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Low-energy fixed points of random quantum spin chains
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The one-dimensional isotropic quantum Heisenberg spin systems with random couplings and random spin
sizes are investigated using a real-space renormalization-group scheme. It is demonstrated that these systems
belong to a universality class of disordered spin systems, characterized by weakly coupled large effective spins.
In this large-spin phase the uniform magnetic susceptibility diverg@s &svith a nonuniversal Curie constant
at low temperatured, while the specific heat vanishes &|InT| for T—0. For a broad range of initial
distributions of couplings and spin sizes the distribution functions approach a single fixed-point form, where
a~—0.44. For some singular initial distributions, however, the fixed-point form of distributions becomes
nonuniversal, suggesting that there is a line of fixed po[i88163-1827)05214-4

[. INTRODUCTION 1/2 Heisenberg chain, where the exchange coupling between
neighboring spins is+J or —J with probability p and
Over many decades one-dimensiofilD) quantum spin  1—p, respectively. The methods we usg@tgh-temperature
systemg“quantum spin chains) have attracted a lot of in- expansion and transfer-matrix approximajiagive reliable
terest and led to the development of many theoretical methresults down tokgT~J/5, whereT is the temperature and
ods which are now commonly used for the study of otherkg is Boltzmann’s constant. In this regime the numerically
highly correlated systemsDespite the apparent simplicity calculated magnetic susceptibilig(T) and the specific heat
of quantum spin chains, they show a wealth of physical propC(T) interpolate smoothly between the corresponding quan-
erties which give a key to our understanding of various phetities of purely FM @=1) and AF (=0) chains, giving
nomena, e.g., quantum phase transitions, topological ordegood qualitative agreement with experimental dats. At
and fractional statistics.® Since the discovery of various temperatures below-J/kg the effects of disorder become
quasi-1D materials, the study of 1D spin systems, which issignificant. We demonstrated that in this temperature regime
mainly based on the Heisenberg model and its variations, ispins correlate within AF and FM segments of the chain
also of experimental relevance. Examples of such materialseparately. The emerging new degrees of freedom which
include so-called NINO, NENP® and SgCuPtQ.° In par-  dominate the thermodynamics afkarge effective spins
ticular, the latter system belongs to a class of compoundsach corresponding to a correlated segment. The size of these
which is compositionally very flexible and has been underspins and their residual interaction are set by the local disor-
intense experimental investigation over the last few yearsder and hence is random. From exact diagonalization of fi-
This type of quasi-1D system was reported inF80; by  nite segments we concluded that the low-temperature physics
Randall and KatZ,and it is now possible to produce com- of the random spin system is described by the effective
pounds of the form SMNOg in various combinations with  Hamiltonian,
M = Cu, Mg, Zn, Yb, Na, Ca, Co, and = Pt, Ir, Rh, Bi.
Disorder effects play a particularly important role in 1D
guantum spin systems, as even small deviations from the szi JiS S+ @)
regular system often destabilize the pure phdsReal ex-
perimental systems naturally contain impurities and othewhere both the couplingg;, which may have either sign,
types of disorder. Therefore it is very important to under-and the spin sizeS; are random. In particular, we emphasize
stand the influence of disorder on the properties of such syshat the resulting distribution aJ; in Eq. (1) is broad and
tems in order to interpret experimental results. To our knowldense, in contrast to the discrete distribution of the initial
edge, the first 1D spin system recognized for its disordemodel. In this paper we take E@l) as starting point. We
belongs to the class of charge-transfer salts TCNQliscuss the low-temperature properties of this model, and the
(tetracyanoquinodimethanig® These systems have been various fixed points encountered for different initial distribu-
successfully described by a 1D spin-1/2 Heisenberg modelons of couplings and spirs.
with random strength of antiferromagnetic exchange cou- Before going into the details we briefly summarize our
plings between the spins. A more recent example of disorresults and the method we use, which is a generalization of
dered spin chains is $EuPY _,Ir,Og.2° While the pure com-  the real-space renormalization-gro(RSRG scheme intro-
pounds SJCuPtQ (x=0) and SgCulrQg (x=1) are duced by Ma, Dasgupta, and IMDH) in 1979 to study the
antiferromagnetic(AF) and ferromagnetidFM) spin sys- 1D spin-1/2 random antiferromagnéRAF).1* The RAF,
tems, respectively, the alloy s8uPt _,Ir,Og contains both  where all couplings are antiferromagnetic but vary in mag-
AF and FM couplings. The fraction of FM bonds is simply nitude, has also been investigated using Kadanoff block spin
related tox, the concentration of Ir ions. In a previous work, renormalization-grougRG) techniques? and more recently
we modeled SICuPt_,Ir,Og with a nearest-neighbor spin- by the density matrix RG methdf The method of Dasgupta
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et al. has proven to be the most successful one, and was @ 33 ] (b)
recently extended by Fishéfwho solved the RG equations 0 Jin
exactly. _‘_‘_x_’-

In the MDH RSRG scheme, a decimation of degrees of A
freedom occurs through the successive formation of spin sin- @ \-—\
glets from the most strongly coupled spin pairs. This scheme ' S, Sk
conserves the form of the Hamiltonian in the original model, 't ~ \'
but changes the distribution of couplings, which gradually J
approaches a fixed-point form. The model in EL).contains
arbitrary spin sizes and couplings with random sign, so that, ©
in general, two correlated spins do not combine into a sin- _\ A \Ao \AZ \_
glet. Rather they form an effective spin with renormalized S, S, Se S,
couplings to its neighbors. Here we introduce a modified
RSRG scheme which takes this into account. Like the MDH - @

RSRG scheme it conserves the form of the Hamiltonian, Eq. 1 \ KZ \
§

(1), but changes the distributions of couplings and gaps. The s
RG flow generated can therefore be thought of as a flow in !
the space of distributions of couplings and g&pg#/e dem-

onstrate that for a wide range of initial distributions of cou-  FIG. 1. Schematic pictures of the RG scher&.The original
plings and spins, the RG flow of the distribution functions MDH decimation.(b) Definition of a link as two neighboring spins
eventually approaches a single universal fixed point. Thist @ndSg and the gaph. (c) The generalized MDH decimation.
fixed point represents the following physical properties. Both )

entropy and specific heat vanishB&|InT| with k<~0.22, so  'eview of the MDH scheme for the RAF wit§=1/2 and
that the critical exponent~ — 0.44. The exponent appears 'andomJ;>0.

also in the nonlinear magnetization BiH)ocH<(1 %) for

sufficiently large fieldsH. For very singular initial distribu- A. The MDH RG for antiferromagnetic spin-1/2 chains

tion of the couplings we find thak takes a nonuniversal  Consider an antiferromagnetic nearest-neighbor Heisen-
value, suggesting the presence of a fixed line. We also find Berg spin-1/2 chain in which the largest couplingljsand
surprising fact that, for both the universal and nonuniversaihe remaining couplings); are distributed according to
fixed points, the susceptibility follows the Curie behavior p(j,:3,). We focus on the link with the largest coupling,

down to zero temperature with a nonuniversal Curie conj,=J; and the terms in the Hamiltonigf) that involve the
stant. We finally show how the two previously known ran- gpinss andS, ;, [see Fig. 18)],

dom phases, the random singlet pheREP and the random

dimer solid(RDS),**?° both of which correspond to Eql) H' =Hy+H, , 2

with all §=1/2 and allJ;>0, are unstable against the ad-

mixture of an arbitrarily small concentration of FM cou-

plings and/or larger spins. HI=3,5-S
Our paper has the following structure. We start with a 00 +1

