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Hopping disorder, magnon-energy renormalization, and two-magnon Raman scattering
in an antiferromagnet
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Department of Physics, Indian Institute of Technology, Kanpur 208016, India
~Received 5 December 1996; revised manuscript received 5 February 1997!

Effects of hopping disorder in the Mott-Hubbard antiferromagnet are studied, both perturbatively and also
using the exact-eigenstate method, in the strong correlation limit. It is shown that while the low-energy,
long-wavelength magnon modes are only weakly affected, the high-energy modes are strongly affected be-
cause of a cooperative effect arising from local correlations in hopping disorder. Implications of this highly
asymmetric magnon-energy renormalization for two-magnon Raman scattering in cuprate antiferromagnets are
also discussed.@S0163-1829~97!04718-8#
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I. INTRODUCTION

Recently there has been renewed interest in the t
magnon Raman scattering in cuprate antiferromagnets
as La2CuO4, YBa2Cu3O6, etc.

1 It had been suggested earli
that strong quantum fluctuations in these low-spin (S51/2)
systems were responsible for the anomalously large Ra
linewidth,2–5 which could not be quantitatively understoo
within the simple Fleury-Loudon theory involving neares
neighbor magnon interaction.6,7 Several new ideas have bee
advanced recently which suggest that the anomalous fea
such as the large linewidth, significant asymmetry in li
shape, and substantial intensity seen in the classically for
denA1g symmetry have to be understood within new fram
works. These include the exchange disorder caused by z
point lattice vibration,1 and resonant Raman scattering
which the incident photon energy is comparable to
charge gap in cuprates.8

When lattice distortions, caused by quantum and ther
fluctuations, are taken into account in the adiabatic or Bo
Oppenheimer approximation, the hopping termst i j , and
hence the exchange couplingsJi j , which depend upon the
instantaneous position of ions, must therefore include r
dom terms. This approximation should be valid for hig
energy magnon excitations in cuprates where the mag
energies of order 2J;2000 cm21 are much greater than th
Debye energy\vD;340 cm21. The exchange disorde
caused by zero-point lattice vibration was recently taken i
account within a nearest-neighbor~NN! Heisenberg mode
where the exchange energyJ1dJi j at each bond include
random terms.1 For a Gaussian distribution of the rando
terms, this model was studied using the quantum Mo
Carlo~QMC! technique and Raman intensities were obtain
numerically in different scattering symmetries. Satisfacto
fitting was obtained with the experimental Raman intens
line shape for a Gaussian variance ofs;0.4. However, no
clear insight emerges from this QMC calculation regard
the explicit effects of exchange disorder on~i! low-energy,
long-wavelength magnon modes,~ii ! the magnon velocity,
and ~iii ! the high-energy magnon modes with energy;2J
which are mainly responsible for the Raman scattering.
certaining the exchange-disorder-induced renormalizatio
550163-1829/97/55~18!/12338~5!/$10.00
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the magnon energy scale is of vital importance, however
it is from comparison of this scale with experiments~such as
neutron scattering, Raman scattering, magnetization ve
temperature, etc.! that a reliable value ofJ for the cuprates is
extracted.

In this paper we therefore examine these questions in
context of the Mott-Hubbard antiferromagnet~AF! with off-
diagonal disorder. We consider the following Hubba
Hamiltonian on a square lattice, with randomness in the h
ping terms, and with a filling of one fermion per site, so th
an antiferromagnetic insulating state is obtained. General
tion to three dimensions and to other bipartite lattices
straightforward. Random termsdt i j are included in NN hop-
ping terms, and are chosen independently for each NN
of sites from a Gaussian distribution,

Ĥ52 (
^ i j &,s

~ t1dt i j !~ âis
† â js1H.c.!1U(

i
n̂i↑n̂i↓ , ~1!

P~dt i j /t !5
1

A2ps
expF2

~dt i j /t !
2

2s G . ~2!

