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Spin waves in several Heisenberg systems:
Three-sublattice with different exchange constants„Jab5JbcÞJca… and
a superlattice with the elementary unit of four or three different layers

Zhang Zhi-dong
Institute of Metal Research, Academia Sinica, Wenhua Road 72, Shenyang 110015, People’s Republic of China

and International Centre for Material Physics, Academia Sinica, Wenhua Road 72, Shenyang 110015, People’s Republic of C
~Received 5 February 1996; revised manuscript received 3 February 1997!

The quadratic Holstein-Primakoff spin-wave Hamiltonian for three-sublattice Heisenberg systems with dif-
ferent exchange constants (Jab5JbcÞJca) was diagonalized by a three-step procedure. The classical ground
state was examined and the effects of quantum fluctuation on the ground state were discussed. The 0 K spin
reorientation angles due to quantum fluctuations were found to originate from the asymmetry of the system. As
an extended application of the spin-wave study of the multisublattice systems, the spin-wave spectra of a
Heisenberg superlattice, which has four or three magnetic atoms or spins, in each magnetic unit cell in thex
direction, were solved analytically in terms of creation and annihilation operators. It has been found that the
spin-wave spectra of the present superlattice systems depend on the exchange constantsJ andJ8, and that the
degeneracy of the spin-wave spectra remains for the superlattice of four atomic layers and is partially removed
for the superlattice of three atomic layers mainly due to the asymmetry of the system. Another type of splitting
of the energy level occurs which differs for those levels with different degeneracies. The mixing of the
interface and the bulk modes were found for the spin-wave dispersion of the superlattices. It was predicted that
even for different superlattices having the same exchange constants~eitherJ or J8!, i.e., without the oscillation
of the exchange coupling, the asymmetry can lead to the oscillation of magnetic properties, such as magneti-
zation and giant magnetoresistance.
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I. INTRODUCTION

Since the early work of Bloch,1 Holstein and Primakoff,2

Anderson,3 and Kubo4 spin waves have attracted conside
able interest.5,6 To our knowledge, few authors have dea
with the spin-wave excitations in the systems with multip
structurally ordered magnetic sublattices.7–17 It has been
commonly accepted that if the lattice is complicated, i.e.,
cases when the number of spins per magnetic unit ce
more than two, the problem cannot be solved explicitly
terms of the elements of the matrices for eachk. Generally, it
is necessary to use numerical methods to solve
problem9–11and contradictory results were obtained by the
authors because of differing methods.7,12–17 Recently, the
spin-wave spectra at low temperatures of a four-sublat
Heisenberg ferrimagnet or ferromagnet with different e
change constants (Jab5JcdÞJbc5Jda) were studied in
terms of creation and annihilation operators.18 For diagonal-
izing the Hamiltonians, two extended Bogoliubov transfo
mations were developed so that the spin-wave spectra o
four-sublattice ferromagnet and ferrimagnet could be ca
lated explicitly. It seems that the method, used for the m
tisublattice systems,18 can be extended to be appropriate f
deriving analytical solutions of the spin-wave spectra
magnetic superlattices.

Recently, layered composite materials such as multilay
and superlattices have become of great interest since
magnetic properties of these composite materials may be
tinctly different from those of their bulk counterparts.19–21

The spin waves of magnetic superlattices in the excha
550163-1829/97/55~18!/12408~16!/$10.00
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limit have been investigated by use of various quantum
croscopic theories.22–34

In this paper we first present in Sec. II calculations
investigate the spin waves at low temperatures of thr
sublattice Heisenberg systems with different exchange c
stants (Jab5JbcÞJca). In Sec. II A, for studying all possible
spin configurations, a rotation transformation will be appli
to deal with the different quantization axes of the three s
lattices. The Hamiltonian for the present system will be
duced by use of the Holstein-Primakoff transform2 and the
linear spin-wave approximation.3,4 In Sec. III B, the classical
ground state of the three-sublattice systems will be exa
ined. In Sec. III C, for avoiding the loss of generality, th
general theoretical outline will be represented for treating
problem for the whole present three-sublattice system.
diagonalizing procedure consists of three coupled Cu
transformations,35 an extended Bogoliubov transformatio
and three independent Bogoliubov transformations.36 The
extended Bogoliubov transformation requires us to solve
equation group consisting of 24 equations and 24 unknow

To show an extended application of the spin-wave stu
of the four-sublattice~in the author’s previous work18! and
the three-sublattice~in Sec. II of the present work! systems,
attention will be paid on the analytical solutions of the sp
wave spectra of Heisenberg superlattices, formed from
ferromagnetic materials which couple antiferromagnetica
at the interfaces, in terms of creation and annihilation ope
tors. The problem for a special case, i.e., a superlattice wh
has four or three magnetic atoms or spins in each magn
unit cell in thex direction, will be solved analytically. In the
12 408 © 1997 The American Physical Society
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55 12 409SPIN WAVES IN SEVERAL HEISENBERG . . .
present work, for simplicity, we shall only deal with th
same amplitudes for the whole system. The Hamiltonian
the superlattice system will be established and reduced
use of the Holstein-Primakoff transform2 and the linear spin-
wave approximation3,4 in Sec. III A. The Hamiltonian will be
rewritten by introducing the Fourier transforms of the bos
operators in the reduced Brillouin zone, which will be pe
formed in both they-z plane and thex direct. After perform-
ing the Fourier transforms, one reduces the Hamiltonian
the x direction of the present system to that for a fou
sublattice Heisenberg system with different exchange c
stants (Jab5Jcd5JÞJbc5Jda5J8)18 or a three-sublattice
Heisenberg system with different exchange constants (Jab
5Jbc5J8ÞJca5J). In Secs. III B 1 and III B 2, two differ-
ent extended Bogoliubov transformations18,36 will be devel-
oped for diagonalizing the Hamiltonians in thex direction,
for the superlattices with four and three layers, respectiv
by establishing the equation group consisting of eight eq
tions and eight unknowns. The spin wave spectra will
derived by solving the equation group~shown in Appendix C
for the four-layer superlattice and in Appendixes D and E
the three-layer superlattice! and consequently by performin
the transformation. The final forms of the spin-wave spec
of the superlattices are represented in Sec. III C. Discuss
and concluding remarks will be represented in Sec. IV.

II. THREE-SUBLATTICE SYSTEM

In this section, we study the three-sublattice Heisenb
system with different isotropic exchange constants betw
spins in the different sublattices.

A. Hamiltonian and rotate transformation

The three-sublattice system is modeled by the follow
Hamiltonian:

H52(̂
l ,i &

Jl ,i ; l ,i1dSl ,i•Sl ,i1d

52(
i ,d

JabSa,i•Sb,i1d2(
j ,d

JbcSb, j•Sc, j1d

2(
m,d

JcaSc,m•Sa,m1d ~ l5a,b,c!, ~2.1!

where l denotes three sublatticesa, b, andc. d represents
that only the exchanges between the nearest neighbors
taken into account. The number of the nearest neighbo
Z. The sign of the exchange constants can be positive
negative, depending on whether ferromagnetic or ferrim
netic coupling between them.Si5^Si

x , Si
y , Si

z& are operators
belonging to the spin-S representation.18

In this work, we shall study the case ofJab5JbcÞJca and
deal with the case of the same spin amplitudes for the
ferent sublattices. In a low-temperature limit (T!Tc), usu-
ally the spin-wave approximation naturally assumes sm
spin deviations from the quantization axis. For the pres
system, the natural quantization axis is the averaged ma
tization direction. If the system was near the easy-axis c
figuration, it would be reasonable to assume that the orig
ferromagnetic state or ferrimagnetic state is easy axis
r
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which all spins couple parallel or antiparallel along thez
axis. But the initial state in the three-sublattice system can
in various spin configurations, i.e., the quantization axes
the spins in different sublattices may vary on their ang
with respect to thez axis. As proposed by del Moral,7 one
needs to rotate the quantization axis frame by Euler
anglesu andc. The following transformation of spin vecto
coordinates is performed:7,37,38

Si
x5Si

x8cosu icosc i1Si
z8sinu icosc i2Si

y8sinc i

Si
y5Si

x8cosu isinc i1Si
z8sinu isinc i1Si

y8cosc i

Si
z5Si

z8cosu i2Si
x8sinu i ~ i5a,b,c!. ~2.2!