brief review of the MDH RSRG scheme in Sec. Il A, before M =3 1S _1-S+311S.1-S

we generalize it to chains with both AF and FM couplings in |7z IS+ 2

Sec. Il B. In Sec. lll we analyze the distributions of spins andif the distributionP(J,;J) is broad,J;..; are typically much

couplings, and their scaling forms close to a fixed point. Wesmaller thanJ, and we can treat{/ as a perturbation to

perform the RG scheme numerically by simulating randomHél In the ground state of(, the spinsS, and S, ; form a

spin chains with various initial distributions of couplings and singlet, and the energy gap to the excited statek,.isThis

spins. The numerical results shown in Sec. IV confirm theyound state is fourfold degenerate since the unperturbed

scaling forms conjectured in Sec. lll, but also reveal thatl—|ami|tonian7—(’ does not involve the directions &, and

random spin chains' with very singqlar initial distributions -OfSi+2- M lifts Othe degeneracy and splits the unperturbed

gaps flow to nonuniversal fixed points. In Sec. V we derlveground state into a singlet and a triplet, and the low-energy

aewsgil(')nrgn:%rnn,:ir?fﬂt]ge;mor(g(?ggtﬁr?:?:\%llszaa}?]dﬂ:g gch'spectrum of the four-spin Hamiltonig@) is described by an
PP effective Hamiltonian

transformation. Finally we summarize our results in Sec. VI,
and compare the large-spin phd&&SP) to other disordered Heff:':]'s 'S @)
phases. We also discuss the stability of the various phases _ Sl
and in particular the RG flow between the LSP, RSP, andrhe effective coupling is determined from the energy split-
RDS. ting of the unperturbed ground state, and to second order in
Ji+11dg the result isJ/Jy=J;_1J;,1/2J5. Physically the
weak interaction betweef _; andS, , is mediated by ex-
citing virtual triplet states in the interjacent spin pair.

To study the low-temperature properties of systems de- In the Hamiltonian(1) we replace the terms if’ with
scribed by Eq(1), we generalize a RSRG method introducedthe effective interactio<*™ in Eq. (3) to get an effective
by Ma, Dasgupta, and H(MDH).** We start with a brief Hamiltonian for the low-energy degrees of freedom of the

where

Il. THE RENORMALIZATION-GROUP SCHEME



12 580 E. WESTERBERG, A. FURUSAKI, M. SIGRIST, AND P. A. LEE 55
spin chain. Repeating this procedure and successively replac- Jo>0, J;>0, S <Sy
ing the strongest remaining coupling in the chain preserves
the form of the Hamiltonian but changes the distribution of =A=A,F2(S;,S.,SR);  J1<0, (7b)
couplings and, in particular, lowedg, the largest remaining
coupling in the chain. 1P(J3;,J) is the distribution of cou- Jo>0, J;<0, S >Sy
plings at a point when the largest remaining coupling is
J¢, then the removal of bondk e [Jo—dJo,Jo] generates a =A=A15(S,S,SR); J1<0, (70
flow equation forP(Jy,J) (Ref. 19
Jo>0, J;<0, S <Sy
dP(Jg;d) _ Jo _ _ - ~
d—JO: —P(Jg;J0) J'o dJ;dI,P(Jg;31)P(Jg;d5) =A;=A;f4(5,,5.,Sr); J.>0, (7d)
X 8(J—J3135/23¢). 4 Jo<0, J;>0=A=A;f5(S;,S.,SR); J:>0, (7¢

The flow equation(4) is derived under the assumption that Jo<0, ‘]1<0:>Z1:A1f6(81,5|_ ,Sr); J1<0, (7)

there are no spatial correlations among the bond strengths.
This is indeed the case if there are no correlations in thavhere

distribution of couplings in the initial chain. It has been
oy (S+1)(|S— S+ SRl +1)

shown that if the initial distribution of bonds is normalizable, £1(S,,S, ,Sp) = (89)
Eq. (4) has a unique fixed-point solution that governs the T (SL—Set1)(|S1—St[+1)’
low-energy physics of random bond antiferromagnetic spin-
1/2 chainst’?! £(5..5, .S SL(S+SR—S) &b
2T (Sr=SL+1)(|S;— S| +1)’
B. Generalization of the MDH RG (S s
+ +S -
We apply the same strategy to the random spin chain with f3(S,,S.,SR) = (5+D(5+S ~5) , (80
couplings of either sign and random spin sizes. In contrast to (S.=Sk+1)(S:+5)
the previous case, a link is determined not only by the cou-
pling strength but also by its left and right spin, f4(S;,S,,Se) = SIS~ SrtS[+1) (8d)
{A;,S;,S .1} [see Fig. 1b)]. We defined; as the energy gap AR (SRS (S S
between the ground-state multiplet and the first excited mul- | |
tiplet in the corresponding two-spin Hamiltonian ~ S(IS1—S -SRI t1)
H:JiS'S+l:22 fS(Sl!SL1SR)_(SL+SR)(|51_SI_|+1)! (8e)
[Jil(S+Si+1): <0 (ferromagnetic link, S (S$,+S +SR)
i= ) . T fﬁ(sllsLiSR): . (8f)
Ji(|S—Si.1|+1): J;>0 (antiferromagnetic link. (SL+SR)(STS)
©)

A derivation of these equations is shown in Appendix A 1.

We assume a broad distribution of interaction energies anfirom the knowledge of the gal, and the sign ofl, J; is
focus on the link in the chain which, if completely isolated readily calculated via Eq(5). Similarly A, is obtained by
from the rest of the chain, requires the largest energyeplacingS,; by S, andS, by Sy in Egs.(7) and(8). These
A=A, to excite the ground-state multiplet. We consider theequations do not require the spins to be multiples of 1/2, and
situation illustrated in Fig. &), where{A,,S_,Sg} is the  from now on we regard spins as continuous variables. The
strongest link in the chain, and{A;,S;,S} and case where the strongest link is antiferromagnetic with
{A,,SR,S,} are its adjacent links. In the spirit of the MDH S =Sy is not accounted for in Ed7). In this case the two
RSRG scheme we replace the strongest ldg,S, ,Sg} spinsS, and Sk form a singlet, and the leading-order contri-
with an effective spin of siz&=|S, = Sg| representing the bution to the effective coupling betwee® and S, is (cf.
lowest-energy multiplet of maximurtminimum) spin for a  Appendix A 2

ferromagnetic(antiferromagnetic link. The residual effec-

tive interaction forS;, S, andS, is calculated perturbatively
in £1,=A;,/Aq. The effective interaction is isotropic, and

to first order ing , given by
Hef=73,S,-S+3,SS,
with

Jo>0, J;>0, S>Sq

:>Z1:A1f1(31,5|_ +SR); 31>0,

~ J
323—\]05L(SL+1), 9

which is easily translated intoA via Eq. (5). For
S, =Sg=1/2 this is the original MDH RG transformation.

