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Hopping disorder, magnon-energy renormalization, and two-magnon Raman scattering
in an antiferromagnet
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Effects of hopping disorder in the Mott-Hubbard antiferromagnet are studied, both perturbatively and also
using the exact-eigenstate method, in the strong correlation limit. It is shown that while the low-energy,
long-wavelength magnon modes are only weakly affected, the high-energy modes are strongly affected be-
cause of a cooperative effect arising from local correlations in hopping disorder. Implications of this highly
asymmetric magnon-energy renormalization for two-magnon Raman scattering in cuprate antiferromagnets are
also discussedS0163-18207)04718-9

[. INTRODUCTION the magnon energy scale is of vital importance, however, as
it is from comparison of this scale with experimefgsich as
Recently there has been renewed interest in the twoReutron scattering, Raman scattering, magnetization versus
magnon Raman scattering in cuprate antiferromagnets sudBmperature, etcthat a reliable value of for the cuprates is
as LaCu0,, YBa,CwOg, etcl It had been suggested earlier extracted.
that strong quantum fluctuations in these low-s+(/2) In this paper we therefore exgmine these questions in the
systems were responsible for the anomalously large RamaPntext of the Mott-Hubbard antiferromagriéf) with off-
linewidth2=® which could not be quantitatively understood diagonal disorder. We consider the following Hubbard
within the simple Fleury-Loudon theory involving nearest- Hamiltonian on a square lattice, with randomness in the hop-

neighbor magnon interactidi. Several new ideas have been ping terms, and Wit.h gfilling' of one fgrmion per site, S0 th'at
advanced recently which suggest that the anomalous featur p antiferromagnetic insulating state is obtained. Generaliza-

such as the large linewidth, significant asymmetry in line ion to three dimensions and to other bipartite lattices is
' y Y traightforward. Random term;; are included in NN hop-

Zhag\e, and SUthtaEt'al |rt1tekr)15|ty Zeentln ;he.frl:.iss'ca"i/ forblcEing terms, and are chosen independently for each NN pair
€NA1q Symmelry have 10 be understood within NEW Irame- ¢ g0 from a Gaussian distribution,

works. These include the exchange disorder caused by zero-
point lattice vibration} and resonant Raman scattering in . . o
which the incident photon energy is comparable to the H=— X (t+6tj)(a]a,+H.c)+UX Ay, (D)
charge gap in cupratés. (i) '
When lattice distortions, caused by quantum and thermal )
fluctuations, are taken into account in the adiabatic or Born- (St It)= 1 ex;{ B (otij It) .
Oppenheimer approximation, the hopping tertas and Y N 20
hence the exchange couplindg, which depend upon the o _ _ _ _
instantaneous position of ions, must therefore include ranThe distribution widthy'o- measures the disorder in hopping.
dom terms. This approximation should be valid for high-Since for weak disordeéJ;; /J~26t;; /t, therefore the dis-
energy magnon excitations in cuprates where the magnaitibution widths o'y and \/o; for random exchange-energy
energies of order 2~ 2000 cm ! are much greater than the terms and hopping terms should be relatedojas 40, . An
Debye energyfiwp~340cnil. The exchange disorder estimate foro, has been obtainédusing o;=a-(dr)Ir,
caused by zero-point lattice vibration was recently taken intovhere the relative amplitude of the zero-point motion
account within a nearest-neighbN) Heisenberg model (&r)/r was estimated as about 5%. The dependence of the
where the exchange energy+ 6J;; at each bond includes exchange energy on the in-plane Cu-Cu distances taken
random terms. For a Gaussian distribution of the random to be of the formJ~r ~*. The exponentr for cuprates has
terms, this model was studied using the quantum Montdeen obtained using high-pressure stutlies the range
Carlo (QMC) technique and Raman intensities were obtainedr=4*2, whereas a stronger dependenae=6.8+0.8) has
numerically in different scattering symmetries. Satisfactorybeen reported by othet8.In their QMC calculations Nori
fitting was obtained with the experimental Raman intensityet al. have considered the cases=0.3, 0.4, and 0.5.
line shape for a Gaussian varianceaf 0.4. However, no We have examined—both perturbatively and using the
clear insight emerges from this QMC calculation regardingexact-eigenstate method—effects of hopping disorder on
the explicit effects of exchange disorder Gin low-energy, magnon energies, their wave functions, and on the density of
long-wavelength magnon mode@i,) the magnon velocity, states(DOS). In both schemes the magnon modes are ob-
and (iii ) the high-energy magnon modes with energ@J tained at the level of random phase approximatieRA). At
which are mainly responsible for the Raman scattering. Asthis level the magnon propagator has the form
certaining the exchange-disorder-induced renormalization dfy ™ " (»)]=[ x°(®)1/1—U[x°(w)], where[x°(w)] is the