Here the (x,y,z) indices refer to the crystal axis frame an
the primed ones to the rotated magnetization ones. The c

mutation relations of the operatorsSi85^Si
x8 ,Si

y8 ,Si
y8& are

the same as those above.18 By use of the Holstein-Primakof
transform2 and the linear spin-wave approximation,3,4 retain-
ing terms up to the second order in the boson opera
ai

1 , ai ; bj
1 , bj ; cm

1 , cm , we have

H5H0
01(

l
Al(

i
al ,i

1al ,i

1(
l

Cl ,l11

Z (
id

~al ,ial11,i1d1al ,i
1al11,i1d

1 !

1(
l

Dl ,l11

Z (
id

~al ,ial11,i1d
1 1al ,i

1al11,i1d!

1(
l

Cl ,l118

Z (
id

~al ,ial11,i1d2al ,i
1al11,i1d

1 !

1(
l

Dl ,l118

Z (
id

~al ,ial11,i1d
1 2al ,i

1al11,i1d!

1(
l

Bl

AN (
i

~al ,i1al ,i
1 !1(

l

Bl8

AN (
i

~al ,i2al ,i
1 !

~ l5a,b,c!, ~2.3!

where

H0
052NZS2(

l
Jl ,l11@cosu lcosu l11

1sinu lsinu l11cos~c l2c l11!#, ~2.4!

Al5ZS(
j51

2

Jl ,l1 j@cosu lcosu l1 j

1sinu lsinu l1 jcos~c l2c l1 j !#, ~2.5!
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Cl ,l1152
ZS

2
Jl ,l11@sinu lsinu l11

1~cosu lcosu l1121!cos~c l2c l11!#, ~2.6!

Dl ,l1152
ZS

2
Jl ,l11@sinu lsinu l11

1~cosu lcosu l1111!cos~c l2c l11!# ~2.7!

Cl ,l118 5 i
ZS

2
Jl ,l11~cosu l2cosu l11!sin~c l2c l11!,

~2.8!

Dl ,l118 52 i
ZS

2
Jl ,l11~cosu l1cosu l11!sin~c l2c l11!,

~2.9!

Bl5
A2NSS

2 (
j51

2

Jl ,l1 j@sinu lcosu l1 j

2cosu lsinu l1 jcos~c l2c l1 j !#, ~2.10!

Bl852 i
A2NSS

2 (
j51

2

Jl ,l1 jsinu l1 jsin~c l2c l1 j !.

~2.11!

Here the parametersCl ,l118 , Dl ,l118 andBl8 ( l5a,b,c) are
imaginary, which must be zero in a certain condition~see
discussion in Sec. II B!.

The Hamiltonian is rewritten by introducing the Fouri
transforms of the boson operators in the reduced Brillo
zone:

H5H0
01(

l
Al(

k
al ,k

1 al ,k

1(
l
Cl ,l11(

k
gk~al ,kal11,k1al ,k

1 al11,k
1 !

1(
l
Dl ,l11(

k
gk~al ,kal11,k

1 1al ,k
1 al11,k!

1(
l
Cl ,l118 (

k
gk~al ,kal11,k2al ,k

1 al11,k
1 !

1(
l
Dl ,l118 (

k
gk~al ,kal11,k

1 2al ,k
1 al11,k!

1(
l
Bl~al ,01al ,0

1 !1(
l
Bl8~al ,02al ,0

1 !

~ l5a,b,c!, ~2.12!

with

gk5
1

Z (
d

eik•d. ~2.13!
n

B. Classical ground state

Before studying the spin waves of a magnetic system,
needs to examine carefully the classical ground state of
system. Therefore, in this section, we shall investigate
classical ground state of the present three-sublattice sys

The classical energyE0 of the present system is describe
by the HamiltonianH0

0 shown in Eq.~2.4!. The equilibrium
state is found by minimizing Eq.~2.4! with respect to the
anglesu l and c l ( l5a,b,c). This involves the nonlinear
equations

]E0

]u l
5NZS2(

j51

2

Jl ,l1 j@sinu lcosu l1 j

2cosu lsinu l1 jcos~c l2c l1 j !#. ~2.14!

]E0

]c l
5NZS2(

j51

2

Jl ,l1 jsinu lsinu l1 jsin~c l2c l1 j !

~2.15!

and the second derivatives of the free energy with respec
the anglesu l andc l ( l5a,b,c):

]2E0

]u l
2 5NZS2(

j51

2

Jl ,l1 j@cosu lcosu l1 j

1sinu lsinu l1 jcos~c l2c l1 j !#, ~2.16!

]2E0

]u l]u l1 j
52NZS2Jl ,l1 j@sinu lsinu l1 j

1cosu l cosu l1 j cos~c l2c l1 j !# ~ j51,2!,

~2.17!

]2E0

]c l
2 5NZS2(

j51

2

Jl ,l1 jsinu lsinu l1 jcos~c l2c l1 j !,

~2.18!

]2E0

]c l]c l1 j
52NZS2Jl ,l1 jsinu lsinu l1 jcos~c l2c l1 j !

~ j51,2!, ~2.19!

]2E0

]u l]c l
5NZS2(

j51

2

Jl ,l1 jcosu lsinu l1 jsin~c l2c l1 j !,

~2.20!

]2E0

]u l]c l1 j
52NZS2Jl ,l1 jcosu lsinu l1 jsin~c l2c l1 j !

~ j51,2!, ~2.21!

From Eqs.~2.14! and~2.15!, one finds a simple condition
for the equilibrium state:

sin~ca2cb!5sin~cb2cc!5sin~cc2ca!50. ~2.22!

This equals

ca2cb5cb2cc5cc2ca50 or p. ~2.23!



on
tiv

te

of

e

r
-
rm
il
e

nt,
eir

the
m-

gi-

if

t-
r
his
he
mil-

line

nal
vel-
s-
d

iza-

55 12 411SPIN WAVES IN SEVERAL HEISENBERG . . .
As soon as Eqs.~2.22! and ~2.23! are satisfied, one has

sin~ua7ub!5sin~ub7uc!5sin~uc7ua!50, ~2.24!

where the negative or positive sign correspond to 0 orp in
Eq. ~2.23!.

One finds another trivial condition from Eqs.~2.14! and
~2.15!:

sinua5sinub5sinuc50, ~2.25!

namely,

ua5ub5uc50 or p. ~2.26!

Actually, the condition of Eqs.~2.25! and ~2.26! coincides
with that of Eqs.~2.22! and ~2.23!.

To investigate whether such solutions indeed corresp
to energy minima one has to evaluate the second deriva
Eqs.~2.16!–~2.21! and consider the expression

D5S ha ]

]ua
1hb

]

]ub
1hc

]

]uc
1ga

]

]ca

1gb
]

]cb
1gc

]

]cc
D 2E0 . ~2.27!

The criterionD.0, as

Aha21hb
21hc

21ga
21gb

21gc
2

is very small, ensures the existence of a minimum. Af
some manipulation, one can get an expression forD:

D5NZS2 (
l5a,b,c

Jl ,l11$cosu lcosu l11@hl
21hl11

2

22hlhl11cos~c l2c l11!#

1sinu lsinu l11@~hl
21hl11

2 !cos~c l2c l11!22hlhl11#

1sinu lsinu l11cos~c l2c l11!~gl2gl11!
2

12sin~c l2c l11!~gl2gl11!~hlcosu lsinu l11

1hl11sinu lcosu l11!%. ~2.28!

Using the condition of Eq.~2.22!, one finds

D5NZS2 (
l5a,b,c

Jl ,l11@cos~u l7u l11!~hl7hl11!
2

6sinu lsinu l11~gl2gl11!
2#. ~2.29!

Here the upper or lower sign corresponds to the solution
or p in Eq. ~2.23!. For a minimum, the values ofD must be
always positive, being independent of the values ofhl and
gl ( l5a,b,c). It is easy to verify that a minimum can b
found only if ~i! u l5u l11 andc l5c l11 whenJl ,l11.0 and
~ii ! u l2u l115p and c l5c l11 when Jl ,l11,0. One may
note that the solutions found above are degeneracy fo
possible values ofu l andc l being valid for the above con
ditions. This degeneracy can be removed by adding the te
of the anisotropy and/or the external field into the Ham
tonian ~2.1!. To simplify, in Sec. III, we shall not take th
d
es

r

0

all

s
-

terms of the anisotropy and the external field into accou
but only assume that the spins orient preferentially in th
particular directions.

One finds the nontrivial solutions of Eqs.~2.14! and
~2.15! as

cos~c l2c l11!5
Jl11,l12Jl12,lsin

2u l12

2Jl ,l11
2 sinu lsinu l11

2
Jl11,l12sinu l11

2Jl12,lsinu l

2
Jl12,lsinu l

2Jl11,l12sinu l11
, ~2.30!

where the anglesu l ( l5a,b,c) are limited by

(
l5a,b,c

Jl ,l11Jl12,lcosu l50. ~2.31!