As in the original RSRG scheme, the effect of succes-
sively forming effective spins is to change the distributions
of gaps and spinglinks) without changing the form of the
Hamiltonian. In analogy to the probability distribution for
the couplings in the RAF, we define probability distributions
of ferromagnetic P7) and antiferromagnetic R®) links
(7a  where the largest remaining gap in the chail s

(6)
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PF(Ag;A,S,SR), (10a KE= KpA= K, (16a
PAAgiA, S, SR). (10b) Ap=Ap=1, (16b)
The probability distribution®”F are symmetric inS, and 1.9 16
Sk and obey the normalization condition HF=HKA= % (169
Ag ® v=2k, (16d
[aa [ asasdPra0ia.8 S0+ PAAGA S S0 | v
0 0 so that in the scaling regime
=1, 11 A 1
for any value ofA,. From PA and PF we can calculate the P :Aé’z"Q (A780,5.80,5R40), (173
distributions of spins, gaps and coupling constants. As a spe-
cial case, the original spin-1/2 antiferromagnetic chain stud- . 1 . . B
ied in Ref. 14 corresponds to P :—Aé_z"Q (A/Ag,S.Aq,SRAp), (17b
PA(AG;A,S.,SR)=68(S.— 3)8(Sg— 3)P(Ag;A), with length scaling as
(129
n~Ag %", (18)
PF(Ag;A,S ,Sr)=0. (12b

If there are no correlations between neighboring lirfés-
cept for the obvious correlation that they share one)siie
flow equations foP”F are

dPA—F PA PF 13
dA, [PH,PT], (133
F
_ A pF
dAO FZ[P :P ]! (13b)

which generalize the MDH RSRG flow equatitd). In Egs.
(13) F, and F, are two (nonlineay functionals of PA and
PF, whose explicit forms depend on the functioisin Eq.
(8), cf. Appendix B.

lll. SCALING FORMS OF THE PROBABILITY
DISTRIBUTIONS

The relationg16) have been confirmed in numerical simula-
tions (cf. Sec. I\) and can be understood as follows.

Let x=Np/(Np+ Ng) be the fraction of AF links in the
chain. Both FM &=0) and AF ¢=1) chains are unstable
towards a small concentration of couplings of the opposite
sign. To see thak=1 is unstable, we note that unless the
effective spin formed is a singlet, the removal of a link in an
AF chain converts one neighboring link into a FM link.
Similarly x=0 is unstable because an isolated AF link in a
FM environment always survivgghe removal of a FM link
does not change the signs of its neighboring links, and if the
AF link itself is removed, one of its FM neighbors is con-
verted into an AF link This implies that for small enough
x the absolute number of AF links is constant, so that the
fraction x of AF links increases as links are removed. Thus,
unless we start with a completely FM random spin chain or a
purely AF random spin chain with uniform magnitude of the
spins, the fixed-point distribution contains both FM and AF

As links are replaced by effective spins, the effective couJinks. Having established that bot and 1~ X, the fraction
plings and, hence, the gaps of the links decrease. At the san® AF and FM links at the fixed point, respectively, are non-
time the average distance between neighboring effective 2€ro, we can easily derive the relatioli$a—(160. Since a
spins as well as the magnitude of the effective spins increaséite fraction of the spins belong to both a FM and an AF
(Here the original lattice constant is assumed to be 1, an_H”kv there cannot bea_lseparatlon in scales between spin sizes
n is the ratio of the number of original spins to the number ofiN AF and FM links, i.e.ka=kg=x. Ag=1 (Ap=1) fol-
effective sping. We expect that the link distributions even- 10ws from the fact that the average gap in the RAF)

tually approach a fixed point whe®, PF, andn exhibit
scaling behavior

- A S S
PA(A0;A,SL,SR) =40 QN i |
( 0 L SR) 0 Q (A)(;A AO Kp AO Kp

(143
A s s

Mp A TKEI A TKE|?
A0 A0 AO

PF(Ao;A,SL,SR)=Ao”FQF(
(14b

and
n~Ag". (15

The seven exponents in Eq44) and(15) are not all inde-
pendent. Indeed, we argue below that

distribution, when measured in units Af; is finite and in-
dependent ofAy. ua=1—2« follows trivially from the fi-
niteness ofk,

A o]
Xo= Jo ‘da Jo 45 dSeA , “*QA(A/Ag, ALS, ,A5SR)

1 )
ZAéfz'h“Af dA’f ds'ds’QA(A’,s',s"), (19
0 0

which must be independent &,. An analogous argument
for 1—xg implies up=1-2«.

The last relatior{16d) requires a more detailed analysis of
the way effective spins are formed by correlating the original
spins in clusters. The size of the effective spin corresponds to
the spin quantum number of the ground state of the cluster.
Since the spin system is not frustrated, the spin quantum
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number is determined from the classical correlation of thevhere niJZHL;ilsgn(—Jk) for j>i. At finite temperature
spins(parallel and antiparallgl The total spin of a cluster of this correlation function should also decay exponentially for
n spins is then given by large|i—j| with the correlation lengtim:

Co(i—j)xexp(—|i—j|/n) for T>0. (27)

S= , (20

n
RN
i=1
. . . , From Eq.(18) we find that the correlation length grows with
where two neighboring spins enter the sum with the SaM@ecreasing temperature as T~ "=T 2~ It is likely that at

(oppositg sign if their mutual coupling is ferromagnetian- ;1o temperature the correlation function decays algebra-
tiferromagnetig. This leads to a typical random-walk prob- ically as

lem which results in the scaling

S~n'2, (21)

Coi—j)= (28)

. =i
From this we conclude=2«.

The remaining independent exponent, which we take 1qntortunately we cannot determine the value of this new
be «, is related to the average renormalization of the 93PSexponents from our numerical RG scheme.
Consider two neighboring effective spins with a coupling
corresponding to a gafd. Suppose also that each of the two
effective spins is made up ofZpins at some larger energy IV. NUMERICAL RESULTS
scaleA’. As the energy scale is lowered frofrf to A and
the 2 spins form one large effective spin, the gaps typi-
cally renormalized R times (k times in the course of forma-
tion of the left effective spin and similarly times from the
right). If the magnitude of a gap is reduced on average by
factor r each time a neighboring link is replaced with an
effective spin, then

We perform our RG scheme by numerical simulations.
We start each simulation by generating a chain according to
independent probability distributions for gaps and spins. In
each decimation step we pick up the strongest link in the
%hain, replace it with an appropriate effective spin, and
renormalize the neighboring bonds. To keep the number of
links fixed, one site is finally added in one end of the chain.

In2/2Inr This procedure is then iterated until the shape of the distri-
) , (22) bution function of links no longer changes. In this way we
have iterated sixteen chains with both nonsingular and sin-
gular initial distribution, see Table I.
In all our simulations the distributions of links eventually
In2 converged to some fixed-point distributions. The distribu-
=——. (23)  tions rather quickly take the rough forms of the fixed-point
4lnr distributions, while the final approach and, in particular, the
convergence of the exponents in E@E) to their final val-
ues are very slow and take place over up to five orders of
tmagnitudes in lengtliten orders of magnitude in enengy
Our numerical simulations demonstrate that unless the initial
Wistribution has a high degree of singularity for small gaps,
Othe distribution of links in the chain eventually flows to a
universal fixed-point distribution of AF and FM links. If the
C initial  distribution of gaps is more singular than
Cali=1)=(5-9), (24) P(A)~A"Y¢, y.~0.7, our numerical simulations suggest
Where<> represents both thermal average and average ovéhat the Corresponding fixed—point distribution is nonuniver-
random configurations. Since the number of AF bonds besal. This is analogous to the RAF where it has been shown
tweenS andS; is random, the two spins may either be in that extremely s;mgular components in the gap distribution
parallel or antiparallel. Thus, after taking the random averag@re conserved in the RG flotf.In the case of the RAF

the correlation function decays exponentially for largeYc=1, so that the condition for a chain to flow to the uni-
li—j| even at zero temperature: versal fixed-point distribution coincides with normalizability.

In contrast to the RAF, there may be physical situations
1 where a random AF/FM spin chain flows to a nonuniversal
m) +iW®(1—2p)H, fixed-point distri_butior?,o. cf. Sec. VII. We note that these
(25) results are obtained using the approximate, perturbative RG
scheme. Nevertheless we will argue in Sec. VI that the prop-
wherep is the density of FM bonds. Therefore this correla-erties of the fixed points are qualitatively well described
tion function does not reflect the correlations leading to thewithin our scheme and that an improved RG treatment, in-
formation of effective large spins. An appropriate correlationcluding higher-order terms, would merely lead to a correc-
function is tion of the exponenk. Below we summarize the numerical
results for cases with regular and singular initial gap distri-
Co(i—=))=(m;S-S), (26)  butions.