@
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zeroth-order antiparallel-spin particle-hole propagator evalu- i k ; i
ated in the broken-symmetry AF state. Eigensolutions of the | ——=—------- e
[ x°(w)] matrix yield the magnon energies and wave func- '
tions. In the perturbative analysis we obtain the disorder-
induced perturbation tpx°(w)], and obtain resulting cor-
rections to its eigenvalues, which then yield the renormalized
magnon energies. For analytical convenience we have con-

(@)

sidered the strong correlation limit as the perturbative analy- Pog i P j
sis is particularly simple in this limit. We have also numeri- ; i i j
cally obtained [x°(w)] using the self-consistent exact hCEE .
eigenstates of the HF Hamiltonian in the AF state with the ® ! !

random hopping terms included from the beginning. This

method can be applied for arbitrary interaction strength FIG. 1. Diagrams contributing at th@) first-order level inét

u/t. (dashed linesand (b) second-order level to the diagonal matrix
We find that there is strong renormalization in the energyelement 5x°J;; and the nearest-neighbor matrix elemgé°];; .

of high-energy magnon modes due to a cooperative effect

arising from local correlations in hopping disorder, which values of] x°(w)] then yield the renormalization in magnon

results in appreciable magnon DOS well above the maxienergies. Diagrams which contribute [t6x°] to first order

mum energy 2 for the pure system, even fer as small as  in dt;; are shown in Fig. (). The upper and lower lines are,

0.1. This result is significant because it not only clearlyrespectively, the -spin and| -spin propagators with frequen-

shows how the two-magnon Raman scattering intensity¢ies o’ and o’'—w. In the diagonal matrix element

which involves the one-magnon DOS, can extend well bef 8x°Jii , k is summed over all NN sites of Other diagrams

yond the energy & when hopping disorder is present, but it are obtained by exchanging thandk vertices of the dashed

also yields an insight into why Raman scattering is so sensiine and by putting the dashed line in the lowgrspin

tive to the tiny zero-point fluctuations. We also show thatpropagator, etc. In the strong correlation limit we obtain

these high-energy magnon modes at the upper end of the e e

spectrum are strongly localized in regions of the lattice 0 —_ - _ 0 — -

where the locally averaged hopping strength is maximum, [ox7li== 533 Ek: Ot [ox7hij= =553 i/t

i.e., at sites where alit;;’s connecting to the site have maxi- 3

mum average. We have also obtained the energy renormavl\;here A=mU is the Hubbard gap characterizing the AF

ization of the low-energy, long-wavelength modes, both toinsulatin state, and only terms up to ordef/f%) have

first order and second order #t;; /t. We find that the first- retgined appro riat){e to the stFr)on correlation limit. We

order correction to magnon energies are of the random-waIE » approp 9 )

. : e ) .~ “notice that the sum of all the NN matrix elemep8y°];; is
type, which decrease like IN with increasing system size, . ; ; 01 ANy
but can be significant for finite-size lattices. The Second_preusely the diagonal matrix elemeniy~J;; . An immed

