nimpuV~k!u2(
j

Q~ j !~ k̂!r f~ j ;v!, ~C22!

Q~ j !~ k̂![(
m

u^k̂au jm&u2. ~C23!

r f( j ;v) is the measurable spectral function for the atom
electrons with the total angular momentumj .

The relevant angular functions defined above are, in f
constants:

Q~ j !~ k̂!5(
m

u^k̂au jm&u25(
mdm

u^k̂auGm
~ j !dm&u25

2 j11

8p
.

~C24!

2. With the CEF

In the presence of the CEF, the CEF irreducible repres
tations are good quantum numbers. The atomicf -electron
operator can be decomposed into CEF irreducible repre
n

e

lf-

c

t,

n-

n-

tation components. Hence the conduction electron s
energy in the dilute impurity limit is

S~kWa,iv!54pnimpuV~k!u2(
jc

Qc
~ j !~ k̂!Gf~Gc

~ j ! ; iv!,

~C25!

QGc

~ j !~ k̂![(
dc

u^ k̂auGc
~ j !dc&u2. ~C26!

HereQGc

( j )( k̂) are crystal harmonics. The anisotropic rela

ation rate is

t21~kWa,v!58p2nimpuV~k!u2(
jc

QGc

~ j !~ k̂!r f~Gc
~ j ! ;v!.

~C27!

Herer f(Gc
( j ) ;v) is the measurable spectral function for th

atomic f electron ofGc
( j ) symmetry. This spectral function i

given by the convolution of two neighboring configuratio
Green’s functions.

In the cubic crystal symmetry, the relevant crystal h
monics are

Q7
~5/2!~ k̂!5(

a
u^k̂↑/↓uG7

~5/2!a&u2

52
1

32p
@35cos4u230cos2u25

15sin4u cos4w#, ~C28!

Q8
~5/2!~ k̂!5(

na
u^ k̂↑/↓uG8

~5/2! ;na&u2

5
1

32p
@35cos4u230cos2u119

15sin4u cos4w#, ~C29!

and

Q6
~7/2!~ k̂!5(

a
u^k̂↑/↓uG6

~7/2! ;a&u2

5
7

256p
@50cos6u230cos4u210cos2u

1 34
3 210sin4u~5 cos2u21! cos4w#,

~C30!

Q7
~7/2!~ k̂!5(

a
u^k̂↑/↓uG7

~7/2! ;a&u2

5
15

256p
sin2u@214cos4u128cos2u12

22sin2u~7 cos2u11! cos4w#, ~C31!
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Q8
~7/2!~ k̂!5(

na
u^k̂↑/↓uG8

~7/2! ;na&u2

5
1

32p
@270cos6u1105cos4u240cos2u1 55

3

15sin4u~14cos2u21!cos4w#. ~C32!

Note that the above crystal harmonics are normalized
satisfy the sum rules

E dk̂Q6,7
~ j !~ k̂!51, E dk̂Q8

~ j !~ k̂!52, ~C33!
v

d
.

i-
d

(
m

Qm
~ j !~ k̂!5

2 j11

8p
. ~C34!

Furthermore, the crystal harmonics for aj55/2 multiplet can
be rewritten as

Q7
~5/2!~ k̂!5

1

16p
@62F~ k̂!#, Q8

~5/2!~ k̂!5
1

16p
@61F~ k̂!#,

~C35!

F~ k̂!515cos4u210cos2u1115sin4ucos22w.
~C36!
S.
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v.

le,
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