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Low-energy fixed points of random quantum spin chains

E. Westerberg,* A. Furusaki,† M. Sigrist,‡ and P. A. Lee
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 15 October 1996!

The one-dimensional isotropic quantum Heisenberg spin systems with random couplings and random spin
sizes are investigated using a real-space renormalization-group scheme. It is demonstrated that these systems
belong to a universality class of disordered spin systems, characterized by weakly coupled large effective spins.
In this large-spin phase the uniform magnetic susceptibility diverges asT21 with a nonuniversal Curie constant
at low temperaturesT, while the specific heat vanishes asTuauu lnTu for T→0. For a broad range of initial
distributions of couplings and spin sizes the distribution functions approach a single fixed-point form, where
a'20.44. For some singular initial distributions, however, the fixed-point form of distributions becomes
nonuniversal, suggesting that there is a line of fixed points.@S0163-1829~97!05214-4#
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I. INTRODUCTION

Over many decades one-dimensional~1D! quantum spin
systems~‘‘quantum spin chains’’! have attracted a lot of in
terest and led to the development of many theoretical m
ods which are now commonly used for the study of oth
highly correlated systems.1 Despite the apparent simplicit
of quantum spin chains, they show a wealth of physical pr
erties which give a key to our understanding of various p
nomena, e.g., quantum phase transitions, topological or
and fractional statistics.1–3 Since the discovery of variou
quasi-1D materials, the study of 1D spin systems, which
mainly based on the Heisenberg model and its variations
also of experimental relevance. Examples of such mate
include so-called NINO, NENP,4,5 and Sr3CuPtO6.

6 In par-
ticular, the latter system belongs to a class of compou
which is compositionally very flexible and has been und
intense experimental investigation over the last few ye
This type of quasi-1D system was reported in Sr4PtO6 by
Randall and Katz,7 and it is now possible to produce com
pounds of the form Sr3MNO6 in various combinations with
M 5 Cu, Mg, Zn, Yb, Na, Ca, Co, andN 5 Pt, Ir, Rh, Bi.

Disorder effects play a particularly important role in 1
quantum spin systems, as even small deviations from
regular system often destabilize the pure phases.8 Real ex-
perimental systems naturally contain impurities and ot
types of disorder. Therefore it is very important to und
stand the influence of disorder on the properties of such
tems in order to interpret experimental results. To our kno
edge, the first 1D spin system recognized for its disor
belongs to the class of charge-transfer salts TC
~tetracyanoquinodimethanide!.9 These systems have bee
successfully described by a 1D spin-1/2 Heisenberg mo
with random strength of antiferromagnetic exchange c
plings between the spins. A more recent example of dis
dered spin chains is Sr3CuPt12xIrxO6.

10While the pure com-
pounds Sr3CuPtO6 (x50) and Sr3CuIrO6 (x51) are
antiferromagnetic~AF! and ferromagnetic~FM! spin sys-
tems, respectively, the alloy Sr3CuPt12xIrxO6 contains both
AF and FM couplings. The fraction of FM bonds is simp
related tox, the concentration of Ir ions. In a previous wor
we modeled Sr3CuPt12xIrxO6 with a nearest-neighbor spin
550163-1829/97/55~18!/12578~16!/$10.00
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1/2 Heisenberg chain, where the exchange coupling betw
neighboring spins is1J or 2J with probability p and
12p, respectively. The methods we used~high-temperature
expansion and transfer-matrix approximation! give reliable
results down tokBT;J/5, whereT is the temperature and
kB is Boltzmann’s constant. In this regime the numerica
calculated magnetic susceptibilityx(T) and the specific hea
C(T) interpolate smoothly between the corresponding qu
tities of purely FM (p51) and AF (p50) chains, giving
good qualitative agreement with experimental data.11,12 At
temperatures below;J/kB the effects of disorder becom
significant. We demonstrated that in this temperature reg
spins correlate within AF and FM segments of the ch
separately. The emerging new degrees of freedom wh
dominate the thermodynamics are~large! effective spins
each corresponding to a correlated segment. The size of t
spins and their residual interaction are set by the local dis
der and hence is random. From exact diagonalization o
nite segments we concluded that the low-temperature phy
of the random spin system is described by the effect
Hamiltonian,

H5(
i
JiSi•Si11 , ~1!

where both the couplingsJi , which may have either sign
and the spin sizesSi are random. In particular, we emphasi
that the resulting distribution ofJi in Eq. ~1! is broad and
dense, in contrast to the discrete distribution of the init
model. In this paper we take Eq.~1! as starting point. We
discuss the low-temperature properties of this model, and
various fixed points encountered for different initial distrib
tions of couplings and spins.13

Before going into the details we briefly summarize o
results and the method we use, which is a generalizatio
the real-space renormalization-group~RSRG! scheme intro-
duced by Ma, Dasgupta, and Hu~MDH! in 1979 to study the
1D spin-1/2 random antiferromagnet~RAF!.14 The RAF,
where all couplings are antiferromagnetic but vary in ma
nitude, has also been investigated using Kadanoff block s
renormalization-group~RG! techniques,15 and more recently
by the density matrix RG method.16 The method of Dasgupta
12 578 © 1997 The American Physical Society
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55 12 579LOW-ENERGY FIXED POINTS OF RANDOM QUANTUM . . .
et al. has proven to be the most successful one, and
recently extended by Fisher,17 who solved the RG equation
exactly.

In the MDH RSRG scheme, a decimation of degrees
freedom occurs through the successive formation of spin
glets from the most strongly coupled spin pairs. This sche
conserves the form of the Hamiltonian in the original mod
but changes the distribution of couplings, which gradua
approaches a fixed-point form. The model in Eq.~1! contains
arbitrary spin sizes and couplings with random sign, so t
in general, two correlated spins do not combine into a s
glet. Rather they form an effective spin with renormaliz
couplings to its neighbors. Here we introduce a modifi
RSRG scheme which takes this into account. Like the MD
RSRG scheme it conserves the form of the Hamiltonian,
~1!, but changes the distributions of couplings and gaps.
RG flow generated can therefore be thought of as a flow
the space of distributions of couplings and gaps.18 We dem-
onstrate that for a wide range of initial distributions of co
plings and spins, the RG flow of the distribution functio
eventually approaches a single universal fixed point. T
fixed point represents the following physical properties. B
entropy and specific heat vanish asT2ku lnTu with k'0.22, so
that the critical exponenta'20.44. The exponentk appears
also in the nonlinear magnetization asM (H)}Hk/(11k) for
sufficiently large fieldsH. For very singular initial distribu-
tion of the couplings we find thatk takes a nonuniversa
value, suggesting the presence of a fixed line. We also fin
surprising fact that, for both the universal and nonuniver
fixed points, the susceptibility follows the Curie behavi
down to zero temperature with a nonuniversal Curie c
stant. We finally show how the two previously known ra
dom phases, the random singlet phase~RSP! and the random
dimer solid~RDS!,19,20 both of which correspond to Eq.~1!
with all Si51/2 and allJi.0, are unstable against the a
mixture of an arbitrarily small concentration of FM cou
plings and/or larger spins.

Our paper has the following structure. We start with
brief review of the MDH RSRG scheme in Sec. II A, befo
we generalize it to chains with both AF and FM couplings
Sec. II B. In Sec. III we analyze the distributions of spins a
couplings, and their scaling forms close to a fixed point. W
perform the RG scheme numerically by simulating rand
spin chains with various initial distributions of couplings a
spins. The numerical results shown in Sec. IV confirm
scaling forms conjectured in Sec. III, but also reveal t
random spin chains with very singular initial distributions
gaps flow to nonuniversal fixed points. In Sec. V we der
the scaling forms of thermodynamic quantities, and in S
VI we comment on the approximations involved in the R
transformation. Finally we summarize our results in Sec. V
and compare the large-spin phase~LSP! to other disordered
phases. We also discuss the stability of the various ph
and in particular the RG flow between the LSP, RSP, a
RDS.

II. THE RENORMALIZATION-GROUP SCHEME

To study the low-temperature properties of systems
scribed by Eq.~1!, we generalize a RSRG method introduc
by Ma, Dasgupta, and Hu~MDH!.14 We start with a brief
as
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review of the MDH scheme for the RAF withSi51/2 and
randomJi.0.