. . . . : ate consequence of this correlation is that the Goldstone
order correction, on configuration averaging, yields a

momentum-independent multilicative renormalization ofmode is preserved and that generally the effective scattering
P P ) of low-energy, long-wavelength modes is weak. To begin
the magnon energy by a factor +b, i.e.,

. \/—z i with we consider the first-order correction to the eigenvalue
wq=2J(1+0)y1—v,. Thus the Goldstone mode is pre- ) (,y que to the perturbatiopsy®]. For this we require the

served, and the low-energy, long-wavelength magnons argigensolutions of y°(w)] in the pure AF state, which can be
weakly perturbed by off-diagonal, hopping disorder. This iSpeled by momentum due to translational symmetry within

in contrast to the case of potential scatteridgagonal disor- 6 tyo-sublattice basis. We first consider the case of low-

den where in two dimensions singular corrections to low- energy, long-wavelength modes for whicg<l and

energy magnon modes were obtairéd. w/2J<1. Up to orderqg? (w/23)2 and in the strong-
correlation limit, the eigenvector and eigenvalue of

Il. PERTURBATIVE ANALYSIS [ x°(w)] for the pure AF are given B¢
To obtain the magnon energies and wave functions, we —
evaluate the transverse spin fluctuatiomagnon propagator ¢(°)(r)= i 1+ w/2) )eiQ-r, (4
X~ (rt,r't")=(AF|S(rt)S*(r't’)|AF) which, at the a IN = V1- /2]
RPA level, is given by x°(w)]/1—U[ x°(w)] after Fourier
transformation to frequency space. Hdrg%w)] is the (0) 1 t?[g® 1[/w)\?
antiparallel-spin particle-hole propagator evaluated in the a U A3|2 2\23] I (5)

broken-symmetry, self-consistent state, with matrix elements ] ) ]

given bY[XO(w)]ij =if(dw’/Zw)GiTj(w’)Gjﬁ(w’—w). The Therefore for the first-order correction we obtain

magnon energies are then given by the poles in the magnon 5?\(1)=(¢(O)|[5X0]|¢(0)>

propagator, + U\ (w) =0, where\ (w) is the eigenvalue of a q a

the [ x°(w)] matrix. 1 12
In the perturbative technique, the disorder-induced pertur- =T 5A3

bation[ 5x°] to the[ x°(w)] matrix is obtained diagrammati-

cally in powers ofét;; /t. Resulting corrections to the eigen- where

2
(rx+ry)

w 2 2
23 +rqu+ryqy}, (6)
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1 A
rXENE 5t|]/t (FJ:F|+aX)

Do 6=
i P 6=
i ¢ c=

and

N(w)

1 N

are the lattice averages of the random hopping tefitns
taken in thex andy directions, respectively. Significantly the
order w terms cancel exactly for arbitrary distribution of
dtjj, and their cancellation follows from the fact that the
A- and B-sublattice sums of the diagonal terin$y°]; are
identical, i.e..=; . Al 6x°1i==i csl 6x°1ii -

Now, r, andry will vanish for an infinite system if the FIG. 2. The configuration-averaged magnon density of states
random hopping termst;; are distributed symmetrically obtained numerically from the exact-eigenstate analysis for a
about zero, and therefore in the infinite-size limit, there will 10x 10 hopping disordered system with=0.1 and 0.3, in the
be no first-order correction to long-wavelength magnon enstrong correlation limit §/t=10).
ergies. However, for a finite-size system the averagesd
ry are like random-walk averages and will scale like/M/ ping disorder, particularly the diagonal terms which will act
This is because the tern¥; ét;; /t in r, andr, are sums of like potential terms for the magnons. From E8). we obtain
N Gaussian random variables, and therefore will themselves
have a Gaussian distribution of widtfNo-. Stiivs