A
n~n’2k=n’(r2k)'”2/2'nr~n’(r

from which we read off the relation

Using the scaling form, we can get some information on
long-distance behavior of spin-spin correlation functions. Le
us introduce two kinds of spin-spin correlation functions

temperatures. The first one is the usual spin-spin correlati
function,

In

Cl(i—j)ocexp[—li—ﬂ
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TABLE I. The initial conditions for the 16 chains simulated numerically.

Chain Pe(A) Pa(A) Q(9) X=Na/N Length
A 1-A 1-A - n 50% 16
X)Enzlts( S— E)
B A A n 50% 16
14
iz, 15(87 E)
C 0 1 n 100% 16
158
Ezn:15<s_ E)
D 0.75 0.25 n 25% 5x 10°
154
ZEn:ﬁ(S— 5)
—3/4
E 0.05 0.237X% A S %) 95% 16
p-12 1p-12 n 50% 16
14
Zzn:15<s_ E)
1\-3/4
0 A 0.965S—1)+0.045(S— 1) 100% 16
H s A 50% 16
4En 15( E)
| N2 IN-2B n 50% 16
4En 15<S E)
J N ENTSIT n 50% 16
s
2
K N34 AT n 50% 1.2<10°
s
2
L ENTT EATTI n 50% 16
4En 15(5 E)
M A4S A5 n 50% 16
4En 15<S E)
N Ao Ao n 50% 16
4En 15<S E)
o) INTTB INTTB n 50% 16
42n 15<S E)
= %A—S/e %A—S/s n 50% 16
s
2
A. Regular and weakly singular distributions kar=0.22+0.01,
If the initial distribution of gaps is regular or at least less
singular thanP(A)~A %7, we find that the link distribu- AaF=1.00+0.005,
tions in all chains we have studigdhainsA, B, C, D, F,
H, andl in Table ) eventually converge to the same univer- v=0.44+0.02.

sal distribution with the characteristic scaling foftv) pro- : o . .
posed in Sec. Ill. The fixed-point distribution functions areThe exponents in the FM distribution agree with the ones in

. . . g he AF distribution within numerical accuracy. Thus our nu-
illustrated by various cross sections in Figs. 2 and 3. We fin

) ; - merical findings confirm the scaling forn$7) and (18) for
that the ratio of AF links stabilizes around=0.63, thus
confirming the conjecture in Sec. Il that botk, and the probability distributions of the links as well as the rela-
1—xo are nonzero. The exponents, » andi , ¢ in Egs.(14) tions between the exponents, Eq$6). Identifying « with

are deduced from the scaling of the avera@®s and (A) eitherxa, « or (12)v gives consistently

with A, in the scaling regime. This is illustrated in Fig. 4 for =0.22+0.01. (29)
chainC in Table I, where the average gap and spin size are

plotted versus\, in a log-log plot. Similarly the ratio of  An interesting observation we have made is that the ratio
the number of original spins to the number of effective spin®2«/v generally stabilizes to its fixed-point value of 1 before
is plotted versus the maximum gdyy, in Fig. 4(b), and the the two exponents and x separately converge to their cor-
evolution of the exponents as functionsf are plotted in  responding fixed-point values. This confirms the robustness
Figs. 5a) and 5b). We find the fixed-point values of the of the “random-walk” argument in Sec. Ill leading to the
exponents to be relation in Eq.(16d).
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FIG. 2. (a) The antiferromagnetic fixed-point distribution of spins and g&ifs,(A/A,,S)= [3dS QA(A/A,,S,S'). The spins are in
units of (S) and the distribution is normalized according to Efjl). (b) The ferromagnetic fixed-point distribution of spins and gaps,
QEA(A7A,,9), defined analogously tQ4, in (a). (c) The antiferromagnetic fixed-point distributions of left and right splR§4S,S') =
f%deA(x,S,S’). The units and normalization are as (a). (d) The ferromagnetic fixed-point distributions of left and right spins,
QE4S,S'), defined analogously tQ%in (c) and with units and normalization as {a).

The typical expansion parameters in the perturbative caleorresponding to singular initial distributions may be quan-
culation of the renormalized gaps are the median ratios beitatively incorrect, but they deviate clearly from the fixed-
tweenA™F andA,. At the fixed point these ratios are point distribution of regular chains. Numerically we find that
chains with initial gap distribution more singular than
APIAG~0.2,

P(A)~A"Ye with 0.65sy.<0.75 (30
AF/AG~0.3, Ve
where we denote the median gap in the distributions of anf-llo";’ tofr;rc])nuniyersallffi_xe%—poi_ntt ((jji_sttrilgutti.ons.fFrom I?:g-log
tiferromagnetic and ferromagnetic links WA andAl, re- \F/)Vg Sficr)uj ;;tm\t/ﬁésa:jisli(r?buggr -ofISISMu |oan g gi/pesr e;g.as,
spectively. As expected from the increase in effective spi 9ap 9

F _A—0.44 fatrib It
size, the formation of a singlet on a linlS¢=S,) becomes (8)~4 and the distribution of AF gaps as

. . h & PA(A)~A %70 for small gaps. Thus, even from a regular
increasingly rare as the fixed point is approached. link distribution the RG transformation itself produces a sin-

gular fixed-point distribution of gaps, where the degree of
the singularity, P(A)~A 7Y, is set by details in the RG
For chains with a very singular initial distribution of gaps transformation rather than by the initial conditions. If a dis-
the convergence to some fixed-point distribution is generallyribution is more singular thaa ~Ye, the singular component
even slower than for reguldor modestly singularchains. is conserved in the RG flow. This is supported by our nu-
Furthermore, in these cases the fixed-point distribution that isherical results thay. in Eq. (30) is somewhere between
eventually approached as well as the scaling exponent a®-.65 and 0.75, which agrees with the singularity in the uni-
pears to be nonuniversal. This is illustrated in Fig. 6, whereversal fixed-point distribution of gapB(A)~A %70 we
the fixed-point distributions for four chains are plotted. Theconjecture that in chains with gap distributions more singular
dotted distributions correspond to chains where the initiathan A “Y¢, the low-energy fixed point is not determined by
gap distributions areP(A)ecA™* with x={3/4,4/5,7/8 the RG transformation alone, but also by the singular distri-
(Table . The solid curve is the corresponding fixed-point bution of extremely weak links. In these chains we expect
distribution for regular chains discussed in Sec. IV A. For the fixed-point distribution as well as the value of the scaling
reasons discussed below, the actual form of the distributionexponent to be nonuniversal.

B. Strongly singular distributions
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<S>

FIG. 4. (a) The average gapA) as a function of\ in chain C

in Table I.(b) The average spifS) and lengthn as a function of

FIG. 3. (@ The distributions of gaps at the fixed point,
QAT (A/Ag) = [5dSASQ*F(A/A,,S,S'). (b) The distributions of
spins at the fixed poinQ5F(S)= [3dx/5dS Q*F(x,S,S'). The
spins are in units ofS).

The picture we present is in close analogy to the RAF
where Fisher has shown that the flow equatidnconserves
very singular components ¢¥(A,,A).Y In the case of the
RAF y.=1, implying that any normalizabléand hence
physica) initial distribution eventually flows to a universal
fixed-point distribution.

The fact that a very singular fixed-point distribution is
dominated by the weakest links in the initial chain casts
some doubt on the numerical results for such chains at low
energies. Indeed, since all our chains have only a finite num-
ber of links, the singularity cannot be resolved perfectly.
Hence the number of initially extremely weak links which
are important for the low-energy behavior of the chain are
relatively few and we do not expect the numerical results for
the extremely singular chains to be quantitatively correct.
This explains why the singularity seems to soften at very low
energies while we argue that it should remain constant. We
still expect that the qualitative result that regufar slightly
singulay chains flow to a universal fixed-point distribution
while more singular distributions do not, should be correct.