A. The MDH RG for antiferromagnetic spin-1/2 chains

Consider an antiferromagnetic nearest-neighbor Heis
berg spin-1/2 chain in which the largest coupling isJ0 and
the remaining couplingsJi are distributed according to
P(J0 ;Ji). We focus on the link with the largest coupling
Ji5J0, and the terms in the Hamiltonian~1! that involve the
spinsSi andSi11, @see Fig. 1~a!#,

H85H081HI8 , ~2!

where

H085J0Si•Si11 ,

HI85Ji21Si21•Si1Ji11Si11•Si12 .

If the distributionP(J0 ;J) is broad,Ji61 are typically much
smaller thanJ0 and we can treatHI8 as a perturbation to
H08 . In the ground state ofH08 the spinsSi andSi11 form a
singlet, and the energy gap to the excited states isJ0. This
ground state is fourfold degenerate since the unpertur
HamiltonianH08 does not involve the directions ofSi21 and
Si12. HI8 lifts the degeneracy and splits the unperturb
ground state into a singlet and a triplet, and the low-ene
spectrum of the four-spin Hamiltonian~2! is described by an
effective Hamiltonian

Heff5 J̃Si21•Si12 . ~3!

The effective couplingJ̃ is determined from the energy spli
ting of the unperturbed ground state, and to second orde
Ji61 /J0 the result is J̃/J05Ji21Ji11/2J0

2. Physically the
weak interaction betweenSi21 andSi12 is mediated by ex-
citing virtual triplet states in the interjacent spin pair.

In the Hamiltonian~1! we replace the terms inH8 with
the effective interactionHeff in Eq. ~3! to get an effective
Hamiltonian for the low-energy degrees of freedom of t

FIG. 1. Schematic pictures of the RG scheme.~a! The original
MDH decimation.~b! Definition of a link as two neighboring spin
SL andSR and the gapD. ~c! The generalized MDH decimation.
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12 580 55E. WESTERBERG, A. FURUSAKI, M. SIGRIST, AND P. A. LEE
spin chain. Repeating this procedure and successively rep
ing the strongest remaining coupling in the chain preser
the form of the Hamiltonian but changes the distribution
couplings and, in particular, lowersJ0, the largest remaining
coupling in the chain. IfP(J08 ,J) is the distribution of cou-
plings at a point when the largest remaining coupling
J08 , then the removal of bondsJiP@J02dJ0 ,J0# generates a
flow equation forP(J0 ,J) ~Ref. 14!

dP~J0 ;J!

dJ0
52P~J0 ;J0!E

0

J0
dJ1dJ2P~J0 ;J1!P~J0 ;J2!

3d~J2J1J2/2J0!. ~4!

The flow equation~4! is derived under the assumption th
there are no spatial correlations among the bond streng
This is indeed the case if there are no correlations in
distribution of couplings in the initial chain. It has bee
shown that if the initial distribution of bonds is normalizabl
Eq. ~4! has a unique fixed-point solution that governs t
low-energy physics of random bond antiferromagnetic sp
1/2 chains.17,21

B. Generalization of the MDH RG

We apply the same strategy to the random spin chain w
couplings of either sign and random spin sizes. In contras
the previous case, a link is determined not only by the c
pling strength but also by its left and right spi
$D i ,Si ,Si11% @see Fig. 1~b!#. We defineD i as the energy gap
between the ground-state multiplet and the first excited m
tiplet in the corresponding two-spin Hamiltonia
H5JiSi•Si11:

22

D i5H uJi u~Si1Si11!: Ji,0 ~ ferromagnetic link!,

Ji~ uSi2Si11u11!: Ji.0 ~antiferromagnetic link! .
~5!

We assume a broad distribution of interaction energies
focus on the link in the chain which, if completely isolate
from the rest of the chain, requires the largest ene
D5D0 to excite the ground-state multiplet. We consider t
situation illustrated in Fig. 1~c!, where $D0 ,SL ,SR% is the
strongest link in the chain, and$D1 ,S1 ,SL% and
$D2 ,SR ,S2% are its adjacent links. In the spirit of the MDH
RSRG scheme we replace the strongest link$D0 ,SL ,SR%
with an effective spin of sizeS5uSL6SRu representing the
lowest-energy multiplet of maximum~minimum! spin for a
ferromagnetic~antiferromagnetic! link. The residual effec-
tive interaction forS1, S, andS2 is calculated perturbatively
in «1,25D1,2/D0. The effective interaction is isotropic, an
to first order in«1,2 given by

Heff5 J̃1S1•S1 J̃2S•S2 ~6!

with

J0.0, J1.0, SL.SR

⇒D̃15D1f 1~S1 ,SL ,SR!; J̃1.0, ~7a!
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J0.0, J1.0, SL,SR

⇒D̃15D1f 2~S1 ,SL ,SR!; J̃1,0, ~7b!

J0.0, J1,0, SL.SR

⇒D̃15D1f 3~S1 ,SL ,SR!; J̃1,0, ~7c!

J0.0, J1,0, SL,SR

⇒D̃15D1f 4~S1 ,SL ,SR!; J̃1.0, ~7d!

J0,0, J1.0⇒D̃15D1f 5~S1 ,SL ,SR!; J̃1.0, ~7e!

J0,0, J1,0⇒D̃15D1f 6~S1 ,SL ,SR!; J̃1,0, ~7f!

where

f 1~S1 ,SL ,SR!5
~SL11!~ uS12SL1SRu11!

~SL2SR11!~ uS12SLu11!
, ~8a!

f 2~S1 ,SL ,SR!5
SL~S11SR2SL!

~SR2SL11!~ uS12SLu11!
, ~8b!

f 3~S1 ,SL ,SR!5
~SL11!~S11SL2SR!

~SL2SR11!~S11SL!
, ~8c!

f 4~S1 ,SL ,SR!5
SL~ uS12SR1SLu11!

~SR2SL11!~S11SL!
, ~8d!

f 5~S1 ,SL ,SR!5
SL~ uS12SL2SRu11!

~SL1SR!~ uS12SLu11!
, ~8e!

f 6~S1 ,SL ,SR!5
SL~S11SL1SR!

~SL1SR!~S11SL!
. ~8f!

A derivation of these equations is shown in Appendix A
From the knowledge of the gapD̃1 and the sign ofJ̃1, J̃1 is
readily calculated via Eq.~5!. Similarly D̃2 is obtained by
replacingS1 by S2 andSL by SR in Eqs.~7! and ~8!. These
equations do not require the spins to be multiples of 1/2,
from now on we regard spins as continuous variables. T
case where the strongest link is antiferromagnetic w
SL5SR is not accounted for in Eq.~7!. In this case the two
spinsSL andSR form a singlet, and the leading-order contr
bution to the effective coupling betweenS1 and S2 is ~cf.
Appendix A 2!

J̃5
2J1J2
3J0

SL~SL11!, ~9!

which is easily translated intoD̃ via Eq. ~5!. For
SL5SR51/2 this is the original MDH RG transformation.

As in the original RSRG scheme, the effect of succ
sively forming effective spins is to change the distributio
of gaps and spins~links! without changing the form of the
Hamiltonian. In analogy to the probability distribution fo
the couplings in the RAF, we define probability distributio
of ferromagnetic (PF) and antiferromagnetic (PA) links
where the largest remaining gap in the chain isD0,
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55 12 581LOW-ENERGY FIXED POINTS OF RANDOM QUANTUM . . .
PF~D0 ;D,SL ,SR!, ~10a!

PA~D0 ;D,SL ,SR!. ~10b!

The probability distributionsPA,F are symmetric inSL and
SR and obey the normalization condition

E
0

D0
dDE

0

`

dSLdSR@PF~D0 ;D,SL ,SR!1PA~D0 ;D,SL ,SR!#

51, ~11!

for any value ofD0. FromPA andPF we can calculate the
distributions of spins, gaps and coupling constants. As a
cial case, the original spin-1/2 antiferromagnetic chain st
ied in Ref. 14 corresponds to

PA~D0 ;D,SL ,SR!5d~SL2 1
2 !d~SR2 1

2 !P~D0 ;D!,
~12a!