The distribution widthAs measures the disorder in hoppin
Since for weak disorderdJi j /J;2dt i j /t, therefore the dis-
tribution widthsAsJ andAs t for random exchange-energ
terms and hopping terms should be related viasJ54s t . An
estimate forsJ has been obtained1 using sJ5a•^dr &/r ,
where the relative amplitude of the zero-point moti
^dr &/r was estimated as about 5%. The dependence of
exchange energyJ on the in-plane Cu-Cu distancer is taken
to be of the formJ;r2a. The exponenta for cuprates has
been obtained using high-pressure studies9 in the range
a5462, whereas a stronger dependence (a56.860.8) has
been reported by others.10 In their QMC calculations Nori
et al. have considered the casessJ50.3, 0.4, and 0.5.

We have examined—both perturbatively and using
exact-eigenstate method—effects of hopping disorder
magnon energies, their wave functions, and on the densit
states~DOS!. In both schemes the magnon modes are
tained at the level of random phase approximation~RPA!. At
this level the magnon propagator has the fo
@x21(v)#5@x0(v)#/12U@x0(v)#, where @x0(v)# is the
12 338 © 1997 The American Physical Society
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55 12 339HOPPING DISORDER, MAGNON-ENERGY . . .
zeroth-order antiparallel-spin particle-hole propagator eva
ated in the broken-symmetry AF state. Eigensolutions of
@x0(v)# matrix yield the magnon energies and wave fun
tions. In the perturbative analysis we obtain the disord
induced perturbation to@x0(v)#, and obtain resulting cor
rections to its eigenvalues, which then yield the renormali
magnon energies. For analytical convenience we have
sidered the strong correlation limit as the perturbative an
sis is particularly simple in this limit. We have also nume
cally obtained @x0(v)# using the self-consistent exa
eigenstates of the HF Hamiltonian in the AF state with
random hopping terms included from the beginning. T
method can be applied for arbitrary interaction stren
U/t.

We find that there is strong renormalization in the ene
of high-energy magnon modes due to a cooperative ef
arising from local correlations in hopping disorder, whi
results in appreciable magnon DOS well above the ma
mum energy 2J for the pure system, even fors as small as
0.1. This result is significant because it not only clea
shows how the two-magnon Raman scattering intens
which involves the one-magnon DOS, can extend well
yond the energy 4J when hopping disorder is present, but
also yields an insight into why Raman scattering is so se
tive to the tiny zero-point fluctuations. We also show th
these high-energy magnon modes at the upper end of
spectrum are strongly localized in regions of the latt
where the locally averaged hopping strength is maximu
i.e., at sites where alldt i j ’s connecting to the site have max
mum average. We have also obtained the energy renor
ization of the low-energy, long-wavelength modes, both
first order and second order indt i j /t. We find that the first-
order correction to magnon energies are of the random-w
type, which decrease like 1/AN with increasing system size
but can be significant for finite-size lattices. The seco
order correction, on configuration averaging, yields
momentum-independent multiplicative renormalization
the magnon energy by a factor 11s, i.e.,
vq52J(11s)A12gq

2 . Thus the Goldstone mode is pre
served, and the low-energy, long-wavelength magnons
weakly perturbed by off-diagonal, hopping disorder. This
in contrast to the case of potential scattering~diagonal disor-
der! where in two dimensions singular corrections to lo
energy magnon modes were obtained.11

II. PERTURBATIVE ANALYSIS

To obtain the magnon energies and wave functions,
evaluate the transverse spin fluctuation~magnon! propagator
x21(rt ,r 8t8)[^AFuS2(rt )S1(r 8t8)uAF& which, at the
RPA level, is given by@x0(v)#/12U@x0(v)# after Fourier
transformation to frequency space. Here@x0(v)# is the
antiparallel-spin particle-hole propagator evaluated in
broken-symmetry, self-consistent state, with matrix eleme
given by @x0(v)# i j5 i*(dv8/2p)Gi j

↑ (v8)Gji
↓ (v82v). The

magnon energies are then given by the poles in the mag
propagator, 12Ul(v)50, wherel(v) is the eigenvalue of
the @x0(v)# matrix.

