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Polaron transport and lattice dynamics in colossal-magnetoresistance manganites

J. D. Lee and B. I. Min
Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea

~Received 4 December 1996; revised manuscript received 23 December 1996!

Based on the model combining the spin double exchange and the lattice polaron, we have studied the
colossal-magnetoresistance phenomena observed in perovskite manganitesR12xAxMnO3. First, effects of both
the double exchange and the electron-phonon interaction on the transport properties are investigated. We have
evaluated the temperature-dependent resistance and the magnetoresistance using the Kubo formula, and exam-
ined the crossover from the tunneling to hopping regime of small polarons. Second, effects of the double-
exchange interaction on the lattice degree of freedom are explored. It is found that both the hardening of the
phonon frequency and a reduction of the phonon damping take place with decreasing the temperature.
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I. INTRODUCTION

The ‘‘colossal’’ magnetoresistance~CMR! manganites
R12xAxMnO3 (R5 La, Pr, Nd;A5 Ca, Ba, Sr, Pb! have
recently attracted considerable attention due to scientific
terest and potential applicability of their very large magn
toresistance~MR! for 0.2&x&0.5.1–3The most essential fea
ture of their magnetic and transport behaviors is
existence of metallic conductivity and ferromagnetism. T
magnetic transition atTc is closely connected with the resis
tivity peak atTP corresponding to an insulator-metal tran
tion (Tc;TP). The correlation between ferromagnetism a
metallic conductivity inR12xAxMnO3 was explained by
Zener4 in terms of the double-exchange mechanism. Th
are mixed valent Mn ions~Mn31 and Mn41) as a conse-
quence of hole doping by substitutingR31 with A21. In the
double-exchange model, conduction electrons in the parti
filled eg levels of thed band are strongly coupled with th
tightly bound d electrons in thet2g levels by the on-site
Hund’s coupling, and mediate the ferromagnetic excha
interaction between the nearest neighborS5 3

2 local spins
formed from threed electrons in the coreliket2g levels.

4,5

Transport properties have been studied within the dou
exchange mechanism in favor of a magnetic polaron.6–8 Re-
cently, Millis et al.9 reported that the effective carrier-sp
interaction involved in the ordinary double-exchange Ham
tonian is too weak to produce the magnetic polaron effe
Instead, they suggested lattice polaron effects due to a st
electron-phonon interaction as a necessary additio
extension.10 They investigated a model of electrons, Jah
Teller coupled to localized classical oscillators, within t
dynamical mean field theory. Ro¨der et al.11 also examined
the combined influence of the electron-phonon interact
and the double exchange onTc using the variational wave
function techniques. But they could not treat the polar
transport and the lattice dynamics on an equal footing.
fact, the contribution of the lattice polaron to carrier mobili
was pointed out earlier by Goodenough.12

There are many experimental evidences suggesting
importance of the electron-lattice coupling in mangan
oxides.13–17 NearTc , dramatic changes are observed in t
lattice degree of freedom, the anomalous lattice expan
550163-1829/97/55~18!/12454~6!/$10.00
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beyond Gru¨neisen law,14 and the shift of phonon
frequency,15–17 which all reflect that the lattice is closel
related to the electronic and magnetic properties. Howe
detailed understanding of the interplay between the lat
dynamics and the electronic and magnetic properties rem
to be resolved.

In this paper, we have addressed two questions:~i! what is
the role of the electron-phonon interaction in CMR syste
which are known to have the double-exchange interact
and reversely,~ii ! how does the double-exchange interacti
affect the lattice dynamics through the electron-phonon
teraction. For these purposes, we first investigate the eff
of both the double-exchange and the electron-phonon in
action on transport and magnetic properties. Employing
Kubo formula, we have determined the temperatu
dependent resistance and the magnetoresistance, and e
ined the crossover from a metallic tunneling state to an
sulating hopping state in the small polaron transport. Seco
to characterize the lattice dynamics in CMR compounds,
have considered the phonon degree of freedom in the p
ence of the double-exchange interaction. We have stud
the renormalization of the phonon frequency and the pho
damping constant.