PF~D0 ;D,SL ,SR!50. ~12b!

If there are no correlations between neighboring links~ex-
cept for the obvious correlation that they share one spin!, the
flow equations forPA,F are

dPA

dD0
5F1@P

A,PF#, ~13a!

dPF

dD0
5F2@P

A,PF#, ~13b!

which generalize the MDH RSRG flow equation~4!. In Eqs.
~13! F1 and F2 are two ~nonlinear! functionals ofPA and
PF, whose explicit forms depend on the functionsf n in Eq.
~8!, cf. Appendix B.

III. SCALING FORMS OF THE PROBABILITY
DISTRIBUTIONS

As links are replaced by effective spins, the effective co
plings and, hence, the gaps of the links decrease. At the s
time the average distancen between neighboring effectiv
spins as well as the magnitude of the effective spins incre
~Here the original lattice constant is assumed to be 1,
n is the ratio of the number of original spins to the number
effective spins.! We expect that the link distributions even
tually approach a fixed point wherePA, PF, andn exhibit
scaling behavior

PA~D0 ;D,SL ,SR!5D0
2mAQAS D

D0
lA
,
SL

D0
2kA

,
SR

D0
2kAD ,

~14a!

PF~D0 ;D,SL ,SR!5D0
2mFQFS D

D0
lF
,
SL

D0
2kF

,
SR

D0
2kFD ,

~14b!

and

n;D0
2n . ~15!

The seven exponents in Eqs.~14! and ~15! are not all inde-
pendent. Indeed, we argue below that
e-
-

-
me

e.
d
f

kF5kA[k, ~16a!

lF5lA51, ~16b!

mF5mA5122k, ~16c!

n52k, ~16d!

so that in the scaling regime

PA5
1

D0
122k Q

A~D/D0 ,SLD0
k ,SRD0

k!, ~17a!

PF5
1

D0
122k Q

F~D/D0 ,SLD0
k ,SRD0

k!, ~17b!

with length scaling as

n;D0
22k . ~18!

The relations~16! have been confirmed in numerical simul
tions ~cf. Sec. IV! and can be understood as follows.

Let x5NA /(NA1NF) be the fraction of AF links in the
chain. Both FM (x50) and AF (x51) chains are unstable
towards a small concentration of couplings of the oppos
sign. To see thatx51 is unstable, we note that unless th
effective spin formed is a singlet, the removal of a link in
AF chain converts one neighboring link into a FM link
Similarly x50 is unstable because an isolated AF link in
FM environment always survives~the removal of a FM link
does not change the signs of its neighboring links, and if
AF link itself is removed, one of its FM neighbors is con
verted into an AF link!. This implies that for small enough
x the absolute number of AF links is constant, so that
fraction x of AF links increases as links are removed. Thu
unless we start with a completely FM random spin chain o
purely AF random spin chain with uniform magnitude of th
spins, the fixed-point distribution contains both FM and A
links. Having established that bothx0 and 12x0, the fraction
of AF and FM links at the fixed point, respectively, are no
zero, we can easily derive the relations~16a!–~16c!. Since a
finite fraction of the spins belong to both a FM and an A
link, there cannot be a separation in scales between spin s
in AF and FM links, i.e.,kA5kF5k. lF51 (lA51) fol-
lows from the fact that the average gap in the FM~AF!
distribution, when measured in units ofD0 is finite and in-
dependent ofD0. mA5122k follows trivially from the fi-
niteness ofx0

x05E
0

D0
dDE

0

`

dSLdSRD0
2mAQA~D/D0 ,D0

kSL ,D0
kSR!

5D0
122k2mAE

0

1

dD8E
0

`

ds8ds9QA~D8,s8,s9!, ~19!

which must be independent ofD0. An analogous argumen
for 12x0 impliesmF5122k.

The last relation~16d! requires a more detailed analysis
the way effective spins are formed by correlating the origi
spins in clusters. The size of the effective spin correspond
the spin quantum number of the ground state of the clus
Since the spin system is not frustrated, the spin quan
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12 582 55E. WESTERBERG, A. FURUSAKI, M. SIGRIST, AND P. A. LEE
number is determined from the classical correlation of
spins~parallel and antiparallel!. The total spin of a cluster o
n spins is then given by

S5U(
i51

n

6SiU, ~20!

where two neighboring spins enter the sum with the sa
~opposite! sign if their mutual coupling is ferromagnetic~an-
tiferromagnetic!. This leads to a typical random-walk prob
lem which results in the scaling

S;n1/2. ~21!

From this we concluden52k.
The remaining independent exponent, which we take

be k, is related to the average renormalization of the ga
Consider two neighboring effective spins with a coupli
corresponding to a gapD. Suppose also that each of the tw
effective spins is made up of 2k spins at some larger energ
scaleD8. As the energy scale is lowered fromD8 to D and
the 2k spins form one large effective spin, the gapD is typi-
cally renormalized 2k times (k times in the course of forma
tion of the left effective spin and similarlyk times from the
right!. If the magnitude of a gap is reduced on average b
factor r each time a neighboring link is replaced with a
effective spin, then

n;n82k5n8~r 2k! ln2/2lnr;n8S D

D8D
ln2/2lnr

, ~22!

from which we read off the relation

k52
ln2

4lnr
. ~23!

Using the scaling form, we can get some information
long-distance behavior of spin-spin correlation functions.
us introduce two kinds of spin-spin correlation functio
which characterizes the correlation between spins at
temperatures. The first one is the usual spin-spin correla
function,

C1~ i2 j !5^Si•Sj&, ~24!

where^ & represents both thermal average and average
random configurations. Since the number of AF bonds
tweenSi andSj is random, the two spins may either be
parallel or antiparallel. Thus, after taking the random aver
the correlation function decays exponentially for lar
u i2 j u even at zero temperature:

C1~ i2 j !}expH 2u i2 j uF lnS 1

u2p21u D1 ipQ~122p!G J ,
~25!

wherep is the density of FM bonds. Therefore this corre
tion function does not reflect the correlations leading to
formation of effective large spins. An appropriate correlati
function is

C2~ i2 j !5^h i jSi•Sj&, ~26!
e

e

o
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t
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where h i j5)k5 i
j21sgn(2Jk) for j. i . At finite temperature

this correlation function should also decay exponentially
large u i2 j u with the correlation lengthn:

C2~ i2 j !}exp~2u i2 j u/n! for T.0. ~27!

From Eq.~18! we find that the correlation length grows wit
decreasing temperature asn}T2n5T22k. It is likely that at
zero temperature the correlation function decays alge
ically as

C2~ i2 j !}
1

u i2 j uh21 . ~28!

Unfortunately we cannot determine the value of this n
exponenth from our numerical RG scheme.

IV. NUMERICAL RESULTS

We perform our RG scheme by numerical simulation
We start each simulation by generating a chain accordin
independent probability distributions for gaps and spins.
each decimation step we pick up the strongest link in
chain, replace it with an appropriate effective spin, a
renormalize the neighboring bonds. To keep the numbe
links fixed, one site is finally added in one end of the cha
This procedure is then iterated until the shape of the dis
bution function of links no longer changes. In this way w
have iterated sixteen chains with both nonsingular and
gular initial distribution, see Table I.

In all our simulations the distributions of links eventual
converged to some fixed-point distributions. The distrib
tions rather quickly take the rough forms of the fixed-po
distributions, while the final approach and, in particular, t
convergence of the exponents in Eqs.~16! to their final val-
ues are very slow and take place over up to five orders
magnitudes in length~ten orders of magnitude in energy!.
Our numerical simulations demonstrate that unless the in
distribution has a high degree of singularity for small ga
the distribution of links in the chain eventually flows to
universal fixed-point distribution of AF and FM links. If th
initial distribution of gaps is more singular tha
P(D);D2yc, yc'0.7, our numerical simulations sugge
that the corresponding fixed-point distribution is nonuniv
sal. This is analogous to the RAF where it has been sho
that extremely singular components in the gap distribut
are conserved in the RG flow.17 In the case of the RAF
yc51, so that the condition for a chain to flow to the un
versal fixed-point distribution coincides with normalizabilit
In contrast to the RAF, there may be physical situatio
where a random AF/FM spin chain flows to a nonuniver
fixed-point distribution,20 cf. Sec. VII. We note that these
results are obtained using the approximate, perturbative
scheme. Nevertheless we will argue in Sec. VI that the pr
erties of the fixed points are qualitatively well describ
within our scheme and that an improved RG treatment,
cluding higher-order terms, would merely lead to a corre
tion of the exponentk. Below we summarize the numerica
results for cases with regular and singular initial gap dis
butions.
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TABLE I. The initial conditions for the 16 chains simulated numerically.

