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Spin waves in several Heisenberg systems:
Three-sublattice with different exchange constantgJ,,=J,.#J.,) and
a superlattice with the elementary unit of four or three different layers
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The quadratic Holstein-Primakoff spin-wave Hamiltonian for three-sublattice Heisenberg systems with dif-
ferent exchange constantd,(=J,.# J.,) was diagonalized by a three-step procedure. The classical ground
state was examined and the effects of quantum fluctuation on the ground state were discles$€el. Sin
reorientation angles due to quantum fluctuations were found to originate from the asymmetry of the system. As
an extended application of the spin-wave study of the multisublattice systems, the spin-wave spectra of a
Heisenberg superlattice, which has four or three magnetic atoms or spins, in each magnetic unit cedl in the
direction, were solved analytically in terms of creation and annihilation operators. It has been found that the
spin-wave spectra of the present superlattice systems depend on the exchange cbasthhts and that the
degeneracy of the spin-wave spectra remains for the superlattice of four atomic layers and is partially removed
for the superlattice of three atomic layers mainly due to the asymmetry of the system. Another type of splitting
of the energy level occurs which differs for those levels with different degeneracies. The mixing of the
interface and the bulk modes were found for the spin-wave dispersion of the superlattices. It was predicted that
even for different superlattices having the same exchange con&ithtrJ or J'), i.e., without the oscillation
of the exchange coupling, the asymmetry can lead to the oscillation of magnetic properties, such as magneti-
zation and giant magnetoresistance.
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[. INTRODUCTION limit have been investigated by use of various quantum mi-
croscopic theorie& 34
Since the early work of BlochHolstein and Primakoff, In this paper we first present in Sec. Il calculations to

Andersort and Kubd spin waves have attracted consider-investigate the spin waves at low temperatures of three-
able interest:® To our knowledge, few authors have dealt sublattice Heisenberg systems with different exchange con-
with the spin-wave excitations in the systems with multiplestants (,,=J,.# Jca)- In Sec. Il A, for studying all possible
structurally ordered magnetic sublattided’ It has been spin configurations, a rotation transformation will be applied
commonly accepted that if the lattice is complicated, i.e., theo deal with the different quantization axes of the three sub-
cases when the number of spins per magnetic unit cell ifattices. The Hamiltonian for the present system will be re-
more than two, the problem cannot be solved explicitly induced by use of the Holstein-Primakoff transféramd the
terms of the elements of the matrices for elctBenerally, it linear spin-wave approximatictf: In Sec. Ill B, the classical
is necessary to use numerical methods to solve thground state of the three-sublattice systems will be exam-
problen?~*'and contradictory results were obtained by thesened. In Sec. Ill C, for avoiding the loss of generality, the
authors because of differing methdd$-'" Recently, the general theoretical outline will be represented for treating the
spin-wave spectra at low temperatures of a four-sublatticproblem for the whole present three-sublattice system. The
Heisenberg ferrimagnet or ferromagnet with different ex-diagonalizing procedure consists of three coupled Cullen
change constantsJ{y,=J.q#J,c=Jqa) Were studied in transformations® an extended Bogoliubov transformation,
terms of creation and annihilation operatbi$or diagonal- and three independent Bogoliubov transformatiénghe
izing the Hamiltonians, two extended Bogoliubov transfor-extended Bogoliubov transformation requires us to solve an
mations were developed so that the spin-wave spectra of theguation group consisting of 24 equations and 24 unknowns.
four-sublattice ferromagnet and ferrimagnet could be calcu- To show an extended application of the spin-wave study
lated explicitly. It seems that the method, used for the mul-of the four-sublattice(in the author’s previous wotR) and
tisublattice system¥ can be extended to be appropriate forthe three-sublatticén Sec. Il of the present woyksystems,
deriving analytical solutions of the spin-wave spectra ofattention will be paid on the analytical solutions of the spin-
magnetic superlattices. wave spectra of Heisenberg superlattices, formed from two
Recently, layered composite materials such as multilayerferromagnetic materials which couple antiferromagnetically
and superlattices have become of great interest since tha the interfaces, in terms of creation and annihilation opera-
magnetic properties of these composite materials may be digers. The problem for a special case, i.e., a superlattice which
tinctly different from those of their bulk counterpatfs?®  has four or three magnetic atoms or spins in each magnetic
The spin waves of magnetic superlattices in the exchangenit cell in thex direction, will be solved analytically. In the
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present work, for simplicity, we shall only deal with the which all spins couple parallel or antiparallel along the
same amplitudes for the whole system. The Hamiltonian foaxis. But the initial state in the three-sublattice system can be
the superlattice system will be established and reduced by various spin configurations, i.e., the quantization axes of
use of the Holstein-Primakoff transfofrand the linear spin- the spins in different sublattices may vary on their angles
wave approximatiot*in Sec. Ill A. The Hamiltonian will be  with respect to the axis. As proposed by del Moralpne
rewritten by introducing the Fourier transforms of the bosonneeds to rotate the quantization axis frame by Eulerian
operators in the reduced Brillouin zone, which will be per-anglesé and . The following transformation of spin vector
formed in both the/-z plane and the direct. After perform-  coordinates is performedf”-®

ing the Fourier transforms, one reduces the Hamiltonian for

the x direction of the present system to that for a four- < ox! S v

sublattice Heisenberg system with different exchange con- Si=S/ costicosg)i+ S sindicosp — S siny,

stants (p=Jcq=J# Jpc=Jqa=J")*8 or a three-sublattice

Heisenberg system with different exchange constadig ( y_ o . o , y'
=J,.=J"#J..=J). In Secs. Il B 1 and Il B 2, two differ- S/=Si cosising;+ S sing;siny; + S/ cos);

ent extended Bogoliubov transformatioh® will be devel-
oped for diagonalizing the Hamiltonians in tkedirection,

for the superlattices with four and three layers, respectively,
by establishing the equation group consisting of eight equa-
tions and eight unknowns. The spin wave spectra will beHere the K,y,z) indices refer to the crystal axis frame and
derived by solving the equation grogghown in Appendix C  the primed ones to the rotated magnetization ones. The com-

for the four-layer superlattice and in Appendixes D and E formytation relations of the operato® =(S*,8",S’") are
the three-layer superlatticend consequently by performing the same as those aboVeBy use of the Holstein-Primakoff
the transformation. The final forms of the spin-wave spectraransfornf and the linear spin-wave approximatidhretain-

of the superlattices are represented in Sec. Ill C. Discussior]{f,g terms up to the second order in the boson operators
n ncluding remarks will represen in V. + . . At
and concluding remarks be represented in Sec a’, ai; b, bj;ch, cm, we have

S'= Siz/cosﬂi—s,x/sinai (i=a,b,c). 2.2

Il. THREE-SUBLATTICE SYSTEM

o +
In this section, we study the three-sublattice Heisenberg H—Ho+2| AIZ N
system with different isotropic exchange constants between
spins in the different sublattices.

Cii+1
+> Z+ % (& @ 1i4ota 87 115

A. Hamiltonian and rotate transformation

. . . DI,I
The three-sublattice system is modeled by the following +> ZH 2 (@, st a4 s)
Hamiltonian: [ o
+2 C|’,|+12 ) ) ot At
H=—=2 Jiini+sSiSivs : Z “« (@145~ B4 1i+)
(Li)
Diis1

:—% ‘]absa,i'so,wé_% e Sej+ o +§|: Z+ %: (al,ia|++1,i+5_alJ,rial+l,i+5)
=2 JeaSm Sames (I=ab,0), @1 23 B S S S e
m,d T NS T NS SR

wherel denotes three sublattices b, andc. 6 represents

that only the exchanges between the nearest neighbors are (I=a,b,c) 2.3
taken into account. The number of the nearest neighbors is e '
Z. The sign of the exchange constants can be positive or
negative, depending on whether ferromagnetic or ferrimag/here
netic coupling between ther§,=(S", §, S/) are operators

belonging to the spit® representatioh?