Then, for the nontrivial solutions, the dependence of
equilibrium orientations can be studied with the aid of co
puter. According to Eq.~2.31!, actually, the nontrivial solu-
tions are degeneracy also.

On the other hand, it is reasonable to remove all ima
nary terms in the Hamiltonians~2.3! and~2.12!. It is easy to
verify that all the imaginary terms can be eliminated only
either the trivial condition~2.22! or the nontrivial condition
~2.30! with cosul50 of the equilibrium orientations are sa
isfied. The condition of cosul50 means that the noncollinea
spin configurations are limited inside the basal plane. T
limitation is attributed to one of the quantum effects of t
spin waves on the classical ground state. Then the Ha
tonian ~2.12! can be written as

H5H0
01Aa(

k
ak

1ak1Ab(
k
bk

1bk1Ac(
k
ck

1ck

1Cab(
k

gk~ak
1bk

11akbk!1Dab(
k

gk~ak
1bk1akbk

1!

1Cbc(
k

gk~bk
1ck

11bkck!1Dbc(
k

gk~bk
1ck1bkck

1!

1Cca(
k

gk~ck
1ak

11ckak!1Dca(
k

gk~ck
1ak1ckak

1!

1Ba~a0
11a0!1Bb~b0

11b0!1Bc~c0
11c0!. ~2.32!

C. General theoretical outline for diagonalizing
the Hamiltonian

In this section, we represent the general theoretical out
for diagonalizing the Hamiltonian~2.32!. For the three-
sublattice system, in order to eliminate the nondiago
terns, a three-step diagonalizing procedure should be de
oped, which consists of three coupled Cullen tran
formations,7,35 an extended Bogoliubov transformation an
three independent Bogoliubov transformations.36

1. The first step: three coupled Cullen transformations

The linear terms ina0
1 , a0 ; b0

1 , b0 ; c0
1 , c0 in Eq. ~2.32!

can be eliminated by using three coupled Cullen diagonal
tion transformations,7,35
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ak5dk1hkdk,0 , ~2.33a!

ak
15dk

11hk
1dk,0 , ~2.33b!

bk5fk1pkdk,0 , ~2.34a!

bk
15fk

11pk
1dk,0 , ~2.34b!

and

ck5gk1qkdk,0 , ~2.35a!

ck
15gk

11qk
1dk,0 , ~2.35b!

where the Fourier transformsh0 , p0 , and q0 represent
frozen-in uniform spin deviations. The Hamiltonian~2.32!
will be diagonalized only if the following conditions are sa
isfied:

Aah01Cabp0
11Dabp01Ccaq0

11Dcaq01Ba50,
~2.36a!

Abp01Cabh0
11Dabh01Cbcq0

11Dbcq01Bb50,
~2.36b!

Acq01Cbcp0
11Dbcp01Ccah0

11Dcah01Bc50.
~2.36c!

Values forh0
1 , h0 ; p0

1 , p0 ; q0
1 , q0 can be derived by solv

ing the above linear equation group, consisting of E
~2.36a!–~2.36c! which can be separated into six equation
The new diagonalized Hamiltonian containskÞ0 terms
identical to Eq.~2.32!, but with ak

1 , ak ; bk
1 , bk ; ck

1 , ck
substituted by thedk

1 , dk ; fk
1 , fk ; gk

1 , gk operators and a
new k50 term

H0
15Aauh0u21Abup0u21Acuq0u21Cab~h0

1p0
11h0p0!

1Dab~h0
1p01h0p0

1!1Cbc~p0
1q0

11p0q0!

1Dbc~p0
1q01p0q0

1!1Cca~q0
1h0

11q0h0!

1Dca~q0
1h01q0h0

1!1Ba~h0
11h0!1Bb~p0

11p0!

1Bc~q0
11q0! ~2.37a!

which represents the uniform (k50) quantum spin-canting
fluctuations. Sinceh0

15h0 , p0
15p0 , and q0

15q0 , Eq.
~2.37a! can actually be written in a simpler form:

H0
15Aah0

21Abp0
21Acq0

212~Cab1Dab!h0p0

12~Cbc1Dbc!p0q012~Cca1Dca!q0h012Bah0

12Bbp012Bcq0 . ~2.37b!

2. The second step: an extended Bogoliubov transformation

To remove the nondiagonal termsdk
1fk

11dkfk , dk
1fk

1dkfk
1 , fk

1gk
11fkgk , fk

1gk1fkgk
1 , gk

1dk
11gkdk , gk

1dk
1gkdk

1 , an extended Bogoliubov transformation should
developed as the following matrix:
.
.

e

S ak
1

ak

bk
1

bk

jk
1

jk

D 5S a1k a2k a3k a4k a5k a6k

a2k a1k a4k a3k a6k a5k

a3k a4k a7k a8k a9k a10k

a4k a3k a8k a7k a10k a9k

a5k a6k a9k a10k a11k a12k

a6k a5k a10k a9k a12k a11k

D S dk
1

dk
f k

1

f k
gk

1

gk

D
~2.38!

and consequently its reversed transformation18 with param-
etersAjk ( j51,2,...,12). The relationship between the p
rametersaik andAjk ~i51,2,...,12 andj51,2,...,12! gives
12 equations which are omitted here for simplicity. The co
mutation relations of the new operators lead to six equatio
For instance,

@ak ,ak8
1

#5dkk8 ,

@ak ,bk8
1

#50,

respectively, lead to

a1k
2 1a3k

2 1a5k
2 2a2k

2 2a4k
2 2a6k

2 51, ~2.39!

a1ka3k1a3ka7k1a5ka9k2a2ka4k2a4ka8k2a6ka10k50.
~2.40!

For eliminating the nondiagonal terms, i.e.,ak
1bk

11akbk ,
ak

1bk1akbk
1 , ak

1jk
11akjk , ak

1jk1akjk
1 , bk

1jk
1

1bkjk , andbk
1jk1bkjk

1 , one needs to establish six equ
tions ~omitted also for simplicity!. Then the problem be-
comes to solve the equation group, mentioned above, c
sisting of 24 equations and 24 unknowns. After solving t
equation group and performing the transformation,
Hamiltonian may be written in the following form:

H5H0
01H0

11H0
21(

k
Ak1ak

1ak1(
k
Bk1bk

1bk

1(
k
Ck1jk

1jk1(
k
Ak2~ak

1ak
11akak!

1(
k
Bk2~bk

1bk
11bkbk!1(

k
Ck2~jk

1jk
11jkjk!.

~2.41!

The parameters in Hamiltonian~2.41! are described in Ap-
pendix A.

For the present system with exchange constantsJab
5JbcÞJca , the conditions of Eq.~2.22! and cos(ua2ub)
5cos(ub2uc) are commonly satisfied. Then one hasAa
5Ac , Cab5Cbc, andDab5Dbc and thus the transformatio
matrix ~2.38! and consequently the equation group can
simplified to be as those represented in Appendix B.

3. The third step: three independent Bogoliubov transformation

In this step, one needs to remove the nondiagonal term
Eq. ~2.41! by a further diagonalizing procedure, consisting
three independent Bogoliubov transformations,36 one of
which is described as
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ak
15 l 1kzk

11 l 2kzk , ~2.42a!

ak5 l 1kzk1 l 2kzk
1 , ~2.42b!

with

l 1k5S 11ek
2ek

D 1/2 ~2.43a!

l 2k5S 12ek
2ek

D 1/2 ~2.43b!

ek5F12S 2Ak2

Ak1
D 2G1/2 ~2.43c!

The other two~with the parametersm1k,m2k;n1k,n2k) are
similar to these.

After performing the three Bogoliubov transformation
one obtains

H5H0
01H0

11H0
21H0

31(
k

\vk,1zk
1zk1(

k
\vk,2hk

1hk

1(
k

\vk,3nk
1nk . ~2.44!

Here

H0
35

1

2 (
k

@AAk1
2 24Ak2

2 2Ak11ABk1
2 24Bk2

2 2Bk1

1ACk1
2 24Ck2

2 2Ck1#, ~2.45!

\vk,15AAk1
2 24Ak2

2 , ~2.46!

\vk,25ABk1
2 24Bk2

2 , ~2.47!

\vk,35ACk1
2 24Ck2

2 . ~2.48!

It should be noticed that if the condition of Eq.~2.22! and
cos(ua2ub)5cos(ub2uc) is satisfied, one will haveAa5Ac ,
Cab5Cbc , and Dab5Dbc and thus Ak15Ck1 and Ak2
5Ck2 which result inn1k5 l 1k and n2k5 l 2k , respectively.
Then one has

\vk,15\vk,3 ~2.49!

and consequently the Hamiltonian~2.44! and ~2.45! can be
rewritten as

H5H0
01H0

11H0
21H0

31(
k

\vk,1~zk
1zk1nk

1nk!