Chain PF(D) PA(D) Q(S) x5NA /N Length

A 12D 12D
1
20(n51

20 dSS2
n

2D 50% 106

B D D
1
4(n51

4 dSS2
n

2D 50% 106

C 0 1
1
8(n51

8 dSS2
n

2D 100% 106

D 0.75 0.25
1
4(n51

4 dSS2
n

2D 25% 53105

E 0.05 0.23753D23/4
d~S2

1
2!

95% 106

F 1
2D

21/2 1
2D

21/2
1
4(n51

4 dSS2
n

2D 50% 105

G 0 1
4D

23/4
0.96d~S2

1
2!10.04d~S21! 100% 106

H 2
5D

23/5 2
5D

23/5
1
4(n51

4 dSS2
n

2D 50% 105

I 1
3D

22/3 1
3D

22/3
1
4(n51

4 dSS2
n

2D 50% 105

J 2
7D

25/7 2
7D

25/7
1
4(n51

4 dSS2
n

2D 50% 105

K 1
4D

23/4 1
4D

23/4
1
4(n51

4 dSS2
n

2D 50% 1.23106

L 2
9D

27/9 2
9D

27/9
1
4(n51

4 dSS2
n

2D 50% 105

M 1
5D

24/5 1
5D

24/5
1
4(n51

4 dSS2
n

2D 50% 105

N 2
11D

29/11 2
11D

29/11
1
4(n51

4 dSS2
n

2D 50% 105

O 1
8D

27/8 1
8D

27/8
1
4(n51

4 dSS2
n

2D 50% 106

P 1
6D

25/6 1
6D

25/6
1
4(n51

4 dSS2
n

2D 50% 105
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A. Regular and weakly singular distributions

If the initial distribution of gaps is regular or at least le
singular thanP(D);D20.7, we find that the link distribu-
tions in all chains we have studied~chainsA, B, C, D, F,
H, andI in Table I! eventually converge to the same unive
sal distribution with the characteristic scaling form~17! pro-
posed in Sec. III. The fixed-point distribution functions a
illustrated by various cross sections in Figs. 2 and 3. We
that the ratio of AF links stabilizes aroundx50.63, thus
confirming the conjecture in Sec. III that bothx0 and
12x0 are nonzero. The exponentskA,F andlA,F in Eqs.~14!
are deduced from the scaling of the averages^S& and ^D&
with D0 in the scaling regime. This is illustrated in Fig. 4 fo
chainC in Table I, where the average gap and spin size
plotted versusD0 in a log-log plot. Similarly the ration of
the number of original spins to the number of effective sp
is plotted versus the maximum gapD0 in Fig. 4~b!, and the
evolution of the exponents as functions ofD0 are plotted in
Figs. 5~a! and 5~b!. We find the fixed-point values of th
exponents to be
d

re

s

kA,F50.2260.01,

lA,F51.0060.005,

n50.4460.02.

The exponents in the FM distribution agree with the ones
the AF distribution within numerical accuracy. Thus our n
merical findings confirm the scaling forms~17! and ~18! for
the probability distributions of the links as well as the re
tions between the exponents, Eqs.~16!. Identifying k with
eitherkA , kF or (1/2)n gives consistently

k50.2260.01. ~29!

An interesting observation we have made is that the ra
2k/n generally stabilizes to its fixed-point value of 1 befo
the two exponentsn andk separately converge to their co
responding fixed-point values. This confirms the robustn
of the ‘‘random-walk’’ argument in Sec. III leading to th
relation in Eq.~16d!.
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FIG. 2. ~a! The antiferromagnetic fixed-point distribution of spins and gaps,QSD
A (D/D0 ,S)5 *0

`dS8QA(D/D0 ,S,S8). The spins are in
units of ^S& and the distribution is normalized according to Eq.~11!. ~b! The ferromagnetic fixed-point distribution of spins and ga
QSD
F (D/D0 ,S), defined analogously toQSD

A in ~a!. ~c! The antiferromagnetic fixed-point distributions of left and right spins,QSS
A (S,S8)5

*0
1dxQA(x,S,S8). The units and normalization are as in~a!. ~d! The ferromagnetic fixed-point distributions of left and right spin
QSS
F (S,S8), defined analogously toQSS

A in ~c! and with units and normalization as in~a!.
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The typical expansion parameters in the perturbative
culation of the renormalized gaps are the median ratios
tweenDA,F andD0. At the fixed point these ratios are

D t
A/D0;0.2,

D t
F/D0;0.3,

where we denote the median gap in the distributions of
tiferromagnetic and ferromagnetic links byD t

A andD t
F , re-

spectively. As expected from the increase in effective s
size, the formation of a singlet on a link (SR5SL) becomes
increasingly rare as the fixed point is approached.

B. Strongly singular distributions

For chains with a very singular initial distribution of gap
the convergence to some fixed-point distribution is gener
even slower than for regular~or modestly singular! chains.
Furthermore, in these cases the fixed-point distribution tha
eventually approached as well as the scaling exponent
pears to be nonuniversal. This is illustrated in Fig. 6, wh
the fixed-point distributions for four chains are plotted. T
dotted distributions correspond to chains where the ini
gap distributions areP(D)}D2x with x5$3/4,4/5,7/8%
~Table I!. The solid curve is the corresponding fixed-po
distribution for regular chains discussed in Sec. IV A. F
reasons discussed below, the actual form of the distribut
l-
e-

n-

n

ly

is
p-
e

l

t

ns

corresponding to singular initial distributions may be qua
titatively incorrect, but they deviate clearly from the fixe
point distribution of regular chains. Numerically we find th
chains with initial gap distribution more singular than

P~D!;D2yc with 0.65&yc&0.75 ~30!

flow to nonuniversal fixed-point distributions. From log-lo
plots of the universal fixed point-distribution of gaps, Fig.
we find that the distribution of FM gaps diverges
PF(D);D20.44 and the distribution of AF gaps a
PA(D);D20.70 for small gaps. Thus, even from a regul
link distribution the RG transformation itself produces a s
gular fixed-point distribution of gaps, where the degree
the singularity,P(D);D2yc, is set by details in the RG
transformation rather than by the initial conditions. If a d
tribution is more singular thanD2yc, the singular componen
is conserved in the RG flow. This is supported by our n
merical results thatyc in Eq. ~30! is somewhere betwee
0.65 and 0.75, which agrees with the singularity in the u
versal fixed-point distribution of gapsP(D);D20.70. We
conjecture that in chains with gap distributions more singu
thanD2yc, the low-energy fixed point is not determined b
the RG transformation alone, but also by the singular dis
bution of extremely weak links. In these chains we exp
the fixed-point distribution as well as the value of the scal
exponent to be nonuniversal.
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The picture we present is in close analogy to the R
where Fisher has shown that the flow equation~4! conserves
very singular components ofP(D0 ,D).

17 In the case of the
RAF yc51, implying that any normalizable~and hence
physical! initial distribution eventually flows to a universa
fixed-point distribution.