In the perturbative technique, the disorder-induced per
bation@dx0# to the@x0(v)# matrix is obtained diagrammati
cally in powers ofdt i j /t. Resulting corrections to the eigen
-
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values of@x0(v)# then yield the renormalization in magno
energies. Diagrams which contribute to@dx0# to first order
in dt i j are shown in Fig. 1~a!. The upper and lower lines are
respectively, the↑-spin and↓-spin propagators with frequen
cies v8 and v82v. In the diagonal matrix elemen
@dx0# i i , k is summed over all NN sites ofi . Other diagrams
are obtained by exchanging thei andk vertices of the dashed
line and by putting the dashed line in the lower~↓-spin!
propagator, etc. In the strong correlation limit we obtain

@dx0# i i52
t2

2D3 (
k

dt ik /t, @dx0# i j52
t2

2D3 dt i j /t,

~3!

where 2D5mU is the Hubbard gap characterizing the A
insulating state, and only terms up to order (t2/D3) have
been retained, appropriate to the strong correlation limit.
notice that the sum of all the NN matrix elements@dx0# i j is
precisely the diagonal matrix element@dx0# i i . An immedi-
ate consequence of this correlation is that the Goldst
mode is preserved and that generally the effective scatte
of low-energy, long-wavelength modes is weak. To be
with we consider the first-order correction to the eigenva
l(v) due to the perturbation@dx0#. For this we require the
eigensolutions of@x0(v)# in the pure AF state, which can b
labeled by momentum due to translational symmetry wit
the two-sublattice basis. We first consider the case of lo
energy, long-wavelength modes for whichq!1 and
v/2J!1. Up to order q2, (v/2J)2 and in the strong-
correlation limit, the eigenvector and eigenvalue
@x0(v)# for the pure AF are given by12

fq
~0!~r !5

1

AN
S A11v/2J

2A12v/2JDeiq•r , ~4!

lq
~0!5

1

U
2

t2

D3 Fq24 2
1

2 S v

2JD
2G . ~5!

Therefore for the first-order correction we obtain

dlq
~1!5^fq

~0!u@dx0#ufq
~0!&

52
1

2

t2

D3 F ~r x1r y!S v

2JD
2

1r xqx
21r yqy

2G , ~6!

where

FIG. 1. Diagrams contributing at the~a! first-order level indt
~dashed lines! and ~b! second-order level to the diagonal matr
element@dx0# i i and the nearest-neighbor matrix element@dx0# i j .
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12 340 55SAURABH BASU AND AVINASH SINGH
r x[
1

N (
i

dt i j /t ~rW j5rW i1ax̂!

and

r y[
1

N (
i

dt i j /t ~rW j5rW i1aŷ! ~7!

are the lattice averages of the random hopping termsdt i j
taken in thex andy directions, respectively. Significantly th
order v terms cancel exactly for arbitrary distribution o
dt i j , and their cancellation follows from the fact that th
A- andB-sublattice sums of the diagonal terms@dx0# i i are
identical, i.e.,( iPA@dx0# i i5( iPB@dx0# i i .

Now, r x and r y will vanish for an infinite system if the
random hopping termsdt i j are distributed symmetrically
about zero, and therefore in the infinite-size limit, there w
be no first-order correction to long-wavelength magnon
ergies. However, for a finite-size system the averagesr x and
r y are like random-walk averages and will scale like 1/AN.
This is because the terms( idt i j /t in r x and r y are sums of
N Gaussian random variables, and therefore will themse
have a Gaussian distribution of widthANs.

Solving forv from the equation, 12U(lq
(0)1dlq

(1))50
yields the renormalized magnon energies for lon
wavelength modes:

vq5&J@qx
2~113r x1r y!1qy

2~113r y1r x!#
1/2. ~8!

We therefore expect strong but nonsingular corrections
to this finite-size effect to the magnon~spin-wave! velocity.
We have confirmed this finite-size effect through the exa
eigenstates method and indeed find, for system sizes in
range 10310 to 18318, a 1/AN scaling in the correction to
the magnon velocity.