1(
k

\vk,2hk
1hk ~2.50!

and

H0
35

1

2 (
k

@2AAk1
2 24Ak2

2 22Ak11ABk1
2 24Bk2

2 2Bk1#.

~2.51!
,

Generally speaking, the Hamiltonian of the present thr
sublattice Heisenberg system can be diagonalized by
three-step diagonalizing procedure, developed above. H
ever, in most cases, such a procedure is very complex s
at least 16 equations and 16 unknowns are involved in
equation group.

D. Quantum fluctuations on the ground state

Besides the quantum effect on the classical ground st
found in Sec. II B, which limits the noncollinear spin con
figurations to be within the basal plane, one may disc
some quantum fluctuations on the classical ground state.
quantum fluctuations on the ground state originate fr
HamiltoniansH0

1, H0
2, andH0

3. One needs to repeat the pro
cedure in Sec. II B, discussing the energy minima of
system. In this case, the energies of the system include
only the HamiltonianH0

0 but also the quantum fluctuation
H0
1, H0

2, andH0
3. A numerical method needs to be employ

for finding the energy minima.
If the initial state was assumed to be of the complet

ordered state, in which all spins couple parallel or antipa
lel along thez axis, the diagonalizing procedures in Sec. II
could be simplified so that only one step is necessary
diagonalizing. The uniform (k50) quantum spin-canting
fluctuations disappear. The remaining quantum fluctuat
on the ground state is the zero-point vibrating of the s
waves.

III. SUPERLATTICES

The infinite Heisenberg superlattices, studied in this wo
are formed from two ferromagnetic materials with the simp
cubic lattice, which couple antiferromagnetically at the inte
faces. The layered structure in which an elementary unit c
sisting of q ~100! atomic planes is repeated periodical
along the stacking direction parallel to thex axis of the co-
ordinate system.

A. Hamiltonian

The superlattices can be described by the Hamiltonian

H52
1

2 (
l51

q

(
r,d

Jl ,r; l ,r1dSl ,r•Sl ,r1d

52
1

2 (
l51

q

(
r

(
d i

JlSl ,r•Sl ,r1d i

2(
l51

q

(
r

Jl ,l11Sl ,r•Sl11,r , ~3.1!

where l denotes the spins in the elementary unit in thex
direction.d represents that only the exchanges between
nearest neighbors are taken into account whiled i denotes the
nearest neighbors within one plane parallel to they-z plane
of the coordinate system.

When the numberq of the planes in the magnetic unit ce
is chosen to be 4, the Hamiltonian~3.1! is reduced to



,

th
r
t

y

w
o
p

er
s
ree

p-

12 414 55ZHANG ZHI-DONG
H52
1

2 (
l51

4

(
r,d i

JlSl ,r•Sl ,r1d i
2(

i ,dx
J12S1,i•S2,i1dx

2(
j ,dx

J23S2,j•S3,j1dx
2 (

m,dx
J34S3,m•S4,m1dx

2(
n,dx

J41S4,n•S1,n1dx
. ~3.2a!

For the superlattice with three different atomic planesq
53 and the Hamiltonian~3.1! becomes

H52
1

2 (
l51

3

(
r,d i

JlSl ,r•Sl ,r1d i
2(

i ,dx
J12S1,i•S2,i1dx

2(
j ,dx

J23S2,j•S3,j1dx
2 (

m,dx
J31S3,m•S1,m1dx

. ~3.2b!

The first term on the right-hand side of Eq.~3.2a! or Eq.
~3.2b! is the Hamiltonian for the exchanges between
spins with the neighbors within they-z planes. Others are fo
the exchanges between the spins in different planes in
x direction.dx denotes the nearest neighbor in thex direc-
tion.

If one assumes the following conditions:~i! All exchange
constantsJ1 for the exchanges within they-z planes are
equal, i.e.,J15J25J35J45J.0 and~ii ! For the exchange
constants between the different planes and for the four-la
superlattice, one hasJ125J345J.0 and J235J415J8,0,
the Hamiltonian Eq.~3.2a! may be written as

H52
1

2
J(
l51

4

(
r,d i

Sl ,r•Sl ,r1d i
2J(

i ,dx
S1,i•S2,i1dx

2J8(
j ,dx

S2,j•S3,j1dx
2J(

m,dx
S3,m•S4,m1dx

2J8(
n,dx

S4,n•S1,n1dx
. ~3.3a!

For the three-layer superlattice, one hasJ125J235J8,0 and
J315J.0, the Hamiltonian Eq.~3.2b! may be written as

H52
1

2
J(
l51

3

(
r,d i

Sl ,r•Sl ,r1d i
2J8(

i ,dx
S1,i•S2,i1dx

2J8(
j ,dx

S2,j•S3,j1dx
2J(

m,dx
S3,m•S1,m1dx

. ~3.3b!

In this section, we shall still restrict ourselves to the lo
temperature region ofT!Tc . The initial state is assumed t
be of the completely ordered state, in which all spins cou
parallel or antiparallel along thez axis, in accordance with
the signs of the exchange constantsJ andJ8. The linearized
Holstein-Primakoff transformation2–4 enables us to rewrite
the Hamiltonians in the following forms:
e

he

er

le

H5H01S~ZJ1ZxuJ8u!(
l51

4

(
r

bl ,r
1 bl ,r

2
1

2
SJ(

l51

4

(
r,d i

@bl ,r
1 bl ,r1d i

1bl ,rbl ,r1d i

1 #

2SFJ(
idx

~b1,i
1 b2,i1dx

1b1,ib2,i1dx
1 !

1J8(
jdx

~b2,j
1 ,b3,j1dx

1 1b2,jb3,j1dx
!

1J(
mdx

~b3,m
1 b4,m1dx

1b3,mb4,m1dx
1 !

1J8(
ndx

~b4,n
1 b1,n1dx

1 1b4,nb1,n1dx
!G ~3.4a!

with

H0522NS2~ZJ1ZxuJ8u! ~3.5a!

for the four-layer superlattice and

H5H01S~ZJ1ZxuJ8u!(
l51

3

(
r

bl ,r
1 bl ,r

2
1

2
SJ(

l51

3

(
r,d i

@bl ,r
1 bl ,r1d i

1bl ,rbl ,r1d i

1 #

2SFJ8(
idx

~b1,i
1 b2,i1dx

1 1b1,ib2,i1dx
!

1J8(
jdx

~b2,j
1 b3,j1dx

1 1b2,jb3,j1dx
!

1J(
mdx

~b3,m
1 b1,m1dx

1b3,mb1,m1dx
1 !G ~3.4b!

with

H052NS2@~Z1 1
2Zyz!J12ZxuJ8u# ~3.5b!

for the three-layer superlattice, respectively. HereZx or Zyz
is the number of the nearest neighbors in thex direction or
the y-z plane for a spin.

The superlattice is periodic not only in they andz direc-
tions, but also in thex direction. The superlattice has a larg
periodicity in thex direction perpendicular to the slabs. Thu
one expects to have solutions of the Bloch form for the th
directions. The Hamiltonians~3.4a! and~3.4b! can be rewrit-
ten by introducing the Fourier transforms of the boson o
erators in the reduced Brillouin zone:

H5H01S(
l51

4

(
k

@ZxuJ8u1ZJ~12gki
!#b1,k

1 b1,k

2ZS(
k

gkx
@J~b1,k

1 b2,k1b1,kb2,k
1 !1J8~b2,k

1 b3,k
1 1b2,kb3,k!

1J~b3,k
1 b4,k1b3,kb4,k

1 !1J8~b4,k
1 b1,k

1 1b4,kb1,k!# ~3.6a!
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for the four-layer superlattice and

H5H01S(
l51,3

(
k

@ZxuJ8u1ZJ~12gki
!#b1,k

1 b1,k

1S(
k

@2ZxuJ8u1J~Zyz2Zgki
!#b2,k

1 b2,k

2ZS(
k

gkx
@J8~b1,k

1 b2,k
1 1b1,kb2,k!

1J8~b2,k
1 b3,k

1 1b2,kb3,k!1J~b3,k
1 b1,k1b3,kb1,k

1 !#

~3.6b!

for the three-layer superlattice, respectively, with

gki
5
1

Z (
d i

eiki•d i, ~3.7!

gkx
5
1

Z (
dx

eikx•dx, ~3.8!

where ki is a two-dimensional wave vector parallel to th
interfaces andkx is that along thex direction.