Solving for w from the equation, £ U(\{P+o\{M)=0 2= _‘]25 t
yields the renormalized magnon energies for long-
wavelength modes: Now X6t i, s/t is the sum ofz (coordination number

Gaussian variables and will therefore itself have a Gaussian

wq=V2I[QZ(1+3r+ry)+a5(1+3r,+r,)]¥2 (8)  distribution with an effective second moment of. Thus

the local self-energy.;; has a scale of and is randomly
We therefore expect strong but nonsingular corrections dudistributed according to a Gaussian distribution with a much
to this finite-size effect to the magndspin-wave velocity.  bigger width yzo. The high-energy magnons thus effec-
We have confirmed this finite-size effect through the exacttively experience a random potential and therefore get
eigenstates method and indeed find, for system sizes in theapped in the local potential depressions. In fag, pre-
range 10< 10 to 18< 18, a 14N scaling in the correction to cisely yields the extra magnon energy for the localized high-
the magnon velocity. energy modes, and therefore we can conclude that these

We now examine the effects of hopping disorder to firstmodes will extend well beyond Rin energy, and that the
order on the high-energy magnon modes with enet@d. excess in energy will have a Gaussian distribution of width
In the pure AF the maximum magnon energy &ahd these  \/zo. This result has a significant impact on the one-magnon
magnon modes have nonzero amplitudes only on sites of orgensity of states, indicating that there will be a Gaussian tail
sublattice, corresponding to creating spin deviation on thesg the DOS extending well beyond energy.andeed, this is
sites. The energy cost due to a spin deviation of this kind isvident from Fig. 2 showing the magnon DOS obtained via
therefore 44/2)=2J, whereJ/2 is the bond strength and 4 the exact-eigenstate analysis which is discussed in the fol-
is the number of broken bonds. Now, when hopping disordefowing section.
is present the highest-energy magnon mode will correspond We have thus shown that while the low-energy, long-
to creating a spin deviation on that site where the sum of thgvavelength magnon modes are very weakly affected by hop-
NN bonds is maximum. This will clearly occur in a region of ping disorder, on the other hand the high-energy magnon
the lattice where the hopping disorder terétg neighboring  modes are strongly affected because of a cooperative effect
a site have the maximum average. In fact, generally the highdue to local correlations in hopping disorder. There is there-
energy magnon modes with energy2J will be localized fore a strong asymmetry in the energy shifts of low-energy
around such sites across the lattice. and high-energy magnon modes, which is also evident from

Interestingly, in such regions where the locally averagedhe magnon DOS shown in Fig. 2. Now the asymmetric line
hopping is significantly higher than the bulk averdgehe  shape in the two-magnon Raman scattering in cuprate anti-
diminishedU/t ratio leads to a lowering of the local stag- ferromagnets has been a puzzling feature. If indeed it is the
gered magnetizatiom(r), and hence of the local charge gap randomness in hopping due to zero-point motion which is
2A(r)=m(r)U. Thus the localization of the high-energy responsible for this feature, then we have shown that this
magnon modes in such regions is suggestive of the highasymmetry is basically arising from the asymmetric energy
energy magnons acquiring a charge due to hopping disordeenormalization of high-energy and low-energy magnons due
and getting trapped in the local depressions of the charg® hopping disorder. Also, the strong energy renormalization
gap. This can be seen formally by examining the self-energpf high-energy magnons due to this cooperative effect of
correction,; :U25)(i°j , to the magnon modes due to hop- hopping disorder leads to an insight into the extraordinary

o/J

€)
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sensitivity of the Raman scattering process on zero-point TABLE |. Variation of the configuration-averaged maximum
motion of the lattice. This is the central result of this paper.magnon energy, with hopping disorder strengtr. Also shown