This paper is organized as follows. In Sec. II, we pres
the model of conduction electrons coupled to phonons
well as the localized ionic spins in terms of the double e
change, whereby the temperature-dependent resistance
the magnetoresistance are evaluated from the Kubo form
In Sec. III, we examine the double-exchange effects on
lattice degree of freedom. Finally, conclusions follow in Se
IV. Detailed calculational steps are given in the Appendix

II. POLARON TRANSPORT

Since Zener4 has proposed an interaction between spins
magnetic ions named ‘‘double exchange,’’ Anderson a
Hasegawa5 studied this mechanism in a system of Mn io
and a mobile electron with the transfert between two Mn
ions and the strong intra-atomic exchange integralJ. When
J is much larger thant, motion of the mobile electrons in
R12xAxMnO3 is described by the following double
exchange Hamiltonian:
12 454 © 1997 The American Physical Society
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55 12 455POLARON TRANSPORT AND LATTICE DYNAMICS IN . . .
HDE5(
i j

t i jcos
u i j
2
ci
†cj , ~1!

where the hoppingt i j connects neighboring sites, andu i j is
the angle between the directions of ionic spins at sitesi and
j . An exact quantum mechanical calculation giv
cos(uij /2)5(S011/2)/(2S11), whereS is the spin of a Mn
ion andS0 is the total spin ofSi ,Sj , and the conduction
electron spin. In this study, we treat the double-excha
part within the mean field theory following Kubo an
Ohata,6 in which cos(uij /2) is replaced by its thermodynam
averagê cos(uij /2)& determined by minimizing the free en
ergy of the spin system. Then the propagation of an elec
can be described as if it were moving in a mean field
highly disordered configurations of ionic spins. This appro
mation is known to work well at finite temperature, exce
for the very low temperature region (T;0 K! where the spin
dynamics becomes important. Within the present mean fi
theory, the double-exchange plays a role, throu
^(S011/2)/(2S11)&[g(T), of increasing the bandwidth a
T decreases belowTc , accompanied by the ferromagnet
ordering@see Fig. 1~a!#.

In addition to the double exchange, the conduction el
trons are scattered by the Mn-O ionic motions in t
MnO6 octahedra, which gives rise to a very strong electr

FIG. 1. Bandwidths~hopping parameters in unit oft) as a func-
tion of the temperature.~a! Effect of the double-exchange intera
tion, tg(T)@g(T)[^cos(u/2)&#. ~b! Combined effect of the double
exchange and the electron-phonon interaction,tg(T)G(T).
(qW uuqW u254.5 is taken.
e

n
f
-
t
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-
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phonon interaction. The effective Hamiltonian incorporati
the electron-phonon interaction is written as

H5t K cosu2 L(
id

ci1d
† ci1(

qW
vqaqW

†
aqW

1(
iqW

ci
†cie

iqW •RW iMq~aqW1a
2qW
†

!. ~2!

Here we adopt a model in which the singleeg orbital is
coupled to phonons assuming the electronically activeeg
band to be split, as in Ro¨deret al.11 The present assumptio
is expected to be more effective if the model were gene
ized to include another physics such as the on-site Coulo
interaction, which might remove possible midgap sta
away from the Fermi level.10

The dc conductivitys can be obtained from the optica
conductivitys(v) by taking thev→0 limit, ands(v) can
be determined by using the Kubo formula of the curre
current correlation function

s~v!5
12e2bv

2v E
2`

`

dteivt^Ja
†~t!Ja~0!&. ~3!

Since the current operatorJW in narrow band systems is give
by

JW5 i t K cosu2 L e(
jd

d̂cj1d
† cj , ~4!

s explicitly involves the four-site correlation function,

s5
b

2
t2K cosu2 L 2e2(

dd8
(
j j 8

~ d̂•d 8̂!

3E
2`

`

dt^cj
†~t!cj1d~t!cj 81d8

† cj 8&. ~5!

In the isotropic case, the resistivityr corresponds to the in
verse ofs, r51/s.

To evaluates, let us consider the well-known polaro
canonical transformation;18 H̄5eSHe2S with S5

2( jqWcj
†cje

iqW •RW j(Mq /vq)(aqW2a
2qW
† ). The transformed

HamiltonianH̄ is given by

H̄5t K cosu2 L(
jd

cj1d
† cjXj1d

† Xj1(
qW

vqaqW
†
aqW2D(

j
cj
†cj ,

~6!

with Xj5exp@(qWe
iqW•RW j(Mq /vq)(aqW2a

2qW
† )# and D5(qW(Mq

2/
vq). Insertinge

Se2S51 between each electron operator
Eq. ~5!, and usingeScje

2S5cjXj ande
Scj

†e2S5cj
†Xj

† , one
gets

s5
b

2
t2K cosu2 L 2e2(

dd8
(
j j 8

~ d̂•d 8̂!E
2`

`

dt^cj
†~t!cj1d~t!