The fact that a very singular fixed-point distribution
dominated by the weakest links in the initial chain ca
some doubt on the numerical results for such chains at
energies. Indeed, since all our chains have only a finite n
ber of links, the singularity cannot be resolved perfec
Hence the number of initially extremely weak links whic
are important for the low-energy behavior of the chain
relatively few and we do not expect the numerical results
the extremely singular chains to be quantitatively corre
This explains why the singularity seems to soften at very l
energies while we argue that it should remain constant.
still expect that the qualitative result that regular~or slightly
singular! chains flow to a universal fixed-point distributio
while more singular distributions do not, should be corre

V. THERMODYNAMICS

A. Entropy and specific heat

The scaling forms in Eqs.~17! and~18! allow us to deter-
mine the universal temperature dependence of various t
modynamic quantities which may be measured in exp
ments. Let us start with the entropy and the specific heat

FIG. 3. ~a! The distributions of gaps at the fixed poin
QD
A,F(D/D0)5 *0

`dSdS8QA,F(D/D0 ,S,S8). ~b! The distributions of
spins at the fixed point,QS

A,F(S)5 *0
1dx*0

`dS8QA,F(x,S,S8). The
spins are in units of̂S&.
s
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FIG. 4. ~a! The average gap̂D& as a function ofD0 in chain C
in Table I. ~b! The average spin̂S& and lengthn as a function of
D0 in chain C in Table I.

FIG. 5. Effective exponents as functions ofD0
21 in chain C in

Table I.
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finite temperatureT the renormalization-group flow stops
D0;kBT due to thermal fluctuations which prevent the fo
mation of even larger effective spins. At this point, all pa
of spins in links with gaps larger thanD0;kBT form large
effective spins. Since the distribution of gaps is broad,
interaction energies between the effective spins are typic
much smaller thanD0;kBT, and each large spin moves e
sentially independently. The entropy per unit length is he

s~T,H50!

L
}
kBln~2^Seff&11!

n
}T2ku lnTu ~31!

in the scaling regime wherêSeff&@1. Note that the assump
tion of independent effective spins leads to an overestim
of the entropy. From the relationC(T)5T(ds/dT) follows
the specific heat per unit length

C~T,H50!

L
}T2ku lnTu, ~32!

and hence the critical exponenta522k. This is qualita-
tively different than in the random spin-1/2 antiferromagn
wheres(T)}u lnTu22. This is also in contrast to the uniform
1D antiferromagnet wheresAF(T)}T and the uniform ferro-

FIG. 6. The fixed-point distributions of AF gaps for four sing
lar chains~chainsE, G, K, andO in Table I! ~dotted lines!. These
are to be compared with the corresponding fixed-point distribu
of regular chains~solid line!.

FIG. 7. Log-log plot of the distribution of gaps at the fixed poi
for regular initial distributions.
e
ly

e

te

t

magnet,sFM(T)}AT. The fact that both the entropy and th
specific heat of the random-exchange spin chains go to
with a rather small power reflects the presence of large n
ber of uncorrelated spin degrees of freedom at low temp
ture.

B. Static magnetic susceptibility

By analogous arguments, the essentially uncorrela
large effective spins give a Curie-like contribution to th
magnetic susceptibility per unit length

x

L
5

m2

3kBT

^Seff
2 &
n

5
c

T

D0
22k

D0
22k 5

c

T
. ~33!

Thus the critical exponentg is 1. The Curie behavior is
usually a signature of uncorrelated spins. We emphasize
this isnot the case for the random spin chain. Rather, mos
the original spins arestronglycorrelated, and the Curie-like
temperature dependence follows from the scaling rela
n;^Seff

2 &, Eq.~21!. The Curie constantc can be calculated in
terms of the original spin distributions as follows. As di
cussed in Sec. III, the magnitude of the effective spin rep
senting a segment ofn frozen spins is given by the sum

Seff
2 5S (

i51

n

d iSi D 2, ~34!

where the staggering factord i is defined by

d i1152d isgn~Ji !; d151, ~35!

andSi.0 is the spin size of the elementary spin at sitei .
Averaging over the~initial! disorder, we obtain

^Seff
2 &5K S (

i51

n

d iSi D 2L 5n^Si
2&1^Si&

2(
iÞ j

^d id j&. ~36!

Definingp as the probability for a bond to be ferromagne
and usinĝ d id j&5(2p21)u i2 j u we get

^Seff
2 &5nF ^Si2&1

2p21

12p
^Si&

21OS 1nD G , ~37!

and in the limit of smallT ~largen) we find the Curie con-
stant to be

c5
m2

3kB
F ^Si2&1

2p21

12p
^Si&

2G . ~38!

This result coincides with the low-temperature susceptibi
we obtain for the analogous classical spin chain.11 Note that
this low-temperature Curie constant is in general differ
from the high-temperature value

c̃5
m2

3kB
^Si~Si11!&. ~39!

It follows that c5 c̃ only if

12p

2p21
5^Si&. ~40!

n
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Thus, in the random spin chain we expect the magnetic
ceptibility to cross over from one Curie-like behavior at hi
temperature (T>J/kB) to a different Curie-like regime a
low temperature (T<J/kB).

C. Magnetization at finite H

In a finite magnetic fieldH and at finite temperatureT the
RG flow is interrupted either by the thermal energykBT or
by the magnetic Zeeman energyEZM5m^Seff&H. If
kBT>EZM the chain is dominated by thermal fluctuatio
and the magnetization is given byxH. If kBT<EZM the
magnetic field drives the system away from the fixed poin
zero magnetic field into a state of aligned effective sp
where the magnetization eventually saturates. In this reg
a nonzero magnetic field starts to align the effective spin
an energy scaleD0;m^Seff&H. With the above scaling prop
erties this meansD0;H1/(11k), so that the saturated magn
tization per unit length becomesM /L;m^Seff&/
n;Hk/(11k). The condition that the chain is not yet dom
nated by thermal fluctuations iskBT,D0;H1/(11k). Sum-
marizing these arguments, we get

M ~T,H !

L
}HHk/~11k!, T11k!bH,

H/T, T11k@bH,
~41!

whereb is a dimensionful nonuniversal constant. Similar
the entropy goes rapidly to zero atT11k'bH when the mag-
netic field starts to align the spins.

VI. COMMENTS ON THE RSRG SCHEME

In this section we discuss the validity of our RSRG tre
ment and various approximations we used. As we have s
in the previous sections, the formation of an effective s
yields new interactions among the remaining spins. Th
interactions were calculated perturbatively, where the~aver-
age! perturbation parameter is«5D t /D0. To first order in
«, only nearest-neighbor Heisenberg terms are induced,
the functional form of the Hamiltonian~1! is preserved in the
RSRG transformation. However, the terms in Eq.~1! are not
the only ones allowed by the symmetry, and in general
expect more complicated isotropic interactions to appea
higher-order corrections in« are included. In the origina
MDH RSRG,D t /D0→0 as the fixed point is approached,17

and the perturbative treatment becomes exact. In our ca«
stabilizes at a finite value around 0.2 at the fixed point. T
we have to analyze here to what extent higher-order te
can change our results.

The basic assumptions of the RSRG scheme are tha
two spins which are most strongly coupled to each ot
form one effective spin, and that any breaking up of this s
pair involves such a large energy that we can regard
effective spin as a rigid object. There are two criteria
these assumptions to be valid. First, the energy cost
breaking up the strongest spin pair, i.e., the energy gapD,
must be much larger than the energy available in neighbo
spin pairs. Second, non-nearest-neighbor couplings hav
fall off sufficiently rapidly with distance, so that many wea
couplings cannot accumulate sufficient strength to break
the spin pair. The second criterion is essentially equivalen
the absence of strong frustration in the system. Below,
s-

f
s
e
at

-
en
n
e

nd

e
if

s
s

he
r
n
e
r
or

g
to

p
to
e

argue that higher-order terms do not lead to violation of a
of these criteria, and hence that they do not qualitativ
change any of our conclusions. In particular, the relatio
~16! between the scaling exponents, and hence the sca
forms~17! and~18!, are still correct. The only impact higher
order terms have, is to modify the expressions in Eq.~8! for
the renormalized gaps, thereby slightly changing the aver
ratio r in Eq. ~23! and the scaling exponentk. The low-
temperature forms of the thermodynamic quantities deri
in Sec. V are valid even though the actual value of the
ponentk may shift slightly. In particular, it is important to
note that the Curie-like form of the magnetic susceptibil
does not involvek.

A. Higher-order contributions

We consider effective interactions between spins wh
are separated byd ~effective! lattice spacings. In the RG
transformation these are generated by second-~and higher-!
order terms in«, and physically they represent interactio
mediated by excitations within the locked effective spin
These terms will hence appear even if they are absent in
original Hamiltonian. However, the interactions generated
this way fall off exponentially with distanced as

D~d!