The form of the Hamiltonian~3.6a! is similar to that ob-
tained for the four-sublattice systems,18 with the exception of
the parameters in the Hamiltonians. It is evident that a p
cedure, similar to that developed in the previous work,18 is
applicable for diagonalizing the Hamiltonian of the prese
superlattice system. Meanwhile, the form of the Hamilton
~3.6b! is much simpler than that of the Hamiltonian~2.13! or
~2.32!. Actually, it can be treated as a special example of
three-sublattice system, i.e., the spin configuration with
angles of~0,p,0! for the sublattice moments. The conditio
of Jab5Jbc,0 andJca.0 in the three-sublattice systems
the necessary condition for the existence of this spin confi
ration. Nevertheless, the problem for the superlattice with
Hamiltonian ~3.6b! can be solved also by finding out th
simplest form of the transformation matrices. The proced
of diagonalizing the Hamiltonians~3.6a! and ~3.6b! will be
performed in next section.

B. Diagonalizing procedures

We shall perform an extended Bogoliubov tran
formation36 for eliminating the nondiagonal terms in th
Hamiltonian ~3.6!. The diagonalizing procedures for th
four- and three-layer superlattices will be shown in Se
III B 1 and III B 2, respectively.

1. Four-layer superlattice

Since the nondiagonal terms in Eq.~3.6a! differ from
those in the previous paper,18 it is reasonable that the trans
formation matrixes as well as the equation group of the
rameters are also different. For the present system, the tr
formation may be written as the following matrix:
-

t
n

e
e

u-
e

e

-

.

-
ns-

S j1,k
1

j2,k
1

j3,k
j4,k

D 5S a1k a2k a3k a4k

a2k a1k a4k a3k

a3k a4k a1k a2k

a4k a3k a2k a1k

D S b1,k
1

b2,k
1

b3,k
b4,k

D ~3.9a!

with its reversed matrix having parametersAjk ~j51, 2, 3,
and 4! ~omitted here for simplicity!. The commutation rela-
tion of the new operators

@jt,k ,jt8,k8#5dtt8dkk8 , ~3.10a!

leads to one equation:

a1k
2 1a2k

2 2a3k
2 2a4k

2 51. ~3.11a!

It should be noted that in Eqs.~3.9! and~3.10!, an indext is
needed for labeling the perpendicular standing componen
the spin waves and for diagonalizing the spin-wave Ham
tonian ~3.6a!. For eliminating the nondiagonal terms of th
new operators, one needs to establish the following th
equations, respectively,

2@ZJ~12gki
!2ZxJ8#~A1kA2k1A3kA4k!

2Zgkx
@J~A1k

2 1A2k
2 1A3k

2 1A4k
2 !

12J8~A1kA3k1A2kA4k!#50, ~3.12a!

@ZJ~12gki
!2ZxJ8#~A1kA3k1A2kA4k!2Zgkx

@J~A1kA4k

1A2kA3k!1J8~A1kA2k1A3kA4k!#50, ~3.13a!

2@ZJ~12gki
!2ZxJ8#~A1kA4k1A2kA3k!2Zgkx

@2J~A1kA3k

1A2kA4k!1J8~A1k
2 1A2k

2 1A3k
2 1A4k

2 !#50, ~3.14a!

The relations between the parametersaik and Ajk are the
same as in Eqs.~27!–~31! in Ref. 18. The problem now
becomes solving the equation group of the parametersaik
and Ajk , which consists of eight equations and eight u
knowns. This equation group~denoted asE1! is solved by
the procedure represented in Appendix C so that the tra
formation can be carried out.

2. Three-layer superlattice

The transformation matrix for the three-layer superlatt
is

S j1,k
1

j2,k
j3,k

1
D 5S b1k b2k b3k

b2k b4k b2k

b3k b2k b1k
D S b1,k1

b2,k
b3,k

1
D , ~3.9b!

with its reversed matrix having parametersBjk ~j51, 2, 3,
and 4! ~omitted here also!. Comparing the matrix~3.9b! with
the matrix ~B1!, one has the relations between paramet
a1k5b1k , a2k5a3k5a6k5a8k50, a4k5b2k , a5k5a3k ,
and a7k5b4k . The same is true between the paramet
Ajk andBjk .

The commutation relations of the new operators beco
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b1k
2 1b3k

2 2b2k
2 51, ~3.10b!

b4k
2 22b2k

2 51. ~3.11b!

For eliminating the nondiagonal terms, one only needs
establish

@ZJ~12gki
!2ZxJ8#B2k~B1k1B3k!

1@~Zyz2Zgki
!J22ZxJ8#B2kB4k

2Zgkx
$J8@2B2k

2 1B4k~B1k1B3k!#

1JB2k~B1k1B3k!%50, ~3.12b!

2@ZJ~12gki
!2ZxJ8#B1kB3k1@~Zyz2Zgki

!J22ZxJ8#B2k
2

2Zgkx
@2J8B2k~B1k1B3k!1J~B1k

2 1B3k
2 !#50.

~3.13b!

The relations between the parametersbik and Bjk ~i
51,2,3,4; j51,2,3,4! are represented as

B1k5
1

Y
~b1kb4k2b2k

2 !, ~3.14b!

B2k5
1

Y
b2k~b3k2b1k!, ~3.15!

B3k5
1

Y
~b2k

2 2b3kb4k!, ~3.16!

B4k5
1

Y
~b1k

2 2b3k
2 !. ~3.17!

Here

Y5~b1k2b3k!@b4k~b1k1b3k!22b2k
2 #. ~3.18!

Then the problem becomes solving an equation group~de-
noted asE2!, consisting of Eqs.~3.10b!–~3.18! above, in
which eight unknowns are involved. The problem can
solved by the procedures shown in Appendixes D and E

C. Spin wave spectra

After performing the transformation, one obtains the fin
form of the Hamiltonian for the present system:

H5H01H081H1 , ~3.19!

where for the four-layer superlattice, one has
o

e

l

H0522NS2~ZJ1ZxuJ8u!, ~3.20a!

H0854S(
k

$@ZJ~12gki
!1ZxuJ8u#~A3k

2 1A4k
2 !

2Z@J~A1kA2k1A3kA4k!1J8~A1kA4k1A2kA3k!#gkx
%

~3.21a!

and

H15S(
k

$@ZJ~12gki
!1ZxuJ8u#~A1k

2 1A2k
2 1A3k

2 1A4k
2 !

22Z@J~A1kA2k1A3kA4k!1J8~A2kA3k1A4kA1k!#gkx
%

3@j1,k
1 j1,k1j2,k

1 j2,k1j3,k
1 j3,k1j4,k

1 j4,k# ~3.22a!

and for the three-layer superlattice, one has

H0
052NS2@~Z1 1

2Zyz!J12ZxuJ8u#, ~3.20b!

H085S(
k

$3@~Zyz2Zgki
!J12ZxuJ8u#B2k

2 1Z@2uJ8uB2k

3~B1k1B3k1B4k!1J~2B1kB3k1B2k
2 !#gkx

%

~3.21b!

and

H15S(
k
„$@ZJ~12gki

!1ZxuJ8u#~B1k
2 1B3k

2 !

1@~Zyz2Zgki
!J12ZxuJ8u#B2k

2

12Z@ uJ8uB2k~B1k1B3k!1JB1kB3k#gkx
%

3~j1,k
1 j1,k1j3,k

1 j3,k!1$2@ZJ~12gki
!1ZxuJ8u#B2k

2

1@~Zyz2Zgki
!J12ZxuJ8u#B4k

2 12Z~2uJ8uB2kB4k

1JB2k
2 !gkx

%j2,k
1 j2,k…. ~3.22b!

They are the energies for the initial state, the zero-point
brating, and the spin waves, respectively.

The spin wave spectra of the superlattices, obtain
above, depend on the strength of the exchange constanJ
and J8. For the four-layer superlattice, as shown in E
~3.22a!, the degeneracy of the spin-wave spectra still rema
and the number of the degeneracy of the spin-wave spect
four. For the three-layer superlattice, however, as shown
Eq. ~3.22b!, the degeneracy of the spin wave spectra is p
tially removed and the number of the degeneracy of the s
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wave spectra is two. This type of splitting of energy levels
the three-layer superlattice are ascribed to the different
ues of the exchange constants and to the asymmetry o
system.