In this work, we shall study the case &fy,=Jp,.# J., and Ho=— NZSZZ Ji1+1[cosdicosh; ,q
deal with the case of the same spin amplitudes for the dif-
ferent sublattices. In a low-temperature limi<€T,), usu- +sing,siné, . 1cos ¢, — 4 1)1, (2.9

ally the spin-wave approximation naturally assumes small
spin deviations from the quantization axis. For the present
system, the natural quantization axis is the averaged magne-
tization direction. If the system was near the easy-axis con-
figuration, it would be reasonable to assume that the original
ferromagnetic state or ferrimagnetic state is easy axis, in +sing;sing, , jcog ¢y — ¢4 ) ], (2.5

2
A|=ZSJ_21 J|Y|+j[C039|C039|+j
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ZS ) )
Cii+1= = = Jii+alsingsing,

+(costicost . —L)cog — ¢ +1) ], (2.6

Dii+1= = 5 Jii+alsingsing.,

+(costicost .+ L)cog i —h41)]  (2.7)

zs _
Clis1= > J)1+1(cost—cosh) 1) sin( g — by 11),
(2.8

_ZS .
Dy =—1i > Jj1+1(cost+cosh) ;1) Sin( i — i 4.1),

B. Classical ground state

Before studying the spin waves of a magnetic system, one
needs to examine carefully the classical ground state of the
system. Therefore, in this section, we shall investigate the
classical ground state of the present three-sublattice system.

The classical energll,, of the present system is described
by the Hamiltoniang shown in Eq.(2.4). The equilibrium
state is found by minimizing Eq.2.4) with respect to the
angles 6, and ¢, (I=a,b,c). This involves the nonlinear
equations

2

JE
0700 —NZSZE Jy1+j[Singcos)
|

— COY|Sing, 1 jCoS b — i+ ) ]. (2149

2

JE
(2.9 (MO—NZSZZ J1.1+5SING;SING, 4 ;SIN( ¢ — ¥ 4 )
|
’_ZNSS 2 _ (2.15
B= Z 1,1+j[SING,COS 6, 1 and the second derivatives of the free energy with respect to
the anglesy, and ¢, (I=a,b,c):
—cosysing, . jcos ¢ — ¢ 4) ], (2.10 5
o NZSD J, . [cosscodd
— = i[cosf,cod),
, \/WSS 50|2 = I1+] | 1+j
B/ = E Ji1+jSinG) 4 jsin( — iy+j). o
(2.12 +sing;sin, ;. jcog ¢ — if4.j) ], (2.16
’ ’ ’ (?2E0 . .
Here the parameter§/, ., D ., andB; (I=a,b,c) are WZ—NZSZJ|’|+J-[SIn0|SIn0|+j
imaginary, which must be zero in a certain conditi@ee 90100+
diSCUSSion in SeC. ” B +C050 COSG . CO — ) i :1'2)'
The Hamiltonian is rewritten by introducing the Fourier ' I+ ot~ dh+)] (]
transforms of the boson operators in the reduced Brillouin (2.17
zone: 2
9°E,
T =NZE 2, e SinGisingl. cos g~ ),
H=HG+ 2 A & (2.19
+ o+ ﬁZEO ; ;
+ C|,|+1E V(A K@+ 1kt A @ 1) ————=—NZSJ, |, ;sindsinf . jcos ¥ — ¥ +|)
[ K I+
i=1,2), (2.1
+§|: D|,|+1§k: Vi@ @’ 1t 3@ s 1) ( ), (2.19
9°E 2
0 : .
. =NZS D, J, |4 cos9,sind, . Sin(y,— i+ ),
+> C|,|+12 V(& K@+ 1k A k& 1)) 96,94 J'Zl L] 1SING1-+jSIN(Y1 = ¥i-+)
! K (2.20
+ D’ + _ At ﬁZE
§|: |,|+1§k: V(A k@ 1 A K@+ 1)) 0 =—NZ§J||+jcos9|sin0|+jsin(:,b|—t,//|+j)
&9I5¢I+j '
+2 Bi@ot o+ 2 Bi(a0-al) (1=1.2), (2.2
From Eqs(2.14) and(2.15, one finds a simple condition
(I=a,b,c), (212  for the equilibrium state:
with SIN( = i) = SIN(Yp— the) =siN(he— h5) =0. (2.22
1 This equals
n=5 2 €k (2.13
“Z5 Ya= o=~ o= the— Ya=0 OF . (2.23
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As soon as Eqg2.22 and(2.23 are satisfied, one has terms of the anisotropy and the external field into account,
_ _ _ but only assume that the spins orient preferentially in their
Sin( 0, 60p) =sin( 6+ 0.) =sin( 6.+ 0,)=0, (2.24  particular directions.

where the negative or positive sign correspond to Gron One finds the nontrivial solutions of Eq¢2.14 and

Eq. (2.23. (2.19 as
" ;Jan.e finds another trivial condition from Eg&.14 and o)~ J|+1,I+2~]|+2,|5i|"29|+2_ Jis1y425iN0, 41
' PO 202 L singising ,  2J145Sin6,

sind,=sind,=sinf.=0, (2.29 ) 3y, 55N 230

namely, 21 41)+28IN0) 41 ’
0,=6p=06.=0 or m. (2.26  where the anglesg, (I=a,b,c) are limited by

Actually, the condition of Eqs(2.25 and (2.26 coincides

with that of Egs.(2.22 and(2.23. > Jiis1di42,c080,=0. (2.31)

To investigate whether such solutions indeed correspond I=a,b.c

to energy minima one has to evaluate the second derivativefen, for the nontrivial solutions, the dependence of the

Egs.(2.16—(2.21 and consider the expression equilibrium orientations can be studied with the aid of com-
puter. According to Eq(2.31), actually, the nontrivial solu-

J J J .
= — — — _— tions are degeneracy also.
P=|a f9¢9a+hb a0y *he a0, 0a IYa On the other hand, it is reasonable to remove all imagi-
J g \2 nary terms in the Hamiltonian®.3) and(2.12. It is easy to
+0p, — +0c _> Eo. (2.27  verify that all the imaginary terms can be eliminated only if
Iy e either the trivial condition2.22 or the nontrivial condition

(2.30 with cost=0 of the equilibrium orientations are sat-
isfied. The condition of ca=0 means that the noncollinear
spin configurations are limited inside the basal plane. This
limitation is attributed to one of the quantum effects of the
is very small, ensures the existence of a minimum. AftelSPin waves on the classical ground state. Then the Hamil-
some manipulation, one can get an expressiorDior tonian(2.12 can be written as

The criterionD>0, as

Vhi+hi+hZ+gi+05+07

D=NZS >, J,,.{cosfcosh,,[h?+h?, , H:H8+Aa2k a:ak+Ab; b;bk+Ac2k ¢ Gk
| b,c

=a,n,

—2hhycog e — i1 1) ]

+Cab2k 7k(a|:rb:+akbk)+Dabzk yi(ay b+ aby)
+sing;sing, ;. o[ (hf+h?, ) cos ¢y — ¢ +1) — 2hhy 4 4]

+5sing;sinG; , 1Co ¥ — ¢+ 1) (91— G1+1)° + Cbc; Yi(by & +big) + DbcEK by Gt by )

+2sin( = ¢+ 1) (91— 91+ 1) (hjcossing, . ¢

+h 4 1Sin6,cosv, , 1)} (2.28 + Cca§k: V(G 8 @) + Dca§k: V(G Bt Cdy )
Using the condition of Eq(2.22), one finds +Ba(ag +ag) + By(bg +bg) + Be(cg + o). (2.32

D= NZSZI=§4b . Jii+1lcog 0+ 6,4 1) (hy+ h|+1)2 C. General theoretical outline for diagonalizing

the Hamiltonian

+sing;sind, + 1(g,— 9i+1)?]. (2.29 In this section, we represent the general theoretical outline
6or diagonalizing the Hamiltonian2.32. For the three-
sublattice system, in order to eliminate the nondiagonal
terns, a three-step diagonalizing procedure should be devel-
oped, which consists of three coupled Cullen trans-
formations’3® an extended Bogoliubov transformation and
three independent Bogoliubov transformatichs.