V. THERMODYNAMICS
A. Entropy and specific heat

The scaling forms in Eq€17) and(18) allow us to deter-
mine the universal temperature dependence of various ther-

(a)

(b)

effective exponents

effective exponents

Ay in chain C in Table 1.
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modynamic quantities which may be measured in experi- FIG. 5. Effective exponents as functions &f * in chain C in
ments. Let us start with the entropy and the specific heat. Atable I.
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3.0 . . . . magnet,oey(T) < T. The fact that both the entropy and the
specific heat of the random-exchange spin chains go to zero
Chain A with a rather small power reflects the presence of large num-
——=— Chain G ber of uncorrelated spin degrees of freedom at low tempera-
----- Chain K ture.
20FY YT TN e Chain O 1
gc’ === Chain E B. Static magnetic susceptibility
e By analogous arguments, the essentially uncorrelated
4 large effective spins give a Curie-like contribution to the
Lo r magnetic susceptibility per unit length
2 -2k
X_ n* (Se) :EAO _c (39
L 3kgT n  TA? T
0.0 L : : y o . . _
0.0 0.2 0.4 0.6 0.8 10 Thus the critical exponeny is 1. The Curie behavior is

A, usually a signature of uncorrelated spins. We emphasize that
) o . this isnotthe case for the random spin chain. Rather, most of
FIG. 6. The fixed-point distributions of AF gaps for four singu- e original spins arstrongly correlated, and the Curie-like
lar chains(chainsk, G, K, andO in Table ) (dotted lines. These 1o mpararyre dependence follows from the scaling relation
are to be com'pared_wgh the corresponding fixed-point dlstrlbutlonn~<sgﬁ>’ Eq.(21). The Curie constant can be calculated in
of regular chaingsolid fine). terms of the original spin distributions as follows. As dis-
cussed in Sec. lll, the magnitude of the effective spin repre-

finite temperaturd the renormalization-group flow stops at ; R
P group P senting a segment af frozen spins is given by the sum

Ao~kgT due to thermal fluctuations which prevent the for-

mation of even larger effective spins. At this point, all pairs n 2

of spins in links with gaps larger thakhy~kgT form large 82ﬁ= ( 2 5@) , (34)

effective spins. Since the distribution of gaps is broad, the ¢ i=1

interaction energies between the effective spins are typicall : . i

much smaller tham\,~kgT, and each large spin moves es- Where the staggering factdy is defined by

sentially independently. The entropy per unit length is hence Sioi=—58sgnd); &,=1 (35)
1 1 1/ 1

and S;>0 is the spin size of the elementary spin at $ite

o(T,H=0) KgIn(2(Ser) +1)
* Averaging over thdinitial) disorder, we obtain

2k
3 - o« T44|InT|

31

in the scaling regime wherS¢)>1. Note that the assump-
tion of independent effective spins leads to an overestimate
of the entropy. From the relatioB(T)=T(da/dT) follows
the specific heat per unit length

n 2
<S§ﬁ>=<(i21 aa) >=n<8.2>+<sa>2i2¢j (319)). (36)

Defining p as the probability for a bond to be ferromagnetic
and using(5i5j>=(2p—1)"‘” we get
C(T,H=0)

3 «T24|InT], (32
(o= )+ F o] e
and hence the critical exponent= —2«. This is qualita- ef ' 1-p n/J’
tively different th%g n t.he. ra”dO'T‘ spin-1/2 anuferromagnetand in the limit of smallT (largen) we find the Curie con-
whereo(T)e|InT| =2 This is also in contrast to the uniform stant to be
1D antiferromagnet where,e(T) < T and the uniform ferro-
2
L PPN Uk Py
; c= 3“(J(S.H 1-p (S)°|- (38)
AF links This result coincides with the low-temperature susceptibility
~ 10 | —T - FMlinks we obtain for the analogous classical spin cHaiNote that
§ T~ this low-temperature Curie constant is in general different
by \\~\\\ from the high-temperature value
c=2—(Si(S+1)). (39
10_1 L 3kB
107" 10’ ~ ,
NA, It follows thatc=c only if
FIG. 7. Log-log plot of the distribution of gaps at the fixed point 1-p —(S) (40)
for regular initial distributions. 2p—1 '
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Thus, in the random spin chain we expect the magnetic sus-

ceptibility to cross over from one Curie-like behavior at high /\A
temperature T=J/kg) to a different Curie-like regime at i, _l_\_ _i_ —8—
L

low temperature T<J/kg). Si

C. Magnetization at finite H

In a finite magnetic fieldH and at finite temperature the
RG flow is interrupted either by the thermal enelgyT or
by the magnetic Zeeman energ#zy=u(SeyH. If
ks T=E,y the chain is dominated by thermal fluctuations
and the magnetization is given byH. If kgT<E,, the
magnetic field drives the system away from the fixed point of
zero magnetic field into a state of aligned effective spins
where the magnetization eventually saturates. In this regime
a nonzero magnetic field starts to align the effective spins at
an energy scala o~ u(Sqs)H. With the above scaling prop- S
erties this meand ,~HY(1* % so that the saturated magne-

tization |, per unt length  becomesM/L~u(Se)/  argue that higher-order terms do not lead to violation of any
n~H*(9. The condition that the chain is not yet domi- of these criteria, and hence that they do not qualitatively
nated by thermal fluctuations I T<Ao~HY 9. Sum-  change any of our conclusions. In particular, the relations
marizing these arguments, we get (16) between the scaling exponents, and hence the scaling
(1t K 14k forms(17) and(18), are still correct. The only impact higher-
M(T,H) N Hera, - TH e <bH, (41  order terms have, is to modify the expressions in @B for
L H/T, T**>bH, the renormalized gaps, thereby slightly changing the average
ratio r in Eq. (23) and the scaling exponent. The low-
temperature forms of the thermodynamic quantities derived
in Sec. V are valid even though the actual value of the ex-
ponentx may shift slightly. In particular, it is important to
note that the Curie-like form of the magnetic susceptibility
does not involvex.

FIG. 8. Higher-order terms induce a coupling betw&znand
asS, andSg are replaced by an effective spin.

whereb is a dimensionful nonuniversal constant. Similarly
the entropy goes rapidly to zeroBt* “~bH when the mag-
netic field starts to align the spins.

VI. COMMENTS ON THE RSRG SCHEME

In this section we discuss the validity of our RSRG treat-
ment and various approximations we used. As we have seen A. Higher-order contributions
in the previous sections, the formation of an effective spin
yields new interactions among the remaining spins. Thes
interactions were calculated perturbatively, where (dneer-
age perturbation parameter is=A/A,. To first order in
e, only nearest-neighbor Heisenberg terms are induced, a
the functional form of the Hamiltoniafl) is preserved in the T
RSRG transformation. However, the terms in EL).are not
the only ones allowed by the symmetry, and in general w
expect more complicated isotropic interactions to appear i
higher-order corrections ie are included. In the original A(d)
MDH RSRG,A,/A,—0 as the fixed point is approachd, A
and the perturbative treatment becomes exact. In our £ase 0
stabilizes at a finite value around 0.2 at the fixed point. Thugs can be seen from the following argument. For given en-
we have to analyze here to what extent higher-order termergy scaleA,, consider the strongest bond with spBsand
can change our results. S which are coupled via long-range interactions to the spins
The basic assumptions of the RSRG scheme are that ti&, and Sg, respectively, with the gapa, /Ay~ &%t and
two spins which are most strongly coupled to each otheng/A,~c%Re (see Fig. 8 The induced interaction between
form one effective spin, and that any breaking up of this spirs, and Sz due to second-order terms is
pair involves such a large energy that we can regard the