3cj 81d8
† cj 8Xj

†~t!Xj1d~t!Xj 81d8
† Xj 8&. ~7!

The intricate correlation function of Eq.~7! should be
evaluated under the transformed HamiltonianH̄. The
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12 456 55J. D. LEE AND B. I. MIN
calculation can be further simplified with an approxim
tion replacing the first term of Eq. ~6! by
t^cos(u/2)&( jd^Xj1d

† Xj&cj1d
† cj . This approximation is quite

reasonable in view of that the coherent bandlike motion
the polarons arises from the quantum mechanical tunne
between sites without changing the phonon numbers, wh
is governed by the matrix elements of^nquXj1d

† Xj unq&.
19

With increasingT, the polaron bandwidth decreases exp
nentially due to the term̂Xj1d

† Xj&@[G(T)#,

G~T!5expS 2(
qW

uuqW u2~Nq11/2!D , ~8!
ly

b

d

f
g
h

-

where uqW[(Mq /vq)(e
iqW •dW21) @see Fig. 1~b!#. Under the

above approximation, the mean field scheme of Kubo a
Ohata6 can be generalized to include the phonon contrib
tions which drastically reduce the magnetic transition te
peratureTc ,

11 whereas the temperature-dependent beha
of ^cos(u/2)&@[g(T)# does not appreciably change.

With the approximate HamiltonianH̄ incorporating
both g(T) and G(T), the complicated four-site correlat
ion function in Eq. ~7! can be disentangled into
^cj

†(t)cj1d(t)cj 81d8
† cj 8&^Xj

†(t)Xj1d(t)Xj 81d8
† Xj 8&. These

correlation functions ands can be evaluated in the straigh
forward fashion. Detailed calculational procedures are p
vided in the Appendix. From Eq.~A12!, the dc conductivity
s is given as follows:
s5
b

2
t2g~T!2e2(

dd8
(
j j 8

~ d̂• d̂8!(
kW1k

W
2

nkW1~12nkW2!e
2 ikW1•~R

W
j2RW j 8!eik

W
2•~R

W
j2RW j 81dW 2dW 8!

3e~ t̃ kW1
2 t̃ kW2

!/2Te2~ t̃ kW1
2 t̃ kW2

!2/4z~ j , j 8,dW ,dW 8;T!e2j~T!eh~ j , j 8,dW ,dW 8;T!@p/z~ j , j 8,dW ,dW 8;T!#1/2, ~9!

with a renormalized polaron band,t̃ kW5tg(T)G(T)(de
2 ikW•dW2D. Explicit expressions ofz( j , j 8,dW ,dW 8;T), j(T), and

h( j , j 8,dW ,dW 8;T) are given in the Appendix. Keeping in mind that the auto-correlation function is most dominant forj5 j 8 and
dW 5dW 8, s is more simply obtained in the following form:

s5
b

2
t2g~T!2e2Nz(

kW1k
W
2

nkW1~12nkW2!e
~ t̃ kW1

2 t̃ kW2
!/2Te2~ t̃ kW1

2 t̃ kW2
!2/4z~T!e2j~T!eh~T!@p/z~T!#1/2. ~10!
non

2.

nge

of
m-

e-
Herez is the number of the nearest neighbors,nkW andNq are
the fermion and boson distribution function, respective
andj(T),z(T), andh(T) are also given by

j~T!5(
qW

uuqW u2~112Nq!, ~11!

z~T!5(
qW

vq
2uuqW u2@Nq~Nq11!#1/2, ~12!

h~T!52(
qW

uuqW u2@Nq~Nq11!#1/2. ~13!

Now let us investigate the qualitative behavior ofr. One can
carry out the numerical calculation of Eq.~10!, assuming the
simple square density of states~DOS! D(e),

D~e!5
N~12x!

eF
, 2

W

2
<e<

W

2
. ~14!

Here the bandwidthW is given bywg(T)G(T) (w is the
bare electron bandwidth and estimated to
w512utu;2 eV from the band structure calculation!, and
the Fermi energyeF is wg(T)G(T)(12x) with x being the
doping concentration. These treatments of DOS are base
the assumption that only the lower one of the spliteg bands
,

e

on

is active. We also assume that the most relevant pho
mode is the optical mode (;v0) which might be involved in
the Jahn-Teller coupling.