Here the upper or lower sign corresponds to the solution of
or 7 in Eq. (2.23. For a minimum, the values & must be
always positive, being independent of the valuehofnd

0, (I=a,b,c). It is easy to verify that a minimum can be
found only if (i) 6,=6,,1 and¢,= ¢+, whenJ, ;>0 and
(i) 6,—6,.1=m and ;=14 whenJ; | ;<0. One may
note that the solutions found above are degeneracy for all
possible values of, and ¢, being valid for the above con-
ditions. This degeneracy can be removed by adding the terms The linear terms ira; , a; by , bg; 5 , Co in Eq.(2.32

of the anisotropy and/or the external field into the Hamil-can be eliminated by using three coupled Cullen diagonaliza-
tonian (2.1). To simplify, in Sec. Ill, we shall not take the tion transformation$;*®

1. The first step: three coupled Cullen transformations
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a=dy+ hidi o, (2.333 of ajk @k Ak Ak Ask  Aek di
Qo A1k Qg A3k ek Ask
a = dy +hy S, (2.33H @ A
B | | 3k 84 87k g Aok A1k fi
by=Tfx+ Pxdk.0. (2.343 rgf gk 83k 8gk Azk  Aik Aok fi
o gg“ Ask  Agk Aok Ak Ak Qi 9k
D =Tic +Px o, (2.349 “ Ak Ask A1k Aok Ak A1k %
and (2.38
and consequently its reversed transformdfiomith param-
C=0Ok+ OkSk.0 (2.353  etersAj (j=1,2,..,12). The relationship between the pa-
rametersa;, and Ay (i=1,2,...,12 and =1,2,...,12 gives
c =g, +qy 80, (2.35h 12 equations which are omitted here for simplicity. The com-

mutation relations of the new operators lead to six equations.

where the Fourier transformby, py, and g, represent For instance,
frozen-in uniform spin deviations. The HamiltonidR@.32
will be diagonalized only if the following conditions are sat- [ay ,a;,]z kK’ »
isfied:
N N [, B 1=0,
Azhg+CapPg + DapPot Cealo + Dealo+ Ba=0,

(2.363  respectively, lead to

ApPo+ Caphg + Dapho+ Chelg + Dpclo+ Bp=0, afj -+ ag+ag—aj—aj—ag =1, (2.39
(2.360
Ay @ak T Azkdrk T Ask@ok — AokBak — Qakdgk — Agk@1ok = O0-
ACQO+Cbcpg+Dbcp0+Ccahg+Dcah0+Bc:0- (2'40
(2.360

For eliminating the nondiagonal terms, i.ey By + a\ By,

Values forhg , ho; pg » Po; dg » do can be derived by solv- ag Bt B, ag b Tk, e bt gy, By é

ing the above linear equation group, consisting of Egs:+Bkék, andBy &+ Biéy , one needs to establish six equa-
(2.36a—(2.360 which can be separated into six equations.tions (omitted also for simplicity. Then the problem be-
The new diagonalized Hamiltonian contaiks#0 terms comes to solve the equation group, mentioned above, con-
identical to Eq.(2.32, but with a;f , Ay b;’ , by c;’ , G S|st|ng_ of 24 equations and 24'unknowns. After solylng this
substituted by thel; , dy; ¥, f; g, ox operators and a €guation group and performing the transformation, the

newk=0 term Hamiltonian may be written in the following form:
Hg=Aalho| >+ Ap|po| >+ Ac|do| >+ Cap(hg Pg +hoPo) H=HS+HI+HZ2+ Y Agay at >, BBy Be
K K
+Dap(hg Po+hoPg ) + Coe(Pg o + Podlo)
+Dpe(Po Go+ Podo ) + Cealdo ho +doho) + Ek Ciaéy &t zk Aoy oy + aay)

+Dca(dg o+ dohg ) +Ba(hg +hg) +By(Pg + Po) L .
+ g Bia( B Br + BiBi) + ; Cra&¢ &0 + &)

+Bg(qg + o) (2.373
: : . . (2.41
which represents the unifornrk€0) quantum spin-canting
fluctuations. Sincehg =hy, py=po, and qs =do, EQ.  The parameters in Hamiltonia2.41) are described in Ap-
(2.373 can actually be written in a simpler form: pendix A.
For the present system with exchange constahs
H3=Ash3+ App3+ A5+ 2(Cap+ Dan)hoPo =Jpc#Jea, the conditions of Eq(2.22 and cosf,— 6)
=cos@,— 6. are commonly satisfied. Then one hag
+2(Cpct Dpe)Pobot 2(Ceat Dea)doho+2B5ho =A., Cap=Cpc, andD =D and thus the transformation
+2Bypo+ 2B.Co- (2.37H matrix (2.38 and consequently the equation group can be

simplified to be as those represented in Appendix B.

2. The second step: an extended Bogoliubov transformation 3. The third step: three independent Bogoliubov transformations

To remove the nondiagonal terms f, +dify, dy fi In this step, one needs to remove the nondiagonal terms in
+dife, fool Ffige footfde . gedd +ade, 9 de  Eq.(2.41) by a further diagonalizing procedure, consisting of
+gd, , an extended Bogoliubov transformation should bethree independent Bogoliubov transformatiéhspne of
developed as the following matrix: which is described as
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a =y ol (2.423
o= it Lol (2.42b
with
1+ Ek 172
Ilk= 26k (2433
1— €« 1/2
0| e, (2.43b
2Ak2 211/2
€= - (243()
A

The other two(with the parametersn;,my;nq,Ny) are
similar to these.

12 413

Generally speaking, the Hamiltonian of the present three-
sublattice Heisenberg system can be diagonalized by the
three-step diagonalizing procedure, developed above. How-
ever, in most cases, such a procedure is very complex since
at least 16 equations and 16 unknowns are involved in the
equation group.

D. Quantum fluctuations on the ground state

Besides the quantum effect on the classical ground state,
found in Sec. Il B, which limits the noncollinear spin con-
figurations to be within the basal plane, one may discuss
some quantum fluctuations on the classical ground state. The
quantum fluctuations on the ground state originate from
HamiltoniansH3, HZ, andH3. One needs to repeat the pro-
cedure in Sec. Il B, discussing the energy minima of the
system. In this case, the energies of the system include not

After performing the three Bogoliubov transformations, only the HamiltonianHg but also the quantum fluctuations

one obtains

H:H8+H3+HS+H8+§£ hwk,1§k+§k+; h oy 2my Mk

(2.49

+ 2 hoy vy v
. ,

Here

1
Hg=§ ; [VAG —4A%— A +\BE —4B5,— By

+ m_ Cral, (2.49
fiwy 1= \/m (2.46
fiwy o= m (2.47)
fh 3= \/Ck, — 4CE,. (2.48

It should be noticed that if the condition of EQ.22 and
cos(@,— 6,)=cos@,— 6,) is satisfied, one will havé,=A_,
Cab:Cbc- and Dab:Dbc and thus Akl:Ckl and AkZ

=Cy, Which result inn;, =1, andny, =1,,, respectively.

Then one has

hwkylzﬁwkyg, (249)

and consequently the Hamiltonid@.44) and (2.45 can be
rewritten as

H=H3+H2+H2+ Hg+; R Gt v v

+ ; hwy 2m¢ 7 (2.50

and

1
HSZE Ek [2VAG —4AL— 2A+ VBl — 4B, — By .
(2.5

H3, H3, andH3. A numerical method needs to be employed
for finding the energy minima.

If the initial state was assumed to be of the completely
ordered state, in which all spins couple parallel or antiparal-
lel along thez axis, the diagonalizing procedures in Sec. 11 C
could be simplified so that only one step is necessary for
diagonalizing. The uniform K=0) quantum spin-canting
fluctuations disappear. The remaining quantum fluctuation
on the ground state is the zero-point vibrating of the spin
waves.

Ill. SUPERLATTICES

The infinite Heisenberg superlattices, studied in this work,
are formed from two ferromagnetic materials with the simple
cubic lattice, which couple antiferromagnetically at the inter-
faces. The layered structure in which an elementary unit con-
sisting of g (100 atomic planes is repeated periodically
along the stacking direction parallel to tkeaxis of the co-
ordinate system.

A. Hamiltonian

The superlattices can be described by the Hamiltonian

(3.9

where| denotes the spins in the elementary unit in the
direction. § represents that only the exchanges between the
nearest neighbors are taken into account wéjldenotes the
nearest neighbors within one plane parallel to yhe plane
of the coordinate system.