We consider effective interactions between spins which
Gre separated by (effective lattice spacings. In the RG
transformation these are generated by sec¢add highery
order terms ine, and physically they represent interactions
ediated by excitations within the locked effective spins.
hese terms will hence appear even if they are absent in the
original Hamiltonian. However, the interactions generated in
his way fall off exponentially with distance as

~ed, (42

effective spin as a rigid object. There are two criteria for Apg AplAgs e +d
these assumptions to be valid. First, the energy cost for A, Az ~ & ALTTRE, (43

breaking up the strongest spin pair, i.e., the energy &ap

must be much larger than the energy available in neighborind@herefore the non-nearest-neighbor interactions decay expo-
spin pairs. Second, non-nearest-neighbor couplings have teentially with e~0.2 at the fixed point and cannot lead to
fall off sufficiently rapidly with distance, so that many weak frustration effects. Consequently, it is justified to restrict our
couplings cannot accumulate sufficient strength to break uponsideration to the dominating nearest-neighbor interactions
the spin pair. The second criterion is essentially equivalent tonly. The only remaining isotropic interactions are higher-
the absence of strong frustration in the system. Below, werder nearest-neighbor spin term$ (S, ;)™. These terms
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the twice-two-spin and three-spin decimation scheme. In
both ways, however, the effective couplings and A; are
proportional toA; andA ;, respectively(and independent of

—‘— — —‘—\ ————— \ —\— the magnitude of the unphysically large ggp in the RG
5, SLI SR* S: S, S0 S0 SR& S: 8§ treatmenk Therefore the discrepancy is minor and will not

G cause any qualitative difference.

A ]2
AT —’\A—’\_ @ VIl. CONCLUSIONS AND SUMMARY
LA s> S;

We have studied spin chains with random couplings and

(a) (b)

Q random spin sizes by means of a real-space RG scheme that

- - - - successively replaces strongly correlated spin pairs by effec-
_‘ A *AZ* \_ _‘ 4 A, \_ tive spins. The RG transformation preserves the functional
S S S; § S; form of the Hamiltonian but changes the probability distri-

bution of the links(couplings and spins This procedure
FIG. 9. (a) The two-step decimation of three spins used in thegenerates interractions amon'g. the_ re.ma?ning spins. For .|0W
numerical simulations(b) The three-spin decimation in one step. €nough energies the probability distribution of links acquire
a scaling form, and for not too singular initial distributions of
. .. . y i ~ 1 -DOI
are local and could, in principle, be included when calculat-gf"‘ps,‘[sq th"?‘tA C_P(A) is regular,y.~0.7] the f|_xed point
ing the lowest energy spin multiplet and the gap to the firs |str|bgt|on is universal. Frqm a ra}ndom—walk picture for the
excited state in a link. These higher power spin terms ar ormation of the Igrge effective spins, we argue for a relatlon_
also higher order inc and are unlikely to become large etween the scaling exponents of length and the average spin

enough to change the low-energy spectra of the stronge§{Z€: Which together with other considerations reduces the
link qualitatively number of independent scaling exponents to one. This is

confirmed in numerical simulations of random spin chains,
and in the universal regime, we numerically determine the
B. Three-spin decimation remaining independent scaling exponentte 0.22+0.01.

For some particular combinations of spins and couplings At low energie(low temperaturesthe random spin chain

the renormalized gap becomes larger than the gap just r(i.\s- charagtenzed by large gffectwe spins which mFeract
43> A2 |n this section we argue that even in theseWeakly with their nearest n_elghbors. As temperature is fur-
moved, 0 9 ther lowered, the average size of the effective spins increases

cases it is justified to use the RG transformation outlined inas T-* while the average distance between two effective

- spins (in units of the original lattice constgnincreases as
For A>A, a more correct procedure would be to solve -2« This regime is also characterized by universal tem-

the three-spin problem involving the two spins on the Stron'perature dependence of thermodynamic quantities.

gest link and the spin on the link with>A,. We would The slow approach to the fixed poifutur numerical simu-
represent the ground-state multiplet of the three-spin systefations indicate a crossover region of more than five orders of
with one effective spirs and finally calculate the effective magnitude for reasonable starting configuratjossggests
couplings betweer$ and its neighborgFig. 9b)]. Here we  that the true scaling regime may be hard to reach in experi-
claim that we can obtain essentially the same result using ounents. However, the formation of large effective spins oc-
RSRG scheméFig. 9a)]. In the first step the strongest link curs at considerably higher energy scale, and even if the
is replaced by an effective spif’, and the gaps\; and scaling exponenk may not have stabilized to its fixed-point
A, are renormalized. The renormalized g§p> A, by as- vglug, the distribution of Iink§ is roughly like the_ fixed-point
sumption immediately becomes the largest gap in the chaiflistribution. The clearest signal of the formation of large
so that, in the next step, the |ir{ﬁz,3',52} is replaced by effective spins is perhaps th_e Curle—lllge_t_emperaturt_a depen-
an effective spin of siz&=|S' = S,|=|S, + Sk= S,|. In this dence of the uniform magnetic susceptibilig(,T) =< 1/T, in a

process the gaps; andA; are renormalized. The size of the temperature regimésT<J (J being the typical exchange

. =Y o interaction in the initial spin chajnAlso, since the T/ de-
effective spinS in Fig. 9@ is given by the absolute value of ongence iny emerges before the distribution of links ap-

the (vectop sum of the spinsS,, Sz, and S, parallel or  hrqaches the fixed point, the Curie-like susceptibility should
antlparall_el according to the sign of the coupllngs._Thls is theye easier to address experimentally than other thermody-
same spin we expect for the ground-state multiplet of thg,smic quantities which may develop scaling behavior only at
three-spin System, i.eSin Flg 9(b) Slmllarly we get the inaccessib|y low temperatures.

sign of the couplings betwee®and its neighbors in Fig.(8) When the scaling regime is realized, the most straightfor-
from Eq. (8) by aligning the spins according to the signs of ward way to measure the exponentand hence the rate at
the couplings and by comparing the direction of the spinsvhich spin degrees of freedom freeze out is through the spe-
S, andS; with the direction of the effective spi® The signs  cific heat, C(T)=T2%|InT|. An alternative approach which