D0
;«d, ~42!

as can be seen from the following argument. For given
ergy scaleD0, consider the strongest bond with spinsSL and
SR which are coupled via long-range interactions to the sp
SA andSB , respectively, with the gapsDAL /D0;«dAL and
DRB /D0;«dRB ~see Fig. 8!. The induced interaction betwee
SA andSB due to second-order terms is

DAB

D0
;

DALDRB

D0
2 ;«dAL1dRB. ~43!

Therefore the non-nearest-neighbor interactions decay e
nentially with «'0.2 at the fixed point and cannot lead
frustration effects. Consequently, it is justified to restrict o
consideration to the dominating nearest-neighbor interact
only. The only remaining isotropic interactions are highe
order nearest-neighbor spin terms (Si•Si11)

m. These terms

FIG. 8. Higher-order terms induce a coupling betweenSA and
SB asSL andSR are replaced by an effective spin.
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are local and could, in principle, be included when calcu
ing the lowest energy spin multiplet and the gap to the fi
excited state in a link. These higher power spin terms
also higher order in« and are unlikely to become larg
enough to change the low-energy spectra of the stron
link qualitatively.

B. Three-spin decimation

For some particular combinations of spins and couplin
the renormalized gap becomes larger than the gap jus
moved,D̃.D0.

23 In this section we argue that even in the
cases it is justified to use the RG transformation outlined
Sec. II B.

For D̃.D0 a more correct procedure would be to sol
the three-spin problem involving the two spins on the str
gest link and the spin on the link withD̃.D0. We would
represent the ground-state multiplet of the three-spin sys
with one effective spinS̃ and finally calculate the effective
couplings betweenS̃ and its neighbors@Fig. 9~b!#. Here we
claim that we can obtain essentially the same result using
RSRG scheme@Fig. 9~a!#. In the first step the strongest lin
is replaced by an effective spinS8, and the gapsD1 and
D2 are renormalized. The renormalized gapD̃2.D0 by as-
sumption immediately becomes the largest gap in the ch
so that, in the next step, the link$D̃2 ,S8,S2% is replaced by
an effective spin of sizeS̃5uS86S2u5uSL6SR6S2u. In this
process the gapsD3 andD18 are renormalized. The size of th
effective spinS̃ in Fig. 9~a! is given by the absolute value o
the ~vector! sum of the spinsSL , SR , and S2 parallel or
antiparallel according to the sign of the couplings. This is
same spin we expect for the ground-state multiplet of
three-spin system, i.e.,S̃ in Fig. 9~b!. Similarly we get the
sign of the couplings betweenS̃and its neighbors in Fig. 9~a!
from Eq. ~8! by aligning the spins according to the signs
the couplings and by comparing the direction of the sp
S1 andS3 with the direction of the effective spinS̃. The signs
of the couplings obtained in this way agree with what o
expects for the signs of the corresponding couplings in
three-spin treatment in Fig. 9~b!. Therefore there can only b
a difference in the renormalized coupling strengths betw

FIG. 9. ~a! The two-step decimation of three spins used in
numerical simulations.~b! The three-spin decimation in one step
t-
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the twice-two-spin and three-spin decimation scheme.
both ways, however, the effective couplingsD̃1 and D̃3 are
proportional toD1 andD3, respectively~and independent o
the magnitude of the unphysically large gapD̃2 in the RG
treatment!. Therefore the discrepancy is minor and will n
cause any qualitative difference.

VII. CONCLUSIONS AND SUMMARY

We have studied spin chains with random couplings a
random spin sizes by means of a real-space RG scheme
successively replaces strongly correlated spin pairs by ef
tive spins. The RG transformation preserves the functio
form of the Hamiltonian but changes the probability dist
bution of the links ~couplings and spins!. This procedure
generates interactions among the remaining spins. For
enough energies the probability distribution of links acqu
a scaling form, and for not too singular initial distributions
gaps @so thatDycP(D) is regular,yc'0.7# the fixed-point
distribution is universal. From a random-walk picture for t
formation of the large effective spins, we argue for a relat
between the scaling exponents of length and the average
size, which together with other considerations reduces
number of independent scaling exponents to one. This
confirmed in numerical simulations of random spin chai
and in the universal regime, we numerically determine
remaining independent scaling exponent tok50.2260.01.

At low energies~low temperatures! the random spin chain
is characterized by large effective spins which inter
weakly with their nearest neighbors. As temperature is f
ther lowered, the average size of the effective spins increa
as T2k while the average distance between two effect
spins ~in units of the original lattice constant! increases as
T22k. This regime is also characterized by universal te
perature dependence of thermodynamic quantities.

The slow approach to the fixed point~our numerical simu-
lations indicate a crossover region of more than five order
magnitude for reasonable starting configurations! suggests
that the true scaling regime may be hard to reach in exp
ments. However, the formation of large effective spins o
curs at considerably higher energy scale, and even if
scaling exponentk may not have stabilized to its fixed-poin
value, the distribution of links is roughly like the fixed-poin
distribution. The clearest signal of the formation of lar
effective spins is perhaps the Curie-like temperature dep
dence of the uniform magnetic susceptibility,x(T)}1/T, in a
temperature regimekBT<J (J being the typical exchange
interaction in the initial spin chain!. Also, since the 1/T de-
pendence inx emerges before the distribution of links a
proaches the fixed point, the Curie-like susceptibility sho
be easier to address experimentally than other thermo
namic quantities which may develop scaling behavior only
inaccessibly low temperatures.

When the scaling regime is realized, the most straightf
ward way to measure the exponentk, and hence the rate a
which spin degrees of freedom freeze out is through the s
cific heat,C(T)}T2ku lnTu. An alternative approach which
avoids the difficulties connected with measuring small h
transfers at low temperatures is to lower the temperatur
the presence of a magnetic field until the magnetization s
rates. The scaling exponentk may then be deduced from th



tio

ie
s-
et
un

fa
av

ve

ro

o
n
l-
e

om
ol
-
ht
1/
b

-
t
b
a

nt
s
e
is
in
en
e
es
ge
so
gl
ra
in
n

nu
in
g

c
ts
,
e
o

P.

u-
in
a

lets
in-
of
he
b-
the

t,
of
an
ints
o-

om
an-
lso
t
.
nd
b-

n
sa
for
Re-

d.
C
ard

e

55 12 589LOW-ENERGY FIXED POINTS OF RANDOM QUANTUM . . .
predicted field dependence of the saturated magnetiza
M sat(H)}H

k/(11k).
The low-energy physics of the random spin chain stud

in this paper is very different from that of uniform spin sy
tems as well as spin-1/2 random bond antiferromagn
chains studied in Refs. 14–17,19,20. In the RAF the gro
state is arandom singlet phase24 ~RSP! where each spin
forms a singlet with another spin which may be located
away. In the RSP the coupling between two spins that h
survived down to some energy scaleD0 is mediated by vir-
tually exciting all intermediate singlets, leading to effecti
couplings that decreases exponentially with length,J
}exp(2An). By inverting this relation it follows that length
scales logarithmically with the energy,n}u lnD0u2. For the
RSP, arguments analogous to those in Sec. V lead to ent
s(T,H50)/L}u lnTu22 and magnetic susceptibilityx(T)/L
}T21u lnTu22.17 In our terminology this corresponds t
k5n50 up to logarithmic corrections. This is consiste
with the interpretation ofk in terms of the average renorma
ization factorr , Eq. ~23!. Indeed, in the case of the RAF th
perturbative parameter«5D t /D0 and hence alsor goes to
zero25 near the fixed point, implyingk50. Clearly the RSP
is distinct from the large-spin phase~LSP!.