When the numbeq of the planes in the magnetic unit cell
is chosen to be 4, the HamiltonidA.1) is reduced to
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4

1
H==25 2 2 318,80~ 2 1Sy S, H=Ho+S(ZJ+ZJ3') 2, 2 b by,
I=1 p,q; 1,0y I=1 p
1 4
—]25 stsz,j'ss,j+5x_n;5x J3Ssm- Sume 5, -5 salzl ,,25 070145+ B1,b0 5]
—nZX 341Sun Sins s, (3.2a -3 J% (bfiba; 5, +bybli 4 5)
For the superlattice with three different atomic plangs, +J’E (b2+j ,b§j+5 +byibs45)
10k ' X T

=3 and the Hamiltoniait3.1) becomes

+ Jﬂ% (D3mbams 5, P3mbamy 5)
X

1
H==3 2 2 38,8005~ 2 1251 Saivs,
=L P9 1 Ox
+3' 2, (032D ns 5t bapbinss) (3.49
noy
_E J255- S3j+5,~ > J31S3m Sim+ 5. (3.2D) _
j10x m, with
The first term on the right-hand side of E@®.2a or Eq. Ho=—2NSX(ZJ+Z,J'|) (3.59

(3.2b is the Hamiltonian for the exchanges between thef

spins with the neighbors within the z planes. Others are for or the four-layer superiattice and

the exchanges between the spins in different planes in the 3
x direction. 5, denotes the nearest neighbor in thelirec- H=Ho+S(ZI+ZJI')> > b b
tion. = e
If one assumes the following conditions} All exchange L 3
constantsJ, for the exchanges within thg-z planes are T ¥ n
equal, i.e.J;=J,=J3=J,=J>0 and(ii) For the exchange 2 SJ.; ;5” [b"Pb"P+5H+b'prlxp+5u]
constants between the different planes and for the four-layer
superlattice, one had;,=J3,=J>0 and J,3=J,,=J' <0, o + T o
the Hamiltonian Eq(3.28 may be written as S izgx (b1jbz; 5, +b1ib2i+ )
4 ’ + |1t
1 +J 2 (bjbgj4 5 +bajbsj1s)
H==232 2 S, .52 S-S, 13, " "
=1 X i,0y
, +3>, (b;mbl,m+ﬁx+ b3,mb1r,m+5x) (3.4b
-J 125 S Ssjes, 92 Sam Sames max
- i with
~Y' 2 San-Stnsoy (3.33 Ho= —~NS[(Z+1Z,)3+2Z,3'|] (3.5b

for the three-layer superlattice, respectively. HEgeor Z,,
For the three-layer superlattice, one Has=J,3=J'<0 and  is the number of the nearest neighbors in theirection or
J31=J>0, the Hamiltonian Eq(3.2b may be written as the y-z plane for a spin.
The superlattice is periodic not only in tlyeandz direc-
1 tions, but also in the direction. The superlattice has a larger
H=— > JE 2 S, S'P”u_‘yg Sy SZ,i+5X periodicity in thex dlrectlor_1 perpendicular to the slabs. Thus
Ox one expects to have solutions of the Bloch form for the three
directions. The Hamiltonian@8.4a and(3.4b can be rewrit-
—J’E S Ssj+s —JE Sim-Simis- (3.3b ten by introducing the Fourier transforms of the boson op-
e T meg T T erators in the reduced Brillouin zone:

=1 5.9

4
In this section, we shall still restrict ourselves to the low +
! o . H=Hy+S Z,|J|+231- by b

temperature region of<T.. The initial state is assumed to 0 ;1 ; (2.4 (1= %) 11
be of the completely ordered state, in which all spins couple
parallel or antiparallel along the axis, in accordance with —7s IbF byt bbb )+ 3 (b bt +boub
the signs of the exchange constahtandJ’. The linearized ; R
Holstein-Primakoff transformatidn* enables us to rewrite

the Hamiltonians in the following forms: +J(bgbapt baxbay) + 3 (bgbiy+baby)]  (3.69
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for the four-layer superlattice and

gik Qi gk Azk  Aak bf,k

Eax | _| B2k Bk Ak Asc|| by (3.93
H=Ho+S 2 3 [Z,JJ'|+Z3(1-)1bibyx fax || Qo Aa Auc Bac] | Dk
1513 % s ak by

Qu  Azk Ak Ark

! +
+S; [2Z,3"|+3(Zy,~ Z i) Ty with its reversed matrix having parameteks (j=1, 2, 3,

and 4 (omitted here for simplicity The commutation rela-
tion of the new operators

[fr,kvgr',k’]: 57’7” 5kk’ ’ (3103

leads to one equation:

- ZSZk Y[ ( by b2+ bixbag)

+J' (b3 b3+ boybsy) +I(bg by +bayby )]
(3.6 2 2 2 2
a1k+ a2k—a3k—a4k= 1 (3113

for the three-layer superlattice, respectively, with
It should be noted that in Eq63.9) and(3.10), an indexris
needed for labeling the perpendicular standing component of

1 K- the spin waves and for diagonalizing the spin-wave Hamil-
:_2 elki- 9 (3.7 . R :

YT 7 5 ' : tonian (3.69. For eliminating the nondiagonal terms of the
new operators, one needs to establish the following three
equations, respectively,

1 .
To=7 2 e, (39 20Z3(1~ 7i) = Z:d M AnAait AskAgi)

_Zka[J(Aik+A§k+A§k+A£k)

wherek; is a two-dimensional wave vector parallel to the ,
interfaces and, is that along thex direction. +23"(AgAskt AzkAa) 1=0, (3.123

The form of the Hamiltoniarf3.6a is similar to that ob- )
tained for the four-sublattice systerffayith the exception of [Z3(1— 7’k”) — 2" 1(AnAgit AziAgk) _ZYkX[‘](AlkAM
the parameters in the Hamiltonians. It is evident that a pro- ,
cedure, similar to that developed in the previous wérls + A2+ I (ArAact AsAa) 1=0, (3.133
applicable for diagonalizing the Hamiltonian of the present ,
superlattice system. Meanwhile, the form of the Hamiltonian2l£ (1= i) = Zx" J(AuAact AaAs) = 271 [ 2 (ArkAsk
(3.6b) is much simpler than that of the Hamiltoniéh 13 or o AD 2 2 2 1
(2.32. Actually, it can be treated as a special example of the +AaAa) +I (ALt Agct Azt Ay)]=0,  (3.143
three-sublattice system, i.e., the spin configuration with the
angles of(0,7,0) for the sublattice moments. The condition The relations between the parametefg and Aj, are the
of J,p=Jpc<0 andJ.,>0 in the three-sublattice systems is same as in Eqs(27)—(31) in Ref. 18. The problem now
the necessary condition for the existence of this spin configubecomes solving the equation group of the paramedgrs
ration. Nevertheless, the problem for the superlattice with th@nd A, which consists of eight equations and eight un-
Hamiltonian (3.6b can be solved also by finding out the knowns. This equation groufdenoted a<s,) is solved by
simplest form of the transformation matrices. The proceduréhe procedure represented in Appendix C so that the trans-
of diagonalizing the Hamiltonian&3.6g9 and (3.6b will be formation can be carried out.
performed in next section.

2. Three-layer superlattice

B. Diagonalizing procedures The transformation matrix for the three-layer superlattice

is
We shall perform an extended Bogoliubov trans-
formatior?® for eliminating the nondiagonal terms in the £t bic ba ba\ /p*
Hamiltonian (3.6). The diagonalizing procedures for the 1k b b b bl‘k
four- and three-layer superlattices will be shown in Secs. gik T Tk Fak Mk 2k (3.9
B 1 and Il B 2, respectively. &3k \ba by by \ Pk

with its reversed matrix having paramet@g (j=1, 2, 3,

and 4 (omitted here alsp Comparing the matrix3.9b with
Since the nondiagonal terms in E(B.6a differ from  the matrix (B1), one has the relations between parameters

those in the previous pap#tijt is reasonable that the trans- a;u=byx, ax=az=ag=2ag=0, ay=by, ag=as,

formation matrixes as well as the equation group of the paand a;,=b,,. The same is true between the parameters

rameters are also different. For the present system, the trand;, andBjy .

formation may be written as the following matrix: The commutation relations of the new operators become