of the couplings obtained in this way agree with what oneavoids the difficulties connected with measuring small heat
expects for the signs of the corresponding couplings in théransfers at low temperatures is to lower the temperature in
three-spin treatment in Fig(l9). Therefore there can only be the presence of a magnetic field until the magnetization satu-
a difference in the renormalized coupling strengths betweenrates. The scaling exponeintmay then be deduced from the
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predicted field dependence of the saturated magnetizatiofinks crosses over to the fixed-point distribution of the LSP.
M o H) e HA/ (1) Which fixed point(either universal or nonuniversas even-
The low-energy physics of the random spin chain studiedually approached depends crucially on the initial distribu-
in this paper is very different from that of uniform spin sys- tion. This is because the singlet formation is very efficient in
tems as well as spin-1/2 random bond antiferromagneticlecreasing the effective couplings and quickly builds up a
chains studied in Refs. 14—17,19,20. In the RAF the groungingular distribution of gaps. Hence, as long as only singlets
state is arandom singlet phagé (RSP where each spin are formed the distribution rapidly approaches the very sin-
forms a singlet with another spin which may be located fargular random singlet fixed-point distribution. The degree of
away. In the RSP the coupling between two spins that havéhe singularity in the gap distribution at the point where the
survived down to some energy scalg is mediated by vir-  density ofS# 1/2 and ferromagnetic couplings becomes sub-
tually exciting all intermediate singlets, leading to effective stantial, determines the behavior of the spin chain. If the
couplings that decreases exponentially with length, singularity generated at this point is less tHag\)~A"Ye
xexp(— \/ﬁ)_ By inverting this relation it follows that length the chain will flow to the universal large-spin fixed point,
scales logarithmically with the energy|,oc||nAo|2_ For the While for a stronger singularity the chain approaches one of
RSP, arguments analogous to those in Sec. V lead to entropye nonuniversal large-spin fixed points. This opens up an
o(T,H=0)/L|InT| "2 and magnetic susceptibility(T)/L interesting possibility to access the nonuniversal fixed points
«T~YInT|"2Y" In our terminology this corresponds to in experiments_ by starting with a RAF with a properly cho-
x=v=0 up to logarithmic corrections. This is consistent Se€n small fraction of FM bonds.
with the interpretation ok in terms of the average renormal-  An interesting open question is what happens away from
ization factorr, Eq. (23). Indeed, in the case of the RAF the the Heisenberg point. Fisher extended the MDH RG to an-
perturbative parameter=A,/A, and hence also goes to  iSOtropic antiferromagnetic spin-1/2 chains to show that also
zerd® near the fixed point, implying=0. Clearly the RSP in theXY regime (7<Ji=J) they flow to a random singlet
is distinct from the large-spin phaseSP). fixed point, at least for broad enough initial distributids.
As pointed out in Ref. 19, a third possible state of randomT he inclusion of anisotropy in the generalized MDH RG and
spin chains at low temperatures is the random dimer solidts impact on the large-spin fixed point are interesting prob-
(RDS), which is easily understood within the MDH RG pic- lems which we leave for future research.
ture. Assuming that, e.g., odd links are on average slightly
stronger than even links in an antiferromagnetic spin-1/2 ACKNOWLEDGMENTS
chain, the even links are correspondingly more likely to be
removed. Since the removal of an ev@ud) link leaves a
renormalized oddeven link behind, odd links are on aver-
age renormalized more frequently than even ones, and t
separation in energy scale between even and odd links b
comes more and more pronounced until all the singlets ar
on even links, theandom dimer solidUnlike the RSP and
the LSP, thermodynamic quantities in the RDS shmmuni-
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The existence of various low-temperature fixed pointsNo' .
raises the question of stability of the various phases. As is
expected from the discussion above, the RSP is unstable to- APPENDIX A: DERIVATION OF THE EFFECTIVE
wards dimerizatiort® In contrast, the large-spin fixed point is HAMILTONIAN
stable towards dimerization. Unlike the RSP in which spins
are always removed in pairs, the RG transformation in gen
eral removes only one spifne., replaces two spins with one
effective spin. Hence odd links are turned into even ones
and vice versa so that dimerization is irrelevant at the large-
spin fixed point. From the discussion in Sec. lll it is also  Consider the four-spin Hamiltonian
clear that both the RSP and the RDS, which are singlet
ground states, are unstable towards a small fraction of ran- H=HotH,, (A1)
domly distributed ferromagnetic bonds and/or large Spin§/\/here
(S>1/2). In both cases we expect the spin of the groun

In this appendix we give a brief derivation of the effective
couplings, Egs(7) and(9).

1. First-order perturbation theory

state to scale with length & ~L consistent with the fixed Ho=J0S, - Sk, (A2a)
point studied in this paper. This has been confirmed in nu-
merical simulations of random antiferromagnetic chains H,=3,S,- S + 3,5 S,. (A2b)

close to the random-singlet fixed point with 5% ferromag-

netic bonds(chain E in Table ) or with 4% of the spins We treat’H, as a perturbation tG4,. In the space of the
S=1 (chainG). In all cases studied the chains first approachdegenerate ground states7j, the spinsS_. and S form a
the fixed-point distribution of the RSP by forming singlets state of maximum (minimum) total spin S for Jy<O
through the removal o= 1/2 spins and AF links. However, (Jy>0), while the spin$; andS, can point in any direction.
as the density of higher spins and/or FM links increasesThe degenerate ground states span the Hilbert sHad¢he
larger effective spins start to form and the distribution ofproduct space of the spin spaces$r S, andS,. Each state
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[m;Mm,)=|m;)®|M)®|m,) in H is labeled by the corre-
sponding azimuthal quantum numberg, M, and m,. H,

partly lifts the degeneracy and induces an effective Hami

tonian #°™ in H. To orderJ; ,/Jg the matrix elements of
He™ are®

eff

mlez,miM’m’:<mlMm2|HI|m£M ,mé>'

2

(A3)

We calculate®" in two steps: We first establish the opera-

tor identities(valid in H)

S_I.'S_:C(SLISRIS)S_L'Sv (A4a)
$ SR=C¢(SR,5.,9S;- S, (A4Db)
which, together with Eqs/A2b) and (A3), give
H=7,S,-S+3,SS, (A5)
with
J,=3:¢6(S. .=, 9), (A6a)
J,=3.¢(S%,S.,9). (A6b)

We then determine the constar{S, ,Sg,S) by calculating a
suitable matrix element of the two operators in E8da). To

establish Eq(A4a) we define the usual raising and lowering

operatorsfsi which act on a statéM) in a spinS multiplet
in the following way:

STIM+1)=A3|M),

S IM)=A M +1),

where the constantA,\S,, =\(S—M)(S+M+1) assure that
(M|M)=1. Consider first the operato& S~ andS; S :

(MMM,|S;87[m{M ' my)
= Ot my 10w+ 19 mArL_ A, (ATA)
(m;Mmy|S; ¢ [miM’my)
= O ,ml,l(sM,,Mﬂamé,mzAilrl(M 157 IM+1).

(A7b)
The matrix element in the right-hand side of E47b) is
(MIS[IM+1)=(AG 1A AS-1)
X(M|§(§)SM-Ys)
=AN(AS) HS-1S]s),  (A8)

where we have used the fact that =S, +S; commutes
with é[ . From Eqs.(A7a), (A7h), and(A8) we see that

§/S =(As- ) HS-1/5([9)5[S

for every combination o, ---M', i.e., as an operator iden-

tity in H. We note thatS— 1|5 |S) is a real number, and
take the conjugation of EQA9):

(A9)

E. WESTERBERG, A. FURUSAKI, M. SIGRIST, AND P. A. LEE

5.8 =A%) Xs- 1595 5",

| We obtain the operator identity

SIS+ 8§ =(AS ) S-S 9SS+
(A10)
Equation(A4a) then follows from Eq.(A10) and rotational
invariance. From the relation (S—1|5|S)
=(AS.) " SISTS[S)=2(A3 1) "(SI§|S) we obtain

SEAS
c(SL,SR,S)=< |§| >'

(A11)

To determing(S|S?|S) in Eq. (A11) we evaluate the matrix
element(S|S -SS) in two different ways. First we use

S=§ +Sg to get
(SIS SS)=(SISS) +(S|S, - SkIS)

1
= E[S(S+ 1)+S (S +1)—Sgr(Sg+1)].

(A12)
The same matrix element can also be written as

e 1 . . 1 . .
(SIS, 8I9)=(SI81519) + 5(SI5 579+ 5(SI5 5719,
(A13)

The first term in Eq.(A13) equalsS(S|S?|S), the second
term vanishes sincS) is a highest weight state, and for the

same reason we can replace the oper&{ds™ in the third

term by the commutatdiS, ,S ]=2%7 so that
(sls.-Sls)=(s+1)(SI§]|S).