IV. DISCUSSION AND CONCLUSION

In this work, we have treated the spin-wave theory
several complex Heisenberg Hamiltonians. One of them
for three-sublattice systems with exchange constantsJab
5JbcÞJca . The complication of the present three-sublatt
system is ascribed to not only the correlation of the spins
the different sublattices, but also the asymmetry of the s
tem. Without considering the anisotropy and/or the exter
magnetic field, as discussed in Sec. II B, the classical gro
state can be either the collinear or the noncollinear s
structures, depending the strengths and the signs of the
change constants. For all possible spin configurations, a
tation transformation was applied to deal with the differe
quantization axes of the three sublattices. In general,
rotation transformation is necessary in the three-sublat
system since the initial state in this system can be in vari
spin configurations. For eliminating the imaginary terms t
appear in the Hamiltonian due to the rotation, it seems
only the noncollinear spin configurations within the ba
plane and the collinear configurations are valid upon
quantum effect. Because of the asymmetry of the system
quantization axes of the spins in different sublattices m
vary on their angles with respect to thez axis. This results
in the appearance of the linear terms
a0

1 , a0 ; b0
1 , b0 ; c0

1 , c0 in the Hamiltonian~2.12! or ~2.32!,
which represent the frozen-in uniform spin deviations. T
linear terms can only be eliminated by using three coup
Cullen diagonalization transformations. From the derivativ
of Hamiltonian ~2.37! with respect to the anglesu l andc l
( l5a,b,c), one may derive the 0 K spin reorientation angle
due to the quantum fluctuations. Such uniform (k50) quan-
tum spin-canting fluctuations have been found also in
one-sublattice7 and two-sublattice39 systems with competing
sublattice anisotropies. However, the 0 K spin reorientation
angle due to the quantum fluctuations does not exist in
systems with high symmetry,18 but may occur in other mul-
tisublattice systems with an odd number of sublattices,
with an even number, together with asymmetry, of differe
exchange constants.

Generally speaking, it is necessary to perform the thr
step procedure developed in Sec. II C. 24 equations and
unknowns are involved in the second step of this proced
However, this step will be simplified~see Appendix B! if the
conditions of Eq.~2.22! and cos(ua2ub)5cos(ub2uc) are sat-
isfied. In special cases, i.e., the collinear spin configuratio
the procedure can be reduced further. Only one step
needed to carry out an extended Bogoliubov transforma
and the problem becomes solving an equation group con
ing of eight equations and eight unknowns. This equat
group can be treated by the procedures, similar to those
resented in Appendixes D and E. The uniform (k50) quan-
tum spin-canting fluctuations do not exist when the init
state is the collinear one.

It is worth noting that for performing the extended Bog
liubov transformation, it is important to select the suitab
l-
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parametersaik andAjk ~or bik andBjk! and to establish the
equation group with the same values for the numbers of
equations and the unknowns. The form of the transforma
matrixes should be chosen to be of physical significance
that the relations between the new and the old operators
meaningful in accordance with the signs of the exchan
constants between the different sublattices. Although
new operators for different collinear spin configurations d
fer, the diagonalized Hamiltonians of these systems can b
the same form with the exception of the zero-point vibrati
~i.e., the zero-point quantum! fluctuations. Some differen
signs appear in the Hamiltonians, which are originated fr
the differences of the commutation relations of the new
erators as well as the signs of the exchange constants.

One of the real systems, corresponding to the present m
tisublattice system, is of the rare-earth—transition-me
(R-T) intermetallics.40–43 In someR-T compounds,40–43 the
existence of different rare-earth and transition-metal sites
sults in the necessity of a multisublattice model for using
spin-wave theory to analyze the spin reorientations.7 The
method, as well as the transformation, developed in
present work could be applied to deal with the spin-wa
spectrum of yttrium-iron-garnet~YIG! although the number
of the sublattices in YIG may be much larger than three
four.11,12 Most of theR-T compounds and YIG have larg
anisotropy for their application potential on permanent m
nets. As shown in Sec. II B, the terms of the anisotro
and/or the external field need to be added into Hamilton
~2.1! to remove the degeneracy of the classical ground st
However, these terms lead to a lot of difficulties, so the
agonalizing procedure cannot be easily performed. For s
plicity, in Sec. III we neglected the terms of the anisotro
and the external field. The initial state was assumed to b
the completely ordered state, in which all spins couple p
allel or antiparallel along thez axis. Actually, only a little of
the anisotropy and/or external field is good enough to s
from such an initial collinear state. The corresponding r
systems may beR-T compounds with good magnetostrictiv
properties or CsCl-type ordered compounds or magnetic
perlattices.

It is well known that the spin-wave theory of the supe
lattice can be simplified to be dealt with by a on
dimensional model by taking advantage of the perio
boundary condition on the basaly-z plane and by perform-
ing the two-dimensional in-plane Fourier transformation.23,33

Up to now, the spin waves in the superlattices have b
investigated by using a macroscopic Landau-Ginzb
theory,28 multisublattice Green-function technique,22,26,29or
a transfer matrix method,24,25,33,34which are usually the nu-
merical methods. The present work shows the possibility
studying explicitly the spin-wave spectra of the magne
superlattices in terms of creation and annihilation operat
The method used for the multisublattice systems~Sec. II in
this work and Ref. 18!, can be extended to be appropriate f
deriving analytical solutions of the spin-wave spectra of
magnetic superlattices.

The spin-wave spectra obtained in the last section dep
on the strength of the exchange constantsJ and J8. The
dispersions of the spin waves in the magnetic superlattice
related not only to the two-dimensional wave vectorki but
also the one-dimensional wave vectorkx . Thus they depend
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on the values ofgki
andgkx

. It can be seen from Eq.~3.21!

that the quantum fluctuation, i.e., the zero-point vibratin
exists at 0 K in themagnetic superlattice. From the Ham
tonian ~3.6! and the canonical transformation described
the matrix ~3.9!, the spin-wave modes in the superlattic
depend on more than the plane wave vectork. An index t,
which is taken to label the perpendicular standing compon
of the spin waves, is needed for diagonalizing the spin-w
Hamiltonian. In the four-layer superlattice, as shown in E
~3.22a!, the degeneracy of the spin-wave spectra exists
the number of the degeneracy of the spin-wave spectr
four. For the three-layer superlattice, as shown in E
~3.22b!, the degeneracy of the spin-wave spectra is parti
removed and the number of the degeneracy of the spin-w
spectra is two. This is ascribed to the different values of
exchange constants and the asymmetry of the system.

On the other hand, there occurs another type of splitt
of the energy level for the four-layer superlattice. There
four different energy levels which are ascribed to that ha
positive and negative signs in the formula ofK @see Eq.~C4!
in Appendix C# andpk @see Eq.~C9!#, and thusaik @see Eqs.
~C17!, ~C13!, and~C9!# andAjk . Therefore, atT50 K, there
are four energy levels in the case of the four-layer super
tice; one is the ground state and the others are exciton le
Consequently, there are four different spin-wave dispersi
in the superlattice with the elementary unit of the four d
ferent layers. Therefore, the number of the total modes
the spin waves of the four-layer superlattices are 16, i.e.,
number of the energy levels times that of their degenera
This might be ascribed to the combinatorial number of
possible movements of the spins in the elementary unit.

The same is true for the superlattice with the element
unit of the three different layers. The total number for t
spin-wave modes should equal to 8, i.e., the combinato
number of the different movements of the spins in the
ementary unit of the three layers. The number of the sp
wave spectra of the three-layer superlattice is 3. The s
tings of the energy levels should be different for those w
or without the degeneracy. The possible situation of the s
wave modes can be of 23116, 23214, 23312, or
23410. One of these possible states is reasonable, rea
by evaluating the signs6 of the parametersbik in Eqs.~E5!,
~3.10b!, ~3.11b!, Bjk in Eqs. ~3.14b!–~3.17!, and finally the
spin-wave spectra in Eq.~3.22b!. One may find, from the
results obtained in Sec. III and Appendixes D and E, that
only reasonable state is 23214. Namely, the number of the
energy splitting is 2~or 4! for the spin-wave modes with~or
without! degeneracy.

In the case of the superlattices, the cyclic condition
well as the translation invariance in thex direction still re-
main so that the spin-wave spectra in this direction can
described in the form of the plane waves. The superlat
has a larger periodicity in the direction perpendicular to
slabs and therefore many magnon branches in the fo
Brillouin zone. Dobrzynskiet al. found that the surface
localized modes may appear within the extra gaps exis
between these folded bulk bands.22 We argue here that th
surface-localized modes can exist only in the limit of t
systems with few surfaces or interfaces. In this limit, t
effect of the surfaces or interfaces is so weak that it can
treated as a perturbation on the energy of the bulk s
,
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waves. In the present system as well as those in which
fraction of the interfaces is comparable with that of the bu
such surface-localized modes cannot be found. This me
that the effects of the interfaces and the bulk on the sp
wave spectrum aremixedso that the dispersions of the inte
face and the bulk modes cannot be distinguished.