1. Four-layer superlattice
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b3, + b3, —b3.=1, (3.10h

b2, —2b3,=1. (3.11b

ZHANG ZHI-DONG

Ho=—2NSX(ZJ+Z,J')), (3.20a

Ho=482, {[Z3(1= yi,) + 23" [1(AG+ ALY

For eliminating the nondiagonal terms, one only needs to

establish

[Z3(1~ yx) — Zxd" 1Bow(Bak+ Bgi)
+[(Zyz_zﬂ}’k”)‘]_ZZXJI]BZkB4k
~Zy {3/ [2B5+ Ba(Byct By

+JBo(B1k+ Bz} =0, (3.12b

2[Z3(1= 1)~ Zd 1BuBakt [(Zy,~ Z )~ 22, 1B,
~Zy[23'By(Byy+ By + J(BY+B3)]=0.
(3.13b

The relations between the parametdrg and By, (i
=1,2,3,4;j=1,2,3,9 are represented as

1
Bu=y (buba—b3). (3.14b
1
szzv bok(bak—byy), (3.19
1 2
Ba=y (b2 —Dbaibay), (3.16
1 2 2
Here
Y=(by—bg)[ba(byctbg)—2b%].  (3.18

Then the problem becomes solving an equation gr@lep
noted asE,), consisting of Eqs(3.100—(3.18 above, in

= Z[I(AnAakt AgAgi) T 3" (AnkAak+ AgAz) 1k |
(3.213
and

H1=82) {[Z3(1= yig) + ZJ3' [J(Afc+ AGyct ASict A

= 2Z[I(AnkAak T AgAar) T 3" (AgkAsit AgA) 1k b

X[ & Erxt Expant Eqpéaxt Enaxl (3.229
and for the three-layer superlattice, one has
Hy=—NSY(Z+3Z,,)3+2Z,3']],  (3.200

Ho=S2 {3(Zyz=Zy)3+22, ' 1B+ 2219 |Bac

X (Bt Byt Ba) +I(2B1yBay+ B3 1 vic
(3.218
and

Hi=82 ([Z(1= y)+ 243 [1(BE+ B3
+[(Zy~Zy)3+22,] ' 1B,
+2Z[]3'[Ba(Byx+ Bak) + IByBa] vk }

X (&férict Eayéa) H{2[ZI(1— ) +Z,43'[1B,
+[(Zy~Zyi )3+ 2Z,|3'|1BG+2Z(2| 3" [B B

+J B%k) ka}fzkgz,k)- (3.22h

which eight unknowns are involved. The problem can be

solved by the procedures shown in Appendixes D and E.

C. Spin wave spectra

After performing the transformation, one obtains the final
form of the Hamiltonian for the present system:

H=Ho+Hj+Hy, (3.19

where for the four-layer superlattice, one has

They are the energies for the initial state, the zero-point vi-
brating, and the spin waves, respectively.

The spin wave spectra of the superlattices, obtained
above, depend on the strength of the exchange conslants
and J'. For the four-layer superlattice, as shown in Eq.
(3.223, the degeneracy of the spin-wave spectra still remains
and the number of the degeneracy of the spin-wave spectra is
four. For the three-layer superlattice, however, as shown in
Eq. (3.22h, the degeneracy of the spin wave spectra is par-
tially removed and the number of the degeneracy of the spin-



55 SPIN WAVES IN SEVERAL HEISENBERG ... 12 417

wave spectra is two. This type of splitting of energy levels inparametersy, and A, (or b, andBj,) and to establish the
the three-layer superlattice are ascribed to the different valequation group with the same values for the numbers of the
ues of the exchange constants and to the asymmetry of thgjuations and the unknowns. The form of the transformation
system. matrixes should be chosen to be of physical significance so
that the relations between the new and the old operators are
IV. DISCUSSION AND CONCLUSION meaningful in accordance with the signs of the exchange
constants between the different sublattices. Although the
In this work, we have treated the spin-wave theory ofnew operators for different collinear spin configurations dif-
several complex Heisenberg Hamiltonians. One of them ider, the diagonalized Hamiltonians of these systems can be in
for three-sublattice systems with exchange constdpts the same form with the exception of the zero-point vibrating
=Jpc#Jea- The complication of the present three-sublattice(i.e., the zero-point quantunfluctuations. Some different
system is ascribed to not only the correlation of the spins ofigns appear in the Hamiltonians, which are originated from
the different sublattices, but also the asymmetry of the systhe differences of the commutation relations of the new op-
tem. Without considering the anisotropy and/or the externaérators as well as the signs of the exchange constants.
magnetic field, as discussed in Sec. Il B, the classical ground One of the real systems, corresponding to the present mul-
state can be either the collinear or the noncollinear spitisublattice system, is of the rare-earth—transition-metal
structures, depending the strengths and the signs of the efR-T) intermetallics’®=**In someR-T compound$®~“*the
change constants. For all possible spin configurations, a rexistence of different rare-earth and transition-metal sites re-
tation transformation was applied to deal with the differentsults in the necessity of a multisublattice model for using the
quantization axes of the three sublattices. In general, thispin-wave theory to analyze the spin reorientatibrihe
rotation transformation is necessary in the three-sublatticenethod, as well as the transformation, developed in the
system since the initial state in this system can be in varioupresent work could be applied to deal with the spin-wave
spin configurations. For eliminating the imaginary terms thatspectrum of yttrium-iron-garndtY1G) although the number
appear in the Hamiltonian due to the rotation, it seems thadf the sublattices in YIG may be much larger than three or
only the noncollinear spin configurations within the basalfour.!*'? Most of theR-T compounds and YIG have large
plane and the collinear configurations are valid upon theanisotropy for their application potential on permanent mag-
guantum effect. Because of the asymmetry of the system, theets. As shown in Sec. Il B, the terms of the anisotropy
guantization axes of the spins in different sublattices mayand/or the external field need to be added into Hamiltonian
vary on their angles with respect to tkeaxis. This results (2.1) to remove the degeneracy of the classical ground state.
in the appearance of the Ilinear terms inHowever, these terms lead to a lot of difficulties, so the di-
ag , a; by , bo; ¢f , o in the Hamiltonian(2.12) or (2.32,  agonalizing procedure cannot be easily performed. For sim-
which represent the frozen-in uniform spin deviations. Theplicity, in Sec. Ill we neglected the terms of the anisotropy
linear terms can only be eliminated by using three couplednd the external field. The initial state was assumed to be of
Cullen diagonalization transformations. From the derivativeghe completely ordered state, in which all spins couple par-
of Hamiltonian (2.37) with respect to the angleg, and allel or antiparallel along the axis. Actually, only a little of
(I=a,b,c), one may derive # 0 K spin reorientation angles the anisotropy and/or external field is good enough to start
due to the quantum fluctuations. Such uniforks=Q) quan- from such an initial collinear state. The corresponding real
tum spin-canting fluctuations have been found also in theystems may bR-T compounds with good magnetostrictive
one-sublatticeand two-sublattic€ systems with competing properties or CsCl-type ordered compounds or magnetic su-
sublattice anisotropies. Howevergtld K spin reorientation perlattices.
angle due to the quantum fluctuations does not exist in the It is well known that the spin-wave theory of the super-
systems with high symmeti?,but may occur in other mul- lattice can be simplified to be dealt with by a one-
tisublattice systems with an odd number of sublattices, oflimensional model by taking advantage of the periodic
with an even number, together with asymmetry, of differentboundary condition on the basglz plane and by perform-
exchange constants. ing the two-dimensional in-plane Fourier transformaftof’
Generally speaking, it is necessary to perform the threeUp to now, the spin waves in the superlattices have been
step procedure developed in Sec. Il C. 24 equations and 24vestigated by using a macroscopic Landau-Ginzburg
unknowns are involved in the second step of this procedurgheory?® multisublattice Green-function techniqé®?® or
However, this step will be simplifietsee Appendix Bif the & transfer matrix methotf,?>**3*which are usually the nu-
conditions of Eq(2.22 and cosg,— 6,)=cos@,— 6.) are sat- merical methods. The present work shows the possibility of
isfied. In special cases, i.e., the collinear spin configurationsstudying explicitly the spin-wave spectra of the magnetic
the procedure can be reduced further. Only one step isuperlattices in terms of creation and annihilation operators.
needed to carry out an extended Bogoliubov transformatiofhe method used for the multisublattice systei@ec. Il in
and the problem becomes solving an equation group consisthis work and Ref. 18 can be extended to be appropriate for
ing of eight equations and eight unknowns. This equatiorfleriving analytical solutions of the spin-wave spectra of the
group can be treated by the procedures, similar to those repragnetic superlattices.