We now examine the effects of hopping disorder to fi
order on the high-energy magnon modes with energy'2J.
In the pure AF the maximum magnon energy is 2J and these
magnon modes have nonzero amplitudes only on sites of
sublattice, corresponding to creating spin deviation on th
sites. The energy cost due to a spin deviation of this kind
therefore 4(J/2)52J, whereJ/2 is the bond strength and
is the number of broken bonds. Now, when hopping disor
is present the highest-energy magnon mode will corresp
to creating a spin deviation on that site where the sum of
NN bonds is maximum. This will clearly occur in a region
the lattice where the hopping disorder termsdt i j neighboring
a site have the maximum average. In fact, generally the h
energy magnon modes with energy>2J will be localized
around such sites across the lattice.

Interestingly, in such regions where the locally averag
hopping is significantly higher than the bulk averaget, the
diminishedU/t ratio leads to a lowering of the local stag
gered magnetizationm(r ), and hence of the local charge ga
2D(r )[m(r )U. Thus the localization of the high-energ
magnon modes in such regions is suggestive of the h
energy magnons acquiring a charge due to hopping diso
and getting trapped in the local depressions of the cha
gap. This can be seen formally by examining the self-ene
correction,S i j5U2dx i j

0 , to the magnon modes due to ho
l
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ping disorder, particularly the diagonal terms which will a
like potential terms for the magnons. From Eq.~3! we obtain

S i i52J(
d

dt i ,i1d

t
. ~9!

Now (ddt i ,i1d /t is the sum ofz ~coordination number!
Gaussian variables and will therefore itself have a Gaus
distribution with an effective second moment ofzs. Thus
the local self-energyS i i has a scale ofJ and is randomly
distributed according to a Gaussian distribution with a mu
bigger width Azs. The high-energy magnons thus effe
tively experience a random potential and therefore
trapped in the local potential depressions. In fact,S i i pre-
cisely yields the extra magnon energy for the localized hi
energy modes, and therefore we can conclude that th
modes will extend well beyond 2J in energy, and that the
excess in energy will have a Gaussian distribution of wid
Azs. This result has a significant impact on the one-magn
density of states, indicating that there will be a Gaussian
in the DOS extending well beyond energy 2J. Indeed, this is
evident from Fig. 2 showing the magnon DOS obtained
the exact-eigenstate analysis which is discussed in the
lowing section.

We have thus shown that while the low-energy, lon
wavelength magnon modes are very weakly affected by h
ping disorder, on the other hand the high-energy mag
modes are strongly affected because of a cooperative e
due to local correlations in hopping disorder. There is the
fore a strong asymmetry in the energy shifts of low-ene
and high-energy magnon modes, which is also evident fr
the magnon DOS shown in Fig. 2. Now the asymmetric l
shape in the two-magnon Raman scattering in cuprate a
ferromagnets has been a puzzling feature. If indeed it is
randomness in hopping due to zero-point motion which
responsible for this feature, then we have shown that
asymmetry is basically arising from the asymmetric ene
renormalization of high-energy and low-energy magnons
to hopping disorder. Also, the strong energy renormalizat
of high-energy magnons due to this cooperative effect
hopping disorder leads to an insight into the extraordin

FIG. 2. The configuration-averaged magnon density of sta
obtained numerically from the exact-eigenstate analysis fo
10310 hopping disordered system withs50.1 and 0.3, in the
strong correlation limit (U/t510).



oi
er

g-
m
c
e
in

y
a

to

fo
ta
ty
.
th
x
ro
e
A
F
e
ee

il-
ri

ra
s

.
s
t
-
-
e
d

tion
ns

the
en-
le,

d
se
s
oot

elf-
g-
liz-

in-
the
ons.
end

d is
ly-
gly
or-

igh-
sult

ra-

fer-
non
s

m

ergy
um

55 12 341HOPPING DISORDER, MAGNON-ENERGY . . .
sensitivity of the Raman scattering process on zero-p
motion of the lattice. This is the central result of this pap

We have seen that the first-order correction to@x0(v)#
yields a vanishing contribution to the low-energy, lon
wavelength magnon energies in the limit of infinite syste
size. Therefore it is necessary to consider second-order
rection to @x0(v)#, for which the relevant diagrams ar
shown in Fig. 1~b!. Summing all the processes, we obta
after configuration averaging,

^dx i i
0 &52

2t2

U3 (
k

K S dt ik
t D 2L 52

2zt2

U3 s,

^dx i j
0 &52

2t2

U3 K S dt i j
t D 2L 52

2t2

U3 s. ~10!