As pointed out in Ref. 19, a third possible state of rand
spin chains at low temperatures is the random dimer s
~RDS!, which is easily understood within the MDH RG pic
ture. Assuming that, e.g., odd links are on average slig
stronger than even links in an antiferromagnetic spin-
chain, the even links are correspondingly more likely to
removed. Since the removal of an even~odd! link leaves a
renormalized odd~even! link behind, odd links are on aver
age renormalized more frequently than even ones, and
separation in energy scale between even and odd links
comes more and more pronounced until all the singlets
on even links, therandom dimer solid. Unlike the RSP and
the LSP, thermodynamic quantities in the RDS shownonuni-
versal temperature dependence.19

The existence of various low-temperature fixed poi
raises the question of stability of the various phases. A
expected from the discussion above, the RSP is unstabl
wards dimerization.19 In contrast, the large-spin fixed point
stable towards dimerization. Unlike the RSP in which sp
are always removed in pairs, the RG transformation in g
eral removes only one spin~i.e., replaces two spins with on
effective spin!. Hence odd links are turned into even on
and vice versa so that dimerization is irrelevant at the lar
spin fixed point. From the discussion in Sec. III it is al
clear that both the RSP and the RDS, which are sin
ground states, are unstable towards a small fraction of
domly distributed ferromagnetic bonds and/or large sp
(S.1/2). In both cases we expect the spin of the grou
state to scale with length asS2;L consistent with the fixed
point studied in this paper. This has been confirmed in
merical simulations of random antiferromagnetic cha
close to the random-singlet fixed point with 5% ferroma
netic bonds~chain E in Table I! or with 4% of the spins
S51 ~chainG). In all cases studied the chains first approa
the fixed-point distribution of the RSP by forming single
through the removal ofS51/2 spins and AF links. However
as the density of higher spins and/or FM links increas
larger effective spins start to form and the distribution
n,
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links crosses over to the fixed-point distribution of the LS
Which fixed point~either universal or nonuniversal! is even-
tually approached depends crucially on the initial distrib
tion. This is because the singlet formation is very efficient
decreasing the effective couplings and quickly builds up
singular distribution of gaps. Hence, as long as only sing
are formed the distribution rapidly approaches the very s
gular random singlet fixed-point distribution. The degree
the singularity in the gap distribution at the point where t
density ofSÞ1/2 and ferromagnetic couplings becomes su
stantial, determines the behavior of the spin chain. If
singularity generated at this point is less thanP(D);D2yc

the chain will flow to the universal large-spin fixed poin
while for a stronger singularity the chain approaches one
the nonuniversal large-spin fixed points. This opens up
interesting possibility to access the nonuniversal fixed po
in experiments by starting with a RAF with a properly ch
sen small fraction of FM bonds.

An interesting open question is what happens away fr
the Heisenberg point. Fisher extended the MDH RG to
isotropic antiferromagnetic spin-1/2 chains to show that a
in theXY regime (Ji

z,Ji
x5Ji

y) they flow to a random single
fixed point, at least for broad enough initial distributions17

The inclusion of anisotropy in the generalized MDH RG a
its impact on the large-spin fixed point are interesting pro
lems which we leave for future research.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
HAMILTONIAN

In this appendix we give a brief derivation of the effectiv
couplings, Eqs.~7! and ~9!.

1. First-order perturbation theory

Consider the four-spin Hamiltonian

H5H01HI , ~A1!

where

H05J0SL•SR , ~A2a!

HI5J1S1•SL1J2SR•S2. ~A2b!

We treatHI as a perturbation toH0. In the space of the
degenerate ground states ofH0, the spinsSL andSR form a
state of maximum~minimum! total spin S for J0,0
(J0.0), while the spinsS1 andS2 can point in any direction.
The degenerate ground states span the Hilbert spaceH, the
product space of the spin spaces forS1, S, andS2. Each state
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um1Mm2&5um1& ^ uM & ^ um2& in H is labeled by the corre
sponding azimuthal quantum numbersm1, M , andm2. HI
partly lifts the degeneracy and induces an effective Ham
tonianHeff in H. To orderJ1,2/J0 the matrix elements o
Heff are26

Hm1Mm2 ,m18M8m28
eff

5^m1Mm2uHI um18M 8m28&. ~A3!

We calculateHeff in two steps: We first establish the oper
tor identities~valid in H)

S1•SL5c~SL ,SR ,S!S1•S, ~A4a!

S2•SR5c~SR ,SL ,S!S2•S, ~A4b!

which, together with Eqs.~A2b! and ~A3!, give

Heff5 J̃1S1•S1 J̃2S•S2 ~A5!

with

J̃15J1c~SL ,SR ,S!, ~A6a!

J̃25J1c~SR ,SL ,S!. ~A6b!

We then determine the constantc(SL ,SR ,S) by calculating a
suitable matrix element of the two operators in Eq.~A4a!. To
establish Eq.~A4a! we define the usual raising and lowerin
operatorsŜ6 which act on a stateuM & in a spin-Smultiplet
in the following way:

Ŝ2uM11&5AM
S uM &,

Ŝ1uM &5AM
S uM11&,

where the constantsAM
S 5A(S2M )(S1M11) assure that

^M uM &51. Consider first the operatorsŜ1
1Ŝ2 and Ŝ1

1ŜL
2 :

^m1Mm2uŜ1
1Ŝ2um18M 8m28&

5dm
18 ,m121dM8,M11dm

28 ,m2
Am121
S1 AM

S , ~A7a!

^m1Mm2uŜ1
1ŜL

2um18M 8m28&

5dm
18 ,m121dM8,M11dm

28 ,m2
Am121
S1 ^M uŜL

2uM11&.

~A7b!

The matrix element in the right-hand side of Eq.~A7b! is

^M uŜL
2uM11&5~AM11

S AM12
S

•••AS21
S !21

3^M uŜL
2~Ŝ2!S2M21uS&

5AM
S ~AS21

S !21^S21uŜL
2uS&, ~A8!

where we have used the fact thatŜ25ŜL
21ŜR

2 commutes

with ŜL
2 . From Eqs.~A7a!, ~A7b!, and~A8! we see that

Ŝ1
1ŜL

25~AS21
S !21^S21uŜL

2uS&Ŝ1
1Ŝ2 ~A9!

for every combination ofm1 •••M 8, i.e., as an operator iden
tity in H. We note that̂ S21uŜL

2uS& is a real number, and
take the conjugation of Eq.~A9!:
l-

Ŝ1
2ŜL

15~AS21
S !21^S21uŜL

2uS&Ŝ1
2Ŝ1.

We obtain the operator identity

Ŝ1
xŜL

x1Ŝ1
yŜL

y5~AS21
S !21^S21uŜL

2uS&~Ŝ1
xŜx1Ŝ1

yŜy!.
~A10!

Equation~A4a! then follows from Eq.~A10! and rotational
invariance. From the relation ^S21uŜL

2uS&
5(AS21

S )21^SuŜ1ŜL
2uS&52(AS21

S )21^SuŜL
z uS& we obtain

c~SL ,SR ,S!5
^SuŜL

z uS&
S

. ~A11!

To determinê SuŜL
z uS& in Eq. ~A11! we evaluate the matrix

element ^SuSL•SuS& in two different ways. First we use
S5SL1SR to get

^SuSL•SuS&5^SuSL
2uS&1^SuSL•SRuS&

5
1

2
@S~S11!1SL~SL11!2SR~SR11!#.

~A12!

The same matrix element can also be written as

^SuSL•SuS&5^SuŜL
zŜzuS&1

1

2
^SuŜL

2Ŝ1uS&1
1

2
^SuŜL

1Ŝ2uS&.

~A13!

The first term in Eq.~A13! equalsS^SuŜL
z uS&, the second

term vanishes sinceuS& is a highest weight state, and for th
same reason we can replace the operatorŜL

1Ŝ2 in the third

term by the commutator@ŜL
1 ,Ŝ2#52ŜL

z so that

^SuSL•SuS&5~S11!^SuŜL
z uS&. ~A14!

From Eqs.~A12!, ~A14!, and~A11! finally follows

c~SL ,SR ,S!5
S~S11!1SL~SL11!2SR~SR11!

2S~S11!
.

~A15!

For the three cases of interest to us, Eqs.~A15! and~A6! give

J̃155
J1

SL
SL1SR

: J0,0,

J1
SL11

SL2SR11
: J0.0, SL.SR ,

2J1
SL

SR2SL11
: J0.0, SL,SR ,

~A16!

and

J̃255
J2

SR
SL1SR

: J0,0,

2J2
SR

SL2SR11
: J0.0, SL.SR ,

J2
SR11

SR2SL11
: J0.0, SL,SR ,

~A17!
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from which Eqs.~8! follow by using the relation betwee
couplingsJ and gapsD, Eqs.~5!.