resented in Appendixes D and E. The unifork=0) quan- The spin-wave spectra obtained in the last section depend
tum spin-canting fluctuations do not exist when the initialon the strength of the exchange constahtand J’. The
state is the collinear one. dispersions of the spin waves in the magnetic superlattice are

It is worth noting that for performing the extended Bogo- related not only to the two-dimensional wave vedtprbut
liubov transformation, it is important to select the suitablealso the one-dimensional wave veckgr. Thus they depend
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on the values ofykH and Yk, It can be seen from E¢3.21)  waves. In the present system as well as those in which the
that the quantum fluctuation, i.e., the zero-point vibrating,fraction of the interfaces is comparable with that of the bulk,
exists @ 0 K in the magnetic superlattice. From the Hamil- such surface-localized modes cannot be found. This means
tonian (3.6) and the canonical transformation described bythat the effects of the interfaces and the bulk on the spin-
the matrix (3.9), the spin-wave modes in the superlatticeswave spectrum armixedso that the dispersions of the inter-
depend on more than the plane wave ve&toAn index s,  face and the bulk modes cannot be distinguished.
which is taken to label the perpendicular standing component It was argue@* that a spin which is not in an interface
of the spin waves, is needed for diagonalizing the spin-wavéayer has the same nearest-neighbor environment and there-
Hamiltonian. In the four-layer superlattice, as shown in Eq.fore the same equation of motion as a spin in the correspond-
(3.229, the degeneracy of the spin-wave spectra exists anghg bulk medium. The spin-wave amplitudes were given
the number of the degeneracy of the spin-wave spectra igithin each component by a linear combination of the
four. For the three-layer superlattice, as shown in Edqpositive- and negative-going solutions for the bulk medium.
(3.22h, the degeneracy of the spin-wave spectra is partially=or a travelling wave in the superlattice, the wave vectors in
removed and the number of the degeneracy of the spin-wavge y and z directions must be real whereas those in the
spectra is two. This is ascribed to the different values of theyiraction are only real when the frequency lies within a pass
exchange constants and the asymmetry of the system.' . band for the corresponding bulk mode and can be either
of t?lg tehneerogt;i\?eallr;g,r iuzrfeoﬁﬁ?;;ragfgeﬁ;ggs (?Ifhseegtgrr‘gmaginary or complex outside the pass band. The results of
. . : ) our present work suggests that such an argument is appropri-
four different energy levels which are ascribed to that have ; S .
positive and negative signs in the formulatofsee Eq(C4) ate onlylln the limit of few surface_s or mterfaces. In the
in Appendix G andp, [see Eq(C9)], and thusa,, [see Eqs. superlattice systems with large fraction of the interfaces, the

(C17), (C13, and(C9)] andA., . Therefore, aT =0 K, there wave vect_or_s in thex direction can be either imaginary or
are four energy levels in the case of the four-layer superlat€oMmPlexwithin the pass banfsee Eqs(C4) and(CS)]. This
tice; one is the ground state and the others are exciton level$ Mainly due to the fact that a spin in a superlattice, which is
Consequently, there are four different spin-wave dispersion80t in an interface layerdoes nothave the same nearest-
in the superlattice with the elementary unit of the four dif- N€ighbor environment and the same equation of motion as a
ferent layers. Therefore, the number of the total modes fofpin in the corresponding bulk medium. The quantum corre-
the spin waves of the four-layer superlattices are 16, i.e., thiation between the spins in different layers of a magnetic
number of the energy levels times that of their degeneracysuperlattice results in the complication of the spin-wave
This might be ascribed to the combinatorial number of thespectra of the superlattice.
possible movements of the spins in the elementary unit. One of the most important results revealed in this work is
The same is true for the superlattice with the elementaryhat the degeneracy of the splitting of the energy levels of the
unit of the three different layers. The total number for thespin waves can be different, due to the different symmetry of
spin-wave modes should equal to 8, i.e., the combinatoriahe systems. Since magnetic properties of a real material de
number of the different movements of the spins in the elpend on the elementary excitons, the symmetry may affect
ementary unit of the three layers. The number of the spinthe magnetic properties of the material in such a way that
wave spectra of the three-layer superlattice is 3. The splitthey can be quite different for the superlattices with the el-
tings of the energy levels should be different for those withementary unit of even and odd layers. It is predicted that
or without the degeneracy. The possible situation of the spingyen for superlattices having the same exchange constants
wave modes can be of>21+6, 2X2+4, 2X3+2, Or  (aither] or J'), i.e., without the oscillation of the exchange
2Xx4+0. Qne of th_ese possible states is reqsonable, reahz%up”ng, the asymmetry can lead to the oscillation of mag-
by evaluating the signs of the parameters; in Eqs.(ES), netic properties, such as magnetization and giant magnetore-
(3.10b, (3.11D, By in Egs.(3.14D—(3.17), and finally the  iionce "This is a common fact of the multisublattice sys-

spin-wave spectra in Eq3.22Y. One may find, from the tems. Therefore, the same should be true for intermetallic
results obtained in Sec. Ill and Appendixes D and E, that th%ompounds such as, CsCltype ordered compounds
only reasonable state is<2+4. Namely, the number of the Fe,Rhe, 44,45 rare-eartﬁ-based systems  SmiGe,, %

energy splitting is Zor 4) for the spin-wave modes witfor NdCu, and HoCg,%” which have giant magnetoresistance

without) degeneracy. behavi’or '
In the case of the superlattices, the cyclic condition as '

well as the translation invariance in tkxedirection still re-

main so that the spin-wave spectra in this direction can be

described in the form of the plane waves. The superlattice

has a larger periodicity in the direction perpendicular to the This work has been supported by the National Natural

slabs and therefore many magnon branches in the foldedcience Foundation of China, the President Foundation of

Brillouin zone. Dobrzynskiet al. found that the surface- Chinese Academy of Sciences, and the Science and Technol-

localized modes may appear within the extra gaps existinggy Commission of Liaoning and Shenyang.
between these folded bulk barffsWe argue here that the

surface-localized modes can exist only in the limit of the

systems with few surfaces or interfaces. In this limit, the AppENDIX A: PARAMETERS IN HAMILTONIAN (2.41)
effect of the surfaces or interfaces is so weak that it can be

treated as a perturbation on the energy of the bulk spin- The parameters in Hamiltonia2.41) are
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H3= Z {AQ(AGF+ At AG) + A A+ A+ Al + Ac(Ad+ Al + ATa) + Yid Cab(ArkAak+ AsAsk+ AgzcAgk

+ AuAzict AsiAract AskAgk) T Dap( ArAsk+ AsiAuakt AgiAzict AsAgi T AsiAgk T AskArad) T Coc AsiAsk T AsiAsk
+ AzAract AgkAgk T AgiAr T AraAi) T Dpc(AsgiAsk+ AscAskt+ AziAok+ AgiArac T AgkAri+ AracArx)
+ Ceal AtkAsk+ AzkAsk+ AgiAract AsAok T Asi A+ AgiAr k)

+ Deal ArkAsit AgAsk+ AgkAgkt+ As AT AskAri+ AgkAaa) 1} (A1)

A= Aa(AL+AS) + Ap(Ad+ A% + Ac(AS + A% + 2 i Can(AnAakt AzkAzi) + D an(AsAsk+ AnAgk) + Cocl AgiAsk
+ AgAsi) T Dipc(AziAsi T AaAek) T Ceal AnAsk+ AiAsi) + D cal AnAsk+ AziAsi) |, (A2)

Bia = Aa( A+ AQ) + Ap(AZ+ Ag) + Ac(Ad+ Alg) + 27l Can(AsiAskt AakAid) + D an( AgiAzkt AgiAgi) + Coo AziA
+AgkAgk) T Dpc(AzkAgkt AgkArak) T Ceal AzkA s+ AskAgk) + Deal AskAgk + AskAran) 1, (A3)