After adding to @x0(v)#, and Fourier transforming within
the two-sublattice basis, we obtain

@x0~q,v!#5
1

U
12~11s!

t2

D3 F 11
v

2J8
gq

gq 12
v

2J8

G ,
~11!

where 2J8[2J(11s) is the renormalized magnon-energ
scale. Therefore, all magnon energies are simply renorm
ized by a momentum-independent multiplicative fac
(11s), and we have

vq52J~11s!~12gq
2!1/2. ~12!

III. EXACT-EIGENSTATE ANALYSIS

We now briefly describe the exact-eigenstate method
obtaining the magnon energies and wave functions. De
of this method have been given earlier for the impuri
doped Mott-Hubbard AF with on-site potential disorder13

The idea is to self-consistently obtain the AF state for
hopping-disordered system within the Hartree-Fock appro
mation, and then determine the magnon eigensolutions f
the transverse spin propagator, evaluated in the brok
symmetry state. Since we are concerned here with an
insulating state for the one-fermion-per-site system, the H
plus-fluctuations approach is expected to be quantitativ
accurate even in the strong correlation limit, as has b
shown to be the case for the pure system.14

Within the HF approximation we construct the Ham
tonian matrix on a two-dimensional square lattice with pe
odic boundary conditions. The random hopping termsdt i j
are obtained for each pair of NN sites using a Gaussian
dom number generator. In the site basis matrix element
the Hamiltonian for spins are given by^ i uĤsu i &5U^ni s̄&
and ^ i uĤsu j &52(t1dt i j ) if i and j are nearest neighbors
Starting with some initial configuration for the spin densitie
the Hamiltonian matrix is constructed and diagonalized
yield the eigensolutions$Els ,f ls%. From these the spin den
sities are reevaluated, theH matrix is updated, and the pro
cedure iterated until self-consistency is achieved. These
act eigenstates of the self-consistent AF state are use
construct the@x0(v)# matrix as described earlier.13
nt
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It is convenient to express the transverse spin fluctua
propagator at RPA level in terms of the eigensolutio
$fl(v),l(v)%, of the @x0(v)# matrix:

@x21~v!#5(
l

ufl~v!&^fl~v!u
12Ul~v!

. ~13!

In this form we have a propagator representation for
magnon, with the magnon wave function given by the eig
vectorufl(v)& and magnon energies obtained from the po
12Ul(v)50. The energyvn of the nth magnon mode is
obtained by solving, 12Uln(vn)50 for the appropriate
~nth from the top! eigenvalueln(v). The root of the equa-
tion, ln(vn)51/U is determined by obtainingln(v) for
closely spaced values ofv on both sides of the root, an
finally linearly extrapolating between them. Suppo
(ln

1 ,vn
1) and (ln

2 ,vn
2) are two sets of values for two energie

very close to, and on either side of the root, then the r
vn is determined from

l~vn!5
1

U
5ln

11
ln
22ln

1

vn
22vn

1 ~vn2v1!. ~14!

The whole procedure therefore involves obtaining the s
consistent state for a given realization of the hoppin
disordered system, followed by constructing and diagona
ing the @x0)(v)] matrix, and finally from the set of
eigenvaluesln(v) the magnon energies are obtained by
terpolation as described above. This scheme for obtaining
magnon energies is then repeated for several configurati

We find that the highest magnon energies always ext
well beyond the maximum energy 2J for the pure case. Even
for s as low as 0.1, the highest magnon energy obtaine
about 3.4J. This is in agreement with the perturbative ana
sis finding that the high-energy magnon modes are stron
renormalized due to the correlated effect of hopping dis
der.