It was argued24 that a spin which is not in an interfac
layer has the same nearest-neighbor environment and th
fore the same equation of motion as a spin in the correspo
ing bulk medium. The spin-wave amplitudes were giv
within each component by a linear combination of t
positive- and negative-going solutions for the bulk mediu
For a travelling wave in the superlattice, the wave vectors
the y and z directions must be real whereas those in thex
direction are only real when the frequency lies within a pa
band for the corresponding bulk mode and can be eit
imaginary or complex outside the pass band. The result
our present work suggests that such an argument is appr
ate only in the limit of few surfaces or interfaces. In th
superlattice systems with large fraction of the interfaces,
wave vectors in thex direction can be either imaginary o
complexwithin the pass band@see Eqs.~C4! and~C5!#. This
is mainly due to the fact that a spin in a superlattice, which
not in an interface layer,does nothave the same neares
neighbor environment and the same equation of motion a
spin in the corresponding bulk medium. The quantum cor
lation between the spins in different layers of a magne
superlattice results in the complication of the spin-wa
spectra of the superlattice.

One of the most important results revealed in this work
that the degeneracy of the splitting of the energy levels of
spin waves can be different, due to the different symmetry
the systems. Since magnetic properties of a real materia
pend on the elementary excitons, the symmetry may af
the magnetic properties of the material in such a way t
they can be quite different for the superlattices with the
ementary unit of even and odd layers. It is predicted t
even for superlattices having the same exchange cons
~eitherJ or J8!, i.e., without the oscillation of the exchang
coupling, the asymmetry can lead to the oscillation of ma
netic properties, such as magnetization and giant magne
sistence. This is a common fact of the multisublattice s
tems. Therefore, the same should be true for intermeta
compounds, such as, CsCl-type ordered compou
Fe50Rh50,

44,45 rare-earth-based systems SmMn2Ge2,
46

NdCu2, and HoCo2,
47 which have giant magnetoresistan

behavior.
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APPENDIX A: PARAMETERS IN HAMILTONIAN „2.41…

The parameters in Hamiltonian~2.41! are
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H0
25(

k
$Aa~A2k

2 1A4k
2 1A6k

2 !1Ab~A4k
2 1A8k

2 1A10k
2 !1Ac~A6k

2 1A10k
2 1A12k

2 !1gk@Cab~A1kA4k1A2kA3k1A3kA8k

1A4kA7k1A5kA10k1A6kA9k!1Dab~A1kA3k1A2kA4k1A3kA7k1A4kA8k1A5kA9k1A6kA10k!1Cbc~A3kA6k1A4kA5k

1A7kA10k1A8kA9k1A9kA12k1A10kA11k!1Dbc~A3kA5k1A4kA6k1A7kA9k1A8kA10k1A9kA11k1A10kA12k!

1Cca~A1kA6k1A2kA5k1A3kA10k1A4kA9k1A5kA12k1A6kA11k!

1Dca~A1kA5k1A2kA6k1A3kA9k1A4kA10k1A5kA11k1A6kA12k!#%, ~A1!

Ak15Aa~A1k
2 1A2k

2 !1Ab~A3k
2 1A4k

2 !1Ac~A5k
2 1A6k

2 !12gk@Cab~A1kA4k1A2kA3k!1Dab~A1kA3k1A2kA4k!1Cbc~A3kA6k

1A4kA5k!1Dbc~A3kA5k1A4kA6k!1Cca~A1kA6k1A2kA5k!1Dca~A1kA5k1A2kA6k!#, ~A2!

Bk15Aa~A3k
2 1A4k

2 !1Ab~A7k
2 1A8k

2 !1Ac~A9k
2 1A10k

2 !12gk@Cab~A3kA8k1A4kA7k!1Dab~A3kA7k1A4kA8k!1Cbc~A7kA10k

1A8kA9k!1Dbc~A7kA9k1A8kA10k!1Cca~A3kA10k1A4kA9k!1Dca~A3kA9k1A4kA10k!#, ~A3!

Ck15Aa~A5k
2 1A6k

2 !1Ab~A9k
2 1A10k

2 !1Ac~A11k
2 1A12k

2 !12gk@Cab~A5kA10k1A6kA9k!1Dab~A5kA9k1A6kA10k!

1Cbc~A9kA12k1A10kA11k!1Dbc~A9kA11k1A10kA12k!1Cca~A5kA12k1A6kA11k!1Dca~A5kA11k1A6kA12k!#,

~A4!

Ak25AaA1kA2k1AbA3kA4k1AcA5kA6k1gk@Cab~A1kA3k1A2kA4k!1Dab~A1kA4k1A2kA3k!1Cbc~A3kA5k1A4kA6k!

1Dbc~A3kA6k1A4kA5k!1Cca~A1kA5k1A2kA6k!1Dca~A1kA6k1A2kA5k!#, ~A5!

Bk25AaA3kA4k1AbA7kA8k1AcA9kA10k1gk@Cab~A3kA7k1A4kA8k!1Dab~A3kA8k1A4kA7k!1Cbc~A7kA9k1A8kA10k!

1Dbc~A7kA10k1A8kA9k!1Cca~A3kA9k1A4kA10k!1Dca~A3kA10k1A4kA9k!#, ~A6!

Ck25AaA5kA6k1AbA9kA10k1AcA11kA12k1gk@Cab~A5kA9k1A6kA10k!1Dab~A5kA10k1A6kA9k!1Cbc~A9kA11k1A10kA12k!

1Dbc~A9kA12k1A10kA11k!1Cca~A5kA11k1A6kA12k!1Dca~A5kA12k1A6kA11k!#. ~A7!

APPENDIX B: THE SECOND STEP OF THE DIAGONALIZING PROCEDURE OF SEC. II C
IN CASES OF EQ. „2.22… AND cos„ua2ub…5cos„ub2uc…

If the conditions of Eq.~2.22! and cos(ua2ub)5cos(ub2uc) are satisfied, the second step of the diagonalizing procedu
Sec. II C can be simplified. The matrix~2.38! becomes

S ak
1

ak

bk
1

bk

jk
1

jk

D 5S a1k a2k a3k a4k a5k a6k

a2k a1k a4k a3k a6k a5k

a3k a4k a7k a8k a3k a4k

a4k a3k a8k a7k a4k a3k

a5k a6k a3k a4k a1k a2k

a6k a5k a4k a3k a2k a1k

D S dk
1

dk
fk
1

fk
gk

1

gk

D . ~B1!

Comparing the matrix~B1! with the matrix~2.38!, one has the relations between the parametersa1k5a11k , a2k5a12k , a3k
5a9k , anda4k5a10k . The same is true for the parametersAjk .

In this case, the relations between the parametersaik and Ajk ~i51,2,...,8; j51,2,...,8! give eight equations and th
commutation relations of the new operators become four equations. For eliminating the nondiagonal terms, one only
establish the other four equations. The problem becomes solving the equation group, consisting of 16 equation
unknowns. Consequently, the parameters defined in Eqs.~A1!–~A7! are simplified as

H0
25(

k
„2Aa~A2k

2 1A4k
2 1A6k

2 !1Ab~2A4k
2 1A8k

2 !1gk$2Cab@A3k~A2k1A6k1A8k!1A4k~A1k1A5k1A7k!#12Dab@A3k~A1k

1A5k1A7k!1A4k~A2k1A6k1A8k!#12Cca~A1kA6k1A2kA5k1A3kA4k!1Dca~2A1kA5k12A2kA6k1A3k
2 1A4k

2 !%…,

~B2!
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Ak15Ck15Aa~A1k
2 1A2k

2 1A5k
2 1A6k

2 !1Ab~A3k
2 1A4k

2 !12gk@Cab~A1kA4k1A2kA3k1A3kA6k1A4kA5k!1Dbc~A1kA3k

1A2kA4k1A3kA5k1A4kA6k)1Cca~A1kA6k1A2kA5k!1Dca~A1kA5k1A2kA6k!], ~B3!

Bk152Aa~A3k
2 1A4k

2 !1Ab~A7k
2 1A8k

2 !12gk@2Cab~A3kA8k1A4kA7k!12Dab~A3kA7k1A4kA8k!

12CcaA3kA4k1Dca~A3k
2 1A4k

2 !#, ~B4!

Ak25Ck25Aa~A1kA2k1A5kA6k!1AbA3kA4k1gk@Cab~A1kA3k1A2kA4k1A3kA5k1A4kA6k!1Dab~A1kA4k1A2kA3k

1A3kA6k1A4kA5k)1Cca~A1kA5k1A2kA6k!1Dca~A1kA6k1A2kA5k!], ~B5!