We have seen that the first-order correction }8(w)] are the configuration-averaged increase in magnon enexgy
yields a vanishing contribution to the low-energy, long- —w} for the highest magnon mode relative to the pure-case energy
wavelength magnon energies in the limit of infinite systema, and comparison with the configuration-averaged maximum
size. Therefore it is necessary to consider second-order coself-energy correctiox,, evaluated from Eq(9).
rection to [x°(w)], for which the relevant diagrams are — —
shown in Fig. 1b). Summing all the processes, we obtain, & wpld (om—wp)/J S/d
after configuration averaging,

0.0 1.89 0 0
2t2 St \ 2 2712 0.1 3.05 1.16 1.12
Oy _ LY I N
(oxi) ==z = <( : ) > STEd 0.2 3.44 1.55 1.58
K 0.3 3.95 2.06 1.93
2 2 2
<5X9>:—2i3 ﬁ) =—2—t3 o. (10 _ . : ,
" U t U It is convenient to express the transverse spin fluctuation
After adding to[ x°(w)], and Fourier transforming within Rrﬁo;zzg;a}t\(z;))a}t cl?fiﬁel[ivilw)”]] r;eartr:;' of the eigensolutions
the two-sublattice basis, we obtain MES ' 0 '
) [X7+(w)]22 M (13
t2 1+ 2_\.]' '}/q N 1— U)\(w)
[Xo(q"*’)]:U 1-(1+0) A3 o | In this form we have a propagator representation for the
Yq 1- 237 magnon, with the magnon wave function given by the eigen-
(11) vector| ¢, (w)) and magnon energies obtained from the pole,

1-UMN(w)=0. The energyw, of the nth magnon mode is
where 2'=2J(1+ o) is the renormalized magnon-energy obtained by solving, £ U\,(w,)=0 for the appropriate
scale. Therefore, all magnon energies are simply renormalnth from the top eigenvalue\ ,(w). The root of the equa-
ized by a momentum-independent multiplicative factortion, A, (w,)=1/U is determined by obtaining ,(w) for

(1+0), and we have closely spaced values @b on both sides of the root, and
finally linearly extrapolating between them. Suppose
wg=23(1+0)(1-yp)* (12 (\!,w}) and (\2,w?) are two sets of values for two energies
very close to, and on either side of the root, then the root
lll. EXACT-EIGENSTATE ANALYSIS wp is determined from
We now briefly describe the exact-eigenstate method for D
obtaining the magnon energies and wave functions. Details Mon)=g=rt —77 (0n—w1). (14
n n