From Egs.(A12), (Al14), and(All) finally follows

(A14)

S(S+1)+S, (S, +1)—Sg(Sg+1)

¢(S.5%.S)= 25(5+1)

(A15)
For the three cases of interest to us, EA4.5) and(A6) give

( SL

Jlm: Jo<O,

3= Jlﬁ: Jo>0, S, >Sz, (Al6)

S —Set+1
—Jli: Jo>0, § <&,
| lsy—sS 41
and

r%ﬁ: Jo<0,

~ Sk

J2= 9 _sz: Jo>0, S§>Sg, (Al7)
Jzﬂ: Jo>0, S <SR,
[ “2S,—S +1
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from which Egs.(8) follow by using the relation between oy i 1, i 1 ay
couplingsJ and gaps, Egs.(5). (O[S{Sk10)=5 (0| Sg|0) = 5(0|S_ S|0)
2. The effective coupling in the case of singlet formation: _E _ =
Generalization of the MDH RG transformation _3<O|SL'SR|O>_ 3 SUSHD,
In the case wherd,>0 andS, = Sg, the effective spin is (A22)
a singlet,S=0, and the effective Hamiltonian, E4A3), we hav
vanishes. To get a nonzero coupling betw&randS,, we € have
have to include second-order perturbation. In the case 23,3,5,(S_+1)
S, =Sg=1/2 this gives the effective couplings used in the VAA:T<A|S_L-SZ|A), (A23)
MDH RG. Since the first-order contribution is zero, we have 0
to solve the second-order secular equéfion from which it is clear that the effective Hamiltonian in this
case is
Det(Vyq —E®8y5)=0 (A18) _
, HEM=7S, - A24
with S5 (A24)
with
(glH,|e)(e|H,|g)
Vog =2 — : (A19) ~ 23,3,5.(S.+1)
€ EO Ee J= T (A25)
0

where|g) is a ground state df{,, the sum is over all excited ] S~ ]
states|e) and E, is the (unperturbedl energy of the state N the special case @& = Sg=1/2 this gives)=J;J5/2Jo in
le). Since there is no coupling between the outer spins ifgreement with Ref. 14.

eitherJ; or J, is zero, only terms proportional th J, in Eq.

(A19) contribute to the effective couplinghe terms propor- APPENDIX B: THE GENERALIZATION

tional toJ? andJ3 give an overall energy shift which, for our OF THE MDH RG FLOW EQUATIONS

purposes, can be discarde®enoting the states formed by
the spinsS; andS, by |A), the states formed b$g and S,
by |B) and in particular the ground-state singlet [B/~0)
we have(in obvious notation

Although in this paper we have studied the RG flow by
numerical simulations, it is of interest to show that flow
equations of the form of Eq$13) exist and can be expected
to have attractive fixed poi(g) to which the probability dis-
tributions eventually flow. Rather than deriving the explicit

Varnz 23, S (A0SIS|A",B)(A",B'|SES5|A0) forms of F; and F,, which are rather complicated, we will
AAT 4V 2A, . —Jo(1/2)Sg/(Sg/ +1) outline how this can be done and point out to what extent the
’ L . generalized flow equationd3) differ from the MDH RG
J1J, (A0S;S/|A",B"YA",B'|S; S, |A,0) flow equation(4).
+ > — We may view one step in the RG transformation as the
2 [~ Jo(1/2)Sg/(Sg +1) _
A'B removal of one link{A,,S_ ,Sg} and the change of two
J1J, 5 (A0S S |A",B'YA",B'|S; 5, |A,0) links, {A_lfa_s_l,?l_}ly {AZaﬁR_’SZ} — {A1,5,,8}, {ﬁzf,sls_z}- .
+ > Rt ~35(1/2)S5 (Sar 1 1) For an infinitely long chain we remove a small fraction o

links with gaps in the intervdlAg—dAg,Aq]. This is illus-
(A20) trated in Fig. 10, where, for convenience, we show

PA(Ag;A,S.,Sr) andPF(Aq;—A,S,,Sg) in the same dia-
The sum over the stat¢A’) can be performed separately to gram. At an energy scal&,, P*, and PF are nonzero only

give for links with A<A,. We remove all links in the thin shell
R R Ae[Ay—dAg,Ap], which causes a small fraction of links
AN, e, (0|S{|B’){B’|Sk|0) inside the equal-gap surfac&=A, to hop around. The
Vaa=-— T <A|8152|A>§ Se (S +1) changes irP” and P" due to the links that move around are
of orderdA, so that in the limitdAy—0 the RG flow is
o aa (0|5, |B')(B'|5%|0) described by a set of first-order differential equations
- ——(A|S{S, |A
Jo < | 1SZ| >§ SB!(SB!+1) dPA
otipy e EZF]'[PA,PF], (Bla)
Jo 1 B/ SB’(SB’+1) ’ dPF A F

The matrix elements in the sums get contributions only fronwhereF; andF, are two(nonlineaj functionals ofP” and
spin-1 multiplets, and hence we can extract the factoP", whose explicit forms depend on the functiohsin Eq.
11Sg/(Sgr+1)]=1/2 and perform the sum over the com- (8). If renormalized gaps were always smaller thag, it
plete set of stateB’). Finally, since would be straightforward to write down the explicit form of
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distribution is defined only on the intervg,Ay]. This was
done in Ref. 14 so that the only term that appears in(Eg.
is one term of typdiii ).

If some renormalized gaps become larger tigy then
before we take the limitlA,— 0 we must consider the frac-
tion of the transformed links that acquife> A . As we have
discussed in Sec. VI B, in our RG scheme a finite fraction of
the links acquires a larger gap>Ag; in Fig. 10 this corre-
sponds to links that jump outside the supportRf and
PF. If the unphysically strong links are not taken care of
before the next slice of links are removed, more and more
links will end up outside theA, surface. In the limit
dAy,—0 this will make it impossible to defind,, since
smoothly integrating out links in a finite gap interval in this
case generates a small but finite probability for gaparof
strength. This problem is remedied in the following way.

FIG. 10. The link distributions are nonzero only far<A,. Since in our RG scheme, no property of the renormalized
Replacing gaps in the thin slidee [Ao—dA,Ao] shifts a fraction  |inks depends on the actual value of the gap in the strongest
of links in P* and P*. link, we can modify the equations(7) so that

A=min{Af,,Aq}. This does not change the discrete RG
the flow equationg13). Assuming no correlations between scheme since the renormalized link is removed in the next
neighboring links(except for the obvious correlation that step of the RG afteLwhich there is no information in the
they share one spinwe find four types of terms ir1; (i) chain of the value of\. In Fig. 10, this modification of the
One term proportional to- 5(A—Ao)P* that depletes the functions f, is illustrated by projecting strong links back
region of links whered e[Ag—dAg,Ao]. (i) One term that  onto the surface\=A,. The projected links are then re-
decrease®” due to links{A,S,,S } that are transformed moved, which transforms some links if* andPF, and also
because they neighbor a link that is replaced by an effectivgenerates an even smaller fraction of links above Ahe
spin. (i) A set of terms that increase(Aq;A;,S;,S) be-  surface. These links are then projected and removed, etc.
cause some links are transformed into lifkg ,S;,S}. (iv) Keeping terms of ordedA, the infinite sequence of remov-
One term proportional t®” that compensates for the overall ing smaller and smaller fractions of links that in the previous
decrease in the number of links and keeps the probabilitgtep have jumped out of the distribution contributes a series
distributions normalized. The function&l, has a similar of smaller and smaller terms in the shift Bf* and P™ that
structure. Only the third kind of terms involve the RG func- has to be summed before the lindi\g— O is taken. This
tionsf,,. We note that in the original MDH RG the terrtis) resummation makes the functiondts , in Eq. (13) rather
and(iv) cancel. The ternfi) can be omitted if the probability complicated.
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