Bk252AaA3kA4k1AbA7kA8k1gk@2Cab~A3kA7k1A4kA8k!12Dab~A3kA8k1A4kA7k!1Cca~A3k
2 1A4k

2 !12DcaA3kA4k#.
~B6!
.
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g-

up,

s

APPENDIX C: PROCEDURE FOR SOLVING
THE EQUATION GROUP E1

Using the relation of Eq.~3.11a!, one may rewrite Eqs
~27!–~30! in Ref. 18 and then Eq.~3.12a! minus Eq.~3.14a!
results in

2a1k
2 22a4k

2 12a1ka3k22a2ka4k2150 ~C1!

or

Z~J2J8!gkx
~a1k2a3k!

222@ZJ~12gki
!2ZxJ8#~a1k2a3k!

3~a2k2a4k!1Z~J2J8!gkx
~a2k2a4k!

250. ~C2!

Equation~C1! is not meaningful since it is independent
the parametersJ, J8, andgk . Eq. ~C2! can be reduced to

~a1k2a3k!5K~a2k2a4k!. ~C3!

Here

K5
16A12X2

X
, ~C4!

with

X5
Z~J2J8!gkx

2@ZJ~12gki
!2ZxJ8#

. ~C5!

Equation~3.12a! plus Eq.~3.14a! leads to

p1k2p2k50 ~C6!

or

pk
21

2@ZJ~12gki
!2ZxJ8#1Z~J2J8!gkx

2

2ZJgkx

pk1
1

4
50.

~C7!

Here one defines the parameterpk as

pk5a1ka2k2a3ka4k . ~C8!

Other parametersp1k , p2k , p3k , andqk , used in this work,
are the same as those defined in Eqs.~36!–~38! and Eq.~40!
of Ref. 18, respectively.
Equation~C6! should be omitted since it is not meanin
ful. From Eq.~C7!, one has

pk52
2@ZJ~12gki

!2ZxJ8#

4ZJgkx

3@11Xgkx
6A~12X2!~12gkx

2 !#. ~C9!

Then one may derive from Eq.~3.13a! the relation

~J2J8!p3kQ1k1~Jp2k2J8p1k!Q2k50. ~C10!

with

Q1k54pk
224Xpk11, ~C11!

Q2k54Xpk
224pk1X. ~C12!

Now one is only concerned with a smaller equation gro
consisting of Eqs.~3.11a!, ~C3!, ~C7! @or ~C8! or ~C9!# and
~C10!, since it is not important to deal with the relation
between the parametersaik andAjk at this step.

From Eqs.~3.11a! and ~C3!, one has

a1k5
1

2K F 1

a2k2a4k
2~12K2!a2k2~11K2!a4kG , ~C13!

a3k5
1

2K F 1

a2k2a4k
2~11K2!a2k2~12K2!a4kG . ~C14!

Inserting Eqs.~C13! and~C14! into Eqs.~C8! and~C10!,
one respectively obtains two equations in which onlya2k and
a4k are unknowns:

a2k
2 2a4k

2 5
122Kpk
12K2 5R ~C15!

and
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$Z~J2J8!K4Q1k14@ZJ~12gki
!2ZxJ8#K3Q2k#

3~a2k2a4k!
424Z~J2J8!K2Q1ka2ka4k~a2k2a4k!

2

1Z~J2J8!~R21!@2KQ2kR2Q1k~R21!%. ~C16!

Settinga2k5E1F anda4k52E1F, one has two equa
tions for the parametersE andF ~omitted here for simplic-
ity!. After solving these equations, finally, one obtains t
solutions of the equation group as

a1k56
11K2

2K
A12R, ~C17a!

a2k56
1

2A12R
, ~C17b!

a3k56
12K2

2K
A12R, ~C17c!

a4k56
2R21

2A12R
. ~C17d!

ThenAjk ( j51,2,3,4) are given by the relations between t
parametersaik andAjk and the transformation can be pe
formed.
e

e

APPENDIX D: PROCEDURE FOR SOLVING
THE EQUATION GROUP E2

Using the relations of Eqs.~3.14b!–~3.17!, one may re-
write Eqs.~3.12b! and ~3.13b! as

@ZJ~12gki
!2ZxJ8#b2kb4k

1@~Zyz2Zgki
!J22ZxJ8#b2k~b1k1b3k!

1Zgkx
$J8@2b2k

2 1b4k~b1k1b3k!#2Jb2kb4k%50, ~D1!

2@ZJ~12gki
!2ZxJ8#~b1kb4k2b2k

2 !~b2k
2 2b3kb4k!

1@~Zyz2Zgki
!J22ZxJ8#b2k

2 ~b1k2b3k!
2

1Zgkx
$2J8b2kb4k~b1k2b3k!

22J@~b1kb4k2b2k
2 !2

1~b2k
2 2b3kb4k!

2#%50. ~D2!

From Eqs.~3.10b! and ~3.11b!, one has

2b1k
2 12b3k

2 2b4k
2 51. ~D3!

From Eqs.~3.11b! and ~D1!, one has
b2k5
2ZJ8gkx

@b4k
2 211b4k~b1k1b3k!#

@~Zyz2Zgki
!J22ZxJ8#~b1k1b3k!1@ZJ~12gki

2gkx
!2ZxJ8#b4k

. ~D4!

Combining Eq.~D4! with Eq. ~3.10b! leads to

b1k
2 1b3k

2 215
ZJ8gkx

@b4k
2 211b4k~b1k1b3k!#

@~Zyz2Zgki
!J22ZxJ8#~b1k1b3k!1@ZJ~12gki

2gkx
!2ZxJ8#b4k

~D5!
which can be reduced by using Eq.~D3! to

b4k
2 1pb4k1q50 ~D6!

with

p5$4Z2J82gkx
2 22@~Zyz2Zgki

!J22ZxJ8#

3@ZJ~12gki
2gkx

!2ZxJ8#%

3
~b1k

2 1b3k
2 21!~b1k1b3k!

T
, ~D7!

q5$4Z2J82gkx
2 ~b1k

2 1b3k
2 21!2@~Zyz2Zgki

!J22ZxJ8#2

3~b1k1b3k!
2%
b1k
2 1b3k

2 21

T
. ~D8!

Here

T5Z2J82gki

2 ~b1k1b3k!
2

2@ZJ~12gki
2gkx

!2ZxJ8#2~b1k
2 1b3k

2 21!. ~D9!

Inserting Eq.~D4! into Eq. ~D2! results in

b4k
5 1rb4k

4 1sb4k
3 1tb4k

2 1ub4k1v50 ~D10!

with

r5
@Zyz2Z~22gki

22gkx
!#J~b1k1b3k!

ZJ~12gki
2gkx

!2ZxJ8
. ~D11!

Here the descriptions of the parameterss, t, u, and v are
omitted for simplicity.

Equation~D3! can be rewritten as

b4k
2 5w ~D12!

with

w52b1k
2 12b3k

2 21. ~D13!
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Now the problem can be simplified to solve an equat
group ~denoted asE3!, consisting of Eqs.~D6!, ~D10!, and
~D12! in which only three unknown parametersb1k , b3k ,
and b4k are involved. The procedure for solving this sm
equation groupE3 is illustrated in Appendix E.

APPENDIX E: PROCEDURE FOR SOLVING
THE EQUATION GROUP E3

In this appendix, we shall represent the procedure
solving the equation groupE3 which consists of Eqs.~D6!,
~D10!, and~D12!.

From Eqs.~D6! and ~D12!, one derives

pb4k1q1w50. ~E1!

From Eqs.~D10! and ~D12!, one obtains

~w21sw1u!b4k1rw21tw1v50. ~E2!

Combining Eq.~D12! with Eq. ~E1! leads to

wp22~w1q!250. ~E3!

Combining Eqs.~E1! and ~E2! results in
g,

er

s

s

n

l

r

p~rw21tw1v !2~w1q!~w21sw1u!50. ~E4!

The equation group, including Eqs.~E3! and ~E4!, are the
eighth-order equations of two unknownsb1k andb3k , which
can be reconstructed to be of the quartic equations ofx and
y by the definitions of (b1k1b3k)

25x and (b1k2b3k)
2

5y. The quartic equations can be solved in a norm
method,18,48or a numerical method with the aid of compute
Here we omit the detailed expressions of these lengthy a
braic calculations. Then one obtains

b1k56
Ax1Ay

2
, ~E5a!

b3k56
Ax2Ay

2
, ~E5b!

or

b1k56
Ax2Ay

2
, ~E5c!

b3k56
Ax1Ay

2
. ~E5d!
y,
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