of this method have been given earlier for the impurity-
doped Mott-Hubbard AF with on-site potential disordér. The whole procedure therefore involves obtaining the self-
The idea is to self-consistently obtain the AF state for theconsistent state for a given realization of the hopping-
hopping-disordered system within the Hartree-Fock approxidisordered system, followed by constructing and diagonaliz-
mation, and then determine the magnon eigensolutions frorimg the [x°(w)] matrix, and finally from the set of
the transverse spin propagator, evaluated in the brokereigenvalues\,(w) the magnon energies are obtained by in-
symmetry state. Since we are concerned here with an AFerpolation as described above. This scheme for obtaining the
insulating state for the one-fermion-per-site system, the HFmagnon energies is then repeated for several configurations.
plus-fluctuations approach is expected to be quantitatively We find that the highest magnon energies always extend
accurate even in the strong correlation limit, as has beewell beyond the maximum energyl Zor the pure case. Even
shown to be the case for the pure systém. for o as low as 0.1, the highest magnon energy obtained is
Within the HF approximation we construct the Hamil- about 3.4. This is in agreement with the perturbative analy-
tonian matrix on a two-dimensional square lattice with peri-sis finding that the high-energy magnon modes are strongly
odic boundary conditions. The random hopping teréits renormalized due to the correlated effect of hopping disor-
are obtained for each pair of NN sites using a Gaussian rarder.
dom number generator. In the site basis matrix elements of In Table | we show the variation with- of this hopping-
the Hamiltonian for spiro- are given by(i|H,|i)=U(n;;) disorder-induced increase in the magnon energy for the high-
and(i|H,|j)=—(t+dt;) if i andj are nearest neighbors. est_magnon.mode, and compare with the _perturbative result
Starting with some initial configuration for the spin densities,derived earlie{Eqg. (9)]. For a giveno the highest magnon
the Hamiltonian matrix is constructed and diagonalized tgnode energy is configuration-averaged over 25 configura-
yield the eigensolutiontE,, , ¢,,}. From these the spin den- tions of the hopping-disordered system to yielg. The dif-
sities are reevaluated, tié matrix is updated, and the pro- ference with the maximum magnon energ§, for the pure
cedure iterated until self-consistency is achieved. These exase yields the excess due to hopping disorder. This differ-
act eigenstates of the self-consistent AF state are used &mce is compared with the perturbative result for the magnon
construct thd x°(w)] matrix as described earliét. self-energy given in Eq(9) for high-energy magnon modes
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with energy near 2. For a given realization of the random ergies. A useful way to exhibit the magnon modes on the
hopping terms, the nearest-neighbor skigdt; s/t is per-  lattice is via arrows with size proportional to the local mag-
formed for all lattice sites, yielding the local self-energiesnon amplitudes, , and orientation proportional to the rota-
3i . From this the maximum is picked out, and this is aver-tion angle 6,=sin"}(#./S), where S, is the local
aged over 25 different configurations, vyielding the magnetizatiort® The zero-energyGoldstong mode in this
configuration-averaged maximum self-energy correctionrepresentation is characterized by identical rotation angles,
3 m That the excess in magnon energy for the highest moddespite the local magnetization and magnon amplitudes hav-
matches well with the maximum of the local self-energy cor-ing different magnitudes on the lattice sites due to disorder.
rection strongly supports the idea that high-energy magnomve have also confirmed that this localization of high-energy
modes involve spin deviations at those sites where the lomagnon modes occurs in those regions of the lattice where
cally averaged hopping terms are maximum. This implieshe locally averaged hopping is significantly higher than the
that the upper end of the magnon-energy spectrum is entirelyulk average, so that the locally averadéft ratio and the
determined by local correlations in the random hoppinglocal magnetization are low.
terms. In as much as this part of the magnon spectrum is |n conclusion, we have studied the Mott-Hubbard antifer-
most important in the two-magnon Raman scattering, fearomagnet with hopping disorder, both perturbatively and also
tures such as the strong asymmetry can thus be traced i@ing the exact-eigenstate method, in the strong correlation
these local correlations in hopping disorder. limit. We have shown that while the low-energy, long-
A convenient way to exhibit the strong renormalization of wavelength magnon modes are only weakly affected, the
high-energy magnons is via the magnon density of states: high-energy modes on the other hand are strongly affected
because of a cooperative effect arising from local correla-

N(w)= lim i 1 2 7 (15) tions in hopping disorder that is possible. There is therefore a
2 2! . .
g0 T Np 7 (0= wy)+ 7 strong asymmetry in the energy shifts of the low-energy and

. high-energy magnon modes. If indeed zero-point motion
wherew,'s denote the magnon energies ands chosen 0 |eads to hopping disorder in cuprates, then this work pro-
be of the order of average level spacim{, represents the yides a qualitative understanding of the anomalous linewidth
total number of modes obtained from the 50 different con-yq asymmetric line shape seen in the two-magnon Raman
figurations considered. The results for the magnon DOS argcattering in cuprate antiferromagnets. Also, the strong en-
plotted in Fig. 2 for different values of. Also shown for  grgy renormalization of high-energy magnons due to the co-
comparison is the DOS for the pure system which extends Ugperative effect of hopping disorder leads to an insight into

to energy~2J. Itis observed that the DOS for the hopping- the extraordinary sensitivity of the Raman scattering process
disordered system extends well beyond the maximum energyn the zero-point motion of the lattice.

2J, though the position of the peak remains roughly the
same.
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