Numerical results for the resistivity are provided in Fig.

FIG. 2. The resistivity of the polaron only model~two dashed
lines! and the combined model of the polaron and double excha
~solid line!. In the polaron only model,t̃up and t̃ low are the band-
widths corresponding to the upper and lower limiting value
^cos(u/2)&, respectively. Calculations are performed for the para
eters, x50.3, w564Tc;1.1 eV, v055Tc;0.08 eV assuming
Tc;200 K, and(qW uuqW u256. The inset presents the resistance b
haviors withH50, 4.8, and 9.6 T.
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55 12 457POLARON TRANSPORT AND LATTICE DYNAMICS IN . . .
Two dashed lines represent resistivities of the polaron o
model with given bandwidths of t̃up@5wG(T)# and
t̃ low@50.75wG(T)#. Here t̃up and t̃ low correspond, respec
tively, to upper and lower limits of the double-exchange fa
tor g(T). In both cases,r ’s exhibit peaks as a function o
T, and the larger band widtht̃up yields a smallerr with a
peak at higher temperature. The resistivity peak as a func
of T corresponds to the crossover from a quantum tunne
of the metallic phase to a self-trapped small polaron hopp
of the insulating phase. Such features are characteristic
polaron systems, which are indeed observed in many o
systems. In the highT limit, the resistivity has a therma
activation form of exp(Dg /T), characteristic of the semicon
ducting phase.18 Now taking the double-exchange into a
count, the polaron bandwidth increases with decreasinT
due tog(T), and accordingly the resistivity is given by th
solid line ~in Fig. 2! with a peak atTc connecting the two
polaron resistivity curves. This figure clearly demonstra
that the semiconducting behavior aboveTc is attributed to
self-trapped lattice small polarons, and that the rapid fal
in the resistivity belowTc is attributed to the double
exchange mechanism in addition to the lattice polaron eff
Thus, the combined model of the double exchange and
polaron provides a good description of the resista
anomaly observed in the experiment. The coincidence of
resistivity peak positionTP with Tc originates from the mean
field treatment ofg(T) which neglects the fluctuation in th
hopping of conduction electrons.

Effects of the external magnetic field can also be tak
into account ing(T) through the modified free energy due
the magnetic field. The behaviors of the MR’s are shown
the inset of Fig. 2. With increasing the field intensity, t
resistivity decreases and the peak position shifts to a hig
T, and so the negative MR results. These results are q
consistent with the experimental observations. The MR p
TMR is located near the resistivity peakTP . In fact,
TMR , TP , and Tc are the same in the present mean fie
treatment. It should be noticed that the magnitudes of
MR’s in the figure are not large enough to explain the e
perimental CMR data quantitatively, suggesting that ad
tional treatments might be required. One possibility is to
corporate the half-metallic nature of the ferromagne
manganites,20,21 which is expected to suppress largely t
spin-disorder scattering under the external magnetic field

III. LATTICE DYNAMICS

As mentioned before, the phonon frequency becom
hardened asT decreases belowTc .

15–17 Interestingly, the
phonon hardenings are observed for both optical and ac
tic phonons in these systems. These frequency shifts are
sidered to be due to the change in the electron screenin
T is lowered belowTc . The hardening occurs in the metall
region (T&Tc), i.e., in the band-type tunneling regim
where Rayleigh-Schro¨dinger perturbation theory is valid.18

Therefore it is expected that the change of the bandwidth
to the double-exchange factorg(T) modifies the electron
screening belowTc . Note that the previous approximatio
for the canonically transformed HamiltonianH̄ corresponds
to neglecting the phonon frequency renormalization, wh
seems to be too small to cause any appreciable change i
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transport properties. In the metallic regime, the screening
the conduction electrons will be more easily described by
original HamiltonianH of Eq. ~2! rather than the polaron
HamiltonianH̄ of Eq. ~6!.

The renormalized phonon frequencyṽq and the damping
constantsaq can be obtained from the following equation:22

~ṽq2 iaq!
25vq

222vquMqu2F~qW ,ṽq1 i01!,

ṽq@aq , ~15!

where the electron screening functionF(qW ,ṽq) is given by

F~qW ,ṽq!5(
qW

nkW2nkW1qW

g~T!~ tkW1qW2tkW !2ṽq

,

tkW5t(
d

eik
W
•dW . ~16!