In Table I we show the variation withs of this hopping-
disorder-induced increase in the magnon energy for the h
est magnon mode, and compare with the perturbative re
derived earlier@Eq. ~9!#. For a givens the highest magnon
mode energy is configuration-averaged over 25 configu
tions of the hopping-disordered system to yieldvm. The dif-
ference with the maximum magnon energyvm

0 for the pure
case yields the excess due to hopping disorder. This dif
ence is compared with the perturbative result for the mag
self-energy given in Eq.~9! for high-energy magnon mode

TABLE I. Variation of the configuration-averaged maximu
magnon energyvm with hopping disorder strengths. Also shown
are the configuration-averaged increase in magnon energyvm

2vm
0 for the highest magnon mode relative to the pure-case en

vm
0 , and comparison with the configuration-averaged maxim

self-energy correctionSm evaluated from Eq.~9!.

s vm/J (vm2vm
0 )/J Sm/J

0.0 1.89 0 0
0.1 3.05 1.16 1.12
0.2 3.44 1.55 1.58
0.3 3.95 2.06 1.93
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12 342 55SAURABH BASU AND AVINASH SINGH
with energy near 2J. For a given realization of the random
hopping terms, the nearest-neighbor sum(ddt i ,i1d /t is per-
formed for all lattice sites, yielding the local self-energi
S i i . From this the maximum is picked out, and this is av
aged over 25 different configurations, yielding th
configuration-averaged maximum self-energy correcti
Sm. That the excess in magnon energy for the highest m
matches well with the maximum of the local self-energy c
rection strongly supports the idea that high-energy mag
modes involve spin deviations at those sites where the
cally averaged hopping terms are maximum. This impl
that the upper end of the magnon-energy spectrum is ent
determined by local correlations in the random hopp
terms. In as much as this part of the magnon spectrum
most important in the two-magnon Raman scattering, f
tures such as the strong asymmetry can thus be trace
these local correlations in hopping disorder.

A convenient way to exhibit the strong renormalization
high-energy magnons is via the magnon density of state

N~v!5 lim
h→0

1

p

1

Nn
(
n

h

~v2vn!
21h2 , ~15!

wherevn’s denote the magnon energies andh is chosen to
be of the order of average level spacing.Nn represents the
total number of modes obtained from the 50 different co
figurations considered. The results for the magnon DOS
plotted in Fig. 2 for different values ofs. Also shown for
comparison is the DOS for the pure system which extends
to energy;2J. It is observed that the DOS for the hoppin
disordered system extends well beyond the maximum en
2J, though the position of the peak remains roughly t
same.

We have also examined the magnon wave function
modes at the high-energy end of the spectrum, and find
indeed these modes are strongly localized in certain reg
of the lattice, as expected from the analysis discussed ea
The magnon amplitudes are contained in the eigenvec
ufl(v)& of the @x0(v)# matrix evaluated at the magnon e
ys
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ergies. A useful way to exhibit the magnon modes on
lattice is via arrows with size proportional to the local ma
non amplitudefl

i , and orientation proportional to the rota
tion angle u i5sin21(fl

i /Sz
i ), where Sz

i is the local
magnetization.15 The zero-energy~Goldstone! mode in this
representation is characterized by identical rotation ang
despite the local magnetization and magnon amplitudes h
ing different magnitudes on the lattice sites due to disord
We have also confirmed that this localization of high-ene
magnon modes occurs in those regions of the lattice wh
the locally averaged hopping is significantly higher than
bulk average, so that the locally averagedU/t ratio and the
local magnetization are low.

In conclusion, we have studied the Mott-Hubbard antif
romagnet with hopping disorder, both perturbatively and a
using the exact-eigenstate method, in the strong correla
limit. We have shown that while the low-energy, lon
wavelength magnon modes are only weakly affected,
high-energy modes on the other hand are strongly affec
because of a cooperative effect arising from local corre
tions in hopping disorder that is possible. There is therefo
strong asymmetry in the energy shifts of the low-energy a
high-energy magnon modes. If indeed zero-point mot
leads to hopping disorder in cuprates, then this work p
vides a qualitative understanding of the anomalous linewi
and asymmetric line shape seen in the two-magnon Ra
scattering in cuprate antiferromagnets. Also, the strong
ergy renormalization of high-energy magnons due to the
operative effect of hopping disorder leads to an insight i
the extraordinary sensitivity of the Raman scattering proc
on the zero-point motion of the lattice.
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