Cra=Aa(Ag+ AG) + Ap(AG+ Alg) + Ac(AZy+ Al + 27 Cap(AsiArgct AskAok) + D an(AskAgk+ AskArok)
+ Coc(AgkArx+ AraA110) T Dpc(AgiArikt+ AracA12) T Coal AsiAract AskAri) T Deal AsiAr i+ AgikAiad) |,
(A4)
A2 = AaA 1A+ ApAgikAgk T AcAskAsk + Yid Can( AkAzk T AzkAak) + Dap(ArkAak T AzkAsk) + Chcl AgkAsk+ AskAek)
+ Dpc(AgiAsk T AakAsi) T Ceal AnkAsk+ AziAsi) + D cal ArAsk+ AxAsi) 1, (A5)

Bia=AaAsiAsk+ ApAziAgk+ AcAgkArakt Vil Can(AskAzk T AaAsgi) T Dan(AskAgk+ AskAzk) + Chc AzkAgk + AgiA1k)
+Dpc(AzkArat AgkAok) + Ceal AskAgk T AskArae) + D cal AgkAroc+ AarAok) 1, (AB)

Cio=AAs A+ ApAgiArat AcA11A 1%+ Vil Can(AsikAgk+ AskA1ad) T Dan( AskAract AskAgk) T Coc( AgkAr1k+ AracA 1)
+ Dpc(AgA1a T AraA11k) T Ceal AskArit AskAr) T Dca( AsiAract AskAri) 1- (A7)
APPENDIX B: THE SECOND STEP OF THE DIAGONALIZING PROCEDURE OF SEC. IIC
IN CASES OF EQ. (2.22 AND cos(6,— 6,)=cos6,—8,)

If the conditions of Eq(2.22 and cos,— 6,)=cos@,— 6,) are satisfied, the second step of the diagonalizing procedure in
Sec. Il C can be simplified. The matri2.38 becomes

+ Aix dpk Azk Agk Ask Ak dir
Ay k
ay Qo A1k A4k Az Aek  Ask d
Be | | @k @m @ @ A A fi B1)
Bk Qu QAzk QAgk QAyk Ak Azk fi '
9 sk Agk Ak gk Ak Ak %
&k Ok

Qek dsk Qg QAzk Axk Ak

Comparing the matrixB1) with the matrix(2.38), one has the relations between the parametgrs a ., ax)=ajx, asx
=agy, anday=ayg.. The same is true for the parametérg .

In this case, the relations between the paramedgrsaand A, (i=1,2,...,8;j=1,2,...,8 give eight equations and the
commutation relations of the new operators become four equations. For eliminating the nondiagonal terms, one only needs to
establish the other four equations. The problem becomes solving the equation group, consisting of 16 equations and 16
unknowns. Consequently, the parameters defined in B4s—(A7) are simplified as

HS=§ AL(AL A+ AL+ AZ) + Ap(2A%+ AZ) + Yid 2Cal Az Agkt Ask T Agi) + Au( A+ Asi+ Az ) 1+ 2D 5l Agi( A

+ Agit Az + Ag(Agit Agit Agi) 1+ 2C cal ApAsit AgiAskt AgiAgi) + D cal 2A1Ask+ 2A 5 Ag+ Ag+ AZ)D),
(B2)
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A= Ciq = Ag(Al+ A+ AZ+ A + Ap(Agt A + 271 Can(AnAak T AsiAgi+ AgiAek+ AgiAsi) + Dpc( ArkAsi

+ AokAskt AsiAsk+ AsAsik) T Ceal ArAskt AzkAsi) + D ca( AAsk+ AzAsi) ], (B3)
Bi1= 2Aa(A5ct+ A + Ap(AZ+ A + 27 2Can( AgiAakt AscAzi) + 2D an(AgiAzicH AgAgy)
+2CcAakAgct Dea(Agt AT, (B4)

Ak2= Cia= Aa(AnkAzk+ AsiAsk) T ApAskAsak T Vil Can( ArkAgk+ AakAgkt AskAsk T AakAsk) T Dap(ArkAsk+ AziAsk
+ AziAekt AgkAsi) T Ceal ArkAsk+ AzkAsk) + Dcal ArkAek + AgkAsi) ], (BS)

Bio= 2A2A5A st ApAziAgit Yl 2Can(AskAzict AgiAgi) + 2D ap( AgiAgict AakA7i) + Coa Agt AZi) + 2D caPgiAai] -

APPENDIX C: PROCEDURE FOR SOLVING
THE EQUATION GROUP E,

Using the relation of Eq(3.113, one may rewrite Egs.

(27)—(30) in Ref. 18 and then Eq3.123 minus Eq.(3.143
results in

2a3,— 2a5+2aydz— 2ayas—1=0 (Cy)

or
Z(3-3") i (an—ag)® = 2[ZI(1— i) — Z,J'1(a1x— 8
X(ag—ax) +Z(I=3") i (ax—ax)*=0. (C2

(B6)

Equation(C6) should be omitted since it is not meaning-

ful. From Eq.(C7), one has

2[Z3(1- )~ 2]
Pe= 423y

Equation(C1) is not meaningful since it is independent of ith

the parameterg, J', andy,. Eq.(C2) can be reduced to

(a1k—ask) = K(ag—ag)- (C3
Here
K_li 1-X? a4
- X ) ( )
with
y Z(3-3") i, s
Az )2 (€
Equation(3.123 plus Eq.(3.143 leads to
P1k—P2x=0 (Co)
or
, 2AZI1-y)-ZI+Z0-3) %, 1
Pict 2237, Pt =0
(C7)
Here one defines the paramefgras
Px= a1k2k — A3kak - (Cy

Other parametergy, Pok, Pak. andqy, used in this work,
are the same as those defined in E§6)—(38) and Eq.(40)
of Ref. 18, respectively.

X[+ Xy = J(A=X)(1-90)]1. (€9

Then one may derive from E@3.133 the relation
(J—=J3")pakQak+ (Ip2k—I'P1)Q2=0.  (C10
Que=4pg—4Xpt1, (c11)
Qu=4Xp—4p+X. (C12

Now one is only concerned with a smaller equation group,
consisting of Egs(3.113, (C3), (C7) [or (C8) or (C9] and
(C10, since it is not important to deal with the relations
between the parameteag and A, at this step.

From Egs.(3.119 and(C3), one has

1
- = 1_K2 _ 2
ajk 2K | as—ag (1-K%ag— (1+K)ag|, (C13
1
- —_- 2 _ _ 2
33T 2K | ag—an (1+K%ag— (1K )ay|. (C14

Inserting Eqs(C13) and(C14) into Egs.(C8) and(C10),
one respectively obtains two equations in which aajy and
ay are unknowns:

1—2Kpy

2 ———
1-K? R

2 _
Ao~ A=

(C19H

and
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{ZQ= 3K Qu+4[ZI(1- ) — Z,3" 1K3Qad] APPENDIX D: PROCEDURE FOR SOLVING
! THE EQUATION GROUP E,

_ 4__ _ 1 2 _ 2
X (8 g~ 4Z(J= )K" Quidzi@an Az~ Aak) Using the relations of Eq93.14H—(3.17), one may re-

+Z(3-J3")(R-1)[2KQ,R-Q(R—1)}. (C16  write Egs.(3.12h and(3.13D as

Settinga, =E+F anda,=—E+F, one has two equa- 7J(1— —7.3"Tbaub
tions for the parameter® andF (omitted here for simplic- (23 yk“) " P2iba

ity). After solving these equations, finally, one obtains the +[(Zy;— Z71)d— 2Z,3" 1oy (b1 + by
solutions of the equation group as !