The real part of both sides of Eq.~15! yields

ṽq
2.vq

222vquMqu2
1

g~T!(kW
nkW2nkW1qW

tkW1qW2tkW
. ~17!

It is important to note that the term(qW(nkW2nkW1qW)/
(tkW1qW2tkW) has very weak temperature dependen
@;C1O(T/EF)

2, EF being the Fermi level
determined fromtkW#. Hence theT dependence ofṽq comes
dominantly from g(T), and Eq. ~17! can be written as
ṽq5vq@12b̄/g(T)#1/2, where b̄ contains all the
T-independent terms. An explicit calculation ofb̄ is not
available, but the order of its magnitude should be ve
small, O@ uMqu2/(vqEF)#;O(1022). In Fig. 3~a!,
T-dependent behaviors ofṽq are plotted with respect to th
external magnetic field strengthH, and compared with the
available experiment16 in the inset. It is seen that the fre
quency hardenings with decreasingT and with increasing
H are qualitatively well explained. However, it is also appa
ent that some deviations exist between calculational and
perimental results, particularly, nearTc . These discrepancie
might be ascribed to the mean field treatment ofg(T). In-
cluding spin correlation effects in calculatingg(T) is ex-
pected to improve the agreement. It should also be noted
the phonon frequency hardening of Eq.~17! would be valid
for both acoustic and optical phonon modes consistently w
the experiments, because we have assumed the general
of the electron-phonon interaction in Eq.~2!.

Taking the imaginary part for both sides of Eq.~15!, one
gets the phonon damping parameteraq ,

2aqṽq52vquMqu2
1

g~T!
Im(

kW

nkW2nkW1qW

tkW1qW2tkW2ṽq /g~T!2 i01
.

~18!

The imaginary part of the screening function is easily cal
lated by considering a parabolic electron ba
tkW5t(de

ikW•dW.utud2k2,

2aq52vquMqu2
p

2

D~EF!

vFq
1

g~T!2
, ~19!
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12 458 55J. D. LEE AND B. I. MIN
where D(EF) and vF are determined from the parabol
band,utud2k2. In Fig. 3~b!, T-dependent behaviors ofaq are
presented. Our results predict that the phonon damping
rameter decreases with decreasingT, implying that the pho-
non is more sharply defined belowTc . This feature in CMR
systems is quite different from conventional observations
increased phonon damping parameter belowTc for magnetic
or strongly correlated systems. To our knowledge, no exp
mental reports are available yet on the phonon damping
rameter. We think that the sound attenuation experiment
provide a better understanding of the nature of the elect
phonon interaction in CMR systems.

IV. CONCLUSIONS

We have extended the double-exchange model to in
porate the strong electron-phonon interaction, and inve
gated transport and magnetic properties of CMR mangan
oxidesR12xAxMnO3. We have found that the semiconduc
ing behavior in manganites aboveTc is attributed to the ef-
fect of self-trapped lattice small polarons, and that the ra
falloff in the resistivity belowTc is attributed to the com-
bined effect of coherent lattice polarons and the increa
bandwidth via the double-exchange mechanism accompa
by the ferromagnetic ordering of magnetic ions. Further,
have explored effects of the double exchange on the pho
degrees of freedom. The temperature-dependent hardeni
the phonon mode frequency observed in experiments is
described, and the reduction of the phonon damping cons
is predicted belowTc .

FIG. 3. ~a! The phonon frequency shifts„ṽq(T)2ṽq
c
…/ṽq

c for
various magnetic field strengths, whereṽq

c[ṽq(1.1Tc ,H50 T).
In the inset, the shifts are compared with the experiment~under
H51 T! for La0.7Ca0.3MnO3 @Jeonget al. ~Ref. 16!#. In the fitting,
Tc5238 K is taken from experiments. We have takenb̄50.07.~b!
The phonon damping constants aq(T)/aq

c with
aq
c[aq(1.1Tc ,H50 T), are given.
a-
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APPENDIX: CALCULATION OF dc CONDUCTIVITY s

To evaluate the dc conductivitys, one should evaluate
correlation functions of electrons and phonons under
HamiltonianH̄. DefiningL andL8 simply as

L5eiq
W
•RW j~eiq

W
•dW21!