2. The effective coupling in the case of singlet formation:
Generalization of the MDH RG transformation

In the case whereJ0.0 andSL5SR , the effective spin is
a singlet,S50, and the effective Hamiltonian, Eq.~A3!,
vanishes. To get a nonzero coupling betweenS1 andS2, we
have to include second-order perturbation. In the c
SL5SR51/2 this gives the effective couplings used in t
MDH RG. Since the first-order contribution is zero, we ha
to solve the second-order secular equation26

Det~Vgg82E~2!dgg8!50 ~A18!

with

Vgg85(
e

^guHI ue&^euHI ug&
E02Ee

, ~A19!

whereug& is a ground state ofH0, the sum is over all excited
statesue& and Ee is the ~unperturbed! energy of the state
ue&. Since there is no coupling between the outer spin
eitherJ1 or J2 is zero, only terms proportional toJ1J2 in Eq.
~A19! contribute to the effective coupling~the terms propor-
tional toJ1

2 andJ2
2 give an overall energy shift which, for ou

purposes, can be discarded!. Denoting the states formed b
the spinsS1 andS2 by uA&, the states formed bySR andSL
by uB& and in particular the ground-state singlet byuB50&
we have~in obvious notation!

VAA52J1J2 (
A8,B8

^A,0uŜ1
zŜL

z uA8,B8&^A8,B8uŜR
z Ŝ2

zuA,0&
2J0~1/2!SB8~SB811!

1
J1J2
2 (

A8,B8

^A,0uŜ1
2ŜL

1uA8,B8&^A8,B8uŜR
2Ŝ2

1uA,0&
2J0~1/2!SB8~SB811!

1
J1J2
2 (

A8,B8

^A,0uŜ1
1ŜL

2uA8,B8&^A8,B8uŜR
1Ŝ2

2uA,0&
2J0~1/2!SB8~SB811!

.

~A20!

The sum over the statesuA8& can be performed separately
give

VAA52
4J1J2
J0

^AuŜ1
zŜ2

zuA&(
B8

^0uŜL
z uB8&^B8uŜR

z u0&
SB8~SB811!

2
J1J2
J0

^AuŜ1
1Ŝ2

2uA&(
B8

^0uŜL
2uB8&^B8uŜR

1u0&
SB8~SB811!

2
J1J2
J0

^AuŜ1
2Ŝ2

1uA&(
B8

^0uŜL
1uB8&^B8uŜR

2u0&
SB8~SB811!

.

~A21!

The matrix elements in the sums get contributions only fr
spin-1 multiplets, and hence we can extract the fac
1/@SB8(SB811)#51/2 and perform the sum over the com
plete set of statesuB8&. Finally, since
e

if

r

^0uŜL
zŜR

z u0&5
1

2
^0uŜL

1ŜR
2u0&5

1

2
^0uŜL

2ŜR
1u0&

5
1

3
^0uSL•SRu0&52

1

3
SL~SL11!,

~A22!

we have

VAA5
2J1J2SL~SL11!

3J0
^AuS1•S2uA&, ~A23!

from which it is clear that the effective Hamiltonian in th
case is

Heff5 J̃S1•S2 ~A24!

with

J̃5
2J1J2SL~SL11!

3J0
. ~A25!

In the special case ofSL5SR51/2 this givesJ̃5J1J2/2J0 in
agreement with Ref. 14.

APPENDIX B: THE GENERALIZATION
OF THE MDH RG FLOW EQUATIONS

Although in this paper we have studied the RG flow
numerical simulations, it is of interest to show that flo
equations of the form of Eqs.~13! exist and can be expecte
to have attractive fixed point~s! to which the probability dis-
tributions eventually flow. Rather than deriving the explic
forms of F1 andF2, which are rather complicated, we wi
outline how this can be done and point out to what extent
generalized flow equations~13! differ from the MDH RG
flow equation~4!.

We may view one step in the RG transformation as
removal of one link$D0 ,SL ,SR% and the change of two
links, $D1 ,S1 ,SL%, $D2 ,SR ,S2% → $D̃1 ,S1 ,S%, $D̃2 ,S,S2%.
For an infinitely long chain we remove a small fraction
links with gaps in the interval@D02dD0 ,D0#. This is illus-
trated in Fig. 10, where, for convenience, we sho
PA(D0 ;D,SL ,SR) andP

F(D0 ;2D,SL ,SR) in the same dia-
gram. At an energy scaleD0, P

A, andPF are nonzero only
for links with D<D0. We remove all links in the thin shel
DP@D02dD0 ,D0#, which causes a small fraction of link
inside the equal-gap surfaceD5D0 to hop around. The
changes inPA andPF due to the links that move around a
of order dD0 so that in the limitdD0→0 the RG flow is
described by a set of first-order differential equations

dPA

dD0
5F1@P

A,PF#, ~B1a!

dPF

dD0
5F2@P

A,PF#, ~B1b!

whereF1 andF2 are two~nonlinear! functionals ofPA and
PF, whose explicit forms depend on the functionsf n in Eq.
~8!. If renormalized gaps were always smaller thanD0, it
would be straightforward to write down the explicit form o
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the flow equations~13!. Assuming no correlations betwee
neighboring links~except for the obvious correlation tha
they share one spin!, we find four types of terms inF1; ~i!
One term proportional to2d(D2D0)P

A that depletes the
region of links whereDP@D02dD0 ,D0#. ~ii ! One term that
decreasesPA due to links$D,S1 ,SL% that are transformed
because they neighbor a link that is replaced by an effec
spin. ~iii ! A set of terms that increasePA(D0 ;D̃1 ,S1 ,S) be-
cause some links are transformed into links$D̃1 ,S1 ,S%. ~iv!
One term proportional toPA that compensates for the overa
decrease in the number of links and keeps the probab
distributions normalized. The functionalF2 has a similar
structure. Only the third kind of terms involve the RG fun
tions f n . We note that in the original MDH RG the terms~ii !
and~iv! cancel. The term~i! can be omitted if the probability

FIG. 10. The link distributions are nonzero only forD,D0.
Replacing gaps in the thin sliceDP@D02dD0 ,D0# shifts a fraction
of links in PA andPF.
n

o

s

C

ve

l
ity

-

distribution is defined only on the interval@0,D0#. This was
done in Ref. 14 so that the only term that appears in Eq.~4!
is one term of type~iii !.

If some renormalized gaps become larger thanD0, then
before we take the limitdD0→0 we must consider the frac
tion of the transformed links that acquireD̃.D0. As we have
discussed in Sec. VI B, in our RG scheme a finite fraction
the links acquires a larger gapD̃.D0; in Fig. 10 this corre-
sponds to links that jump outside the support ofPA and
PF. If the unphysically strong links are not taken care
before the next slice of links are removed, more and m
links will end up outside theD0 surface. In the limit
dD0→0 this will make it impossible to defineD0, since
smoothly integrating out links in a finite gap interval in th
case generates a small but finite probability for gaps ofany
strength. This problem is remedied in the following wa
Since in our RG scheme, no property of the renormali
links depends on the actual value of the gap in the stron
link, we can modify the equations~7! so that
D̃5min$Dfn ,D0%. This does not change the discrete R
scheme since the renormalized link is removed in the n
step of the RG after which there is no information in t
chain of the value ofD̃. In Fig. 10, this modification of the
functions f n is illustrated by projecting strong links bac
onto the surfaceD5D0. The projected links are then re
moved, which transforms some links inPA andPF, and also
generates an even smaller fraction of links above theD0
surface. These links are then projected and removed,
Keeping terms of orderdD0, the infinite sequence of remov
ing smaller and smaller fractions of links that in the previo
step have jumped out of the distribution contributes a se
of smaller and smaller terms in the shift ofPA andPF that
has to be summed before the limitdD0→0 is taken. This
resummation makes the functionalsF1,2 in Eq. ~13! rather
complicated.
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