+ ZYkX{J’[2b§k+ ba(D1+b3) 1= Ibobat =0, (DI

1+K?
alk: + 2K \ 1_R, (Cl?a
2[Z3(1~ i)~ Z,d' (b ydo g b3) (05— b3ibay)
1
A== , C17 +[(Zy,— Zy )I— 22,3 b3 (b1 — bg)?
PN (C17n vz~ LYy, xJ" 102,(D1—ba
1_K?2 +Zyy {23 boba(Dy—bgi)*— I[ (bybar—b3y)?
89c= =g VIR (C179 + (63— bab) 21} =0. (02)
2R—-1
B _ (C17d From Egs.(3.10h and(3.11b, one has
2J1-R
2 2 _ K2 _
ThenAj (j=1,2,3,4) are given by the relations between the 2by+ 2bg—by=1. (D3)
parametersy;, and A;, and the transformation can be per-
formed. From Egs.(3.11h and(D1), one has
|
—ZJ [ bax— L+ bay(byc+bg)]
bok (D4

" [(Zyr= 23— 223 (bt 03 +[ZI(1= i — i) — Zd Togi”
Combining Eq.(D4) with Eg. (3.10h leads to

ZI [ bjx—1+ba(by+bay)]
[(Zy;=Zyi)I= 22,37 ](byy+bgi) +[ZI(1 = vy = vk ) = Zxd" Thak

b3, + b3 —1= (D5)

which can be reduced by using B@p3) to ~[Z3(1- 5 - 7kx)—ZxJ’]z(b§k+b§k—l). (DY)
2 =
Diact Pbaycta=0 (D6) Inserting Eq.(D4) into Eq. (D2) results in
with
) b3 +rbj. + sk +tbz +uby+v=0 (D10)
p={4Z23"?; —2[(Zy,~Zy)I—22,J'] "
wi

X[ZI1—y,— ) —ZJd']
LA } [ZyZ—Z(2—’yk”_z'}’kx)]\](blk"'bSK)

b2, +b2 —1)(by+b r= _ . (D11
X( 1k 3k T)( 1k 3k), (D?) Z\](l_,yk”_,ykx)_zx\] ( )

Here the descriptions of the parameterst, u, andv are
q={422\]'27ix(b§k+ b3—1)—[(Zy,~ Zy)-22,3' omitted for simplicity.
Equation(D3) can be rewritten as
b2, +b3 —1

T (D8)

X (bt bgi)?} b2 =w (D12)

Here with

T=2%3"2 (byy+ bgy)? w=2b3,+2b3, — 1. (D13
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Now the problem can be simplified to solve an equation

group (denoted a<;), consisting of Eqs(D6), (D10), and
(D12) in which only three unknown parametelos,, bsy,
and b, are involved. The procedure for solving this small
equation groufkgs is illustrated in Appendix E.

APPENDIX E: PROCEDURE FOR SOLVING
THE EQUATION GROUP Ej;

In this appendix, we shall represent the procedure fo
solving the equation grouf; which consists of Eq9D6),
(D10), and(D12).

From Egs.(D6) and (D12), one derives

pbsy+q+w=0. (ED
From Egs.(D10) and (D12), one obtains
(W?+ sw+u)b g+ rw?+tw+ov=0. (E2)
Combining Eq.(D12) with Eq. (E1) leads to
wp?—(w+q)?=0. (EJ

Combining Egs(E1) and(E2) results in

ZHANG ZHI-DONG
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(E4)

The equation group, including Eq&3) and (E4), are the
eighth-order equations of two unknowhsg, andbg,, which

can be reconstructed to be of the quartic equations afd

y by the definitions of 0y +bg)?=x and ©i— bsy)?

=y. The quartic equations can be solved in a normal
method*®*8or a numerical method with the aid of computer.
Here we omit the detailed expressions of these lengthy alge-
braic calculations. Then one obtains

p(rw?+tw+v)—(w+q)(w?+sw+u)=0.

b= i@, (E5b)
or

b= i@, (E50)

by = i@. (E50)

1F. Bloch, Z. Phys61, 206 (1930.

2T. Holstein and H. Primakoff, Phys. Re%8, 1098 (1940.

3P. W. Anderson, Phys. Re86, 694 (1952.

*R. Kubo, Phys. Rev87, 568(1952.

53. van Kranendonk and J. H. van Vleck, Rev. Mod. PI3Gs.1
(1958.

6A. B. Harris, D. Kumar, B. I. Halperin, and P. C. Hohenberg,
Phys. Rev. B3, 961 (197).

“A. del Moral, J. Phys. Condens. Mattéy 4687(1992; 4, 4703
(1992.

8T. A. Kaplan, Phys. Rev119, 1460(1960; 109, 782 (1958.

9A. W. Szenz, Phys. Rev125 1940(1962.

10p, C. wallace, Phys. Rew.28 1614(1962.

11H. Meyer and A. B. Harris, J. Appl. Phy81, 49S(1960).

2R L. Douglass, Phys. Rew20, 1612(1960.

13H. Cofta, Bull. Acad. Pol. Sci., Ser. Sci. Math., Astr. Phy4,
519 (1958.

143. M. Ziman, Proc. Phys. Soc. London, Ser68, 540(1952); 65,
548 (1952; 66, 89 (1953.

15, Kowalewski, Acta Phys. PoR1, 121(1962); 20, 545 (1961);
20, 675(1961); 19, 80 (1960.

163, Szaniecki, Acta Phys. PA0, 983(1961); 20, 995(1961); 21,
3(1962.

173, V. Vonsovski and Y. M. Seidov, Izv. Acad. Nauk SS3R
319(1954.

18zhi-dong Zhang, Phys. Rev. B3, 2569(1996.

197. Q. Zhang, C. M. Falco, J. B. Ketterson, and I. K. Schuller,
Appl. Phys. Lett.38, 424 (1981).

20T, Jarlborg and A. J. Freeman, J. Appl. Ph§8, 8041(1982.

21N, K. Flevaris, J. B. Ketterson, and J. E. Hilliard, J. Appl. Phys.
53, 8046(1982.

22|, Dobrzynski, B. Djafari-Rouhani, and H. Puszkarski, Phys.

Rev. B33, 3251(1986.

Z3L. L. Hinchey and D. L. Mills, Phys. Rev. B3, 3329(1986.

24E. L. Albuquerque, P. Fulco, E. F. Sarmento, and D. R. Tilley,
Solid State Commurb8, 41 (1986.

253, Barna, J. Phys. @1, 1021(1988; 21, 4097(1988; 21, 4413
(1988.

263, A. Morkowski and A. Szajek, J. Magn. Magn. Mat@f, 299
(1988.

2TE. C. Valadares and J. A. Plascak, Physica 58, 252(1988.

2R. E. Camley and D. R. Tilley, Phys. Rev. 3, 3413(1988.

29H. T. Diep, Phys. Rev. BI0, 4818(1989.

303, Mathon, J. Phys. Condens. Matfer2505(1989.

31H. Puszkarski, Solid State Commurg, 887 (1989.

324, Puszkarski, J. Magn. Magn. Mat&3, 290 (1991).

333, BarnasPhys. Rev. B45, 10 427(1992.

343. Barnasand B. Hillebrands, Phys. Status Solidi B6 465
(1993.

353, Cullen, J. Appl. Phys61, 4413(1987).

36N. N. Bogoliubov, J. Phys. USSER1, 23 (1947).

%7C. Rudowicz, J. Phys. @8, 1415(1985.

38H. A. Buckmaster, Can. J. Phy40, 1670(1962.

397Zhi-dong Zhang and Tong Zhao, J. Phys. Condens. Métiee
publishedl.

40K. H. J. Buschow, inHandbook on Ferromagnetic Materials
edited by E. P. Wobhlfartf{North-Holland, Amsterdam, 1983
Vol. 1, p. 297;Handbook on Ferromagnetic Materialedited
by E. P. Wohlfarth(North-Holland, Amsterdam, 1983Vol. 4,
p. 1.

415 H. Liand J. M. D. Coey, itdandbook on Magnetic Materials
edited by K. H. J. BuschoWNorth-Holland, Amsterdam, 1991
Vol. 6, p. 1.

42M. Yamada, H. Kato, H. Yamamoto, and Y. Nakagawa, Phys.
Rev. B 38, 620(1988.



55 SPIN WAVES IN SEVERAL HEISENBERG ... 12 423

433, F. Herbst, Rev. Mod. Phy63, 819(1991). Lenczowski, and K. H. J. Buschow, J. Alloys Comd@9, L1
44). S. Kouvel and C. C. Hartelius, J. Appl. Phy33 1343 (1993.

(1962. 47y, Schovsky, L. Havela, K. Prokes, H. Nakotte, F. R. de Boer,
45C. J. Schinhel, K. Hartoy, and F. H. A. M. Hochstenbach, J. Phys. and E. Bruck, J. Appl. Phyg/6, 6913(1994.

F 4, 1412(1974. R, S, Burington Handbook of Mathematical Tables and Formu-

463, H. V. J. Brabers, K. Bakker, H. Nakotte, F. R. de Boer, S. K. J. las, 5th. ed.(McGraw-Hill, New York, 1972, pp. 12-14.