Mq

vq
,

L85eiq
W
•RW j8~eiq

W
•dW 821!

Mq

vq
, ~A1!

Xj
†(t)Xj1d(t)Xj 81d8

† Xj 8 is given by

Xj
†~t!Xj1d~t!Xj 81d8

† Xj 85)
qW

e2~1/2!~ uLu21uL8u2!eL* a
qW
†
eivqt

3e2LaqWe
2 ivqt

e2L8* aqW
†

eL8aqW.
~A2!

Using e2LaqWe
2 ivqt

e2L8* aqW
†

5e2L8* aqW
†

e2LaqWe
2 ivqt

eLL8* e2 ivqt
,

we see

Xj
†~t!Xj1d~t!Xj 81d8

† Xj 8

5)
qW

e2~1/2!~ uLu21uL8u2!eLL8* e2 ivqt
el* a

qW
†

e2laqW,

~A3!

where l[Le2 ivqt2L8. Under the noninteracting phono

Hamiltonian, the thermodynamic average of^el* a
qW
†

e2laqW& is
given by18

^el* a
qW
†

e2laqW&5e2ulu2Nq, Nq5
1

ebvq21
. ~A4!

Then ^Xj
†(t)Xj1d(t)Xj 81d8

† Xj 8& is obtained as follows:

^Xj
†~t!Xj1d~t!Xj 81d8

† Xj 8&5exp@2F~RW j2RW j 8,d
W ,dW 8,t!#,

~A5!

F~RW j2RW j 8,d
W ,dW 8,t!5(

qW
uuqW u2~112Nq!22(

qW
vqW~ j ,dW !

3vqW* ~ j 8,dW 8!@Nq~Nq11!#1/2

3cosFvqS t1 i
b

2 D G , ~A6!

where uqW[(Mq /vq)(e
iqW •dW21) and vqW( j ,dW )[(Mq /

vq)e
iqW •RW j(eiq

W
•dW21).

The electron four-site correlation functio
^cj

†(t)cj1d(t)cj 81d8
† cj 8& is easily evaluated from the Hamil

tonianH̄ which transformed into thekW space,



v
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^cj
†(t!cj1d~t!cj 81d8

† cj 8&5 (
kW1 ,k

W
2

nkW1~12nkW2!e
i ~ t̃ kW1

2 t̃ kW2
!t

3e2 i ~kW12kW2!•~RW j2RW j 8!eik
W
2•~dW 2dW 8!,

~A7!

where the renormalized polaron bandt̃ kW is given as
tg(T)^Xj1d

† Xj&(de
ikW•dW .

The time integral of the correlation functions, Eq.~7!, can
be performed by the saddle point approximation. In the
cinity of the saddle point, the integrand becomes jus
Gaussian,

F~RW j2RW j 8,d
W ,dW 8,t!.j~T!2h~ j , j 8,dW ,dW 8;T!

1z~ j , j 8,dW ,dW 8;T!z2, z5t1 ib/2,

~A8!

wherej(T),h( j , j 8,dW ,dW 8;T), andz( j , j 8,dW ,dW 8;T) are, respec-
tively, given by

j~T!5(
qW

uuqW u2~112Nq!, ~A9!
sh

tt

K.

W

tt.
i-
a

h~ j , j 8,dW ,dW 8;T!52(
qW
vqW~ j ,dW !vqW* ~ j 8,dW 8!@Nq~Nq11!#1/2,

~A10!

z~ j , j 8,dW ,dW 8;T!5(
qW

vq
2vqW~ j ,dW !vqW* ~ j 8,dW 8!@Nq~Nq11!#1/2.

~A11!

From Eqs.~7!, ~A5!, and ~A7!, the dc conductivitys is
evaluated and obtained as

s5
b

2
t2g~T!2e2(

dd8
(
j j 8

~ d̂• d̂8!(
kW1k

W
2

nkW1~12nkW2!

3e2 ikW1•~R
W
j2RW j 8!eik

W
2•~R

W
j2RW j 81dW 2dW 8!

3e~ t̃ kW1
2 t̃ kW2

!/2Te2~ t̃ kW1
2 t̃ kW2

!2/4z~ j , j 8,dW ,dW 8;T!e2j~T!

3eh~ j , j 8,dW ,dW 8;T!@p/z~ j , j 8,dW ,dW 8;T!#1/2. ~A12!
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